Appendix D

Summary list of IDL functions

This appendix lists the functions available in the IDL system, giving their arguments and a brief description of their behavior. The functions are described in the M-Lisp notation used in the Interlisp and IDL manuals. Thus, even though the function names appear here in lower-case, you must type them in upper-case to IDL.
adjoin[vector...]
No-spread. Produces a new vector formed by joining its arguments together end to end.
anova[mtable;nesting]
Produces a matrix containing a summary table for the analysis of variance of moments array mtable, where nesting is an optional specification of the nesting relations between the independent variables.
assign[target;source]
The IDL assignment operator. target must be a selection on some array, and that array will be side-effected. The infix operator _ translates to assign if an array selection expression appears as its left-hand operand.
at[a;sltr]
The IDL selection operator. Produces an array as output which is a window onto the section of a described by sltr. sltr may be a list of length no greater than the number of dimensions of a to specify a selection of a's values, or a label or code selector. The infix operator @ is associated with at.
code[lev;val]
Constructs a code selector to be given to at. If lev is NIL, the selector can be used to reference the value-labeled dimension of the array to which it is applied by at. Otherwise, if val is NIL, the selector will reference the complete codebook associated with level lev on the array's value-labeled dimension. If val is a non-NiL literal atom, it will reference the value associated with it on level lev. Finally, if val is a scalar, it will reference the label associated with that value.
copy[x]
The Interlisp copy function extended to copy IDL arrays (which may be the value of \mathbf{x} or may appear at arbitrary levels in the list-structure \mathbf{x}). Assigning into a copy of an array will not affect the original.
counts[a]
A generic function that returns the sum of the elements of a just like rplus, except that it skips over NIL's. In effect, it produces contingency tables for arrays that have been previously grouped.
covar[a;wt]
Builds the covariation matrix (sums of mean centered cross products) for the columns of matrix a, using wt as a weighting vector. Returns a symmetric matrix, whose last row represents a mythical Constant variable (with value always 1) that has been swept out, so that the last row has the means of the columns of \mathbf{a}, and $-1 / \mathrm{n}$ in the last cell.
deal[n]
Returns a vector containing a random permutation of the integers from $\mathbf{1}$ to \mathbf{n}.

dumpidlarray[a;file]

Writes a symbolic expression on file (primary output file if file is NIL) from which readidlarray can reconstruct an array equivalent to a. If file is not an open file, it is opened, the expression is printed, and then file is closed.
eapply[fn;expects;args]
Extended APPLY. Applies $\mathbf{f n}$ to each section of the decomposition of args according to expects, an expectation list.
eapply*[fn;expects;args...]
No-spread. Extended APPLY*. Applies $\mathbf{f n}$ to each section of the decomposition of args according to expects.
elementtype[a]
Returns the type (INTEGER or FLOATING) of the elements of a, an array.
ems[nlevels;nesting;random]
Produces an expected mean squares coefficient table for an analysis of variance design with factor levels given by nlevels, the nesting relationships by nesting, and the factors in random considered random. nlevels can be the moments table itself, as well as just the shape of its classification space.
extend[fn;expects]
Modifies fn so that it will automatically extend across array arguments according to expects.

format[a]

Returns the format (either FULL or SYMMETRIC) of array a.
fprob[f;dfnum;dfden]
Returns the probability of F-value \mathbf{f}, with degrees of freedom dfnum, dfden.
genvec[initial;end]
Generates a vector of the numbers from initial to end. If initial is a two element vector, it is taken as the first two terms of the series (i.e. it specifies an increment). Thus, (GENVEC '(3) 11) generates the odd integers from 3 to 11.
group[attribs;values]
Contructs an array of $m+n$ dimensions, where m is the number of columns of the matrix attribs, and n the dimensionality of values. The values in each row of attribs are used as a subscript for an m-dimensional array whose extents are given by the number of distinct values found in the corresponding column of attribs. The output is formed by grouping all row-planes of values corresponding to equal rows of attribs in the m-space location addressed by that row. In effect, group places the row-planes of values within the cells of the classification design represented by attribs. If values is NIL, it is defaulted to a constant vector of 1 's with length the number of rows of attribs. This produces an object from which counts will compute a contingency table.
hist[v;file]
Prints a histogram for \mathbf{v}, a vector, to the primary output file, or to file if given. Supresses multiple identical lines whenever their number exceeds the value of HISTRPTLINES. If file is not an open file, it is opened, the histogram is printed, and then file is closed.
idlmatrix[data]
Produces a two-dimensional IDL array from data, a list structure describing its labels
and values. data is a list each element of which is a list representing one row of the output matrix: the CAR contains the row label to be assigned, and the CDR is a list of the values for that row. The row specifications may be optionally preceded by one list of the form (TITLES title-string dimension1-label dimension2-label), and another of the form (LABELS level1-labels level2-labels ...). The level labels are for levels on the second dimension of the output, and each one may be NIL (meaning no level label) a non-NIL literal atom which provides a level label but no codebook for the corresponding level, or a list of the form (level-label . codebook).
invert[m]
Produces the matrix inverse of \mathbf{m}. Equivalent to -(SWEEP m ALL).
keep[ary;dims...]
No-spread. Produces a copy of ary with dims added to its kept dimensions. If dims is the literal ALL, then all the dimensions of ary will be kept. If no dims are specified, a vector of the currently kept dimensions is returned.
label[dim;lev]
Constructs a label selector to be given to at that will reference the label for dimension dim (if lev is NIL) or the label for level lev on dimension dim.
leave[ary;dims...]
No-spread. Produces a new array from ary with dims removed from its kept dimensions. If the first of dims is the literal ALL, then all of its kept dimensions will be eliminated.
listmatrix[m]
Converts IDL matrix m into a list structure from which idlmatrix can reconstruct the original.
$\operatorname{mprod}[a ; b]$
Matrix product of \mathbf{a} and \mathbf{b}. If they are vectors, mprod coerces them in the obvious way.
max[scalar...]
No-spread. Returns the maximum value of its arguments.
$\min [s c a l a r . .$.
No-spread. Returns the minimum value of its arguments.
moments[a;wt;m]
Returns a vector of length $\mathbf{m}+1$ containing the number of non-NIL values (moment 0) and the first \mathbf{m} moments of array \mathbf{a}, using wt as a weighting array. The first moment is the mean, the second is the variance, the third is the skew, etc. If \mathbf{m} is NIL, it is defaulted to 2 and the n, mean, and variance are computed.
norm[m]
Norms matrix \mathbf{m} by dividing each entry by the square root of the product of its basis \{diagonal\} elements
nprob[z]
Returns the one-tailed probability of a normal deviate of size \mathbf{z}.
order[v;cfn]
Returns a permutation vector which will order vector \mathbf{v} by comparison function $\mathbf{c f n}$. If $\mathbf{c f n}$ is not specified, a function which will sort it into ascending order is used.

Returns a matrix of the pairwise N corresponding to a covariation matrix on a, using wt as a weighting vector.
plot[y;x;file]
Plots the vector \mathbf{y} against the vector \mathbf{x} (1 thru length \mathbf{y}, if not given) on the primary output file, or file if specified. The axes are scaled so that they are approximately the same size. This scaling is controlled by the global variable PLOT.AXIS.RATIO. If file is not an open file, it is opened, the plot is printed, and then file is closed.
plusp[x]
A predicate which is T if the scalar \mathbf{x} is a positive number.
pool[mtable]
Collapses mtable into a 3 -vector of the pooled cell N , cell means, and mean-
centered sum of squares. Effectively removes factors from a moments array.
ppa[a;file]
Prints the array a on the primary output file, or file if specified. If file is not an open file, it is opened, the array is printed, and then file is closed. The precison of numbers in the table is determined by the global variable PRECISION, a list specifying the number of digits to appear to the right and left of the decimal point. The initial setting is (4 3) so that numbers are printed in the format rrrr.III. The global variable ROWLABELWIDTH is an integer determining the number of columns to leave for the labels on rows (initally 8).
randn[mean;stdev]
Returns a single number randomly sampled from the normal distribution with mean mean (default 0) and standard deviation stdev (default 1).
rank[a]
Ranks the array a in ascending order. Result will be integer unless floating is necessary to resolve ties. Cells containing NIL are ignored in computing the ranks, and the corresponding cells in the value will be NIL.
readidlarray[file]
Constructs an IDL array from an expression read from file (primary input file if file is $\mathrm{NIL})$. If file is not an open file, it is opened, the expression is read, and then file is closed. dumpidlarray produces an expression of the appropriate form.
reduce[a;fn;startval]
Applies function $\mathbf{f n}$ left associatively to the elements of \mathbf{a}. If startval is given, $\mathbf{f n}$ is first applied to startval and \mathbf{a}_{1}, otherwise to \mathbf{a}_{1} and \mathbf{a}_{2}. Thus, (REDUCE ARY 'NCONC1 NIL) returns a list of the elements of ARY. This function distinguishes the situtation where startval is specified as NIL from the case where it is not specified at all: (REDUCE ARY 'NCONC1) will leave \mathbf{a}_{1} out of its value.
reshape[a;newshape;newformat]
Reshapes a to an array of shape newshape and format newformat. The elements of \mathbf{a} are put into the new array in rowmajor order. If newshape is NIL, a is simply flattened into a vector. If newformat is NIL, it is defaulted to FULL.
rplus[a]
Equivalent to reduce[a;function[plus]], but more convenient to type.
rtimes[a]
Equivalent to reduce[a;function[times]], but more convenient to type.
seek[sought;vec]
sought can be a vector or a one argument function. Returns the (ordered) vector of indices of elements of vec which are found in, or which satisfy, sought.

shape[a]

Returns a vector giving the shape of array a.

sweep[m;outvars;invars]

Sweeps out variance components of matrix \mathbf{m} corresponding to outvars (a selector for the second dimension of \mathbf{m}); then sweeps in components corresponding to invars.
title[]
Returns a selector that can be given to at to reference the title of an array.
tprob[x;df]
Returns the probability of a t-value of \mathbf{x} with degrees of freedom $\mathbf{d f}$.
translate[in;table;default]
Translates the scalar in according to the matrix table. If table has one column (or is a vector), the index of (the first) in in table is returned. If it has two columns, the second element of the row whose first element is in is returned. If three columns, the third element of the row such that in is between the first and second elements is returned. In the three-column case, a NIL in the first two columns only matches a NIL in; otherwise, a NIL in column 1 is interpreted as -\# while a NIL in column 2 is interpreted as +\#. If no match is found, default is returned if it is specified; otherwise the value is in itself.

transpose[ary;perm]

Transposes ary by mapping each of its dimensions onto the dimension of the output given by the corresponding element of perm. Two dimensions that are mapped onto the same dimension of the output are represented by their joint diagonal. If perm is not given, the dimensions are reversed.

In addition to the above, the mixed-arithmetic operators plus, times, etc., and most of the other arithmetic functions in Interlisp have been extended to apply element-wise across arrays. The infix operators $+,{ }^{*},-, /$ have been mapped onto the mixed-arithmetic operators instead of the integer operators as in standard Interlisp.

IDL implements a new kind of Lisp function, an ELAMBDA, to simplify the task of defining extended functions. The key-word ELAMBDA is used instead of LAMBDA in the function definition, and the size of the expected object can be associated with each argument name.
For example,
[DEFINEQ (FOO (ELAMBDA ((M MATRIX) (V VECTOR)) (CONS M V]
is equivalent to
[DEFINEQ (FOO (LAMBDA (M V) (EAPPLY* (FUNCTION (LAMBDA (M V) (CONS M V))) '(2 1) M V].
The IDL system defines the file command (prettydefmacro) IDLARRAYS for dumping IDL arrays via makefile onto ordinary Lisp files in load-able format. (Use the ARRAYS command to dump regular Lisp arrays.)

IDL automatically opens a Lisp DRIBBLE file at the beginning of each session, which maintains a transcript of all interactions with the system. This file is named IDL.TYPESCRIPT on the connected directory. It is a temporary file, and will disappear when the user logs off Tenex; it must be explicitly copied to another file if the contents are to be preserved.

Finally, the facilities of <LISPUSERS>SHOW are included in IDL. Thus, the command SHOW
may be given to the INTERLISP executive to cause the value of the last expression typed in to be pretty-printed. If that value happens to be an IDL array, the function ppa will automatically be invoked. The variable it may be used in an expression to refer to the value of the preceding expression. These two augmentations to the Lisp system greatly improve the convenience of IDL interactions. For more details, see <LISPUSERS>SHOW.TTY.

