
Copyright c Xerox Corporation 1979, 1980

Inter-Office Memorandum

To Mesa Users Date October 27, 1980

From Jim Sandman, John Wick Location Palo Alto

Subject Mesa 6.0 XMesa Update Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>XMesa60.bravo (and .press)

This memo describes the changes in Mesa 6.0 runtime support which incorporate the facilities of
XMesa 5.0 into the standard system.

Overview of Extended Memory Support

Mesa now uses the extended memory of Alto II XMs as additional swapping space for code. This
means that code and data need not co-exist in the MDS, the primary 64K of memory. Mesa takes
advantage of any available extra space automatically; standard Alto programs do not need to be
modified to run. Support is provided for up to one million words of memory in blocks of 64K
words.

Because Mesa uses extended memory for code segments, it includes a page-level storage allocator
for the additional banks. Client programs may request storage in the additional banks by using
extensions of the standard procedures in SegmentDefs. Mesa provides primitive mechanisms to
read and write words in extended memory and to copy blocks of data between banks of memory,
but gives no other assistance in accessing information in the extended memory. In particular,
arbitrary use of LONG POINTERs is not supported on the Alto.

Public Interfaces

Unless otherwise stated, all of the facilities in this section are defined in SegmentDefs.

Configuration Information

The Mesa runtime system has an internal data structure that contains information about the
hardware configuration of the machine on which it is running. Clients may obtain a copy of this
data structure by calling GetMemoryConfig and should normally test for the existence of
extended memory by examining the useXM field. The extant banks of memory are indicated by
MemoryConfig.banks, which is a bit mask (e.g., MemoryConfig.banks=140000B implies
that banks zero and one exist). Note that this bit mask has been expanded to allow for up to
sixteen banks; constants used to test against it must be changed.

Mesa 6.0 XMesa Update 2

BankIndex: TYPE = [0..17B];

ControlStoreType: TYPE = {Ram0, RamandRom, Ram3k, unknown};

MachineType: TYPE = {unknown0, AltoI, AltoII, AltoIIXM, . . . };

MemoryConfig: TYPE = MACHINE DEPENDENT RECORD [
 reserved: [0..37B],
 AltoType: MachineType,
 xmMicroCode: BOOLEAN,
 useXM: BOOLEAN,
 mdsBank: BankIndex,
 controlStore: ControlStoreType,
 banks: [0..177777B],
 mesaMicrocodeVersion: [0..177777B]];

memConfig: PUBILC READONLY MemoryConfig;

GetMemoryConfig: PROCEDURE RETURNS [MemoryConfig] = INLINE

 BEGIN RETURN[memConfig] END;

The field memConfig.useXM is true if and only if the following conditions hold:

1) the machine is an Alto II with XM modifications (AltoType = AltoIIXM),
2) the Alto has more than one memory bank installed (banks ~= 100000B),
3) the Alto has a 3K RAM, or it has a second ROM containing an appropriate version of

the XMesa microcode.

The microcode version field tells only the microcode version, not the Mesa release number. (For
example, for Mesa 6.0, mesaMicrocodeVersion is 41; Mesa 5.0 version 39 microcode is also
supported, although not all features are available.)

Extended Memory Management

The facilities described in this section can be used regardless of the state of useXM.

Segments in extended memory are created with the usual primitives in SegmentDefs. However,
additional "default" parameter values for those procedures that expect a VM base page number
have been provided. DefaultMDSBase requests allocation anywhere in the MDS.
DefaultXMBase requests allocation anywhere in the extended memory banks but not in the
MDS. DefaultBase0, DefaultBase1, DefaultBase2 and DefaultBase3 request allocation
in particular banks. DefaultANYBase requests allocation anywhere in the extended memory
banks or the MDS. DefaultBase is equivalent to DefaultANYBase if the segment is a code
segment, otherwise, it is equivalent to DefaultMDSBase.

The following procedures convert between segment handles and long pointers, and work for
segments anywhere in the 20-bit address space.

LongVMtoSegment: PROCEDURE [a: LONG POINTER] RETURNS [SegmentHandle];

Mesa 6.0 XMesa Update 3

LongSegmentAddress: PROCEDURE [seg: SegmentHandle] RETURNS [LONG POINTER];

LongVMtoDataSegment: PROCEDURE [a: LONG POINTER] RETURNS

[DataSegmentHandle];

LongDataSegmentAddress: PROCEDURE [seg: DataSegmentHandle]
RETURNS [LONG POINTER];

LongVMtoFileSegment: PROCEDURE [a: LONG POINTER] RETURNS

[FileSegmentHandle];

LongFileSegmentAddress: PROCEDURE [seg: FileSegmentHandle]
RETURNS [LONG POINTER];

The following definitions have been added to AltoDefs; they define parameters of the extended
memory system.

MaxVMPage: CARDINAL = 7777B;

MaxMDSPage: CARDINAL = 377B;

PagesPerMDS: CARDINAL = MaxMDSPage+1;

The following procedures convert between page numbers and long pointers, and are analogous to
AddressFromPage and PageFromAddress.

LongAddressFromPage: PROCEDURE [page: AltoDefs.PageNumber]
RETURNS [lp: LONG POINTER];

PageFromLongAddress: PROCEDURE [lp: LONG POINTER]
RETURNS [page: AltoDefs.PageNumber];

The following procedures check the validity of long pointers and page numbers and raise the
indicated errors.

ValidateVMPage: PROCEDURE [page: UNSPECIFIED];

InvalidVMPage: ERROR [page: UNSPECIFIED];

ValidateLongPointer: PROCEDURE [a: LONG UNSPECIFIED];

InvalidLongPointer: ERROR [lp: LONG UNSPECIFIED];

The signal ImmovableSegmentInXM is raised when MakeImage (or CheckPoint) discovers a
segment in the extended memory banks that cannot be swapped out. (See the section on
restrictions, below, for more information about image files).

Long Pointer Support

The facilities described in this section should be used only when useXM (see above) is TRUE.

XCOPY is no longer implemented; clients should use InlineDefs.LongCOPY. It may only be
called when memConfig.xmMicrocode is TRUE.

Mesa 6.0 XMesa Update 4

LongCOPY: PROCEDURE [from: LONG POINTER, nwords: CARDINAL, to: LONG POINTER];

LongCOPY makes no attempt to validate the long pointers; if they exceed 20 bits or reference
non-existent memory, LongCOPY will produce unpredictable results.

XBitBlt is no longer implemented; the following extension is not supported by XMesa 5.0 ROMs.
The normal AltoIIXM sourcealt and destalt fields of the BitBlt record (BitBltDefs.BBTable)
should be used (do not use the long pointer options). In addition, if the unused word in the
BBTable is nonzero, the microcode sets the emulator bank register to that value for the duration
of the BitBlt. In effect, BitBlt can only be used to move data within a single bank or between the
MDS (bank zero) and some other bank.

Restrictions, Limitations, and "Features"

Images and Checkpoints. MakeImage cannot preserve the contents of extended memory in the
image file it constructs. If MakeImage is invoked when useXM is TRUE, it will swap out all
unlocked file segments in extended memory. (It will also move any locked code segments to the
MDS.) If any segments then remain in extended memory, MakeImage will refuse to build the
image file. Analogous comments apply to CheckPoint.

Bank Registers. Mesa assumes it has exclusive control of the emulator bank register on AltoIIXMs.
Client programs must not attempt to alter the bank register, but rather must use the public
interfaces for moving data to and from extended memory (see LongCOPY and BitBlt, above).

Segment Alignment. Segments may not cross bank boundaries. The first page of each non-MDS
bank is reserved for internal allocation tables.

Swapper Algorithms. The swapper loads a segment into extended memory by first swapping it into
primary memory, then copying it to extended memory and releasing the MDS memory space.
Thus, if the MDS is so full that the requested segment cannot be swapped in, InsufficientVM will
be raised, even though sufficient space for the segment may exist in other banks. (Analogous
comments apply when swapping out segments that must be written to disk.)

Distribution:
Mesa Users
Mesa Group
SDSupport

