/* NFS   20-Nov-85 14:34:56    from trig.c  */
/* sin(), cos(), tan(), atan(), atan2(), asin(), acos(), sinh(), cosh() */
/* tanh(), asinh(), acosh(), atanh()  */

asm ("        export Libm");

mesa double LibmSupport←copysign(), LibmSupport←scalb(), LibmSupport←logb();
mesa double LibmSupport←drem(), Libm←sqrt(), Libm←expm1(), LibmSupport←expE();
mesa double Libm←exp(), Libm←log1p();
mesa int LibmSupport←finite();

#define copysign(x,y) (LibmSupport←copysign(x,y))
#define scalb(x,n)  (LibmSupport←scalb(x,n))
#define logb(x)  (LibmSupport←logb(x))
#define finite(x) (LibmSupport←finite(x))
#define drem(x,p) (LibmSupport←drem(x,p))
#define sqrt(x)  (Libm←sqrt(x))
#define expm1(x)  (Libm←expm1(x))
#define exp←←E(x,c)  (LibmSupport←expE(x,c))
#define exp(x)  (Libm←exp(x))
#define log1p(x) (Libm←log1p(x))

/* SIN(X), COS(X), TAN(X)
 * RETURN THE SINE, COSINE, AND TANGENT OF X RESPECTIVELY
 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
 * CODED IN C BY K.C. NG, 1/8/85; 
 * REVISED BY W. Kahan and K.C. NG, 8/17/85.
 *
 * Required system supported functions:
 *      copysign(x,y)
 *      finite(x)
 *      drem(x,p)
 *
 * Static kernel functions:
 *      sin←←S(z)       ....sin←←S(x*x) return (sin(x)-x)/x
 *      cos←←C(z)       ....cos←←C(x*x) return cos(x)-1-x*x/2
 *
 * Method.
 *      Let S and C denote the polynomial approximations to sin and cos 
 *      respectively on [-PI/4, +PI/4].
 *
 *      SIN and COS:
 *      1. Reduce the argument into [-PI , +PI] by the remainder function.  
 *      2. For x in (-PI,+PI), there are three cases:
 *			case 1:	|x| < PI/4
 *			case 2:	PI/4 <= |x| < 3PI/4
 *			case 3:	3PI/4 <= |x|.
 *	   SIN and COS of x are computed by:
 *
 *                   sin(x)      cos(x)       remark
 *     ----------------------------------------------------------
 *        case 1     S(x)         C(x)       
 *        case 2 sign(x)*C(y)     S(y)      y=PI/2-|x|
 *        case 3     S(y)        -C(y)      y=sign(x)*(PI-|x|)
 *     ----------------------------------------------------------
 *
 *      TAN:
 *      1. Reduce the argument into [-PI/2 , +PI/2] by the remainder function.  
 *      2. For x in (-PI/2,+PI/2), there are two cases:
 *			case 1:	|x| < PI/4
 *			case 2:	PI/4 <= |x| < PI/2
 *         TAN of x is computed by:
 *
 *                   tan (x)            remark
 *     ----------------------------------------------------------
 *        case 1     S(x)/C(x)
 *        case 2     C(y)/S(y)     y=sign(x)*(PI/2-|x|)
 *     ----------------------------------------------------------
 *
 *   Notes:
 *      1. S(y) and C(y) were computed by:
 *              S(y) = y+y*sin←←S(y*y) 
 *              C(y) = 1-(y*y/2-cos←←C(x*x))          ... if y*y/2 <  thresh,
 *                   = 0.5-((y*y/2-0.5)-cos←←C(x*x))  ... if y*y/2 >= thresh.
 *         where
 *              thresh = 0.5*(acos(3/4)**2)
 *
 *      2. For better accuracy, we use the following formula for S/C for tan
 *         (k=0): let ss=sin←←S(y*y), and cc=cos←←C(y*y), then
 *
 *                            y+y*ss             (y*y/2-cc)+ss
 *             S(y)/C(y)   = -------- = y + y * ---------------.
 *                               C                     C 
 *
 *
 * Special cases:
 *      Let trig be any of sin, cos, or tan.
 *      trig(+-INF)  is NaN, with signals;
 *      trig(NaN)    is that NaN;
 *      trig(n*PI/2) is exact for any integer n, provided n*PI is 
 *      representable; otherwise, trig(x) is inexact. 
 *
 * Accuracy:
 *      trig(x) returns the exact trig(x*pi/PI) nearly rounded, where
 *
 *      Decimal:
 *              pi = 3.141592653589793 23846264338327 ..... 
 *    53 bits   PI = 3.141592653589793 115997963 ..... ,
 *    56 bits   PI = 3.141592653589793 227020265 ..... ,  
 *
 *      Hexadecimal:
 *              pi = 3.243F6A8885A308D313198A2E....
 *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18    error=.276ulps
 *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
 *
 *      In a test run with 1,024,000 random arguments on a VAX, the maximum
 *      observed errors (compared with the exact trig(x*pi/PI)) were
 *                      tan(x) : 2.09 ulps (around 4.716340404662354)
 *                      sin(x) : .861 ulps
 *                      cos(x) : .857 ulps
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following constants.
 * The decimal values may be used, provided that the compiler will convert
 * from decimal to binary accurately enough to produce the hexadecimal values
 * shown.
 */


static double
thresh =  2.6117239648121182150E-1    , /*Hex  2↑ -2   *  1.0B70C6D604DD4 */
PIo4   =  7.8539816339744827900E-1    , /*Hex  2↑ -1   *  1.921FB54442D18 */
PIo2   =  1.5707963267948965580E0     , /*Hex  2↑  0   *  1.921FB54442D18 */
PI3o4  =  2.3561944901923448370E0     , /*Hex  2↑  1   *  1.2D97C7F3321D2 */
PI     =  3.1415926535897931160E0     , /*Hex  2↑  1   *  1.921FB54442D18 */
PI2    =  6.2831853071795862320E0     ; /*Hex  2↑  2   *  1.921FB54442D18 */

static double zero=0, one=1, negone= -1, half=1.0/2.0, 
	      small=1E-10, /* 1+small**2==1; better values for small:
					small = 1.5E-9 for VAX D
					      = 1.2E-8 for IEEE Double
					      = 2.8E-10 for IEEE Extended */
	      big=1E20;    /* big = 1/(small**2) */

asm ("        exportproc ←tan, Libm");
double tan(x) 
double x;
{
        double LibmSupport←copysign(),
	       DoubleReal←drem(),
	       cos←←C(),sin←←S(),a,z,ss,cc,c;
        int finite(),k;

        /* tan(NaN) and tan(INF) must be NaN */
            if(!finite(x))  return(x-x);
        x=drem(x,PI);        /* reduce x into [-PI/2, PI/2] */
        a=copysign(x,one);   /* ... = abs(x) */
	if ( a >= PIo4 ) {k=1; x = copysign( PIo2 - a , x ); }
	   else { k=0; if(a < small ) { big + a; return(x); }}

        z  = x*x;
        cc = cos←←C(z);
        ss = sin←←S(z);
	z  = z*half ;		/* Next get c = cos(x) accurately */
	c  = (z >= thresh )? half-((z-half)-cc) : one-(z-cc);
	if (k==0) return ( x + (x*(z-(cc-ss)))/c );  /* sin/cos */
	return( c/(x+x*ss) );	/*                  ... cos/sin */


}

asm ("        exportproc ←sin, Libm");
double sin(x)
double x;
{
        double LibmSupport←copysign(),
	       DoubleReal←drem(),
	       sin←←S(),cos←←C(),a,c,z;
        int finite();

        /* sin(NaN) and sin(INF) must be NaN */
            if(!finite(x))  return(x-x);
	x=drem(x,PI2);         /*    reduce x into [-PI, PI] */
        a=copysign(x,one);
	if( a >= PIo4 ) {
	     if( a >= PI3o4 )   /* 	.. in [3PI/4,  PI ]  */
		x=copysign((a=PI-a),x);

	     else {	       /* 	.. in [PI/4, 3PI/4]  */
		a=PIo2-a;      /* return sign(x)*C(PI/2-|x|) */
		z=a*a;
		c=cos←←C(z);
		z=z*half;
		a=(z>=thresh)?half-((z-half)-c):one-(z-c);
		return(copysign(a,x));
		}
             }

        /* return S(x) */
            if( a < small) { big + a; return(x);}
            return(x+x*sin←←S(x*x));
}

asm ("        exportproc ←cos, Libm");
double cos(x) 
double x;
{
        double LibmSupport←copysign(),
	       DoubleReal←drem(),
	       sin←←S(),cos←←C(),a,c,z,s=1.0;
        int finite();

        /* cos(NaN) and cos(INF) must be NaN */
            if(!finite(x))  return(x-x);
	x=drem(x,PI2);         /*    reduce x into [-PI, PI] */
        a=copysign(x,one);
	if ( a >= PIo4 ) {
	     if ( a >= PI3o4 )  /* 	.. in [3PI/4,  PI ]  */
		{ a=PI-a; s= negone; }

	     else 	       /* 	.. in [PI/4, 3PI/4]  */
                               /*        return  S(PI/2-|x|) */ 
		{ a=PIo2-a; return(a+a*sin←←S(a*a));}
	     }


        /* return s*C(a) */
            if( a < small) { big + a; return(s);}
	    z=a*a;
	    c=cos←←C(z);
	    z=z*half;
	    a=(z>=thresh)?half-((z-half)-c):one-(z-c);
	    return(copysign(a,s));
}


/* sin←←S(x*x)
 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
 * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X) 
 * CODED IN C BY K.C. NG, 1/21/85; 
 * REVISED BY K.C. NG on 8/13/85.
 *
 *	    sin(x*k) - x
 * RETURN  --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded
 *	            x	
 * value of pi in machine precision:
 *
 *	Decimal:
 *		pi = 3.141592653589793 23846264338327 ..... 
 *    53 bits   PI = 3.141592653589793 115997963 ..... ,
 *    56 bits   PI = 3.141592653589793 227020265 ..... ,  
 *
 *	Hexadecimal:
 *		pi = 3.243F6A8885A308D313198A2E....
 *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
 *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    
 *
 * Method:
 *	1. Let z=x*x. Create a polynomial approximation to 
 *	    (sin(k*x)-x)/x  =  z*(S0 + S1*z↑1 + ... + S5*z↑5).
 *	Then
 *      sin←←S(x*x) = z*(S0 + S1*z↑1 + ... + S5*z↑5)
 *
 *	The coefficient S's are obtained by a special Remez algorithm.
 *
 * Accuracy:
 *	In the absence of rounding error, the approximation has absolute error 
 *	less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE. 
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following constants.
 * The decimal values may be used, provided that the compiler will convert
 * from decimal to binary accurately enough to produce the hexadecimal values
 * shown.
 *
 */


static double
S0     = -1.6666666666666463126E-1    , /*Hex  2↑ -3   * -1.555555555550C */
S1     =  8.3333333332992771264E-3    , /*Hex  2↑ -7   *  1.111111110C461 */
S2     = -1.9841269816180999116E-4    , /*Hex  2↑-13   * -1.A01A019746345 */
S3     =  2.7557309793219876880E-6    , /*Hex  2↑-19   *  1.71DE3209CDCD9 */
S4     = -2.5050225177523807003E-8    , /*Hex  2↑-26   * -1.AE5C0E319A4EF */
S5     =  1.5868926979889205164E-10   ; /*Hex  2↑-33   *  1.5CF61DF672B13 */

static double sin←←S(z)
double z;
{

	return(z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5))))));
}


/* cos←←C(x*x)
 * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
 * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X) 
 * CODED IN C BY K.C. NG, 1/21/85; 
 * REVISED BY K.C. NG on 8/13/85.
 *
 *	   		    x*x	
 * RETURN   cos(k*x) - 1 + ----- on [-PI/4,PI/4],  where k = pi/PI,
 *	  		     2	
 * PI is the rounded value of pi in machine precision :
 *
 *	Decimal:
 *		pi = 3.141592653589793 23846264338327 ..... 
 *    53 bits   PI = 3.141592653589793 115997963 ..... ,
 *    56 bits   PI = 3.141592653589793 227020265 ..... ,  
 *
 *	Hexadecimal:
 *		pi = 3.243F6A8885A308D313198A2E....
 *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18
 *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    
 *
 *
 * Method:
 *	1. Let z=x*x. Create a polynomial approximation to 
 *	    cos(k*x)-1+z/2  =  z*z*(C0 + C1*z↑1 + ... + C5*z↑5)
 *	then
 *      cos←←C(z) =  z*z*(C0 + C1*z↑1 + ... + C5*z↑5)
 *
 *	The coefficient C's are obtained by a special Remez algorithm.
 *
 * Accuracy:
 *	In the absence of rounding error, the approximation has absolute error 
 *	less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE. 
 *	
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following constants.
 * The decimal values may be used, provided that the compiler will convert
 * from decimal to binary accurately enough to produce the hexadecimal values
 * shown.
 *
 */


static double
C0     =  4.1666666666666504759E-2    , /*Hex  2↑ -5   *  1.555555555553E */
C1     = -1.3888888888865301516E-3    , /*Hex  2↑-10   * -1.6C16C16C14199 */
C2     =  2.4801587269650015769E-5    , /*Hex  2↑-16   *  1.A01A01971CAEB */
C3     = -2.7557304623183959811E-7    , /*Hex  2↑-22   * -1.27E4F1314AD1A */
C4     =  2.0873958177697780076E-9    , /*Hex  2↑-29   *  1.1EE3B60DDDC8C */
C5     = -1.1250289076471311557E-11   ; /*Hex  2↑-37   * -1.8BD5986B2A52E */

static double cos←←C(z)
double z;
{
	return(z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5))))));
}


/* ATAN(X)
 * RETURNS ARC TANGENT OF X
 * DOUBLE PRECISION (IEEE DOUBLE 53 bits, VAX D FORMAT 56 bits)
 * CODED IN C BY K.C. NG, 4/16/85, REVISED ON 6/10/85.
 *
 * Required kernel function:
 *	atan2(y,x) 
 *
 * Method:                  
 *	atan(x) = atan2(x,1.0). 
 *
 * Special case:
 *	if x is NaN, return x itself.
 *
 * Accuracy:
 * 1)  If atan2() uses machine PI, then
 * 
 *	atan(x) returns (PI/pi) * (the exact arc tangent of x) nearly rounded;
 *	and PI is the exact pi rounded to machine precision (see atan2 for
 *      details):
 *
 *	in decimal:
 *		pi = 3.141592653589793 23846264338327 ..... 
 *    53 bits   PI = 3.141592653589793 115997963 ..... ,
 *    56 bits   PI = 3.141592653589793 227020265 ..... ,  
 *
 *	in hexadecimal:
 *		pi = 3.243F6A8885A308D313198A2E....
 *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18	error=.276ulps
 *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
 *	
 *	In a test run with more than 200,000 random arguments on a VAX, the 
 *	maximum observed error in ulps (units in the last place) was
 *	0.86 ulps.      (comparing against (PI/pi)*(exact atan(x))).
 *
 * 2)  If atan2() uses true pi, then
 *
 *	atan(x) returns the exact atan(x) with error below about 2 ulps.
 *
 *	In a test run with more than 1,024,000 random arguments on a VAX, the 
 *	maximum observed error in ulps (units in the last place) was
 *	0.85 ulps.
 */

asm ("        exportproc ←atan, Libm");
double atan(x)
double x;
{
	double atan2(),one=1.0;
	return(atan2(x,one));
}



/* ATAN2(Y,X)
 * RETURN ARG (X+iY)
 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
 * CODED IN C BY K.C. NG, 1/8/85; 
 * REVISED BY K.C. NG on 2/7/85, 2/13/85, 3/7/85, 3/30/85, 6/29/85.
 *
 * Required system supported functions :
 *	copysign(x,y)
 *	scalb(x,y)
 *	logb(x)
 *	
 * Method :
 *	1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
 *	2. Reduce x to positive by (if x and y are unexceptional): 
 *		ARG (x+iy) = arctan(y/x)   	   ... if x > 0,
 *		ARG (x+iy) = pi - arctan[y/(-x)]   ... if x < 0,
 *	3. According to the integer k=4t+0.25 truncated , t=y/x, the argument 
 *	   is further reduced to one of the following intervals and the 
 *	   arctangent of y/x is evaluated by the corresponding formula:
 *
 *         [0,7/16]	   atan(y/x) = t - t↑3*(a1+t↑2*(a2+...(a10+t↑2*a11)...)
 *	   [7/16,11/16]    atan(y/x) = atan(1/2) + atan( (y-x/2)/(x+y/2) )
 *	   [11/16.19/16]   atan(y/x) = atan( 1 ) + atan( (y-x)/(x+y) )
 *	   [19/16,39/16]   atan(y/x) = atan(3/2) + atan( (y-1.5x)/(x+1.5y) )
 *	   [39/16,INF]     atan(y/x) = atan(INF) + atan( -x/y )
 *
 * Special cases:
 * Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y).
 *
 *	ARG( NAN , (anything) ) is NaN;
 *	ARG( (anything), NaN ) is NaN;
 *	ARG(+(anything but NaN), +-0) is +-0  ;
 *	ARG(-(anything but NaN), +-0) is +-PI ;
 *	ARG( 0, +-(anything but 0 and NaN) ) is +-PI/2;
 *	ARG( +INF,+-(anything but INF and NaN) ) is +-0 ;
 *	ARG( -INF,+-(anything but INF and NaN) ) is +-PI;
 *	ARG( +INF,+-INF ) is +-PI/4 ;
 *	ARG( -INF,+-INF ) is +-3PI/4;
 *	ARG( (anything but,0,NaN, and INF),+-INF ) is +-PI/2;
 *
 * Accuracy:
 *	atan2(y,x) returns (PI/pi) * the exact ARG (x+iy) nearly rounded, 
 *	where
 *
 *	in decimal:
 *		pi = 3.141592653589793 23846264338327 ..... 
 *    53 bits   PI = 3.141592653589793 115997963 ..... ,
 *    56 bits   PI = 3.141592653589793 227020265 ..... ,  
 *
 *	in hexadecimal:
 *		pi = 3.243F6A8885A308D313198A2E....
 *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18	error=.276ulps
 *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
 *	
 *	In a test run with 356,000 random argument on [-1,1] * [-1,1] on a
 *	VAX, the maximum observed error was 1.41 ulps (units of the last place)
 *	compared with (PI/pi)*(the exact ARG(x+iy)).
 *
 * Note:
 *	We use machine PI (the true pi rounded) in place of the actual
 *	value of pi for all the trig and inverse trig functions. In general, 
 *	if trig is one of sin, cos, tan, then computed trig(y) returns the 
 *	exact trig(y*pi/PI) nearly rounded; correspondingly, computed arctrig 
 *	returns the exact arctrig(y)*PI/pi nearly rounded. These guarantee the 
 *	trig functions have period PI, and trig(arctrig(x)) returns x for
 *	all critical values x.
 *	
 * Constants:
 * The hexadecimal values are the intended ones for the following constants.
 * The decimal values may be used, provided that the compiler will convert
 * from decimal to binary accurately enough to produce the hexadecimal values
 * shown.
 */

static double 

athfhi =  4.6364760900080609352E-1    , /*Hex  2↑ -2   *  1.DAC670561BB4F */
athflo =  4.6249969567426939759E-18   , /*Hex  2↑-58   *  1.5543B8F253271 */
at1fhi =  9.8279372324732905408E-1    , /*Hex  2↑ -1   *  1.F730BD281F69B */
at1flo = -2.4407677060164810007E-17   , /*Hex  2↑-56   * -1.C23DFEFEAE6B5 */
a1     =  3.3333333333333942106E-1    , /*Hex  2↑ -2   *  1.55555555555C3 */
a2     = -1.9999999999979536924E-1    , /*Hex  2↑ -3   * -1.9999999997CCD */
a3     =  1.4285714278004377209E-1    , /*Hex  2↑ -3   *  1.24924921EC1D7 */
a4     = -1.1111110579344973814E-1    , /*Hex  2↑ -4   * -1.C71C7059AF280 */
a5     =  9.0908906105474668324E-2    , /*Hex  2↑ -4   *  1.745CE5AA35DB2 */
a6     = -7.6919217767468239799E-2    , /*Hex  2↑ -4   * -1.3B0FA54BEC400 */
a7     =  6.6614695906082474486E-2    , /*Hex  2↑ -4   *  1.10DA924597FFF */
a8     = -5.8358371008508623523E-2    , /*Hex  2↑ -5   * -1.DE125FDDBD793 */
a9     =  4.9850617156082015213E-2    , /*Hex  2↑ -5   *  1.9860524BDD807 */
a10    = -3.6700606902093604877E-2    , /*Hex  2↑ -5   * -1.2CA6C04C6937A */
a11    =  1.6438029044759730479E-2    ; /*Hex  2↑ -6   *  1.0D52174A1BB54 */

asm ("      exportproc  ←atan2, Libm");
double atan2(y,x)
double  y,x;
{  
	static double zero=0, one=1, small=1.0E-9, big=1.0E18;
	double LibmSupport←copysign(),
	       LibmSupport←logb(),
	       LibmSupport←scalb(),t,z,signy,signx,hi,lo;
	int LibmSupport←finite(), k,m;

    /* if x or y is NAN */
	if(x!=x) return(x); if(y!=y) return(y);

    /* copy down the sign of y and x */
	signy = copysign(one,y) ;  
	signx = copysign(one,x) ;  

    /* if x is 1.0, goto begin */
	if(x==1) { y=copysign(y,one); t=y; if(finite(t)) goto begin;}

    /* when y = 0 */
	if(y==zero) return((signx==one)?y:copysign(PI,signy));

    /* when x = 0 */
	if(x==zero) return(copysign(PIo2,signy));
	    
    /* when x is INF */
	if(!finite(x))
	    if(!finite(y)) 
		return(copysign((signx==one)?PIo4:3*PIo4,signy));
	    else
		return(copysign((signx==one)?zero:PI,signy));

    /* when y is INF */
	if(!finite(y)) return(copysign(PIo2,signy));


    /* compute y/x */
	x=copysign(x,one); 
	y=copysign(y,one); 
	if((m=(k=logb(y))-logb(x)) > 60) t=big+big; 
	    else if(m < -80 ) t=y/x;
	    else { t = y/x ; y = scalb(y,-k); x=scalb(x,-k); }

    /* begin argument reduction */
begin:
	if (t < 2.4375) {		 

	/* truncate 4(t+1/16) to integer for branching */
	    k = 4 * (t+0.0625);
	    switch (k) {

	    /* t is in [0,7/16] */
	    case 0:                    
	    case 1:
		if (t < small) 
		    { big + small ;  /* raise inexact flag */
		      return (copysign((signx>zero)?t:PI-t,signy)); }

		hi = zero;  lo = zero;  break;

	    /* t is in [7/16,11/16] */
	    case 2:                    
		hi = athfhi; lo = athflo;
		z = x+x;
		t = ( (y+y) - x ) / ( z +  y ); break;

	    /* t is in [11/16,19/16] */
	    case 3:                    
	    case 4:
		hi = PIo4; lo = zero;
		t = ( y - x ) / ( x + y ); break;

	    /* t is in [19/16,39/16] */
	    default:                   
		hi = at1fhi; lo = at1flo;
		z = y-x; y=y+y+y; t = x+x;
		t = ( (z+z)-x ) / ( t + y ); break;
	    }
	}
	/* end of if (t < 2.4375) */

	else                           
	{
	    hi = PIo2; lo = zero;

	    /* t is in [2.4375, big] */
	    if (t <= big)  t = - x / y;

	    /* t is in [big, INF] */
	    else          
	      { big+small;	/* raise inexact flag */
		t = zero; }
	}
    /* end of argument reduction */

    /* compute atan(t) for t in [-.4375, .4375] */
	z = t*t;
	z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
			z*(a9+z*(a10+z*a11)))))))))));
	z = lo - z; z += t; z += hi;

	return(copysign((signx>zero)?z:PI-z,signy));
}


/* ASIN(X)
 * RETURNS ARC SINE OF X
 * DOUBLE PRECISION (IEEE DOUBLE 53 bits, VAX D FORMAT 56 bits)
 * CODED IN C BY K.C. NG, 4/16/85, REVISED ON 6/10/85.
 *
 * Required system supported functions:
 *	copysign(x,y)
 *	sqrt(x)
 *
 * Required kernel function:
 *	atan2(y,x) 
 *
 * Method :                  
 *	asin(x) = atan2(x,sqrt(1-x*x)); for better accuracy, 1-x*x is 
 *		  computed as follows
 *			1-x*x                     if x <  0.5, 
 *			2*(1-|x|)-(1-|x|)*(1-|x|) if x >= 0.5.
 *
 * Special cases:
 *	if x is NaN, return x itself;
 *	if |x|>1, return NaN.
 *
 * Accuracy:
 * 1)  If atan2() uses machine PI, then
 * 
 *	asin(x) returns (PI/pi) * (the exact arc sine of x) nearly rounded;
 *	and PI is the exact pi rounded to machine precision (see atan2 for
 *      details):
 *
 *	in decimal:
 *		pi = 3.141592653589793 23846264338327 ..... 
 *    53 bits   PI = 3.141592653589793 115997963 ..... ,
 *    56 bits   PI = 3.141592653589793 227020265 ..... ,  
 *
 *	in hexadecimal:
 *		pi = 3.243F6A8885A308D313198A2E....
 *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18	error=.276ulps
 *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
 *	
 *	In a test run with more than 200,000 random arguments on a VAX, the 
 *	maximum observed error in ulps (units in the last place) was
 *	2.06 ulps.      (comparing against (PI/pi)*(exact asin(x)));
 *
 * 2)  If atan2() uses true pi, then
 *
 *	asin(x) returns the exact asin(x) with error below about 2 ulps.
 *
 *	In a test run with more than 1,024,000 random arguments on a VAX, the 
 *	maximum observed error in ulps (units in the last place) was
 *      1.99 ulps.
 */

asm ("        exportproc ←asin, Libm");
double asin(x)
double x;
{
	double s,t,
	       LibmSupport←copysign(),
	       Libm←atan2(),
	       sqrt(),
	one=1.0;
	if(x!=x) return(x);	/* x is NaN */
	s=copysign(x,one);
	if(s <= 0.5)
	    return(atan2(x,sqrt(one-x*x)));
	else 
	    { t=one-s; s=t+t; return(atan2(x,sqrt(s-t*t))); }

}

/* ACOS(X)
 * RETURNS ARC COS OF X
 * DOUBLE PRECISION (IEEE DOUBLE 53 bits, VAX D FORMAT 56 bits)
 * CODED IN C BY K.C. NG, 4/16/85, REVISED ON 6/10/85.
 *
 * Required system supported functions:
 *	copysign(x,y)
 *	sqrt(x)
 *
 * Required kernel function:
 *	atan2(y,x) 
 *
 * Method :                  
 *			      ←←←←←←←←
 *                           / 1 - x
 *	acos(x) = 2*atan2(  / -------- , 1 ) .
 *                        \/   1 + x
 *
 * Special cases:
 *	if x is NaN, return x itself;
 *	if |x|>1, return NaN.
 *
 * Accuracy:
 * 1)  If atan2() uses machine PI, then
 * 
 *	acos(x) returns (PI/pi) * (the exact arc cosine of x) nearly rounded;
 *	and PI is the exact pi rounded to machine precision (see atan2 for
 *      details):
 *
 *	in decimal:
 *		pi = 3.141592653589793 23846264338327 ..... 
 *    53 bits   PI = 3.141592653589793 115997963 ..... ,
 *    56 bits   PI = 3.141592653589793 227020265 ..... ,  
 *
 *	in hexadecimal:
 *		pi = 3.243F6A8885A308D313198A2E....
 *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18	error=.276ulps
 *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
 *	
 *	In a test run with more than 200,000 random arguments on a VAX, the 
 *	maximum observed error in ulps (units in the last place) was
 *	2.07 ulps.      (comparing against (PI/pi)*(exact acos(x)));
 *
 * 2)  If atan2() uses true pi, then
 *
 *	acos(x) returns the exact acos(x) with error below about 2 ulps.
 *
 *	In a test run with more than 1,024,000 random arguments on a VAX, the 
 *	maximum observed error in ulps (units in the last place) was
 *	2.15 ulps.
 */

asm ("        exportproc ←acos, Libm");
double acos(x)
double x;
{
	double t,
	       LibmSupport←copysign(),
	       Libm←atan2(),
	       sqrt(),
	       one=1.0;
	if(x!=x) return(x);
	if( x != -1.0)
	    t=atan2(sqrt((one-x)/(one+x)),one);
	else
	    t=atan2(one,0.0);	/* t = PI/2 */
	return(t+t);
}



/* SINH(X)
 * RETURN THE HYPERBOLIC SINE OF X
 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
 * CODED IN C BY K.C. NG, 1/8/85; 
 * REVISED BY K.C. NG on 2/8/85, 3/7/85, 3/24/85, 4/16/85.
 *
 * Required system supported functions :
 *	copysign(x,y)
 *	scalb(x,N)
 *
 * Required kernel functions:
 *	expm1(x)	...return exp(x)-1
 *
 * Method :
 *	1. reduce x to non-negative by sinh(-x) = - sinh(x).
 *	2. 
 *
 *	                                      expm1(x) + expm1(x)/(expm1(x)+1)
 *	    0 <= x <= lnovfl     : sinh(x) := --------------------------------
 *			       		                      2
 *     lnovfl <= x <= lnovfl+ln2 : sinh(x) := expm1(x)/2 (avoid overflow)
 * lnovfl+ln2 <  x <  INF        :  overflow to INF
 *	
 *
 * Special cases:
 *	sinh(x) is x if x is +INF, -INF, or NaN.
 *	only sinh(0)=0 is exact for finite argument.
 *
 * Accuracy:
 *	sinh(x) returns the exact hyperbolic sine of x nearly rounded. In
 *	a test run with 1,024,000 random arguments on a VAX, the maximum
 *	observed error was 1.93 ulps (units in the last place).
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following constants.
 * The decimal values may be used, provided that the compiler will convert
 * from decimal to binary accurately enough to produce the hexadecimal values
 * shown.
 */
double static 
mln2hi =  7.0978271289338397310E2     , /*Hex  2↑ 10   *  1.62E42FEFA39EF */
mln2lo =  2.3747039373786107478E-14   , /*Hex  2↑-45   *  1.ABC9E3B39803F */
lnovfl =  7.0978271289338397310E2     ; /*Hex  2↑  9   *  1.62E42FEFA39EF */


static max = 1023                     ;

asm ("        exportproc ←sinh, Libm");
double sinh(x)
double x;
{
	static double  one=1.0, half=1.0/2.0 ;
	double expm1(), t, LibmSupport←scalb(), LibmSupport←copysign(), sign;
	if(x!=x) return(x);	/* x is NaN */
	sign=copysign(one,x);
	x=copysign(x,one);
	if(x<lnovfl)
	    {t=expm1(x); return(copysign((t+t/(one+t))*half,sign));}

	else if(x <= lnovfl+0.7)
		/* subtract x by ln(2↑(max+1)) and return 2↑max*exp(x) 
	    		to avoid unnecessary overflow */
	    return(copysign(scalb(one+expm1((x-mln2hi)-mln2lo),max),sign));

	else  /* sinh(+-INF) = +-INF, sinh(+-big no.) overflow to +-INF */
	    return( expm1(x)*sign );
}



/* TANH(X)
 * RETURN THE HYPERBOLIC TANGENT OF X
 * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
 * CODED IN C BY K.C. NG, 1/8/85; 
 * REVISED BY K.C. NG on 2/8/85, 2/11/85, 3/7/85, 3/24/85.
 *
 * Required system supported functions :
 *	copysign(x,y)
 *	finite(x)
 *
 * Required kernel function:
 *	expm1(x)	...exp(x)-1
 *
 * Method :
 *	1. reduce x to non-negative by tanh(-x) = - tanh(x).
 *	2.
 *	    0      <  x <=  1.e-10 :  tanh(x) := x
 *					          -expm1(-2x)
 *	    1.e-10 <  x <=  1      :  tanh(x) := --------------
 *					         expm1(-2x) + 2
 *							  2
 *	    1      <= x <=  22.0   :  tanh(x) := 1 -  ---------------
 *						      expm1(2x) + 2
 *	    22.0   <  x <= INF     :  tanh(x) := 1.
 *
 *	Note: 22 was chosen so that fl(1.0+2/(expm1(2*22)+2)) == 1.
 *
 * Special cases:
 *	tanh(NaN) is NaN;
 *	only tanh(0)=0 is exact for finite argument.
 *
 * Accuracy:
 *	tanh(x) returns the exact hyperbolic tangent of x nealy rounded.
 *	In a test run with 1,024,000 random arguments on a VAX, the maximum
 *	observed error was 2.22 ulps (units in the last place).
 */

asm ("        exportproc ←tanh, Libm");
double tanh(x)
double x;
{
	static double one=1.0, two=2.0, small = 1.0e-10, big = 1.0e10;
	double expm1(), t, LibmSupport←copysign(), sign;
	int finite();

	if(x!=x) return(x);	/* x is NaN */

	sign=copysign(one,x);
	x=copysign(x,one);
	if(x < 22.0) 
	    if( x > one )
		return(copysign(one-two/(expm1(x+x)+two),sign));
	    else if ( x > small )
		{t= -expm1(-(x+x)); return(copysign(t/(two-t),sign));}
	    else		/* raise the INEXACT flag for non-zero x */
		{big+x; return(copysign(x,sign));}
	else if(finite(x))
	    return (sign+1.0E-37); /* raise the INEXACT flag */
	else
	    return(sign);	/* x is +- INF */
}




/* COSH(X)
 * RETURN THE HYPERBOLIC COSINE OF X
 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
 * CODED IN C BY K.C. NG, 1/8/85; 
 * REVISED BY K.C. NG on 2/8/85, 2/23/85, 3/7/85, 3/29/85, 4/16/85.
 *
 * Required system supported functions :
 *	copysign(x,y)
 *	scalb(x,N)
 *
 * Required kernel function:
 *	exp(x) 
 *	exp←←E(x,c)	...return exp(x+c)-1-x for |x|<0.3465
 *
 * Method :
 *	1. Replace x by |x|. 
 *	2. 
 *		                                        [ exp(x) - 1 ]↑2 
 *	    0        <= x <= 0.3465  :  cosh(x) := 1 + -------------------
 *			       			           2*exp(x)
 *
 *		                                   exp(x) +  1/exp(x)
 *	    0.3465   <= x <= 22      :  cosh(x) := -------------------
 *			       			           2
 *	    22       <= x <= lnovfl  :  cosh(x) := exp(x)/2 
 *	    lnovfl   <= x <= lnovfl+log(2)
 *				     :  cosh(x) := exp(x)/2 (avoid overflow)
 *	    log(2)+lnovfl <  x <  INF:  overflow to INF
 *
 *	Note: .3465 is a number near one half of ln2.
 *
 * Special cases:
 *	cosh(x) is x if x is +INF, -INF, or NaN.
 *	only cosh(0)=1 is exact for finite x.
 *
 * Accuracy:
 *	cosh(x) returns the exact hyperbolic cosine of x nearly rounded.
 *	In a test run with 768,000 random arguments on a VAX, the maximum
 *	observed error was 1.23 ulps (units in the last place).
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following constants.
 * The decimal values may be used, provided that the compiler will convert
 * from decimal to binary accurately enough to produce the hexadecimal values
 * shown.
 */



asm ("        exportproc ←cosh, Libm");
double cosh(x)
double x;
{	
	static double half=1.0/2.0,one=1.0, small=1.0E-18; /* fl(1+small)==1 */
	double Libmsupport←scalb(),LibmSupport←copysign(),exp(),
	LibmSupport←exp←←E(),t;

	if(x!=x) return(x);	/* x is NaN */
	if((x=copysign(x,one)) <= 22)
	    if(x<0.3465) 
		if(x<small) return(one+x);
		else {t=x+exp←←E(x,0.0);x=t+t; return(one+t*t/(2.0+x)); }

	    else /* for x lies in [0.3465,22] */
	        { t=exp(x); return((t+one/t)*half); }

	if( lnovfl <= x && x <= (lnovfl+0.7)) 
        /* for x lies in [lnovfl, lnovfl+ln2], decrease x by ln(2↑(max+1)) 
         * and return 2↑max*exp(x) to avoid unnecessary overflow 
         */
	    return(scalb(exp((x-mln2hi)-mln2lo), max)); 

	else 
	    return(exp(x)*half);	/* for large x,  cosh(x)=exp(x)/2 */
}



/* ASINH(X)
 * RETURN THE INVERSE HYPERBOLIC SINE OF X
 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
 * CODED IN C BY K.C. NG, 2/16/85;
 * REVISED BY K.C. NG on 3/7/85, 3/24/85, 4/16/85.
 *
 * Required system supported functions :
 *	copysign(x,y)
 *	sqrt(x)
 *
 * Required kernel function:
 *	log1p(x) 		...return log(1+x)
 *
 * Method :
 *	Based on 
 *		asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
 *	we have
 *	asinh(x) := x  if  1+x*x=1,
 *		 := sign(x)*(log1p(x)+ln2))	 if sqrt(1+x*x)=x, else
 *		 := sign(x)*log1p(|x| + |x|/(1/|x| + sqrt(1+(1/|x|)↑2)) )  
 *
 * Accuracy:
 *	asinh(x) returns the exact inverse hyperbolic sine of x nearly rounded.
 *	In a test run with 52,000 random arguments on a VAX, the maximum 
 *	observed error was 1.58 ulps (units in the last place).
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following constants.
 * The decimal values may be used, provided that the compiler will convert
 * from decimal to binary accurately enough to produce the hexadecimal values
 * shown.
 */

static double
ln2hi  =  6.9314718036912381649E-1    , /*Hex  2↑ -1   *  1.62E42FEE00000 */
ln2lo  =  1.9082149292705877000E-10   ; /*Hex  2↑-33   *  1.A39EF35793C76 */

asm ("        exportproc ←asinh, Libm");
double asinh(x)
double x;
{	
	double LibmSupport←copysign(),log1p(),Libm←sqrt(),t,s;
	static double small=1.0E-10,	/* fl(1+small*small) == 1 */
		      big  =1.0E20,	/* fl(1+big) == big */
		      one  =1.0   ;	

	if(x!=x) return(x);	/* x is NaN */
	if((t=copysign(x,one))>small) 
	    if(t<big) {
	     	s=one/t; return(copysign(log1p(t+t/(s+sqrt(one+s*s))),x)); }
	    else	/* if |x| > big */
		{s=log1p(t)+ln2lo; return(copysign(s+ln2hi,x));}
	else	/* if |x| < small */
	    return(x);
}



/* ACOSH(X)
 * RETURN THE INVERSE HYPERBOLIC COSINE OF X
 * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
 * CODED IN C BY K.C. NG, 2/16/85;
 * REVISED BY K.C. NG on 3/6/85, 3/24/85, 4/16/85, 8/17/85.
 *
 * Required system supported functions :
 *	sqrt(x)
 *
 * Required kernel function:
 *	log1p(x) 		...return log(1+x)
 *
 * Method :
 *	Based on 
 *		acosh(x) = log [ x + sqrt(x*x-1) ]
 *	we have
 *		acosh(x) := log1p(x)+ln2,	if (x > 1.0E20); else		
 *		acosh(x) := log1p( sqrt(x-1) * (sqrt(x-1) + sqrt(x+1)) ) .
 *	These formulae avoid the over/underflow complication.
 *
 * Special cases:
 *	acosh(x) is NaN with signal if x<1.
 *	acosh(NaN) is NaN without signal.
 *
 * Accuracy:
 *	acosh(x) returns the exact inverse hyperbolic cosine of x nearly 
 *	rounded. In a test run with 512,000 random arguments on a VAX, the
 *	maximum observed error was 3.30 ulps (units of the last place) at
 *	x=1.0070493753568216 .
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following constants.
 * The decimal values may be used, provided that the compiler will convert
 * from decimal to binary accurately enough to produce the hexadecimal values
 * shown.
 */




asm ("        exportproc ←acosh, Libm");
double acosh(x)
double x;
{	
	double log1p(),sqrt(),t,big=1.E20; /* big+1==big */

	if(x!=x) return(x);	/* x is NaN */

    /* return log1p(x) + log(2) if x is large */
	if(x>big) {t=log1p(x)+ln2lo; return(t+ln2hi);} 

	t=sqrt(x-1.0);
	return(log1p(t*(t+sqrt(x+1.0))));
}

/* ATANH(X)
 * RETURN THE HYPERBOLIC ARC TANGENT OF X
 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
 * CODED IN C BY K.C. NG, 1/8/85; 
 * REVISED BY K.C. NG on 2/7/85, 3/7/85, 8/18/85.
 *
 * Required kernel function:
 *	log1p(x) 	...return log(1+x)
 *
 * Method :
 *	Return 
 *                          1              2x                          x
 *		atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
 *                          2             1 - x                      1 - x
 *
 * Special cases:
 *	atanh(x) is NaN if |x| > 1 with signal;
 *	atanh(NaN) is that NaN with no signal;
 *	atanh(+-1) is +-INF with signal.
 *
 * Accuracy:
 *	atanh(x) returns the exact hyperbolic arc tangent of x nearly rounded.
 *	In a test run with 512,000 random arguments on a VAX, the maximum
 *	observed error was 1.87 ulps (units in the last place) at
 *	x= -3.8962076028810414000e-03.
 */

asm ("        exportproc ←atanh, Libm");
double atanh(x)
double x;
{
	double LibmSupport←copysign(),log1p(),z;
	z = copysign(0.5,x);
	x = copysign(x,1.0);
	x = x/(1.0-x);
	return( z*log1p(x+x) );
}