4. Transformations

Splinescurvesmay alsobe modified with severaltransformationoperations: move, copy and drag. These operations all apply to a section of a curve.
4.1 Move:

1

2

3

This command does one of three geometricaltransformationson a curve sectiona translationa verticalsymmetry or a horizontalsymmetry. Firstspecifya curve section (see above: 3.4). Then point at one of the three options of the command movet:r frossliztondra, 1 symmeterstyinmetlityen the editorgoes into a mode identicalto knot input mode (see above: 3.2). However only one or two points are specified. They define the geometrical parameters of the transformation. For a trdeqinatitdre, origin point and the destinationpoint (this is illustrated on the left). For a horizontal symmedterfine one point on the horizontal axis of symmetry; For a vesintmindifye one point on the verticalaxis of symmetry (this is illustratedelow, in the context of a copy command).
4.2 Copy:

1

This command makes a transformed copy of a curve section. It is otherwise the same as the movecommand. The illustrationon the left demonstrates vertical symmetry.

FRED
Page 10
Patrick Baudelaire January 13, 1976
4.3 Drag:

This is a versionof the command move (translate) in which all the curves sharing the knots of the translatedurve sectionare modified accordingly. Knots common to several curves, such as end knots of connected curves, may thus be translated in one single operation.

4.4 Repeat:

This command will repeat the most recentlyappliedtransformation(move, copy dragb the current selectiorwith the same parameter (i.esame translation vector or same symetry center).
4.5 Simple combinations:

Deletinga knot, a curve or a portionof a curve is easilydone by executing a replace and then a do it without supplying a set of new knots.

Moving a single knot can be done in two ways: replace or move.
InsertingN new knots between two consecutiveknots k_{1} and k_{2} is done with a repsadeetk $\quad 1$ and k_{2} respectivelps the end knots of a section; then input $N+2$ points such that point 1 coincideswith k_{1} (using switch 2), points 2 to $N+1$ are the N new knots, point $N+2$ coincideswith k_{2} (using switch 2).

Appending N new knots at eitherend of a curve is done in a similarway: selectthe end knot as a singleknot section, and repitdeye $N+1$ new knots. However, be aware of the ambiguity associatedwith single knot sections (3.5).

Patrick Baudelaire January 13, 1976
5. Other operations on spline curves
5.1 Wipe:

This operation deletesall displayedcurves. Beware: no confirmation is expected. An accidentalwipmay be recovered from with the undo command (5.2). A wipies actuallyequivalentto a successionof single curve deletions.Thereforeitwilltake an equal number of successivendo operations to recreate all the deleted curves.

5.2 Undo:

Spline curves are created,go through a history of modificationsand may eventuallybe deleted. The undbeatureis provided for recoveringfrom destructivevents in the history of curves, that is modificationsand deletions.It appliesto the operationsreprancend wipeIt does not apply to other types of operations(i.e makecoplyreakd join), since they are easily invertible.

All deletedcurves and allmodified curves are chronologicaly"remembered," up to some finitevariabledepth. The most recentlydeletedor modified curve is recreatedwhen the command undios invoked. If that curve had originallybeen modified (through a repiancevethe curve that was substitutedfor it disappearspermanently. The depth of "memory" is variable,because it is a function of the internalstorageavailableto the splineeditor. The "memory" willbe expunged of itsoldestitems according to these requirements. It is believed that if FRED is not used extravagantlythe depth of "memory" is about a dozen items. Immediately after a wipe, all deleted curves should be recoverable.

5.3 Break:

This operationis used to break one singlecurve into two connectedcurves. Firstselectthe knot where the "breaking"is to happen, and then execute this command.

3
5.4 Join:

This is the inverseof the breaderation. Firstselectthe common end knot of two connected curves, and then execute the command. The two connectedcurves are joinedinto one singlesmooth curve. The command is not executedif there is ambiguity, namely if there are more than two curves with the same end knot.

5.5 Cyclic curves:

The joiperation may also be applied to a closed curve. This will produce a cycliccurve with a smooth junction. A cycliccurve does not have any end points. It may be broken at any of its knots.

closed

cyclic

