/* LibMImplB.c */ /* NFS */ /* cabs(), hypot(), cbrt(), floor(), ceil(), rint() */ asm (" export Libm"); mesa double LibmSupport←copysign(), LibmSupport←scalb(); mesa double LibmSupport←drem(), LibmSupport←logb(), Libm←sqrt(); mesa int LibmSupport←finite(); mesa double Libm←modf(); #define copysign(x,y) (LibmSupport←copysign(x,y)) #define scalb(x,n) (LibmSupport←scalb(x,n)) #define logb(x) (LibmSupport←logb(x)) #define finite(x) (LibmSupport←finite(x)) #define drem(x,p) (LibmSupport←drem(x,p)) #define sqrt(x) (Libm←sqrt(x)) /* CABS(Z) * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER Z = X + iY * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) * CODED IN C BY K.C. NG, 11/28/84. * REVISED BY K.C. NG, 7/12/85. * * Required kernel function : * hypot(x,y) * * Method : * cabs(z) = hypot(x,y) . */ asm (" exportproc ←cabs, Libm"); double cabs(z) struct { double x, y;} z; { double hypot(); return(hypot(z.x,z.y)); } /* HYPOT(X,Y) * RETURN THE SQUARE ROOT OF X↑2 + Y↑2 WHERE Z=X+iY * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS) * CODED IN C BY K.C. NG, 11/28/84; * REVISED BY K.C. NG, 7/12/85. * * Required system supported functions : * copysign(x,y) * finite(x) * scalb(x,N) * sqrt(x) * * Method : * 1. replace x by |x| and y by |y|, and swap x and * y if y > x (hence x is never smaller than y). * 2. Hypot(x,y) is computed by: * Case I, x/y > 2 * * y * hypot = x + ----------------------------- * 2 * sqrt ( 1 + [x/y] ) + x/y * * Case II, x/y <= 2 * y * hypot = x + -------------------------------------------------- * 2 * [x/y] - 2 * (sqrt(2)+1) + (x-y)/y + ----------------------------- * 2 * sqrt ( 1 + [x/y] ) + sqrt(2) * * * * Special cases: * hypot(x,y) is INF if x or y is +INF or -INF; else * hypot(x,y) is NAN if x or y is NAN. * * Accuracy: * hypot(x,y) returns the sqrt(x↑2+y↑2) with error less than 1 ulps (units * in the last place). See Kahan's "Interval Arithmetic Options in the * Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics * 1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate * code follows in comments.) In a test run with 500,000 random arguments * on a VAX, the maximum observed error was .959 ulps. * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */ static double r2p1hi = 2.4142135623730949234E0 , /*Hex 2↑1 * 1.3504F333F9DE6 */ r2p1lo = 1.2537167179050217666E-16 , /*Hex 2↑-53 * 1.21165F626CDD5 */ sqrt2 = 1.4142135623730951455E0 ; /*Hex 2↑ 0 * 1.6A09E667F3BCD */ asm (" exportproc ←hypot, Libm"); double hypot(x,y) double x, y; { static double zero=0, one=1, small=1.0E-18; /* fl(1+small)==1 */ static ibig=30; /* fl(1+2**(2*ibig))==1 */ double LibmSupport←copysign(), LibmSupport←scalb(), LibmSupport←logb(), Libm←sqrt(),t,r; int LibmSupport←finite(), exp; if(finite(x)) if(finite(y)) { x=copysign(x,one); y=copysign(y,one); if(y > x) { t=x; x=y; y=t; } if(x == zero) return(zero); if(y == zero) return(x); exp= logb(x); if(exp-(int)logb(y) > ibig ) /* raise inexact flag and return |x| */ { one+small; return(x); } /* start computing sqrt(x↑2 + y↑2) */ r=x-y; if(r>y) { /* x/y > 2 */ r=x/y; r=r+sqrt(one+r*r); } else { /* 1 <= x/y <= 2 */ r/=y; t=r*(r+2.0); r+=t/(sqrt2+sqrt(2.0+t)); r+=r2p1lo; r+=r2p1hi; } r=y/r; return(x+r); } else if(y==y) /* y is +-INF */ return(copysign(y,one)); else return(y); /* y is NaN and x is finite */ else if(x==x) /* x is +-INF */ return (copysign(x,one)); else if(finite(y)) return(x); /* x is NaN, y is finite */ else if(y!=y) return(y); /* x and y is NaN */ else return(copysign(y,one)); /* y is INF */ } /* A faster but less accurate version of cabs(x,y) */ #if 0 double hypot(x,y) double x, y; { static double zero=0, one=1; small=1.0E-18; /* fl(1+small)==1 */ static ibig=30; /* fl(1+2**(2*ibig))==1 */ double LibmSupport←copysign(), LibmSupport←scalb(), LibmSupport←logb(), Libm←sqrt(),temp; int LibmSupport←finite(), exp; if(finite(x)) if(finite(y)) { x=copysign(x,one); y=copysign(y,one); if(y > x) { temp=x; x=y; y=temp; } if(x == zero) return(zero); if(y == zero) return(x); exp= logb(x); x=scalb(x,-exp); if(exp-(int)logb(y) > ibig ) /* raise inexact flag and return |x| */ { one+small; return(scalb(x,exp)); } else y=scalb(y,-exp); return(scalb(sqrt(x*x+y*y),exp)); } else if(y==y) /* y is +-INF */ return(copysign(y,one)); else return(y); /* y is NaN and x is finite */ else if(x==x) /* x is +-INF */ return (copysign(x,one)); else if(finite(y)) return(x); /* x is NaN, y is finite */ else if(y!=y) return(y); /* x and y is NaN */ else return(copysign(y,one)); /* y is INF */ } #endif /* CBRT */ /* kahan's cube root (53 bits IEEE double precision) * for IEEE machines only * coded in C by K.C. Ng, 4/30/85 * * Accuracy: * better than 0.667 ulps according to an error analysis. Maximum * error observed was 0.666 ulps in an 1,000,000 random arguments test. * * Warning: this code is semi machine dependent; the ordering of words in * a floating point number must be known in advance. I assume that the * long interger at the address of a floating point number will be the * leading 32 bits of that floating point number (i.e., sign, exponent, * and the 20 most significant bits). * On a National machine, it has different ordering; therefore, this code * must be compiled with flag -DNATIONAL. */ static unsigned long B1 = 715094163, /* B1 = (682-0.03306235651)*2**20 */ B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */ static double C= 19./35., D= -864./1225., E= 99./70., F= 45./28., G= 5./14.; asm (" exportproc ←cbrt, Libm"); double cbrt(x) double x; { double r,s,t=0.0,w; unsigned long *px = (unsigned long *) &x, *pt = (unsigned long *) &t, mexp,sign; int n0=0,n1=1; mexp=px[n0]&0x7ff00000; if(mexp==0x7ff00000) return(x); /* cbrt(NaN,INF) is itself */ if(x==0.0) return(x); /* cbrt(0) is itself */ sign=px[n0]&0x80000000; /* sign= sign(x) */ px[n0] ↑= sign; /* x=|x| */ /* rough cbrt to 5 bits */ if(mexp==0) /* subnormal number */ {pt[n0]=0x43500000; /* set t= 2**54 */ t*=x; pt[n0]=pt[n0]/3+B2; } else pt[n0]=px[n0]/3+B1; /* new cbrt to 23 bits, may be implemented in single precision */ r=t*t/x; s=C+r*t; t*=G+F/(s+E+D/s); /* chopped to 20 bits and make it larger than cbrt(x) */ pt[n1]=0; pt[n0]+=0x00000001; /* one step newton iteration to 53 bits with error less than 0.667 ulps */ s=t*t; /* t*t is exact */ r=x/s; w=t+t; r=(r-t)/(w+r); /* r-s is exact */ t=t+t*r; /* retore the sign bit */ pt[n0] |= sign; return(t); } /* @(#)floor.c 4.2 9/11/85 */ /* * floor and ceil-- greatest integer <= arg * (resp least >=) */ double Libm←modf(); asm (" exportproc ←floor, Libm"); double floor(d) double d; { double fract; if (d<0.0) { d = -d; fract = Libm←modf(d, &d); if (fract != 0.0) d += 1; d = -d; } else Libm←modf(d, &d); return(d); } asm (" exportproc ←ceil, Libm"); double ceil(d) double d; { return(-floor(-d)); } /* * algorithm for rint(x) in pseudo-pascal form ... * * real rint(x): real x; * ... delivers integer nearest x in direction of prevailing rounding * ... mode * const L = (last consecutive integer)/2 * = 2**55; for VAX D * = 2**52; for IEEE 754 Double * real s,t; * begin * if x != x then return x; ... NaN * if |x| >= L then return x; ... already an integer * s := copysign(L,x); * t := x + s; ... = (x+s) rounded to integer * return t - s * end; * * Note: Inexact will be signaled if x is not an integer, as is * customary for IEEE 754. No other signal can be emitted. */ asm (" exportproc ←rint, Libm"); static double L = 4503599627370496.0E0; /* 2**52 */ double rint(x) double x; { double s,t,one = 1.0,LibmSupport←copysign(); if (x != x) /* NaN */ return (x); if (copysign(x,one) >= L) /* already an integer */ return (x); s = copysign(L,x); t = x + s; /* x+s rounded to integer */ return (t - s); }