
Inter-Office Memorandum

To Voice Project Date August 31, 1981

From Dan Swinehart Location Palo Alto

Subject Control Protocols for the Organization CSL
Etherphone System

XEROX

Filed on: [Ivy]<Audio>Docs>Thrush.memo

Introduction

This document represents the protocol design as of mid-August, 1981. Subsequent developments will appear in later
versions.

This section describes the conceptual structure of the Etherphone system (the architecture as viewed
by the software.) It begins by describing the basic entities in the system and the nature of their
interaction. As much as possible, this design is independent of the assignment of these entities to
hardware components and the actual communication paths that are employed; we envision a
redistribution of responsibilities once we have gained some experience.

Given the structure, we will identify a number of important interfaces, and describe the
functionality of the system in terms of the operations that these interfaces supply. Finally, there is a
discussion of the intended assignment of functions to machines and of the low-level communications
mechanisms that will be used to implement the interfaces.

Goals

A review of some of the goals of this project will help put the design in perspective. An overriding
goal is to produce a telephone (etc.) system that we can have full control over, and in the manner to
which we have become accustomed. This means that it must be possible for a programmer to write
an application that will run on a workstation in our internetwork, with as much access to and
control over our voice capabilities as it needs. Of course, we should attempt to present these
capabilities to such a programmer in as uncluttered a form as we can manage.

On the other hand, we intend to replace existing telephones with our gadgets. This places
availability and reliability constraints on the design that can only be met of if the phone system can
operate independently from individual workstations. We have described in other sections the
hardware ramifications of this requirement. Both those hardware decisions and the realities that led
to them also have an effect on the software architecture.

In summary, then, our system will have clients as well as users, and we have to deal with that.

Basic Entities

We have found it convenient to think and talk about the software architecture of this system using
the object style typified by <Smalltalk, etc.>. In this case, there is a small number of basic kinds of
objects, or classes, instances of which communicate with other objects of their own and different
classes. There may be but one instance of some classes, but in general there are many. Some of
the classes are further specialized into subclasses which deal with variations of whatever basic
themes their classes represent. For most purposes, it is reasonable to think of objects as Mesa

Control Protocols for the Etherphone System 2

program instances (global frames) that communicate with other objects by calling procedures in the
interfaces supplied by those program instances.

To motivate the choice of object classes in the current design, consider the following, relatively disjoint,
kinds of activities and responsibilities:

1. The basic purpose of the system is to provide a variety of telephone and other voice
communications facilities. There must be components of the system which know about
telephony:

Name to number to hardware-specific mappings;

Interpretations of addresses in terms of the network connectivities required to establish
conversations;

The nature of the call placement, connection, and maintenance activity;

The meaning and implementation of features like call forwarding, conferencing, call
recording, retry, etc.;

The novel negotiation and filtering techniques that we intend to experiment with;

Traffic and load management and instrumentation.

These are the kinds of capabilities one would expect to find in any computer model of a
telephone network; they can be described, and in some sense implemented, without detailed
knowledge of the specific hardware and interfaces that the user sees. These capabilities are
also representative of the kinds of facility that the CSL voice project is interested in
implementing.

2. The clients of this general telephony knowledge are the specific implementations of the
applications and user interfaces (digital and analog) that make up the voice communications
system: workstation applications (for individuals and attendants), stand-alone telephone
behavior, voice file server implementations, etc. These applications must be provided with
an interface to the telephony "model" on the one side, and with the specific hardware on
the other. They will determine the external appearance of the system. We will implement
some of these facilities as part of the voice project; other people will produce additional
applications at this level.

3. We have decided to minimize the size and complexity of programs in the Etherphone
processor, assigning to other server processor(s) the responsibility for interpreting its control
inputs and deciding its sequence of control outputs. It is therefore necessary to define the
interface that will be used by this remote intelligence to communicate with the primitive
Etherphone capabilities. Eventually, there may be a number of implementation-dependent
interfaces.

Based on this taxonomy and the reasons behind it, we have produced the conceptual system
architecture depicted in Figure 1. The labelled items represent objects whose classes are suggested
by their outline shapes. The labelled lines, of varying thickness, represent the interfaces that these
objects present to their various clients.

Fones

The circular objects are instances of the class Fone. Each object represents an individual or other
entity that is or could be a party in a voice conversation. The abbreviation below the horizontal bar
in each Fone identifies that Fone’s subclass. Thus there is a Fone[IND] for every individual
(identified by Grapevine RName) within the system who has an active Etherphone. In addition,
there is a Fone[TRK] for each available conventional telephone trunk connecting the Etherphone
system to the public switched network, other PBX lines, etc. The figure depicts a third kind of
Fone, Fone[REC], representing the voice file system’s involvement in recording a particular
conversation.

Control Protocols for the Etherphone System 3

Net

The triangular object represents a collection of objects and activities that will be further elaborated
as the design progresses. It is supposed to represent the capabilities for registering and creating new
Fones and other more numerous objects, for managing various name/address databases, for
observing and controlling overall network traffic, and in general for whatever other truly shared or
centralized concepts need to be represented. In an internet with multiple servers, each server machine will need
its own Net object, so even here we must allow for the various kinds of distribution and replication that will result.

Smarts

The square boxes depict objects that implement the actual applications, or "smarts", in the system.
This is the trickiest object class to motivate or describe; a substantial portion of the rest of this
memo is devoted to doing that. For now it suffices to state that there is a Smarts object, residing
somewhere in the system, for every distinct application or user interface that provides components
of or interacts with the voice services. Thus, both because there are some voice functions (e.g.,
audible ringing and providing actual voice converations, stand-alone call placement and reception)
that only the Etherphone processor itself can do, there is a Smarts object (Smarts[EPx] for various x)

providing or supporting these functions. But because of our critical goal of allowing workstation
participation, there is also a Smarts object (Smarts[WSy]) to represent the workstation

implementation. Similarly, other Smarts objects provide the "intelligence" for such facilities or
functions as outside telephone lines (trunks) and voice recording facilities.

Etherphones

The rectangles named EP1, EP[TRK1], etc. in the picture, merely represent the actual

implementations of the simple programs, residing on the Etherphone processors, that provide the
basic hardware control and voice transmission. These EP objects by themselves do not interpret
user actions or understand how to participate in telephone activity.

Protocols (Interfaces)

It is hard to ascribe any value to this assignment of functions to objects without an understanding of
the interfaces between the objects. In fact, a realization of the various kinds of interfaces that
would be suitable for this system preceded this particular choice of object classes. The Fone,
Smarts, Net, and EP objects were originally designed to provide reasonable places to put these
interfaces. A small number of refinements later, the objects themselves began to make a good deal
of sense as a way to factor and structure the system.

The most important requirement was that workstation-based client programs could play an active
role in the user’s telephone dealings by, in effect, programming in a very high level telephony
language. Short of actually implementing a new language, it is of course simpler to provide a
collection of procedures, operating on data types that capture the appropriate level of abstraction.
In the Etherphone system this high-level client to phone system interface operates exclusively
between Smarts objects, representing the client applications, and Fone objects, representing the
telephony model. In the figure, these interfaces are labelled "C".

Similarly, another interface, distinct from the high level is needed to convey user actions from
Etherphone processors to their remote intelligence, and vice versa. These communications paths are
denoted by the label "P" in the figure.

Communications between the Fone objects and between Fones and the Net are required to set up,
take down, and monitor the progress of telephone calls, dictation sessions, etc. The diagram
indicates by connecting lines the objects that would have to interact in order for the user of
EPhone1 to place and record a call to the user of EPhone2. These interfaces, labelled "F", are
private to the Fone/Net implementations; Fone clients do not need to know what they are.

Control Protocols for the Etherphone System 4

Wherever network communications are required these interfaces must be expressed in terms of
protocols that deal properly with the communications problems while expressing the right semantics.
It is our current intent to employ the Remote Procedure Call (RPC) methods being developed for
Cedar. Thus all of the interfaces can be expressed as procedural interfaces, whether or not they
span machine boundaries. This approach will require careful attention to the process structures of
the machines that comprise the system. That work remains to be done.

One!Many Mappings

A number of activities require the participation of both the workstation and an associated
Etherphone. Examples include:

Placing calls -- the workstation initiates the activity, but the Etherphone must perform the
actual voice transmission. It may also be called upon to generate call progress tones, etc.
In addition, it has to keep track of the user’s switchhook.

Receiving calls -- the workstation Smarts may choose to be involved in the filtering and
information flow that accompanies an incoming call. In particular, for calls forwarded to a
central position, the attendant’s workstation will perform a crucial role. We will probably
discover many other possibilities.

Messages, transcription applications -- the workstation will of course be in control.

This multiple participation is indicated in the figure by the appearance of connections between a
given Fone objects and a number of Smarts objects. Rather than anticipate all the interactions that
might be desirable, we’ve settled on a simple scheme for managing this multiplicity. It will be very
nice if it works.

In the Smarts!Fone direction there’s no problem: a Fone will accept or deny a request based on
the current state of the system. Going the other direction, there is an ambiguity about which of the
Smarts should handle each activity. The proposed scheme is to register each of the Smarts for a
Fone in a list maintained by the Fone, and in a precedence order. Each entry but the last is
permitted to handle or pass on each request; the last must be willing to handle all requests (at least
by firmly rejecting them.) A Smarts that passes on a given request may still choose to take some
application-dependent action based on the request (posting the caller’s name on the screen, for
instance.)

If two Smarts have the same priority, the requests will be issued to each simultaneously, and the
earlier respondent will win. This allows for the appearance of an individual’s telephone line in
more than one location. Such an individual has one Fone, connected to a Smarts representing each
instrument bearing his line (e.g., in his office and in his laboratory).

Possibly there will have to be a different priority ordering for different groups of Fone!Smarts
requests; preferably not.

The lab phone situation also introduces the need for a multiplicity of Fone connections from a
single Smarts object. Such a telephone may represent a number of different individuals. All of this
resembles what happens at more complex attendant locations, and still needs to be worked out.

Mini-Scenario

A later section (to be written) includes detailed scenarios with sample uses of most of the protocol
design. Here is a simple, high-level description of how a simple "stand-alone" call might be placed,
maintained, and terminated. Assume that the system of Figure 1 has been initialized and contains
the objects pictured there:

Cohen, intending to call Jones, lifts the handset of her telephone. EP1 detects the action and

Control Protocols for the Etherphone System 5

forwards the offhook indication to Smarts[EP1]. The Smarts instructs EP1 to issue a dial tone.

When Cohen pushes "4", EP1 forwards the "4" to its Smarts, which responds by ordering EP1 to
silence. After "4977" has been entered and forwarded, EP1’s Smarts asks Fone[IND1] to place the

call. The Fone consults the Net to obtain the RName "Jones.PA" matching the phone number
"4977", and a handle for Fone[IND2], the representative for Jones.PA. Negotiations between the

Fones determine that Jones is in to callers, and they agree to set up the call. Fone[1], via Smarts[1],
instructs EP1 to provide a "ringing" tone to Cohen. Fone[2], via Smarts[2], instructs EP2 to ring its
telephone. When Jones lifts the receiver, Smarts[2], Fone[2], Fone[1], and Smarts[1] find out about
it, in various ways. A set of socket numbers identifying the conversation is distributed to the EP’s,
and they converse. The Fones register the conversation with the Net, which uses the information to
monitor Ethernet traffic.

As the conversation progresses, the Fone objects monitor each others’ status. Each will terminate
the conversation if it detects any uncorrectable anomaly in the other (e.g., no response to the
query.) Normally, though, the conversation will be explicitly terminated when one party hangs up
and the change in switchhook state progresses through the system.

Intial Architecture: Thrush and Etherphone 1

It seemed important (at the time) to describe this architecture in the absence of specific assignments
of functions to machines. In fact, the architecture should survive a number of reassignments that
we contemplate making over time. But we have of course chosen an initial system configuration;
Figure 2 is an augmented version of Figure 1, depicting the proposed setup.

The large central box is the Etherphone server (its program is named Thrush). The Thrush server
provides the entire implementation for Fone and Net objects -- the network model. In addition, it
is the current site for the "Smarts" for the Etherphones. These Smarts provide stand-alone
Etherphone functions as well as the ultimate interpretation of workstation requests that must be
satisfied by the Etherphones.

As we have said, the initial system will not include a separate server connecting to outside telephone
lines, or trunks; instead, each Etherphone will have a "back-door" connection to the existing
Centrex telephone line for that office. However, to indicate that this connection is in principle
entirely separate from the the local telephone instrument and the Ethernet connection, and will in
fact eventually be concentrated in separate servers, we have explicitly separated them in the design,
by providing independent Smarts and Fone objects for the back door connections. The Etherphone
will also deal with them independently.

The Etherphone processors, will implement the EP objects, using RPC communications (in both
directions) to obtain the wisdom of their Thrush-based Smarts. We will write Etherphone programs
of this kind for both the initial Alto I Etherphones and for the later microprocessor-controlled
systems.

The workstation-based smarts, reside, naturally enough, in the workstations. They comprise the
realization of customized calling and answering capabilities, powerful attendant features for outside,
unanswered calls, voice document annotation systems, and the like.

Provisions for multiple Thrush servers

If we are to have any confidence of achieving our reliability requirements (basic telephone service
always available), we will need more than one Thrush server. What sounds best at present is a
model similar to the Grapevine server model: there is a Thrush server at each campus (or perhaps
on each Ethernet in a large campus), which serves as the primary server for Etherphones in its
locale. Another server can provide service to an Etherphone when its primary server is broken
(rejecting or not responding.) Handling conversations that take place between Etherphones with
different primary servers will require the participation of both, to an extent and in a manner yet to
be determined (agent Fones representing the other end in each server? Net to Net communication?

Control Protocols for the Etherphone System 6

direct Fone to Fone communication via cleverly arranged Remote Procedure Call?)

When a server goes down, we will attempt to avoid terminating the conversations that it was
managing. Instead, the Etherphones will frequently reassure themselves that their (Thrush-based)
Smarts are still functioning, searching frantically for new ones if they are not. They will provide
enough information in the process to allow the new (or resurrected) server to rebuild some sort of
model of the ongoing conversation.

Specifics of Protocols

These aren’t done. They aren’t even right any more. They are representative of the kinds of things going on at each
level.

Notation

We have decided to base our control protocols on the Remote Procedure Call (RPC) methods being
developed for Cedar. The idea is that of a simple packet exchange, simulating a procedure call and
its return. The packet exchange will comprise a pair of packets of the following sort:

PUP[code, ID (sequence #), sourceSocket, destSocket, data]
RESPONSEPUP[matchingCode, same ID, reversedSockets, responseData]

In what follows, we will abbreviate this as a procedure call qualified by an indication of the source
and destination objects, or by an interface name that implies the source and destination. We will
use this notation whether or not network communications are involved. In the case of network
communications, the source and destination values should be thought of as socket identifiers that
will locate the objects to which the packages are addressed. Sometimes this socket interpretation
will be explicitly indicated (e.g., as [net#host#socket#].)

Abbreviation:

<Source!Dest>.Code[data] RETURNS [responseData];

or

Interface.Code[data] RETURNS[responseData]; -- familiar?

Smarts$Fone Protocols (Client interface)

<Smarts!Fone> interface abbreviated as ToFone; <Fone!Smarts> interface abbreviated as ToSmarts

ToFone.GetStatus[] RETURNS [status: {callInProgress, outOfService, idle, TBD}, filterInfo:
TBD}];

ToFone.CallByRName[self: Smarts, name: RName, priority: {TBD, includes "normal"}]
RETURNS [{callInProgress, priorityTooLow, rejected,

busy (and not rejected), noAnswer}];

Smarts[EP]$EP Protocols ("Hardware" interface)

<Smarts!EP> interface abbreviated as ToEP; <EP!Smarts> interface abbreviated as FromEP (I know, I know)

FromEP.StillHere[!timeout, rejection=>-- time to reregister];

To be issued at intervals by EP, or when there’s no response to some other query.

FromEP.RecordEvent[Event];

Event is an enumerated type containing {0, ..., 9, #, *, A, B, C, ..., onHook, offHook, ...};

Control Protocols for the Etherphone System 7

ToEP.Reset[severity parameters?];

Cancel any tone sequence in progress. Clear the display. Forget about any
conversation in progress. Hang up any automatically switched audio devices
(Speakerphone, etc.) Forget the name of your Smarts, except when received as the
first command after a GetSmarts (?????) Alternative: severity parameters indicate how
much to forget. This is a catchall for various kinds of reset or abort functions.

ToEP.Tones[f1, f2, modulation: Hertz, on, off: Milliseconds,
repetitions: CARDINAL, mode: {ring, ringback, transmit}];

f1=f2 implies silence. modulation=0 implies that f1 and f2 specify sine waves to be
added. Otherwise tones of the two frequencies alternate at the modulation rate. Tones
occur in bursts whose duty cycle is deterined by on and off. Any Tones in effect are
cancelled by a Reset[] or Converse[] request. Tones returns immediately. TBD: how to
achieve a timed sequence of tone behavior (aside from Feep); require EP to queue
requests, abortable only by Reset?.
mode:

ring -- tone to office speaker only -- annunciation
ringBack -- tone to office handset speaker only (or speakerphone/headset equiv.) --

call progress
transmit -- tone to office handset and transmission line (both parties) -- signalling

ToEP.Feep[on, off: Milliseconds, mode: {ring, ringback, transmit},
length: CARDINAL, number: PACKED ARRAY [0..0) OF Event];

Equivalent to a complex sequence of Tones requests resulting in the generation of a
DTMF sequence, usually in transmit mode. Make/break intervals (on, off)
parameterized, since one can usually push the TelCo specs so experimentation will be
useful.

ToEP.Display[length: CARDINAL, number: PACKED ARRAY [0..0) OF Event];

EP is assumed to have a one line character display. This specifies the string to be
presented there.

ToEP.ConverseWith[yourParty: Socket, otherParty: Socket, protocolType: {interactive,
recording}];

The protocolType field will allow us to behave differently towards the file server than
towards other conversants. Smarts or its Fone will have to communicate further with
the file server to obtain "time and charges" -- information about the call’s duration and
nature.

ToEP.GetStatus[yourParty: Socket, otherParty: Socket, protocolType: {interactive,
recording}];

The protocolType field will allow us to behave differently towards the file server than
towards other conversants. Smarts or its Fone will have to communicate further with
the file server to obtain "time and charges" -- information about the call’s duration and
nature.

Fone$Fone, Fone$Net Protocols (Internal interfaces)

(mostly TBD during Etherphone Server design and implementation -- none of these interfaces are
visible to the Client (Smarts) or to the Etherphone implementations.)

<Fonei!Fonej> abbreviated as InterFone; <Fonei!Net> abbreviated as ToNet

InterFone.CallRequest[callDescriptor: TBD (includes Fonei ident), priority: {TBD, includes

"normal"}]
RETURNS [{canBeDone, priorityTooLow, rejected, busy (and not
rejected)}];

Control Protocols for the Etherphone System 8

InterFone.ConnectRequest[callDescriptor: TBD] RETURNS [{callInProgress, rejected,
timedOut}];

ToNet.RegisterCall[callDescriptor: TBD, Fonej: Fone] RETURNS [<two conversation socket

values>];

"Sneak Paths" (Bootstrapping interfaces)

<x!Broadcast>.RoutingInfoRqst RETURNS [routingTable];
<x!Broadcast>.NameLookup[serviceName: STRING]

RETURNS [list of [net#host#rtpSocket] tuples];

(interpretation of rtpSocket (rondezvous/termination protocol): a socket allowing a brief sneak
path from the caller to the Net object in the Thrush server to generate some smarts)

There are more sophisticated schemes for linking up to services, etc., in the works as part of the RPC
effort; we will watch them with abiding interest.

<EP!Net>.GetSmarts RETURNS [Sx: SmartsSocket];

Net is [ThrushHost#rtpSocket] obtained from NameLookup. Sx will be used in the sequel
to describe the socket over which the EP and its Smarts communicate.

<Sx!Net>.GetFone[self: Smarts, rName: RName] RETURNS [Fone: FoneHandle];

This is just a procedure call within the server.

<Sx!Net>.GetRName[soc: Socket] RETURNS [rName: STRING];

Finds an RName associated with that host, in local data base. TBD: a Smarts!Fone!Net
function to update this and other data bases.

Scenarios

When sufficient pieces of the protocol have been designed, it will be possible to render a detailed scenario of call
placement and receipt under a variety of circumstances. We will use these scenarios to convince ourselves that we have
enough bases covered to begin programming.

x

nnnnmmmm

GHJKghjkGHJKghjk

NET

F1

F1

S1

S1

EPhone 1

Workstation n

GHJKghjk
nnnnmmmm

Network

Smarts to "peripheral" PEP
communications

Smarts to "peripheral" unspecified
communications

Smarts to Fone (client interface)
procedural communications

Fone to Fone, Fone to Net
procedural communications

WS

REC

REC

TRK

TRK

Etherphone process

Back door (TRK=trunk) process
TRK

TRK

EP1

There are one or two sneak paths, too

S2 EP2

EPhone 2

EP2

Voice File Server

F2

Sws2

Srec

Frec

C

EPhone 1 calls EPhone 2

C

C

P

(P)

F

F F

FF

F

(P)

(P)

PP

P

C

C

C

Lab phone

T POTS protocols

For 4477

C

P

Sl2
C

EP1
TRK

GHJKghjk
IND INDGHJKghjk

EP EP

EP

Fone for person, trunk, etc.

Smarts for Etherphone,
Back door, etc.

Cohen.PA

4977

4973

Jones.PA

Figure 1.

Figure 1. EPhone 1 calls EPhone 2Figure 1. EPhone 1 calls EPhone 2Figure 1. EPhone 1 calls EPhone 2

Figure 1. EPhone 1 calls EPhone 2

x

mmmmnnnn

ghjkGHJK
ghjkGHJK

nn

nn

NET

F1

F1

S1

S1

EPhone 1

Workstation n

ghjkGHJK
mmmmnnnn nn

Network
Communications Agent

Smarts to Agent PEP communications

Smarts to "peripheral" PEP
communications

Smarts to "peripheral" unspecified
communications

Smarts to Fone (client interface)
procedural communications

Fone to Fone, Fone to Net
procedural communications

WS

REC

REC

TRK

TRK

Etherphone process

Back door (TRK=trunk) process
TRK

TRK TRK

EP1

EP1

There are one or two sneak paths, too

S2 EP2

EPhone 2

EP2

Voice File Server

nn

nn

F2

Ar

Sws2

Aws2 Aws2’

Ar’

Srec

Frec

(C)

C

For Smarts (e.g., RPC stub & runtime)

(C)

(C)

C

C

P

(P)

F

F F

FF

F

(P)

(P)

PP

P

C

C

C

Lab phone

T POTS protocols

For 4477

C

P

Sl2
C

(ask about this
one)

Etherphone Server (Thrush)

EP EP

EPghjkGHJKghjkGHJKIND IND

Fone for individual, trunk, etc.

Smarts for Etherphone,
Back door, etc.

Cohen.PA

4973

Jones.PA
4977

Figure 2. Assignment of functions to machines

