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1.�Introduction

This paper describes recent work to refine the instruction
set of the Mesa processor.  Mesa [8] is a high level systems
implementation language developed at Xerox PARC
during the middle 1970’s.  Typical systems written in Mesa
are large collections of programs running on single-user
machines.  For this reason, a major design goal of the
project has been to generate compact object programs.

The computers that execute Mesa programs are
implementations of a stack architecture [5].  The
instructions of an object program are organized into a
stream of eight bit bytes.  The exact complement of
instructions in the architecture has changed as the
language and machine micro architecture have evolved.

In Sections 3 and 4, we give a short history of the Mesa
instruction set and discuss the motivation for our most
recent analysis of it.  In Section 5, we discuss the tools and
techniques used in this analysis.  Section 6 shows the
results of this analysis as applied to a large sample of
approximately 2.5 million instruction bytes.  Sections 7
and 8 give advice to others who might be contemplating
similar analyses.

2.�Language Oriented Instruction Sets

There has been a recent trend toward tailoring computer
architecture to a given programming language.
Availability of machines with writeable control stores has
accelerated this trend.  A recent Computer issue [2]
contains several general discussions of the subject. 



2There are at least two reasons for choosing a language
oriented architecture: space and time.  We can get
improved speed by assuring that operations done
frequently have efficient implementations.  We can get
more compact object programs by using variable length
opcodes, assigning short opcodes to common operations.
The use of variable length encodings based on
probabilities is, of course, not new; see the classical papers
by Shannon [9] and Huffman [4].

Both space and time optimizations rely on knowledge of
the statistical properties of programs.  Static statistics are
sufficient for code compaction, while dynamic statistics
help in the area of execution speed.  As most of today’s
computers have some sort of virtual memory, anything
that makes programs smaller tends to speed them up by
reducing the amount of swapping. 

One of the first published empirical studies of
programming language usage was by Knuth [6], where he
studied FORTRAN programs.  Several other studies have
also been published, including [1], [11], and [13].  Similar
studies have been made of Mesa programs before each
change in the instruction set.

Basing an instruction set on statistical properties of
programs leads to an asymmetric instruction set.  For
example, variables are read more often than they are
assigned, so it makes sense to have more short load
instructions than short store ones; certain short jump
distances are more common than others, so variable length
jump instructions can make address assignment a rather
complicated operation.  There is a misconception held by
some that a language oriented architecture is one in which
the compiler’s code generators have a very easy task.
Quite the contrary, in a production environment, we are
willing to put considerable complexity into code
generation in order to generate compact object programs. 

There are trade-offs between code compaction and
processor complexity.  Encoding techniques such as
variable bit length opcodes and conditional encoding add
to the amount of microcode or hardware needed, and slow
down decoding.  The Mesa machines use a fixed size
opcode (eight bits), and have instructions with zero, one,
or two data bytes.  A similar architecture was
independently proposed by Tanenbaum [11].



3The paper by Johnsson and Wick [5] describes the current
Mesa architecture.

3.�History of the Mesa Instruction Set

Each machine that runs Mesa provides a microcoded
implementation of the Mesa architecture.  Machines have
spanned more than an order of magnitude in processing
power, from the Alto [12] to the Dorado [7], with several
machines in between.  All have a 16 bit word size.

The overall concepts of the Mesa architecture have not
changed since 1974, but the exact complement of
instructions has changed several times.  New language
features, such as a larger address space, have required new
instructions.  New insights into the usage of these language
features have allowed more compact encoding of common
operations. 

The first implementation of Mesa was done in 1974 for the
Alto.  Peter Deutsch’s experience with Byte LISP [3] had
shown the feasibility of a byte code interpreter to run on
the Alto.  A stack architecture was chosen to allow
"addressless" instructions.  Decisions on stack size and
procedure parameter passing, etc. were partially based on
statistics gathered on programs written in MPL, a
precursor to Mesa that ran on Tenex (and partially forced
by the limitations of the Alto hardware).  The MPL study
is described briefly in Sweet’s thesis [10].  

In 1976, a reasonable body of Mesa code existed and was
analyzed.  A study of source programs is described in [10].
There was also a study of the object code.  These analyses
lead to small changes in the instruction set; in particular to
some two byte instructions where the second (operand)
byte was divided into two four-bit fields.



4It soon became clear that the small 16 bit address space of
the original Alto implementation was too restrictive.
There were several proposals for adding virtual memory to
the Alto, but they were rejected in favor of designing a
new machine whose microarchitecture was better suited
for Mesa emulation.  In 1978, we had a machine with
virtual memory, and the type LONG POINTER (32 bits) was
added to the language.  This, of course, required
instructions for dealing with the new pointers: loading,
storing, dereferencing, etc.  At the same time, 32 bit
arithmetic was also added to the language (and Mesa
architecture).

4.�Experimental Sample

Today, Mesa has reached a significant level of maturity.
Our programmers are working in a development
environment written completely in Mesa; there are
products in the field, such as the Xerox 8000 series,
including the Star workstation, that are programmed
entirely in Mesa.  These are large programs that make
extensive use of the virtual memory.  Since the LONG

POINTER instructions were added to the architecture before
we had any body of code using long pointers to analyze,
we were sure that there was room for improvement in
their encoding.  We did not have the resources at this time
to completely redesign the instruction set, but we decided
that it was worth our while to see if small changes to the
instruction set could lead to more compact object
programs.  

We started with a sample of programs that was
representative of all software running under Pilot [8], the
Mesa operating system.  We had to decide whether to
analyze the source code or the object code generated by
the then current compiler.  We chose to do both, but this
paper deals primarily with the object code analysis.

Some changes, such as increasing the stack depth, or
adding new instructions for record construction, have
significant effects on the code generating strategy in the
compiler.  These were studied by instrumenting the
compiler or producing a new compiler that generated the
expanded instruction set.



5Most anticipated instruction set changes were sufficiently
similar to the existing set that observing patterns in object
code was a workable plan.  This certainly included
decisions about the proper mix of one, two, and three byte
instructions for a given function.  In fact, the compiler
waits until the very last phase of code generation, the
peephole optimizer, to choose the exact opcodes.  This
concentrates knowledge of the exact instruction set in a
single place in the compiler.  

5.�Experimental Plan

The general plan of attack was as follows:

1. Normalize the object code.

We converted the existing object code into a
canonical form.  This included breaking the code
into straight line sequences, and undoing most
peephole optimizations.  The sample resulted in 2.5
million bytes of normalized instructions.

2. Collect statistics by pattern matching.

Patterns took two general forms: compiled in
patterns that looked at things like operator pair
frequencies, and interactive patterns, where the user
could type in a pattern and have the data base
searched for that pattern.

3. Propose new instructions.

Based upon the statistics gathered in step 2, we
proposed new instructions.

4. Convert to new opcodes by peephole optimization.

We wrote a general framework for peephole
optimization that read and wrote files in a format
compatible with the pattern matching utilities.  This
allowed us to write procedures that would convert
sequences of simple instructions into new fancier
instructions.

5. Repeat steps 2 through 4.



6While the statistics from step 2 tell us how many of
each new instruction we will get in step 4, the
ability to partially convert the data file was helpful
for questions of the form "What local variables are
we loading when the load is not folded into another
instruction?"

Normalization

The version of the Mesa instruction set under analysis
used 240 of the possible 256 byte values.  Moreover, many
of the instructions are single byte encodings of what is
logically an operation and an operand value, e.g. "Load
Local 6" or "Jump 8."  Other instructions replace two or
three instruction sequences that are sufficiently common to
warrant a more compact encoding.  To simplify analysis,
all code sequences were transformed into semantically
equivalent sequences of a subset of the instructions,
comprising slightly over 100 opcode values.

1. Expand out imbedded operand values.

All instructions with embedded operand values
were replaced by a corresponding two or three byte
instructions where the operand is given explicitly.
For example "Jump 8", a single byte opcode was
replaced by the three byte sequence: the "Jump
word" opcode, and a two byte operand with a value
of 8.

2. Break apart multi-operation opcodes.

Most complicated instructions were replaced by
sequences of equivalent simpler instructions.  For
example, "Jump Not Zero" was replaced by the
sequence "Load 0," "Jump Not Equal."  Notable
exceptions were the "Doubleword" instructions.
These could often have been replaced by two single
word instructions, but a major thrust of this analysis
was finding out how doublewords were used in the
language.



7The procedure that did the normalization first made a pass
over the code to find the targets of all jumps.  These were
then sorted so that the normalizing procedure could put a
marker byte in the output file between each sequence of
straight line code.  

The analysis software was written so that the normalization
routine could run as a coroutine with any of the pattern
matchers, converting object files to a stream of normalized
bytes.  While not a complete waste of effort, this option
was not used when the mass of data became large.  The
normal mode of operation was to convert a related set of
object programs to a single output file, and then use that
data file, or a collection of such files, as the input to
pattern matching and peephole optimization. 

When working with large amounts of data, you should
plan for expansion.  Consider the format of the code
sequence data file.  The normalization step reduces the
opcodes to a set with approximately a hundred members.
On the other hand, the peephole optimization (step 3
above) adds new opcodes.  In fact, before we were done
we had more than 256 logical opcodes (some of them
became two or three byte sequences in the resulting
instruction set using an escape sequence).  As we desired
to have the output of peephole acceptable to the pattern
matchers, we used two bytes for each operation "byte" of
the stream.  

Pattern Matching

The collected files of normalized instructions may now be
used to answer questions about language usage.  One
obvious question is "How many of each opcode do I
have?"  It is easy to write a routine that reads the data file
and counts the opcodes.  This was one of a class of generic
patterns that we ran on our data file.  The set of generic
patterns waxed and waned throughout the several months
of analysis, but at the end, we found the following patterns
most interesting:



81. Static opcode frequency.   

Count the number of occurrences of each opcode.   

2. Operands values.

For each opcode, get a histogram of operand
values.

3. Opcode successors.

For each opcode, get a histogram of the set of next
opcodes in the code sequences.

4. Opcode predecessors.

For each opcode, get a histogram of the set of
previous opcodes in the code sequences.

5. Popular opcode pairs.

Consider the set of all pairs of adjacent opcodes;
sort them by frequency.

The reader will doubtless observe that patterns 3, 4, and 5
all report the same information.  Patterns 3 and 4 are
valuable because, even when the frequency of an opcode
pair is not especially high, the conditional probability of
one based on the other might be high.  Additionally, all
three patterns provide information that can suggest
additional areas of study, as described below. 

We also wrote patterns for finding popular triples, and in
fact popular n-tuples, where the search space is seeded
with allowed (n-1)-tuple initial strings.  These weren’t as
interesting as we had suspected; we got mountains of n-
tuples that occurred only a few times, and we tended to
run out of storage.  Looking at pairs, along with a
knowledge of the language and the compiler’s code
generation strategies, allowed us to generate patterns that
gave us statistics on most interesting multibyte constructs.

User Specified Patterns



9For matching of longer patterns, or answering specific
questions about instruction use, we preferred not to have
to recompile the matching program for every new pattern.
We therefore wrote an interactive program where the user
typed in a pattern which was parsed, and then matched
against the data base.  A pattern was a sequence of
instructions; each instruction consisted of an operator and
its operands.  The operator/operands could be given
explicitly in the pattern, or a certain amount of "wild
carding" was allowed.  For wild card slots, we provided
the option of collecting statistics on the actual values.

Consider the pattern: LLB * IN [0..16), RB $.  The
instruction LLB is a two byte "load local variable"
instruction where the second byte gives the offset of the
variable in the frame (procedure activation record).
Similarly, RB says "dereference the pointer on the stack,
adding the offset specified by the operand byte."  This
pattern finds all occurrences of LLB followed by RB where
one of the first sixteen local variables is a pointer being
loaded.  The $ is a wild card match like the *, except it
tells the pattern matcher to gather statistics on the actual
operand values for the RB instructions.  The output of the
pattern matcher looked something like this: 

Total data: 1289310 inst, 2653970 bytes

-------------------------

LLB * IN [0..16), RB $  total: 22813

   value    count    %    cum.%   

       0     7575  33.20  33.20
       1     3638  15.94  49.15
       2     2838  12.44  61.59
       3     1700   7.45  69.04
       4     1291   5.65  74.70
       5      823   3.60  78.31
       6      746   3.27  81.58
       7      577   2.52  84.10
      13      344   1.50  85.61
      15      328   1.43  87.05
      10      315   1.38  88.43
      11      283   1.24  89.67
      14      277   1.21  90.89
      12      252   1.10  91.99
      16      220   0.96  92.96
      23      194   0.85  93.81



10Figure 1.�Sample Pattern Matcher Output

These data tell us that the vast majority of offsets are
small.  If the first "*" had been a "$", statistics would have
been collected on which local variable was loaded as well.
The statistics for this field are even more skewed�over
90% of the matches are for locals at offset 0, 1, or 2.

Peephole Optimizer

Based on the statistics gathered by pattern matching, we
proposed some new instructions.  Some of these new
instructions were single byte opcodes that encoded a
common operand value of what was logically a two or
three byte operation; other new instructions were
combinations of operations that occurred frequently in
code sequences.  

Decisions about the two types of instructions were
interrelated.  The question "How many single byte �load
local’ instructions should we have" is best answered by
looking at the load local statistics after any loads have been
combined into fancier instructions.  We solved this
problem by writing a peephole optimizer to convert
normalized code sequences into sequences of new
instructions.  This simplified the patterns needed for
decisions and also allowed us to look for patterns involving
the new instructions.  The actual peephole conversion was
done by straightforward case analysis, but the framework
that it was built upon is worthy of some discussion.  

There are several problems with operating directly on the
data files.  Variable length instructions cannot be read
backward, and some instructions have two operand bytes
that are logically a single sixteen bit operand.  For this
reason, the file reading procedure produced fixed sized
Mesa records containing the opcode and an array of
parameters, correctly decoding multibyte operands.  These
were maintained in an array as shown in the figure below.
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Figure 2.�Peephole Optimization Framework

The optimizing procedures typically dealt with the element
at index 0, based upon previous instructions (�i) and
following instructions (+i).  The range of index values
depends on how much history is required in the peephole
procedure.  For all of our routines, a range from �5 to
+3 was more than adequate.  The framework provided
the following operations:

1. Delete i.

Any instruction not already written to the output
may be deleted.

2. Output new code.

New instructions may be generated; they are
buffered until the next shift, but will appear just to
the right of index 0.

3. Shift left.

The first new output, or the element at +1, is
moved to index 0.  Deleted cells are compacted.
The buffered new code is moved into the array,
possibly pushing some of the previous +i elements
into a buffer at the right.  Any instruction forced
out the left is written to the output file.  In the case
of no change, this reduces to a write, a block
transfer in memory, and a read; in the general case,
the operation can be rather complicated.

One useful feature of the framework was a display facility
that showed the entire array on the screen, with the
instruction given as a mnemonic and the parameter array
shown only to the extent that the given instruction had
parameters.  We had several stepping modes, allowing us
to see the instructions streaming by, or allowing us to stop
and display only when an optimization was to take place.

6.�Results



12There is certainly not room in this paper to show the
complete results of our analysis.  Instead, we will show
some of the generally interesting results, and go into
considerable detail for one class of jump instructions.

Statistics of the Normalized Instruction Data

Table 1 shows the most frequently occurring elements of
the original normalized instruction set, together with their
statistics.

Op count % cum.%

LI   208924  16.90  16.90 Load immediate

LL   156848  12.68  29.59 Load local variable

SL    81270   6.57  36.16 Store local variable

REC   64145   5.18  41.35 Recover previous top of stack

LLD   62950   5.09  46.44 Load local doubleword

EFC   55982   4.52  50.97 External function call

J     50726   4.10  55.08 Unconditional jump

R     42328   3.42  58.50 Dereference pointer on stack

SLD   37747   3.05  61.56 Store local doubleword

LA    29205   2.36  63.92 Address of local variable

ADD   28987   2.34  66.26 Add top two words of stack

JNE   25499   2.06  68.33 Jump not equal

RET   24176   1.95  70.28 Return

JE    23335   1.88  72.17 Jump equal

LG    21594   1.74  73.92 Load global variable

LFC   21450   1.73  75.65 Local function call

DADD  20652   1.67  77.32 Doubleword add

LGD   17895   1.44  78.77 Load global doubleword

LLK   16193   1.31  80.08 Load link

Table 1.�Frequency of normalized instructions

Table 1 contains some interesting data about language
usage.  Note that the local variables of procedures are
loaded twice as often as they are stored.  Doubleword (32
bit) variables are loaded and stored almost half as often as
single word ones.  Over 6% of the instructions were
procedure calls (EFC+LFC), and there were statically three
times as many procedure calls as returns.  Knowing that
the compiler generates a single return from a procedure to
facilitate setting breakpoints, we can conclude that
procedures are called from an average of three places.
Almost 17% of the instructions load constants (LI).  Table
2 shows the most popular constants.  Bear in mind that
some of the loads of constants go away when then are
combined into fancier instructions, as we will see in the
section on conditional jumps.



13          Value count % cum.%

       0    96652  45.83  45.83
       1    29546  14.01  59.84
       2     8901   4.22  64.06
       3     7094   3.36  67.42
       4     5895   2.79  70.22
      -1     5553   2.63  72.85
       5     3411   1.61  74.47
       6     3198   1.51  75.99
       8     2220   1.05  77.04
      13     2037   0.96  78.01
       9     1853   0.87  78.88
       7     1841   0.87  79.76

Table 2.�Distribution of values for load immediate
instructions

The distribution of local variables loaded is shown in
Table 3.  The reader should be aware that the compiler
sorts the local variables by static usage before assigning
addresses in the local frame.

          Offset count % cum.%

       0    63152  40.29  40.29
       1    23151  14.77  55.07
       2    15125   9.65  64.72
       3    10116   6.45  71.17
       4     7886   5.03  76.21
       5     5837   3.72  79.93
       6     4323   2.75  82.69
       7     3754   2.39  85.08
       8     2718   1.73  86.82
       9     2096   1.33  88.16

Table 3.�Distribution of offsets of local variables loaded

Analysis of Conditional Jumps

We observe from Table 1 that approximately 4% of the
instructions are testing the top two elements of the stack
for equality (JE or JNE).  It is instructive to describe in
some detail the steps that we took in deciding upon what
specific instructions to generate for the "Jump Not Equal"
class of instructions (JNE). 



14In Tanenbaum’s proposed architecture [11], he allocates 20
one byte instructions and one two byte instruction to each
of "Jump Not Equal" and "Jump Not Zero."  We would
rather not use this much of our opcode space.  We looked
to see if some of the conditional jumps could be combined
with other operations.

From the predecessor data, we observed that 84.7% of the
JNE instructions are preceded by a load immediate.  We
next wrote a pattern that gave a distribution of the values
being tested against.  Table 4 shows the most frequent
values.

          Value count % cum.%

       0    11792  54.07  54.07
       1     2181  10.00  64.07
       3     1441   6.60  70.68
       2     1032   4.73  75.41
       4      390   1.78  77.20
       5      314   1.43  78.64
       6      238   1.09  79.73
       7      232   1.06  80.80
      -1      220   1.00  81.81
      15      198   0.90  82.72

Table 4.  Constants loaded before Jump Not Equal
instructions

It comes as no surprise that 0 is the most common value,
since 1% of the pre-normalization instructions were "Jump
Not Zero," and they were normalized to the sequence LI
0, JNE.  We clearly needed to put back in at least the two
byte version of this instruction, "Jump Not Zero Byte"
(JNZB), where the operand byte specifies the jump
distance.  The frequency of other small constants lead us
to propose a new instrucion: "Jump Not Equal Pair," a
two byte instruction where the operand byte is treated as
two four bit fields, one a constant, and the other a jump
distance.  Since jump distances are measured from the first
byte of a multibyte instruction, the first reasonable value
to jump is 3 bytes�jump over a single byte.  When we
looked at the jump distances for JNE, however, we saw
that 3 byte jumps occur very seldom, and that 5 bytes is
the winner, followed by 4 bytes.  For this reason, we
biased our distances by 4.  



15By using the data byte to hold a constant between 0 and
15, and a jump distance between 4 and 19, we found 4464
opportunities for the new JNEP instruction.  This did not
count the situations where the constant value was 0, since
they could be encoded by the equally short JNZB
instruction.  

After the JNZB and JNEP instructions are removed from
JNE statistics, there are still over 5000 cases of LI *, JNE
left.  In these, either the constant value or the jump
distance was out of range.  We decided to include a "Jump
Not Equal Byte Byte" instruction�one with two operand
bytes: a value for comparison, and a signed jump distance.
This took care of most of the remaining cases.

Now it was time to look at the operands of the remaining
JNEB instructions to see if we should have any one byte
JNE instructions.  The distribution was fairly flat, with the
most frequent occurring around 450 times.  For this
reason, we declined to include single byte JNE
instructions.

We also looked at the operands of the JNZB instructions.
There were two values, 4 and 5, that were frequent enough
to warrant single byte instructions.  We added the
instructions JNZ3 and JNZ4 (remembering that the jump
distance counts from the first byte of the instruction).  

In summary, our Not Equal testing is now supported by
the following instructions:
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JNEB 2 4501 18
Jump Not Equal Byte (all byte jumps are signed bytes)

JNZB 2 8878 35
Jump Non-Zero Byte

JNEP 2 4464 17
Jump Not Equal Pair (value in [0..15], dist in [4..19])

JNEBB 3 4742 19
Jump Not Equal Byte Byte (value in [0..255], dist in [-128..127])

JNZ3 1 1029  4
Jump Non-Zero 3

JNZ4 1 1885  7
Jump Non-Zero 4.

Table 5.�Jump Not Equal in the new instruction set

The then current opcode set under analysis had a two byte
JNZB instruction, a two byte JNEB instruction and eight
single byte JNE instructions.  The new instruction set has
no single byte JNE instructions; most of them occurred in
situations where we could combine the jump with the
preceding instruction into a new two byte jump.  The
overall net change was a 13% decrease in code bytes used
for not-equal testing compared to the previous instruction
set, even though there are four fewer JNE instructions.

Statistics of the Final Instruction Set

From information theory, we know that the best encoding
would have all single byte opcodes equally probable.
While we do not meet this ideal, the distribution of opcode
frequencies is a lot flatter than that of the normalized set.
Table 6 shows the most frequently occurring instructions
in the new instruction set.  Note that of the twenty-two
instructions shown in Table 6, fourteen are straightforward
single operation opcodes with any operand values given
explicitly as additional bytes, six are single byte
instructions where operand values are encoded in the
opcode, and two are compound operations combined into
a single opcode.  



17Opcode count %
LI0����46956���4.57

Load immediate 0

LL0����35242���3.43
Load local 0

JB�����25587���2.49
Jump byte�a relative, signed byte distance

RET����24256���2.36
Return

LIB����19944���1.94
Load immediate byte�operand is literal value

LL1����18951���1.84
Load local 1

EFCB���17074���1.66
External function call byte�operand specifies a link number

LAB����16706���1.62
Local address byte�load address of a local variable

LI1����16244���1.58
Load immediate 1

REC����15929���1.55
Recover value just popped from stack

SLB����13977���1.36
Store local byte�operand is offset in frame

JZB����13618���1.32
Jump zero byte�pop stack, jump if value = 0

LLD0���13553���1.32
Load local doubleword 0

LLB����13269���1.29
Load local byte�operand is offset in frame

LL2����13132���1.27
Load local 2

ADD����12435���1.21
Add�adds the top two elements of the stack

SLDB���12400���1.20
Store local doubleword byte�operand is offset in frame of
first word

LLDB���11222���1.09
Load local doubleword byte�operand is offset in frame of
first word

LIW����11205���1.09
Load immediate word�next two bytes are a 16 bit literal

JW�����10322���1.00
Jump word�next two bytes are a 16 bit relative jump
distance

LLKB���10306���1.00
Load link byte�operand specifies link number

RLIP����9691���0.94
Read local indirect pair�operand has four bits to specify
local variable pointer, four bits to specify offset of word
relative to that pointer.

Table 6.�Most frequent instruction of the new set.



18It is interesting to compare the contents of Tables 1, 2, and
3 with that of Table 6.  We see that over half of the LI0
instructions have been folded into new instructions.
Eighty percent of the LL instructions are either encoded as
single byte instructions such as LL0, or folded into more
complicated instructions such as RLIP.  Several of the
most common instructions are load immediate ones (LI*).
In fact, the complete frequency data show that almost 13%
of all new instructions are some form of load immediate.
The most frequent instruction, weighted by instruction
size, is JB, a two byte unconditional jump.  The most
frequent conditional jump is a test against zero, JZB;
many of these arise from tests of Boolean variables.  Table
7 shows the set of one and two byte load and store local
instructions of the new instruction set.

Load instructions�push local variable onto stack.
bytes total %

LLn,for n=0,1,2,3,4, 1 103402 10.1
5,6,7,8,9,10,11

LLB 2 �13269 �1.3

LLDn,for n=0,1,2,3,4, 1 �39989 �3.9
5,6,7,8,9

LLDB 2 �11222 �1.1

Store instructions�pop from stack into local variable.

SLn, for n=0,1,2,3,4, 1 �44598 �4.3
5,6,7,8,9,10

SLB 2 �13977 �1.4
SLDn,for n=0,1,2,3,4, 1 �21829 �2.1

5,6,8

SLDB 2 �12400 �1.2

Put instructions�store from stack into local variable,
don’t pop.

PLn,for n=0,1,2 1 �10540 �1.0

PLB 2 ��4195 �0.4

PLDn,for n=0 1 ��2350 �0.2

PLDB 2 ��5238 �0.5



19Table 7.�Distibution of load and store local instructions

Variables outside the first 256 words of the frame are
loaded and stored so infrequently that the compiler first
generates their address on the stack and then uses the
pointer dereferencing instructions.  We considered a three
byte "Load Local Word" instruction with a sixteen bit
offset, but found that "Local Address Word," which
loaded the address of a local variable, was more useful.
The compiler needs to generate the address of large
variables (larger than two words) in order to use the
"Block Transfer" instruction; if a variable is at a large
offset in the frame, it is probably a large variable as well.

We implemented fewer short instructions for storing local
variables than for loading them.  Note in Table 6 that four
of the single byte load local instructions appear in the top
fifteen instructions.  Table 7 says that the most frequently
referenced (and hence the first in the frame) locals are
loaded over twice as often as stored.  The variables that are
loaded with the two byte LLB are loaded and stored at
about the same frequency.  The "put" instructions arise
primarily at statement boundaries where a variable is
stored in one statement and then immediately used in the
next; such situations are found by the peephole optimizer
of the compiler.

7.�Analysis

The most useful patterns for finding sequences of
instructions to combine are succeessors, predecessors, and
popular pairs.  A simple minded scheme for generating
instructions is to start down the list of popular pairs and
make a new instruction for each pair until the number of
occurrences of that pair reaches some threshold.  Of
course, each new instruction potentially changes the
frequencies of all other pairs containing one of the
instructions.

Popular pairs will find many sequences but the data from
the successors and predecessors patterns should not be
overlooked.  For example, the WS (Write Swapped)
instruction writes a word in memory using a pointer and
value popped from the stack.  The REC (Recover)
instruction recovers the value that was previously on the
stack; after a WS, it recovers the pointer.  The successor
data showed that 91.4% of the WS instructions were
followed by a REC.  These two instructions were combined
into the PS (Put Swapped) instruction which left the



20pointer on the stack.  We could then eliminate the WS
instruction entirely and use the sequence PS, DIS
(Discard) the remaining 8.6% of the time. 

It helps to know what the compiler does when analyzing
patterns.  We were suprised to find no occurrences of the
pattern LI 0, LI 0.  We found them when we looked at
popular pairs�the compiler had changed that sequence
into LI 0, DUP (Duplicate).  This sequence was one of the
more popular pairs, which lead us to include the new
instruction LID0 (Load Immediate Double Zero).

The pattern showing histograms of operand values is
useful for deciding when to fold an operand value into a
single byte opcode.  Remember that combining
instructions may change the operand distribution.  For
example, the initial operand data for JNEB showed very
popular jump distances of 3 through 9 bytes.  The original
instruction set had single byte instructions for these jumps.
After the analysis, most of these short jumps had been
combined into the JNEP or JNEBB instructions.  The
operand data obtained after peephole optimization did not
warrant putting the short JNE instructions back into the
instruction set.  

8.�Implementation Issues

One cannot blindly apply the statistical results of the
analysis to decide what instructions to have in the new
instruction set.  It is necessary to temper these data with
knowledge of the compiler, history and expected future
trends of language use, and details of the implementations
of the instruction set.

There are some operations that are needed in the machine,
even though they occur infrequently�the divide operation
is an example.  Many such operations can be encoded as a
single opcode, ESC (Escape), followed by an operand byte
specifying the infrequently used operation.  This makes
available more single byte opcodes for more frequently
occurring operations.  Mathematically, it makes sense to
move any operation to ESC if the available opcode can
hold a new operation that gives a net savings in code size.
On the other hand, each new opcode adds complexity to
the implementation.



21Suppose there are two potential new instructions with the
same code size savings, one that combines two operations,
and the other that combines an operand value with an
operation.  The latter often results in less complexity in the
implementation of the instruction set.  In particular, if you
already have a LL6 instruction, it typically takes only a
single microinstruction to add LL7.

There are many encoding tricks that can be used to save
space.  Some of these can be decoded at virtually no cost,
others are more costly.   In the analysis of JNE above, we
ended up with an instruction, JNEP, where the operand
byte was interpreted as two four bit fields, a literal value
and a jump distance.  The jump distance was biased, i.e.
the microcode added 4 to the value before interpreting the
jump.  The literal value, on the other hand was unbiased,
even though the compiler would not generate the
instruction for one of the values.  For one of the
microprocessors implementing the instruction set, biasing
the compared value would have significantly slowed down
the execution of the instruction.

In an integrated system such as Mesa, global issues must
be considered when making instruction set decisions.  For
example, many procedures return a value of zero.  The
statistics showed that an opcode that loads zero and
returns would be cost effective.  However, the source level
debugger takes advantage of the fact that a procedure has
a single RET instruction when setting exit breakpoints (all
of the procedure’s returns jump to this RET).  We were
unwilling at this time to add the complexity to the
debugger of finding all possible return instructions (RET
and the new RETZ) in order to set exit breakpoints.
Therefore we declined to add this new instruction.

Finally, be careful when analyzing data obtained about an
evolving system.  Be aware that some common code
sequences reflect attempts by older programs to cope with
restrictions that are no longer in the architecture.  For
example,  programs written to live in a small address space
use different algorithms than those written to live in a
large address space.



229.�Conclusions

We began our analysis with limited goals: we had a short
time in which to make recommendations about changes to
the instruction set, we were generally happy with the old
instruction set, and we didn’t have the resources to handle
the necessary rewriting of microcode and compiler that a
massive change in the instruction set would require. 

Our experience showed that our chosen method, analysis
of existing object code, was a workable approach to the
problem.  Normalization of the code to a canonical form
proved valuable for simplifying the subsequent pattern
matching used.

We found that simple minded analysis of n-tuples becomes
unworkable for n>2, but that informed study of opcode
pairs allowed us to postulate longer patterns for study.  An
interactive pattern matching program was valuable for
answering questions about longer patterns.

Our analysis predicted an overall reduction in code size of
12%.  We converted the compiler to generate the new
instructions and realized the expected savings on a large
sample of programs.

10.�Acknowledgments

The first opcode analysis of Mesa was done by Chuck
Geschke, Richard Johnsson, Butler Lampson, and Dick
Sweet.  Loretta Guarino Reid helped to develop the
current analysis tools, and LeRoy Nelson helped to
produce the program sample.  The analyses were run on a
Dorado, whose processing power was invaluable for
handling the large amount of data that we had. 

Bibliography

[1] Alexander, W. G., and Wortman, D. B.,  "Static
and Dynamic Characteristics of XPL Programs,"
Computer, vol 8. pp. 41-46, 1975.



23[2] Chu, Yaohan, ed., Special issue on Higher-Level
Architecture, Computer, vol. 14, no. 7, July 1981.

[3] Deutsch, L. Peter,  "A LISP machine with very
Compact Programs,"  Third International Joint
Conference on Artificial Intelligence, Stanford
University, 1973.

[4] Huffman, D. A.,  "A Method for the Construction
of Minimum Redundancy Codes," Proceedings of
the IRE, vol 40, pp. 1098-1101, September, 1952

[5] Johnsson, Richard K., and Wick, John D.,  "An
Overview of the Mesa Processor Architecture,"
Symposium on Architectural Support for Prog. Lang.
and Operating Sys., Palo Alto, Mar. 1982.

[6] Knuth, Donald E.,  "An Empirical Study of
FORTRAN Programs," Software�Practice and
Experience, vol. 1, pp. 105-133, 1971

[7] Lampson, Butler W. et. al., The Dorado: A High-
Performance Personal Computer�Three papers.
CSL-81-1, Xerox Palo Alto Research Center, Palo
Alto, California, 1981.

[8] Mitchell, James G., Maybury, William, and Sweet,
Richard E.,  Mesa Language Manual. Version 5.0.
CSL-79-3, Xerox Palo Alto Research Center, Palo
Alto, California, 1979.

[9] Redell, David D. et. al., "Pilot: An Operating
System for a Personal Computer," Communications
of the ACM, vol. 23, pp. 81-92, 1980.

[10] Shannon, C. E., "A Mathematical Theory of
Communication," Bell System Technical Journal,
vol 27, pp. 379-423, 623-656, 1948.

[11] Sweet, Richard E.,  Empirical Estimates of Program
Entropy.  CSL-78-3, Xerox Palo Alto Research
Center, Palo Alto, California, 1978.

[12] Tanenbaum, Andrew S.,  "Implications of
Structured Programming for Machine
Architecture," Communications of the ACM, vol. 31,
pp. 237-246, 1978.



24[13] Thacker, C. P. et. al.,  "Alto: A personal computer,"
in Computer Structures: Readings and Examples,
Second edition, Sieworek, Bell and Newell, Eds.,
McGraw-Hill, 1981.  Also in Technical Report
CSL-79-11, Xerox Palo Alto Research Center, 1979.

[14] Wade, James F., and Stigall, Paul D., "Instruction
Design to Minimize Program Size,"  Proceedings of
the Second Annual Symposium on Computer
Architecture, pp. 41-44, 1975.


