#ifndef SCANFILLINCLUDED #define SCANFILLINCLUDED /* * scanfill.h * * Written by Brian Kelleher; Jan 1985 * * This file contains a few macros to help track * the edge of a filled object. The object is assumed * to be filled in scanline order, and thus the * algorithm used is an extension of Bresenham's line * drawing algorithm which assumes that y is always the * major axis. * Since these pieces of code are the same for any filled shape, * it is more convenient to gather the library in one * place, but since these pieces of code are also in * the inner loops of output primitives, procedure call * overhead is out of the question. * See the author for a derivation if needed. */ /* * In scan converting polygons, we want to choose those pixels * which are inside the polygon. Thus, we add .5 to the starting * x coordinate for both left and right edges. Now we choose the * first pixel which is inside the pgon for the left edge and the * first pixel which is outside the pgon for the right edge. * Draw the left pixel, but not the right. * * How to add .5 to the starting x coordinate: * If the edge is moving to the right, then subtract dy from the * error term from the general form of the algorithm. * If the edge is moving to the left, then add dy to the error term. * * The reason for the difference between edges moving to the left * and edges moving to the right is simple: If an edge is moving * to the right, then we want the algorithm to flip immediately. * If it is moving to the left, then we don't want it to flip until * we traverse an entire pixel. */ #define BRESINITPGON(dy, x1, x2, xStart, d, m, m1, incr1, incr2) { \ int dx; /* local storage */ \ \ /* \ * if the edge is horizontal, then it is ignored \ * and assumed not to be processed. Otherwise, do this stuff. \ */ \ if ((dy) != 0) { \ xStart = (x1); \ dx = (x2) - xStart; \ if (dx < 0) { \ m = dx / (dy); \ m1 = m - 1; \ incr1 = -2 * dx + 2 * (dy) * m1; \ incr2 = -2 * dx + 2 * (dy) * m; \ d = 2 * m * (dy) - 2 * dx - 2 * (dy); \ } else { \ m = dx / (dy); \ m1 = m + 1; \ incr1 = 2 * dx - 2 * (dy) * m1; \ incr2 = 2 * dx - 2 * (dy) * m; \ d = -2 * m * (dy) + 2 * dx; \ } \ } \ } #define BRESINCRPGON(d, minval, m, m1, incr1, incr2) { \ if (m1 > 0) { \ if (d > 0) { \ minval += m1; \ d += incr1; \ } \ else { \ minval += m; \ d += incr2; \ } \ } else {\ if (d >= 0) { \ minval += m1; \ d += incr1; \ } \ else { \ minval += m; \ d += incr2; \ } \ } \ } /* * This structure contains all of the information needed * to run the bresenham algorithm. * The variables may be hardcoded into the declarations * instead of using this structure to make use of * register declarations. */ typedef struct { int minor; /* minor axis */ int d; /* decision variable */ int m, m1; /* slope and slope+1 */ int incr1, incr2; /* error increments */ } BRESINFO; #define BRESINITPGONSTRUCT(dmaj, min1, min2, bres) \ BRESINITPGON(dmaj, min1, min2, bres.minor, bres.d, \ bres.m, bres.m1, bres.incr1, bres.incr2) #define BRESINCRPGONSTRUCT(bres) \ BRESINCRPGON(bres.d, bres.minor, bres.m, bres.m1, bres.incr1, bres.incr2) #endif SCANFILLINCLUDED