<> <> DIRECTORY AbSets, Asserting, Basics, BasicTime, BiRels, CardHashTableThreaded, IntHashTable, RefTab, Rope, TextReplace; LichenDataStructure: CEDAR DEFINITIONS IMPORTS AbSets, BiRels, IntHashTable, RefTab = BEGIN OPEN Sets:AbSets; nyet: ERROR --not yet implemented--; Warning: SIGNAL [msg: ROPE, v1, v2, v3, v4, v5: REF ANY _ NIL]; Error: ERROR [msg: ROPE, v1, v2, v3, v4, v5: REF ANY _ NIL]; LNAT: TYPE ~ INT--[0 .. INT.LAST]--; LORA: TYPE = LIST OF REF ANY; LOLORA: TYPE = LIST OF LORA; ROPE: TYPE = Rope.ROPE; RopeList: TYPE = LIST OF ROPE; LOR: TYPE ~ LIST OF ROPE; LOLOR: TYPE ~ LIST OF LOR; Assertions: TYPE = Asserting.Assertions; Assertion: TYPE = Asserting.Assertion; ColorTable: TYPE = CardHashTableThreaded.Table; RopeMap: TYPE ~ TextReplace.RopeMap; Time: TYPE ~ RECORD [BasicTime.GMT]; --so we can discriminate REFS to them; you can't discriminate REFS to opaque types, and BasicTime.GMT is opaque. Set: TYPE ~ Sets.Set; VarSet: TYPE ~ Sets.VarSet; ConstSet: TYPE ~ Sets.ConstSet; ConstFilter: TYPE ~ Sets.ConstFilter; BiRel: TYPE ~ BiRels.BiRel; VarBiRel: TYPE ~ BiRels.VarBiRel; ConstBiRel: TYPE ~ BiRels.ConstBiRel; Function: TYPE ~ BiRels.Function; VarFunction: TYPE ~ BiRels.VarFunction; UWFunction: TYPE ~ BiRels.UWFunction; ConstFunction: TYPE ~ BiRels.ConstFunction; InvFunction: TYPE ~ BiRels.InvFunction; OneToOne: TYPE ~ BiRels.OneToOne; VarOneToOne: TYPE ~ BiRels.VarOneToOne; ConstOneToOne: TYPE ~ BiRels.ConstOneToOne; IntFn: TYPE ~ BiRels.IntFn; Permutation: TYPE ~ BiRels.Permutation; AV: PROC [a: REF ANY] RETURNS [Sets.Value] ~ INLINE {RETURN [[ra: a]]}; IV: PROC [i: INT] RETURNS [Sets.Value] ~ INLINE {RETURN [[i: i]]}; RefTable: TYPE = RefTab.Ref; CreateRefTable: PROC RETURNS [rt: RefTable] = INLINE {rt _ RefTab.Create[]}; IntTable: TYPE = IntHashTable.Table; CreateIntTable: PROC RETURNS [it: IntTable] = INLINE {it _ IntHashTable.Create[]}; TList: TYPE ~ RECORD [head, tail: LORA _ NIL]; Cat: PROC [a, b: TList] RETURNS [TList] ~ INLINE {IF a.head=NIL THEN RETURN [b] ELSE IF b.head=NIL THEN RETURN [a] ELSE {a.tail.rest _ b.head; RETURN [[a.head, b.tail]]}}; Prepend: PROC [l: TList, ra: REF ANY] RETURNS [l2: TList] ~ INLINE {l2.head _ CONS[ra, l.head]; l2.tail _ IF l.tail#NIL THEN l.tail ELSE l2.head}; Append: PROC [l: TList, ra: REF ANY] RETURNS [l2: TList] ~ INLINE {l2.tail _ LIST[ra]; IF l.head=NIL THEN l2.head _ l2.tail ELSE {l2.head _ l.head; l.tail.rest _ l2.tail}}; CopyTil: PROC [TList] RETURNS [TList]; Reln1Set: PROC [reln: REF ANY, assns: Assertions] RETURNS [Set]; TermsSet: PROC [reln: REF ANY, assns: Assertions] RETURNS [Set]; Reln2Reln: PROC [reln: REF ANY, assns: Assertions] RETURNS [BiRel]; GraphID: TYPE = {A, B, Unspecified}; RealGraphID: TYPE = GraphID[A .. B]; OtherGraph: ARRAY RealGraphID OF RealGraphID = [A: B, B: A]; graphIDToRope: GraphDescriptions; GraphDescriptions: TYPE ~ ARRAY GraphID OF ROPE; RealGraphDescriptions: TYPE ~ ARRAY RealGraphID OF ROPE; Color: TYPE = INT; noColor: Color = LAST[Color]; someColor: Color = 87654321H; FilterColor: PROC [color: Color] RETURNS [filtered: Color] = INLINE { filtered _ IF color # noColor THEN color ELSE someColor}; Design: TYPE = REF DesignPrivate; DesignPrivate: TYPE = RECORD [ cellTypes: VarSet--of CellType--, other: Assertions _ NIL, allKnown: BOOL _ FALSE]; nameReln: ATOM; --relative to narrowest enclosing scope Describe: PROC [subject: REF ANY, relativeTo: REF ANY _ NIL, nameGen: NameGenerator _ NIL] RETURNS [ROPE]; SteppyDescribe: PROC [subject: REF ANY, relativeTo: REF ANY _ NIL, nameGen: NameGenerator _ NIL] RETURNS [SteppyName]; NameGenerator: TYPE = REF NameGeneratorPrivate; NameGeneratorPrivate: TYPE = RECORD [ GenerateName: PROC [data, subject: REF ANY] RETURNS [ROPE], data: REF ANY _ NIL ]; EnumerateCellTypes: PROC [design: Design, Consume: PROC [CellType]]; CellClass: TYPE = REF CellClassPrivate; CellClassPrivate: TYPE = RECORD [ DefinePrivates: PROC [CellType] ]; CellType: TYPE = REF CellTypePrivate; CellTypePrivate: TYPE = RECORD [ class: CellClass, designs: VarSet--of Design--, inheritNames: BOOL --inherit names into me now, or later?--, publicKnown, privateKnown: BOOL _ FALSE, wasntNormalized: BOOL _ FALSE, --Leftover port: Port _ NIL, asUnorganized: Unorganized _ NIL, asArray: Array _ NIL, firstInstance, lastInstance: CellInstance _ NIL, firstArray, lastArray: CellType _ NIL, useCount: INT _ 0 --#instances + #arrays--, otherPublic, otherPrivate: Assertions _ NIL, color: Color _ noColor]; EnumeratePorts: PROC [cellType: CellType, Consume: PROC [Port]]; ScanPorts: PROC [cellType: CellType, Consume: PROC [Port] RETURNS [subs, sibs: BOOL _ TRUE]]; EnumerateInstances: PROC [cellType: CellType, Consume: PROC [CellInstance], mirror: BOOL]; EnumerateArrays: PROC [cellType: CellType, Consume: PROC [CellType]]; partsByNameKey: ATOM; <> PortList: TYPE = LIST OF Port; Port: TYPE = REF PortPrivate; PortPrivate: TYPE = RECORD [ next, prev: Port, firstChild, lastChild: Port, parent: REF ANY--UNION [Port, CellType]--, wire: Wire _ NIL, names: ListData, other: Assertions _ NIL, color: Color _ noColor]; PortCCT: PROC [port: Port] RETURNS [containingCT: CellType]; PortSeqSize: PROC [Port] RETURNS [LNAT--number of leaves--]; FirstChildPort: PROC [port: Port] RETURNS [child: Port] = INLINE {child _ port.firstChild}; NextChildPort: PROC [child: Port] RETURNS [sibling: Port] = INLINE {sibling _ child.next}; EnumeratePort: PROC [port: Port, Consume: PROC [Port] RETURNS [doKids, moreSibs: BOOL _ TRUE]] RETURNS [didKids, moreSibs: BOOL]; PortIndex: PROC [child: Port] RETURNS [index: INT]; SubPort: PROC [parent: Port, index: INT] RETURNS [child: Port]; PortNames: PROC [port: Port] RETURNS [Set] ~ INLINE {RETURN [[listClass, AV[port.names]]]}; SteppyNameList: TYPE ~ LIST OF SteppyName; SteppyName: TYPE ~ LIST OF NameStep --most significant first--; NameStep: TYPE ~ REF ANY --actually UNION [ROPE, REF INT]--; nameStepSpace, steppyNameSpace: Sets.Space; SteppyNameEqual: PROC [n1, n2: SteppyName, clip1, clip2: SteppyName _ NIL] RETURNS [BOOL]; portToInternalWire: READONLY UWFunction--port of an Unorganized CellType Unorganized: TYPE = REF UnorganizedPrivate; UnorganizedPrivate: TYPE = RECORD [ internalWire: Wire _ NIL, containedInstances: VarSet--of CellInstance--, mirror: CellInstance _ NIL --the outside world, as seen from the inside <> <> <> ]; Vertex: TYPE = REF VertexPrivate; VertexPrivate: TYPE = RECORD [ containingCT: CellType, QNext: Vertex _ notInQ, colorNext, equiv: Vertex _ NIL, firstEdge, lastEdge: Edge _ NIL, <> <> names: ListData, other: Assertions _ NIL, oldColor, curColor: Color _ noColor, graph: GraphID _ Unspecified, unique, suspect: BOOL _ FALSE, variant: SELECT class: VertexClass FROM cell => [ type: CellType _ NIL, nextInstance, prevInstance: CellInstance _ NIL ], intermediate => [ port: Port ], wire => [ containingWire: Wire _ NIL, next, prev: Wire _ NIL, --Siblings firstChild, lastChild: Wire _ NIL ], ENDCASE]; VertexClass: TYPE = {cell, intermediate, wire}; CellInstance: TYPE = REF cell VertexPrivate; Intermediary: TYPE = REF intermediate VertexPrivate; Wire: TYPE = REF wire VertexPrivate; VertexNames: PROC [v: Vertex] RETURNS [Set] ~ INLINE {RETURN [[listClass, AV[v.names]]]}; WireIndex: PROC [parent, child: Wire] RETURNS [index: INT]; SubWire: PROC [parent: Wire, index: INT] RETURNS [child: Wire]; WireSeqSize: PROC [Wire] RETURNS [LNAT]; EnumeratePortAndWire: PROC [port: Port, wire: Wire, Consume: PROC [Port, Wire]]; EnumerateWire: PROC [wire: Wire, Consume: PROC [Wire] RETURNS [doKids, moreSibs: BOOL _ TRUE]] RETURNS [didKids, moreSibs: BOOL]; FirstChildWire: PROC [parent: Wire] RETURNS [child: Wire] = INLINE {child _ parent.firstChild}; NextChildWire: PROC [child: Wire] RETURNS [sibling: Wire] = INLINE {sibling _ child.next}; Edge: TYPE = REF EdgePrivate; EdgePrivate: TYPE = RECORD [ sides: ARRAY GraphDirection OF RECORD [v: Vertex, next, prev: Edge], port: Port --what the wireward vertex is connected to ]; GraphDirection: TYPE = {cellward, wireward}; OppositeDirection: ARRAY GraphDirection OF GraphDirection = [cellward: wireward, wireward: cellward]; notInQ: Vertex --don't look:-- = NIL --you looked!--; endOfQ: Vertex; SideFor: PROC [e: Edge, v: Vertex] RETURNS [side: GraphDirection] ~ INLINE {RETURN [SELECT v FROM e.sides[cellward].v => cellward, e.sides[wireward].v => wireward, ENDCASE => ERROR]}; EnumerateImmediateEdges: PROC [v: Vertex, Consume: PROC [Port, Vertex, Edge], filter: ARRAY GraphDirection OF BOOL _ ALL[TRUE], order: Order _ any]; <> ScanImmediateEdges: PROC [v: Vertex, Test: PROC [Port, Vertex, Edge] RETURNS [BOOL], filter: ARRAY GraphDirection OF BOOL _ ALL[TRUE], order: Order _ any] RETURNS [BOOL]; EnumerateImmediateConnections: PROC [v: Vertex, Consume: PROC [Port, Vertex], filter: ARRAY GraphDirection OF BOOL _ ALL[TRUE], order: Order _ any]; EnumerateTransitiveConnections: PROC [v: Vertex, Consume: PROC [Port, Vertex]]; EnumerateTopEdges: PROC [ci: CellInstance, Consume: PROC [Port, Wire, Edge]]; EnumerateTopConnections: PROC [ci: CellInstance, Consume: PROC [Port, Wire]]; EnumerateNeighboringVertices: PROC [v: Vertex, Consume: PROC [Vertex], filter: ARRAY GraphDirection OF BOOL _ ALL[TRUE]]; FindImmediateConnection: PROC [cellward: Vertex, port: Port, hint: Order _ any] RETURNS [w: Vertex]; FindImmediateEdge: PROC [cellward: Vertex, port: Port, hint: Order _ any] RETURNS [w: Vertex, e: Edge]; FindTransitiveConnection: PROC [cellward: Vertex, from, to: Port] RETURNS [v: Vertex]; FindCellConnection: PROC [ci: CellInstance, port: Port] RETURNS [v: Vertex] ~ INLINE {RETURN FindTransitiveConnection[ci, ci.type.port, port]}; FindTopEdge: PROC [ci: CellInstance, port: Port] RETURNS [v: Vertex, e: Edge]; ImParent: PROC [im: Intermediary] RETURNS [v: Vertex]; EnumeratePortsForWire: PROC [w: Wire, Consume: PROC [Port--of container of w--]]; EnumerateParts: PROC [ct: CellType, Consume: PROC [Vertex], mirrorToo: BOOL]; ScanParts: PROC [ct: CellType, Test: Sets.Tester, filter: PartFilter, mirrorToo: BOOL] RETURNS [Sets.MaybeValue]; PartFilter: TYPE ~ PACKED ARRAY VertexClass OF BOOL; Order: TYPE = {forward, backward, any}; Array: TYPE = REF ArrayPrivate; ArrayPrivate: TYPE = RECORD [ eltType: CellType _ NIL, nextArray, prevArray: CellType _ NIL, size2: Size2 _ ALL[1], size: NATURAL, basePeriod: Nat2 _ ALL[1], buildPhase: {buildingStatrep, statrepFixed} _ buildingStatrep, dumrep: DumRep _ NIL, statrep: StatRep _ NIL ]; DumRep: TYPE ~ REF DumRepPrivate; DumRepPrivate: TYPE ~ RECORD [ topWires: Set--of TopDumbWire--, epToTopWire: Function--elt port apToWire: Function--array port ]; DumbWire: TYPE ~ REF DumbWirePrivate; DumbWireKind: TYPE ~ {top, child}; DumbWirePrivate: TYPE ~ RECORD [ children: Function--port variant: SELECT kind: DumbWireKind FROM top => [eps: Function--elt port child => [parent: DumbWire, port: Port], ENDCASE]; TopDumbWire: TYPE ~ REF DumbWirePrivate[top]; ChildDumbWire: TYPE ~ REF DumbWirePrivate[child]; StatRep: TYPE ~ REF StatRepPrivate; StatRepPrivate: TYPE ~ RECORD [ edges: Set--of StatEdge--, portEdge: ARRAY BOOL OF InvFunction--elt port _ StatEdge--, apToPAI: Function--array port ]; StatEdge: TYPE ~ REF StatEdgePrivate; StatEdgePrivate: TYPE ~ RECORD [ vs: ARRAY BOOL OF StatVertex, StatVertex: TYPE ~ REF StatVertexPrivate; StatVertexPrivate: TYPE ~ RECORD [port: Port, phase: Nat2]; PortAtIndex: TYPE ~ REF PortAtIndexPrivate; PortAtIndexPrivate: TYPE ~ RECORD [port: Port, ai: ArrayIndex]; Dim--ension--: TYPE = {Foo, Bar}; OtherDim: ARRAY Dim OF Dim = [Foo: Bar, Bar: Foo]; Size2: TYPE = ARRAY Dim OF NATURAL; Range: TYPE = RECORD [min, maxPlusOne: INT]; Range2: TYPE = ARRAY Dim OF Range; Int2: TYPE = ARRAY Dim OF INT; Nat2: TYPE = ARRAY Dim OF NATURAL; Bool2: TYPE ~ ARRAY Dim OF BOOL; ArrayIndex: TYPE = Int2; PhaseIndex: TYPE ~ Int2; CompositeArrayIndex: TYPE ~ NATURAL; CompositePhaseIndex: TYPE ~ NATURAL; nullAI: ArrayIndex ~ ALL[INT.FIRST]; PackedArrayIndex: TYPE [SIZE[INT]]; ListData: TYPE ~ RECORD [REF ANY]; noListData: ListData ~ [NIL]; listClass: Sets.SetClass; CreateSteppyNames: PROC [names: LORA--actually LIST OF SteppyName-- _ NIL] RETURNS [ListData]; Setify: PROC [l: ListData] RETURNS [Set] ~ INLINE {RETURN [[listClass, AV[l]]]}; SteppyNameCompare: PROC [n1, n2: SteppyName] RETURNS [Basics.Comparison]; Seq: TYPE ~ BiRels.Sequence; CreateSeq: PROC [len: NATURAL _ 0, oneToOne, dense, domainFixed: BOOL _ FALSE] RETURNS [Seq] ~ INLINE {RETURN [BiRels.CreateVector[bounds: [0, len-1], val: Sets.noValue, oneToOne: oneToOne, dense: dense, domainFixed: domainFixed]]}; RefSeq: TYPE = REF RefSequence; RefSequence: TYPE = RECORD [ elts: SEQUENCE length: NATURAL OF REF ANY]; CreateRefSeq: PROC [len: NATURAL] RETURNS [rs: RefSeq] = INLINE {rs _ NEW [RefSequence[len]]}; VarRefSeq: TYPE = REF VarRefSequence; VarRefSequence: TYPE = RECORD [ length: NATURAL, refs: RefSeq]; CreateVarRefSeq: PROC [size: NATURAL _ 12] RETURNS [vrs: VarRefSeq] = INLINE {vrs _ NEW [VarRefSequence _ [0, CreateRefSeq[size]]]}; VarRefSeqAppend: PROC [vrs: VarRefSeq, value: REF ANY]; Int2Seq: TYPE ~ REF Int2Sequence; Int2Sequence: TYPE ~ RECORD [elts: SEQUENCE length: NATURAL OF Int2]; CreateInt2Seq: PROC [len: NATURAL, init: Int2] RETURNS [Int2Seq]; BoolSeq: TYPE = REF BoolSequence; BoolSequence: TYPE = RECORD [elts: PACKED SEQUENCE length: NATURAL OF BOOL]; CreateBoolSeq: PROC [len: NATURAL, b0: BOOL _ FALSE] RETURNS [bs: BoolSeq] = INLINE {bs _ NEW [BoolSequence[len]]; FOR i: NATURAL IN [0 .. len) DO bs[i] _ b0 ENDLOOP}; CopyBoolSeq: PROC [bs: BoolSeq] RETURNS [copy: BoolSeq] ~ INLINE {copy _ CreateBoolSeq[bs.length]; FOR i: NATURAL IN [0 .. copy.length) DO copy[i] _ bs[i] ENDLOOP}; NewInt: PROC [i: INT] RETURNS [REF INT]; <> FloorDiv: PROC [num, den: INT] RETURNS [INT] ~ INLINE { IF den<0 THEN {num _ -num; den _ -den}; RETURN [IF num>=0 THEN (num/den) ELSE ((num-den+1)/den)]}; CeilDiv: PROC [num, den: INT] RETURNS [INT] ~ INLINE { IF den<0 THEN {num _ -num; den _ -den}; RETURN [IF num>=0 THEN ((num+den-1)/den) ELSE (num/den)]}; ConsInt2: PROC [d1: Dim, x1, x2: INT] RETURNS [x: Int2] = INLINE {x[d1] _ x1; x[OtherDim[d1]] _ x2}; Int2Neg: PROC [a: Int2] RETURNS [Int2] ~ INLINE {RETURN [[Foo: -a[Foo], Bar: -a[Bar]]]}; Int2Add: PROC [a, b: Int2] RETURNS [Int2] = INLINE {RETURN [[Foo: a[Foo]+b[Foo], Bar: a[Bar]+b[Bar]]]}; Int2Sub: PROC [a, b: Int2] RETURNS [Int2] = INLINE {RETURN [[Foo: a[Foo]-b[Foo], Bar: a[Bar]-b[Bar]]]}; Int2SubN: PROC [a, b: Int2] RETURNS [Nat2] = INLINE {RETURN [[Foo: a[Foo]-b[Foo], Bar: a[Bar]-b[Bar]]]}; Int2InRange: PROC [i: Int2, r: Range2] RETURNS [in: BOOL] = INLINE {in _ i[Foo] IN [r[Foo].min .. r[Foo].maxPlusOne) AND i[Bar] IN [r[Bar].min .. r[Bar].maxPlusOne)}; Int2Tweak: PROC [i: Int2, d: Dim, = INLINE {j _ i; j[d] _ j[d] + Int2Mul: PROC [i: Int2, ~ INLINE {RETURN [[Foo: i[Foo]* Int2Scale: PROC [a: Int2, b: INT] RETURNS [Int2] = INLINE {RETURN [[Foo: a[Foo]*b, Bar: a[Bar]*b]]}; Int2Dot: PROC [a, b: Int2] RETURNS [INT] ~ INLINE {RETURN [a[Foo]*b[Foo]+a[Bar]*b[Bar]]}; Int2Cross: PROC [a, b: Int2] RETURNS [INT] ~ INLINE {RETURN [a[Foo]*b[Bar]-a[Bar]*b[Foo]]}; Int2Mod: PROC [a: Int2, mod: Nat2] RETURNS [Nat2] ~ INLINE {RETURN [[ Foo: ((a[Foo] MOD mod[Foo])+mod[Foo]) MOD mod[Foo], Bar: ((a[Bar] MOD mod[Bar])+mod[Bar]) MOD mod[Bar]]]}; ConsNat2: PROC [d1: Dim, x1, x2: NATURAL] RETURNS [x: Nat2] = INLINE {x[d1] _ x1; x[OtherDim[d1]] _ x2}; WidenNat2: PROC [x: Nat2] RETURNS [Int2] ~ INLINE {RETURN [[Foo: x[Foo], Bar: x[Bar]]]}; NarrowInt2: PROC [x: Int2] RETURNS [Nat2] ~ INLINE {RETURN [[Foo: x[Foo], Bar: x[Bar]]]}; Nat2Add: PROC [a, b: Nat2] RETURNS [Nat2] = INLINE {RETURN [[Foo: a[Foo]+b[Foo], Bar: a[Bar]+b[Bar]]]}; Nat2Sub: PROC [a, b: Nat2] RETURNS [Nat2] = INLINE {RETURN [[Foo: a[Foo]-b[Foo], Bar: a[Bar]-b[Bar]]]}; Nat2Mul: PROC [a, b: Nat2] RETURNS [Nat2] = INLINE {RETURN [[Foo: a[Foo]*b[Foo], Bar: a[Bar]*b[Bar]]]}; Nat2Div: PROC [a, b: Nat2] RETURNS [Nat2] = INLINE {RETURN [[Foo: a[Foo]/b[Foo], Bar: a[Bar]/b[Bar]]]}; Nat2AddMod: PROC [a: Nat2, b: Int2, mod: Nat2] RETURNS [Nat2] ~ INLINE {RETURN [[ Foo: (a[Foo]+b[Foo]+mod[Foo]) MOD mod[Foo], Bar: (a[Bar]+b[Bar]+mod[Bar]) MOD mod[Bar]]]}; Nat2Tweak: PROC [i: Nat2, d: Dim, = INLINE {j _ i; j[d] _ j[d] + Nat2Area: PROC [x: Nat2] RETURNS [NATURAL] = INLINE {RETURN [x[Foo] * x[Bar]]}; RangeOff: PROC [r: Range, = INLINE {RETURN[[min: r.min+ RangeOffClip: PROC [r: Range, = INLINE {RETURN[[min: MAX[r.min+ ShaveRange2Top1: PROC [r: Range2, d: Dim] RETURNS [sr: Range2] = INLINE {sr _ r; sr[d].min _ MIN[sr[d].min, sr[d].maxPlusOne _ sr[d].maxPlusOne - 1]}; ConsRange2: PROC [d1: Dim, x1, x2: Range] RETURNS [x: Range2] = INLINE {x[d1] _ x1; x[OtherDim[d1]] _ x2}; Range2Empty: PROC [r: Range2] RETURNS [BOOL] = INLINE {RETURN [r[Foo].maxPlusOne<=r[Foo].min OR r[Bar].maxPlusOne<=r[Bar].min]}; Range2IsSingleton: PROC [r: Range2] RETURNS [BOOL] = INLINE {RETURN [r[Foo].maxPlusOne=r[Foo].min+1 AND r[Bar].maxPlusOne=r[Bar].min+1]}; Range2Min: PROC [r2: Range2] RETURNS [Int2] = INLINE {RETURN[[Foo: r2[Foo].min, Bar: r2[Bar].min]]}; Range2MinN: PROC [r2: Range2] RETURNS [Nat2] = INLINE {RETURN[[Foo: r2[Foo].min, Bar: r2[Bar].min]]}; Range2Off: PROC [r: Range2, = INLINE {RETURN[[Foo: RangeOff[r[Foo], Range2OffClip: PROC [r: Range2, = INLINE {RETURN[[Foo: RangeOffClip[r[Foo], Range2Included: PROC [sub, in: Range2] RETURNS [BOOL] ~ INLINE {RETURN [RangeIncluded[sub[Foo], in[Foo]] AND RangeIncluded[sub[Bar], in[Bar]]]}; RangeIncluded: PROC [sub, in: Range] RETURNS [BOOL] ~ INLINE {RETURN [sub.min>=in.min AND sub.maxPlusOne<=in.maxPlusOne]}; Range2Intersection: PROC [a, b: Range2] RETURNS [Range2] = INLINE {RETURN [[ Foo: [ min: MAX[a[Foo].min, b[Foo].min], maxPlusOne: MIN[a[Foo].maxPlusOne, b[Foo].maxPlusOne]], Bar: [ min: MAX[a[Bar].min, b[Bar].min], maxPlusOne: MIN[a[Bar].maxPlusOne, b[Bar].maxPlusOne]]]]}; RangeArea: PROC [r: Range2] RETURNS [area: NATURAL] = INLINE {area _ RangeLength[r[Foo]] * RangeLength[r[Bar]]}; RangeShape: PROC [r: Range2] RETURNS [shape: Nat2] = INLINE {shape _ [RangeLength[r[Foo]], RangeLength[r[Bar]]]}; SizeRange: PROC [size: Nat2] RETURNS [r: Range2] = INLINE {r _ [[0, size[Foo]], [0, size[Bar]]]}; RangeLength: PROC [r: Range] RETURNS [length: NATURAL] = INLINE {length _ r.maxPlusOne - r.min}; Int2sRange: PROC [a, b: Int2] RETURNS [r: Range2] ~ INLINE {RETURN [[ Foo: [MIN[a[Foo], b[Foo]], MAX[a[Foo], b[Foo]]+1], Bar: [MIN[a[Bar], b[Bar]], MAX[a[Bar], b[Bar]]+1]]]}; Range2Mbb: PROC [a, b: Range2] RETURNS [Range2] ~ INLINE {RETURN [[Foo: RangeMbb[a[Foo], b[Foo]], Bar: RangeMbb[a[Bar], b[Bar]]]]}; RangeMbb: PROC [a, b: Range] RETURNS [Range] ~ INLINE {RETURN [[min: MIN[a.min, b.min], maxPlusOne: MAX[a.maxPlusOne, b.maxPlusOne]]]}; Range2sIntersect: PROC [r1, r2: Range2] RETURNS [BOOL] = INLINE {RETURN [RangesIntersect[r1[Foo], r2[Foo]] AND RangesIntersect[r1[Bar], r2[Bar]]]}; RangesIntersect: PROC [r1, r2: Range] RETURNS [BOOL] = INLINE {RETURN [ (r1.min IN [r2.min .. r2.maxPlusOne) AND r1.maxPlusOne > r1.min) OR (r2.min IN [r1.min .. r1.maxPlusOne) AND r2.maxPlusOne > r2.min)]}; Range2Div: PROC [r: Range2, Range1Div: PROC [r: Range, <> Range2MulA: PROC [r: Range2, Range1MulA: PROC [r: Range, <> Range2MulB: PROC [r: Range2, Range1MulB: PROC [r: Range, <> Range2RoundA: PROC [r: Range2, Range2RoundB: PROC [r: Range2, FmtRange: PROC [r: Range] RETURNS [asRope: ROPE]; BeRope: PROC [r: ROPE] RETURNS [r2: ROPE] = INLINE {r2 _ r}--stupid goddam anachronism--; END.