/*  LibMImplA.c  */
/*  NFS   25-Nov-85 11:43:58  */

/*  log(), log1p(), exp(), expm1(), frexp()   */

asm ("        export Libm");
asm ("        export LibmSupport");

mesa double LibmSupport←copysign(), LibmSupport←scalb();
mesa double LibmSupport←drem(), LibmSupport←logb();
mesa int LibmSupport←finite();

#define copysign(x,y) (LibmSupport←copysign(x,y))
#define scalb(x,n)  (LibmSupport←scalb(x,n))
#define logb(x)  (LibmSupport←logb(x))
#define finite(x) (LibmSupport←finite(x))
#define drem(x,p) (LibmSupport←drem(x,p))

/* LOG(X)
 * RETURN THE LOGARITHM OF x 
 * DOUBLE PRECISION (VAX D FORMAT 56 bits or IEEE DOUBLE 53 BITS)
 * CODED IN C BY K.C. NG, 1/19/85;
 * REVISED BY K.C. NG on 2/7/85, 3/7/85, 3/24/85, 4/16/85.
 *
 * Required system supported functions:
 *	scalb(x,n)
 *	copysign(x,y)
 *	logb(x)	
 *	finite(x)
 *
 * Required kernel function:
 *	log←←L(z) 
 *
 * Method :
 *	1. Argument Reduction: find k and f such that 
 *			x = 2↑k * (1+f), 
 *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
 *
 *	2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
 *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
 *	   log(1+f) is computed by
 *
 *	     		log(1+f) = 2s + s*log←←L(s*s)
 *	   where
 *		log←←L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
 *
 *	   See log←←L() for the values of the coefficients.
 *
 *	3. Finally,  log(x) = k*ln2 + log(1+f).  (Here n*ln2 will be stored
 *	   in two floating point number: n*ln2hi + n*ln2lo, n*ln2hi is exact
 *	   since the last 20 bits of ln2hi is 0.)
 *
 * Special cases:
 *	log(x) is NaN with signal if x < 0 (including -INF) ; 
 *	log(+INF) is +INF; log(0) is -INF with signal;
 *	log(NaN) is that NaN with no signal.
 *
 * Accuracy:
 *	log(x) returns the exact log(x) nearly rounded. In a test run with
 *	1,536,000 random arguments on a VAX, the maximum observed error was
 *	.826 ulps (units in the last place).
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following constants.
 * The decimal values may be used, provided that the compiler will convert
 * from decimal to binary accurately enough to produce the hexadecimal values
 * shown.
 */

double static
ln2hi  =  6.9314718036912381649E-1    , /*Hex  2↑ -1   *  1.62E42FEE00000 */
ln2lo  =  1.9082149292705877000E-10   , /*Hex  2↑-33   *  1.A39EF35793C76 */
sqrt2  =  1.4142135623730951455E0     ; /*Hex  2↑  0   *  1.6A09E667F3BCD */

asm ("        exportproc ←log, Libm");
double log(x)
double x;
{
	static double zero=0.0, negone= -1.0, half=1.0/2.0;
	double LibmSupport←logb(),
	       LibmSupport←scalb(),
	       LibmSupport←copysign(),
	       log←←L(),s,z,t;
	int k,n,finite();

	if(x!=x) return(x);	/* x is NaN */
	if(finite(x)) {
	   if( x > zero ) {

	   /* argument reduction */
	      k=logb(x);   x=scalb(x,-k);
	      if(k == -1022) /* subnormal no. */
		   {n=logb(x); x=scalb(x,-n); k+=n;} 
	      if(x >= sqrt2 ) {k += 1; x *= half;}
	      x += negone ;

	   /* compute log(1+x)  */
              s=x/(2+x); t=x*x*half;
	      z=k*ln2lo+s*(t+log←←L(s*s));
	      x += (z - t) ;

	      return(k*ln2hi+x);
	   }
	/* end of if (x > zero) */

	   else {

		/* zero argument, return -INF with signal */
		if ( x == zero )
		    return( negone/zero );

		/* negative argument, return NaN with signal */
		else 
		    return ( zero / zero );
	    }
	}
    /* end of if (finite(x)) */
    /* NOT REACHED ifdef VAX */

    /* log(-INF) is NaN with signal */
	else if (x<0) 
	    return(zero/zero);      

    /* log(+INF) is +INF */
	else return(x);      

}



/* LOG1P(x) 
 * RETURN THE LOGARITHM OF 1+x
 * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS)
 * CODED IN C BY K.C. NG, 1/19/85; 
 * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85.
 * 
 * Required system supported functions:
 *	scalb(x,n) 
 *	copysign(x,y)
 *	logb(x)	
 *	finite(x)
 *
 * Required kernel function:
 *	log←←L(z)
 *
 * Method :
 *	1. Argument Reduction: find k and f such that 
 *			1+x  = 2↑k * (1+f), 
 *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
 *
 *	2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
 *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
 *	   log(1+f) is computed by
 *
 *	     		log(1+f) = 2s + s*log←←L(s*s)
 *	   where
 *		log←←L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...)))
 *
 *	   See log←←L() for the values of the coefficients.
 *
 *	3. Finally,  log(1+x) = k*ln2 + log(1+f).  
 *
 *	Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers
 *		   n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last 
 *		   20 bits (for VAX D format), or the last 21 bits ( for IEEE 
 *		   double) is 0. This ensures n*ln2hi is exactly representable.
 *		2. In step 1, f may not be representable. A correction term c
 *	 	   for f is computed. It follows that the correction term for
 *		   f - t (the leading term of log(1+f) in step 2) is c-c*x. We
 *		   add this correction term to n*ln2lo to attenuate the error.
 *
 *
 * Special cases:
 *	log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal;
 *	log1p(INF) is +INF; log1p(-1) is -INF with signal;
 *	only log1p(0)=0 is exact for finite argument.
 *
 * Accuracy:
 *	log1p(x) returns the exact log(1+x) nearly rounded. In a test run 
 *	with 1,536,000 random arguments on a VAX, the maximum observed
 *	error was .846 ulps (units in the last place).
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following constants.
 * The decimal values may be used, provided that the compiler will convert
 * from decimal to binary accurately enough to produce the hexadecimal values
 * shown.
 */



asm ("        exportproc ←log1p, Libm");
double log1p(x)
double x;
{
	static double zero=0.0, negone= -1.0, one=1.0, 
		      half=1.0/2.0, small=1.0E-20;   /* 1+small == 1 */
	double LibmSupport←logb(),
	       LibmSupport←copysign(),
	       LibmSupport←scalb(), log←←L(),z,s,t,c;
	int k,finite();

	if(x!=x) return(x);	/* x is NaN */

	if(finite(x)) {
	   if( x > negone ) {

	   /* argument reduction */
	      if(copysign(x,one)<small) return(x);
	      k=logb(one+x); z=scalb(x,-k); t=scalb(one,-k);
	      if(z+t >= sqrt2 ) 
		  { k += 1 ; z *= half; t *= half; }
	      t += negone; x = z + t;
	      c = (t-x)+z ;		/* correction term for x */

 	   /* compute log(1+x)  */
              s = x/(2+x); t = x*x*half;
	      c += (k*ln2lo-c*x);
	      z = c+s*(t+log←←L(s*s));
	      x += (z - t) ;

	      return(k*ln2hi+x);
	   }
	/* end of if (x > negone) */

	    else {

		/* x = -1, return -INF with signal */
		if ( x == negone ) return( negone/zero );

		/* negative argument for log, return NaN with signal */
	        else return ( zero / zero );
	    }
	}
    /* end of if (finite(x)) */

    /* log(-INF) is NaN */
	else if(x<0) 
	     return(zero/zero);

    /* log(+INF) is INF */
	else return(x);      
}



/* LOG10(X)
 * RETURN THE BASE 10 LOGARITHM OF x
 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
 * CODED IN C BY K.C. NG, 1/20/85; 
 * REVISED BY K.C. NG on 1/23/85, 3/7/85, 4/16/85.
 * 
 * Required kernel function:
 *	log(x)
 *
 * Method :
 *			     log(x)
 *		log10(x) = ---------  or  [1/log(10)]*log(x)
 *			    log(10)
 *
 *    Note:
 *	  [log(10)]   rounded to 56 bits has error  .0895  ulps,
 *	  [1/log(10)] rounded to 53 bits has error  .198   ulps;
 *	  therefore, for better accuracy, in VAX D format, we divide 
 *	  log(x) by log(10), but in IEEE Double format, we multiply 
 *	  log(x) by [1/log(10)].
 *
 * Special cases:
 *	log10(x) is NaN with signal if x < 0; 
 *	log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
 *	log10(NaN) is that NaN with no signal.
 *
 * Accuracy:
 *	log10(X) returns the exact log10(x) nearly rounded. In a test run
 *	with 1,536,000 random arguments on a VAX, the maximum observed
 *	error was 1.74 ulps (units in the last place).
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following constants.
 * The decimal values may be used, provided that the compiler will convert
 * from decimal to binary accurately enough to produce the hexadecimal values
 * shown.
 */


static double
ivln10 =  4.3429448190325181667E-1    ; /*Hex   2↑ -2   *  1.BCB7B1526E50E */

asm ("       exportproc ←log10, Libm");
double log10(x)
double x;
{
	double log();

	return(ivln10*log(x));
}



/* log←←L(Z)
 *		LOG(1+X) - 2S			       X
 * RETURN      ---------------  WHERE Z = S*S,  S = ------- , 0 <= Z <= .0294...
 *		      S				     2 + X
 *		     
 * DOUBLE PRECISION (VAX D FORMAT 56 bits or IEEE DOUBLE 53 BITS)
 * KERNEL FUNCTION FOR LOG; TO BE USED IN LOG1P, LOG, AND POW FUNCTIONS
 * CODED IN C BY K.C. NG, 1/19/85; 
 * REVISED BY K.C. Ng, 2/3/85, 4/16/85.
 *
 * Method :
 *	1. Polynomial approximation: let s = x/(2+x). 
 *	   Based on log(1+x) = log(1+s) - log(1-s)
 *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
 *
 *	   (log(1+x) - 2s)/s is computed by
 *
 *	       z*(L1 + z*(L2 + z*(... (L7 + z*L8)...)))
 *
 *	   where z=s*s. (See the listing below for Lk's values.) The 
 *	   coefficients are obtained by a special Remez algorithm. 
 *
 * Accuracy:
 *	Assuming no rounding error, the maximum magnitude of the approximation 
 *	error (absolute) is 2**(-58.49) for IEEE double, and 2**(-63.63)
 *	for VAX D format.
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following constants.
 * The decimal values may be used, provided that the compiler will convert
 * from decimal to binary accurately enough to produce the hexadecimal values
 * shown.
 */


static double
L1     =  6.6666666666667340202E-1    , /*Hex  2↑ -1   *  1.5555555555592 */
L2     =  3.9999999999416702146E-1    , /*Hex  2↑ -2   *  1.999999997FF24 */
L3     =  2.8571428742008753154E-1    , /*Hex  2↑ -2   *  1.24924941E07B4 */
L4     =  2.2222198607186277597E-1    , /*Hex  2↑ -3   *  1.C71C52150BEA6 */
L5     =  1.8183562745289935658E-1    , /*Hex  2↑ -3   *  1.74663CC94342F */
L6     =  1.5314087275331442206E-1    , /*Hex  2↑ -3   *  1.39A1EC014045B */
L7     =  1.4795612545334174692E-1    ; /*Hex  2↑ -3   *  1.2F039F0085122 */

double log←←L(z)
double z;
{

    return(z*(L1+z*(L2+z*(L3+z*(L4+z*(L5+z*(L6+z*L7)))))));
}



/* EXP(X)
 * RETURN THE EXPONENTIAL OF X
 * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
 * CODED IN C BY K.C. NG, 1/19/85; 
 * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85.
 *
 * Required system supported functions:
 *	scalb(x,n)	
 *	copysign(x,y)	
 *	finite(x)
 *
 * Kernel function:
 *	exp←←E(x,c)
 *
 * Method:
 *	1. Argument Reduction: given the input x, find r and integer k such 
 *	   that
 *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .  
 *	   r will be represented as r := z+c for better accuracy.
 *
 *	2. Compute expm1(r)=exp(r)-1 by 
 *
 *			expm1(r=z+c) := z + exp←←E(z,r)
 *
 *	3. exp(x) = 2↑k * ( expm1(r) + 1 ).
 *
 * Special cases:
 *	exp(INF) is INF, exp(NaN) is NaN;
 *	exp(-INF)=  0;
 *	for finite argument, only exp(0)=1 is exact.
 *
 * Accuracy:
 *	exp(x) returns the exponential of x nearly rounded. In a test run
 *	with 1,156,000 random arguments on a VAX, the maximum observed
 *	error was .768 ulps (units in the last place).
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following constants.
 * The decimal values may be used, provided that the compiler will convert
 * from decimal to binary accurately enough to produce the hexadecimal values
 * shown.
 */

double static
lnhuge =  7.1602103751842355450E2     , /*Hex  2↑  9   *  1.6602B15B7ECF2 */
lntiny = -7.5137154372698068983E2     , /*Hex  2↑  9   * -1.77AF8EBEAE354 */
invln2 =  1.4426950408889633870E0     ; /*Hex  2↑  0   *  1.71547652B82FE */

asm ("        exportproc ←exp, Libm");
double exp(x)
double x;
{
	double LibmSupport←scalb(),
	       LibmSupport←copysign(),
	       exp←←E(), z,hi,lo,c;
	       int k,LibmSupport←finite();

	if(x!=x) return(x);	/* x is NaN */
	if( x <= lnhuge ) {
		if( x >= lntiny ) {

		    /* argument reduction : x --> x - k*ln2 */

			k=invln2*x+copysign(0.5,x);	/* k=NINT(x/ln2) */

			/* express x-k*ln2 as z+c */
			hi=x-k*ln2hi;
			z=hi-(lo=k*ln2lo);
			c=(hi-z)-lo;

		    /* return 2↑k*[expm1(x) + 1]  */
			z += exp←←E(z,c);
			return (scalb(z+1.0,k));  
		}
		/* end of x > lntiny */

		else 
		     /* exp(-big#) underflows to zero */
		     if(finite(x))  return(scalb(1.0,-5000));

		     /* exp(-INF) is zero */
		     else return(0.0);
	}
	/* end of x < lnhuge */

	else 
	/* exp(INF) is INF, exp(+big#) overflows to INF */
	    return( finite(x) ?  scalb(1.0,5000)  : x);
}



/* EXPM1(X)
 * RETURN THE EXPONENTIAL OF X MINUS ONE
 * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
 * CODED IN C BY K.C. NG, 1/19/85; 
 * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
 *
 * Required system supported functions:
 *	scalb(x,n)	
 *	copysign(x,y)	
 *	finite(x)
 *
 * Kernel function:
 *	exp←←E(x,c)
 *
 * Method:
 *	1. Argument Reduction: given the input x, find r and integer k such 
 *	   that
 *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .  
 *	   r will be represented as r := z+c for better accuracy.
 *
 *	2. Compute EXPM1(r)=exp(r)-1 by 
 *
 *			EXPM1(r=z+c) := z + exp←←E(z,c)
 *
 *	3. EXPM1(x) =  2↑k * ( EXPM1(r) + 1-2↑-k ).
 *
 * 	Remarks: 
 *	   1. When k=1 and z < -0.25, we use the following formula for
 *	      better accuracy:
 *			EXPM1(x) = 2 * ( (z+0.5) + exp←←E(z,c) )
 *	   2. To avoid rounding error in 1-2↑-k where k is large, we use
 *			EXPM1(x) = 2↑k * { [z+(exp←←E(z,c)-2↑-k )] + 1 }
 *	      when k>56. 
 *
 * Special cases:
 *	EXPM1(INF) is INF, EXPM1(NaN) is NaN;
 *	EXPM1(-INF)= -1;
 *	for finite argument, only EXPM1(0)=0 is exact.
 *
 * Accuracy:
 *	EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
 *	1,166,000 random arguments on a VAX, the maximum observed error was
 *	.872 ulps (units of the last place).
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following constants.
 * The decimal values may be used, provided that the compiler will convert
 * from decimal to binary accurately enough to produce the hexadecimal values
 * shown.
 */


asm ("        exportproc ←expm1, Libm");
double expm1(x)
double x;
{
	double static one=1.0, half=1.0/2.0; 
	double LibmSupport←scalb(),
	       LibmSupport←copysign(), exp←←E(), z,hi,lo,c;
        int k,LibmSupport←finite();

	static prec=53;
	if(x!=x) return(x);	/* x is NaN */

	if( x <= lnhuge ) {
		if( x >= -40.0 ) {

		    /* argument reduction : x - k*ln2 */
			k= invln2 *x+copysign(0.5,x);	/* k=NINT(x/ln2) */
			hi=x-k*ln2hi ; 
			z=hi-(lo=k*ln2lo);
			c=(hi-z)-lo;

			if(k==0) return(z+exp←←E(z,c));
			if(k==1)
			    if(z< -0.25) 
				{x=z+half;x +=exp←←E(z,c); return(x+x);}
			    else
				{z+=exp←←E(z,c); x=half+z; return(x+x);}
		    /* end of k=1 */

			else {
			    if(k<=prec)
			      { x=one-scalb(one,-k); z += exp←←E(z,c);}
			    else if(k<100)
			      { x = exp←←E(z,c)-scalb(one,-k); x+=z; z=one;}
			    else 
			      { x = exp←←E(z,c)+z; z=one;}

			    return (scalb(x+z,k));  
			}
		}
		/* end of x > lnunfl */

		else 
		     /* expm1(-big#) rounded to -1 (inexact) */
		     if(finite(x))  
			 { ln2hi+ln2lo; return(-one);}

		     /* expm1(-INF) is -1 */
		     else return(-one);
	}
	/* end of x < lnhuge */

	else 
	/*  expm1(INF) is INF, expm1(+big#) overflows to INF */
	    return( finite(x) ?  scalb(one,5000) : x);
}


/* POW(X,Y)  
 * RETURN X**Y 
 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
 * CODED IN C BY K.C. NG, 1/8/85; 
 * REVISED BY K.C. NG on 7/10/85.
 *
 * Required system supported functions:
 *      scalb(x,n)      
 *      logb(x)         
 *	copysign(x,y)	
 *	finite(x)	
 *	drem(x,y)
 *
 * Required kernel functions:
 *	exp←←E(a,c)	...return  exp(a+c) - 1 - a*a/2
 *	log←←L(x)	...return  (log(1+x) - 2s)/s, s=x/(2+x) 
 *	pow←p(x,y)	...return  +(anything)**(finite non zero)
 *
 * Method
 *	1. Compute and return log(x) in three pieces:
 *		log(x) = n*ln2 + hi + lo,
 *	   where n is an integer.
 *	2. Perform y*log(x) by simulating muti-precision arithmetic and 
 *	   return the answer in three pieces:
 *		y*log(x) = m*ln2 + hi + lo,
 *	   where m is an integer.
 *	3. Return x**y = exp(y*log(x))
 *		= 2↑m * ( exp(hi+lo) ).
 *
 * Special cases:
 *	(anything) ** 0  is 1 ;
 *	(anything) ** 1  is itself;
 *	(anything) ** NaN is NaN;
 *	NaN ** (anything except 0) is NaN;
 *	+-(anything > 1) ** +INF is +INF;
 *	+-(anything > 1) ** -INF is +0;
 *	+-(anything < 1) ** +INF is +0;
 *	+-(anything < 1) ** -INF is +INF;
 *	+-1 ** +-INF is NaN and signal INVALID;
 *	+0 ** +(anything except 0, NaN)  is +0;
 *	-0 ** +(anything except 0, NaN, odd integer)  is +0;
 *	+0 ** -(anything except 0, NaN)  is +INF and signal DIV-BY-ZERO;
 *	-0 ** -(anything except 0, NaN, odd integer)  is +INF with signal;
 *	-0 ** (odd integer) = -( +0 ** (odd integer) );
 *	+INF ** +(anything except 0,NaN) is +INF;
 *	+INF ** -(anything except 0,NaN) is +0;
 *	-INF ** (odd integer) = -( +INF ** (odd integer) );
 *	-INF ** (even integer) = ( +INF ** (even integer) );
 *	-INF ** -(anything except integer,NaN) is NaN with signal;
 *	-(x=anything) ** (k=integer) is (-1)**k * (x ** k);
 *	-(anything except 0) ** (non-integer) is NaN with signal;
 *
 * Accuracy:
 *	pow(x,y) returns x**y nearly rounded. In particular, on a SUN, a VAX,
 *	and a Zilog Z8000,
 *			pow(integer,integer)
 *	always returns the correct integer provided it is representable.
 *	In a test run with 100,000 random arguments with 0 < x, y < 20.0
 *	on a VAX, the maximum observed error was 1.79 ulps (units in the 
 *	last place).
 *
 * Constants :
 * The hexadecimal values are the intended ones for the following constants.
 * The decimal values may be used, provided that the compiler will convert
 * from decimal to binary accurately enough to produce the hexadecimal values
 * shown.
 */



double static zero=0.0, half=1.0/2.0, one=1.0, two=2.0, negone= -1.0;

asm ("        exportproc ←pow, Libm");
double pow(x,y)  	
double x,y;
{
	double LibmSupport←drem(),pow←p(),LibmSupport←copysign(),t;
	int LibmSupport←finite();

	if     (y==zero)      return(one);
	else if(y==one
		||x!=x
		) return( x );      /* if x is NaN or y=1 */
	else if(y!=y)         return( y );      /* if y is NaN */
	else if(!finite(y))                     /* if y is INF */
	     if((t=copysign(x,one))==one) return(zero/zero);
	     else if(t>one) return((y>zero)?y:zero);
	     else return((y<zero)?-y:zero);
	else if(y==two)       return(x*x);
	else if(y==negone)    return(one/x);

    /* sign(x) = 1 */
	else if(copysign(one,x)==one) return(pow←p(x,y));

    /* sign(x)= -1 */
	/* if y is an even integer */
	else if ( (t=drem(y,two)) == zero)	return( pow←p(-x,y) );

	/* if y is an odd integer */
	else if (copysign(t,one) == one) return( -pow←p(-x,y) );

	/* Henceforth y is not an integer */
	else if(x==zero)	/* x is -0 */
	    return((y>zero)?-x:one/(-x));
	else {			/* return NaN */
	    return(zero/zero);
	}
}

/* pow←p(x,y) return x**y for x with sign=1 and finite y */
static double pow←p(x,y)       
double x,y;
{
        double logb(),
	       LibmSupport←scalb(),
	       LibmSupport←copysign(),log←←L(),exp←←E();
        double c,s,t,z,tx,ty;
        float sx,sy;
	long k=0;
        int n,m;

	if(x==zero||!finite(x)) {           /* if x is +INF or +0 */
	     return((y>zero)?x:one/x);
	}
	if(x==1.0) return(x);	/* if x=1.0, return 1 since y is finite */

    /* reduce x to z in [sqrt(1/2)-1, sqrt(2)-1] */
        z=scalb(x,-(n=logb(x)));  
        if(n <= -1022) {n += (m=logb(z)); z=scalb(z,-m);} 
        if(z >= sqrt2 ) {n += 1; z *= half;}  z -= one ;

    /* log(x) = nlog2+log(1+z) ~ nlog2 + t + tx */
	s=z/(two+z); c=z*z*half; tx=s*(c+log←←L(s*s)); 
	t= z-(c-tx); tx += (z-t)-c;

   /* if y*log(x) is neither too big nor too small */
	if((s=logb(y)+logb(n+t)) < 12.0) 
	    if(s>-60.0) {

	/* compute y*log(x) ~ mlog2 + t + c */
        	s=y*(n+invln2*t);
                m=s+copysign(half,s);   /* m := nint(y*log(x)) */ 
		k=y; 
		if((double)k==y) {	/* if y is an integer */
		    k = m-k*n;
		    sx=t; tx+=(t-sx); }
		else	{		/* if y is not an integer */    
		    k =m;
	 	    tx+=n*ln2lo;
		    sx=(c=n*ln2hi)+t; tx+=(c-sx)+t; }
	   /* end of checking whether k==y */

                sy=y; ty=y-sy;          /* y ~ sy + ty */
		s=(double)sx*sy-k*ln2hi;        /* (sy+ty)*(sx+tx)-kln2 */
		z=(tx*ty-k*ln2lo);
		tx=tx*sy; ty=sx*ty;
		t=ty+z; t+=tx; t+=s;
		c= -((((t-s)-tx)-ty)-z);

	    /* return exp(y*log(x)) */
		t += exp←←E(t,c); return(scalb(one+t,m));
	     }
	/* end of if log(y*log(x)) > -60.0 */
	    
	    else
		/* exp(+- tiny) = 1 with inexact flag */
			{ln2hi+ln2lo; return(one);}
	    else if(copysign(one,y)*(n+invln2*t) <zero)
		/* exp(-(big#)) underflows to zero */
	        	return(scalb(one,-5000)); 
	    else
	        /* exp(+(big#)) overflows to INF */
	    		return(scalb(one, 5000)); 

}



/* exp←←E(x,c)
 * ASSUMPTION: c << x  SO THAT  fl(x+c)=x.
 * (c is the correction term for x)
 * exp←←E RETURNS
 *
 *			 /  exp(x+c) - 1 - x ,  1E-19 < |x| < .3465736
 *       exp←←E(x,c) = 	| 		     
 *			 \  0 ,  |x| < 1E-19.
 *
 * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
 * KERNEL FUNCTION OF EXP, EXPM1, POW FUNCTIONS
 * CODED IN C BY K.C. NG, 1/31/85;
 * REVISED BY K.C. NG on 3/16/85, 4/16/85.
 *
 * Required system supported function:
 *	copysign(x,y)	
 *
 * Method:
 *	1. Rational approximation. Let r=x+c.
 *	   Based on
 *                                   2 * sinh(r/2)     
 *                exp(r) - 1 =   ----------------------   ,
 *                               cosh(r/2) - sinh(r/2)
 *	   exp←←E(r) is computed using
 *                   x*x            (x/2)*W - ( Q - ( 2*P  + x*P ) )
 *                   --- + (c + x*[---------------------------------- + c ])
 *                    2                          1 - W
 * 	   where  P := p1*x↑2 + p2*x↑4,
 *	          Q := q1*x↑2 + q2*x↑4 (for 56 bits precision, add q3*x↑6)
 *	          W := x/2-(Q-x*P),
 *
 *	   (See the listing below for the values of p1,p2,q1,q2,q3. The poly-
 *	    nomials P and Q may be regarded as the approximations to sinh
 *	    and cosh :
 *		sinh(r/2) =  r/2 + r * P  ,  cosh(r/2) =  1 + Q . )
 *
 *         The coefficients were obtained by a special Remez algorithm.
 *
 * Approximation error:
 *
 *   |	exp(x) - 1			   |        2**(-57),  (IEEE double)
 *   | ------------  -  (exp←←E(x,0)+x)/x  |  <= 
 *   |	     x			           |	    2**(-69).  (VAX D)
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following constants.
 * The decimal values may be used, provided that the compiler will convert
 * from decimal to binary accurately enough to produce the hexadecimal values
 * shown.
 */


static double 
p1     =  1.3887401997267371720E-2    , /*Hex  2↑ -7   *  1.C70FF8B3CC2CF */
p2     =  3.3044019718331897649E-5    , /*Hex  2↑-15   *  1.15317DF4526C4 */
q1     =  1.1110813732786649355E-1    , /*Hex  2↑ -4   *  1.C719538248597 */
q2     =  9.9176615021572857300E-4    ; /*Hex  2↑-10   *  1.03FC4CB8C98E8 */

double exp←←E(x,c)
double x,c;
{
	double static zero=0.0, one=1.0, half=1.0/2.0, small=1.0E-19;
	double LibmSupport←copysign(),z,p,q,xp,xh,w;
	if(copysign(x,one)>small) {
           z = x*x  ;
	   p = z*( p1 +z* p2 );
           q = z*( q1 +z*  q2 );
           xp= x*p     ; 
	   xh= x*half  ;
           w = xh-(q-xp)  ;
	   p = p+p;
	   c += x*((xh*w-(q-(p+xp)))/(one-w)+c);
	   return(z*half+c);
	}
	/* end of |x| > small */

	else {
	    if(x!=zero) one+small;	/* raise the inexact flag */
	    return(copysign(zero,x));
	}
}

/* expE just calls exp←←E, but is needed for exporting to mesa interface */
asm ("        exportproc ←expE, LibmSupport");
double expE(x,c)
double x,c;
{
  return (exp←←E(x,c));
}

/*   FREXP
 *	the call
 *		x = frexp(arg,&exp);
 *	must return a double fp quantity x which is <1.0
 *	and the corresponding binary exponent "exp".
 *	such that
 *		arg = x*2↑exp
 *	if the argument is 0.0, return 0.0 mantissa and 0 exponent.
 */

asm ("        exportproc ←frexp, Libm");
double
frexp(x,i)
double x;
int *i;
{
	int neg;
	int j;
	j = 0;
	neg = 0;
	if(x<0){
		x = -x;
		neg = 1;
		}
	if(x>=1.0)
		while(x>=1.0){
			j = j+1;
			x = x/2;
			}
	else if(x<0.5 && x != 0.0)
		while(x<0.5){
			j = j-1;
			x = 2*x;
			}
	*i = j;
	if(neg) x = -x;
	return(x);
	}