
Copyright c Xerox Corporation 1980

Inter-Office Memorandum

To Mesa Users Date October 27, 1980

From Bruce Malasky Location Palo Alto

Subject Debugger: Extended Features Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>XDF.bravo (and .press) DRAFT

This memo discusses Debugger User Procedures (UserProcs) and contains a sample Printer, a special
type of UserProc.

The Debugger is now the functional equivalent of the Alto/Tajo environment (with the exception of
Librarian support and communications). As a result, there are no longer any differences between
the FileTool and ChatTool that run in Alto/Tajo and the versions that run in the Alto/Mesa
Debugger.

Loading User Procedures

To install the Debugger from the command line with some UserProcs, type:

XDebug YourProc1[/l] YourProc2[/l] ...

to the Alto Executive. To load files in an installed debugger, simply enter the Debugger nub; then
do a >New filename, followed by >Start globalframe. More information on the mechanism for
loading programs into the Debugger can be found in the Mesa User’s Handbook and the Mesa
Debugger Documentation.

Hints for Writing User Procedures

The Debugger gives you added help in gaining access to the information it already knows about
your program. The Debugger’s configuration exports all of the Debugger’s and Tajo’s interfaces;
see XDebug.config for details. A user program can access any of the Debugger’s public
procedures simply by importing the definitions modules of the procedures that you want to use.
When writing your own debugging routines, look carefully at some of the utility routines that the
Debugger already provides (e.g., Name, Frame, ShortREAD, etc.). In particular,
DebugUsefulDefs contains most of the interesting procedures you might want. The interface
DOutput contains utility procedures for displaying information in the Debug.log (a la IODefs).
You should also look at the <MesaLib> and <AlphaHacks> directories for UserProcs that other
Mesa users have already written and debugged.

Warning: The Mesa Group makes no guarantees about the stability of these interfaces between
releases. Use at your own risk!

Debugger: Extended Features 2

Printers

The Debugger is capable of calling a user supplied procedure to print variables of specific types.
To do this, a program must first register any type it will display by calling

AddPrinter: PROC [type: STRING, proc: PROC [DebugOps.Foo]]

from the interface Dump. The Debugger’s interpreter evaluates type at the beginning of each
session and remembers the target type of the result. Unfortunately, type is not a simple type
expression, but rather a statement evaluated by the interpreter; the type is extracted from the result.
Any additional information such as the address of a variable used when evaluating the statement is ignored.

Later, whenever the Debugger encounters a variable of that type, it will call proc to display it. If,
for a given printer, calling proc or evaluating type ever causes an UNWIND, the printer is never
called again. The parameter to proc is defined as follows:

Foo: TYPE = POINTER TO Fob;

Fob: TYPE = RECORD [
 there: BOOLEAN,
 addr: BitAddress,
 words: CARDINAL,
 bits: [0..WordLength),
 . . .]];

BitAddress: TYPE = RECORD [
 base: LONG POINTER,
 offset: [0..WordLength],
 . . .];

If there is TRUE, the BitAddress is a location in the user core image. For large structures,
LongREAD and LongCopyREAD from DebugUsefulDefs should be used to access the data;
for small structures the procedure GetValue in the interface DI (it takes a Foo as its argument)
copies the information into the Debugger’s core image and updates the addr. The Debugger owns
the storage for Foos and the values copied into them from the user’s core image; they are freed by
the Debugger between commands.

A good technique for debugging the string used in the call to AddPrinter is to actually try it out
using the interpreter. All REALs could be intercepted by supplying the following STRING to
AddPrinter:

0%(REAL)

The following STRING is used by the sample printer attached at the end of this memo.

LOOPHOLE[1400B, StackFormat$Stack]^

The constant 1400B is simply a location that is always mapped; AddPrinter’s evaluation of the STRING does not
actually use that location.

Once StackPrinter is instantiated in the Debugger, PrintStack is called whenever the Debugger
wants to display a StackObject. Since PrintStack understands the format of StackObjects, it
can show the complete contents of a stack, something the Debugger is unable to do because of the
zero length array.

Debugger: Extended Features 3

-- StackFormat.mesa
-- Last Edited: Keith, October 21, 1980 10:30 PM

StackFormat: DEFINITIONS =
 BEGIN

 Stack: TYPE = POINTER TO StackObject;

 StackObject: TYPE = RECORD [
 top: CARDINAL _ 0,
 max: CARDINAL _ 0,
 overflowed: BOOLEAN _ FALSE,
 stack: ARRAY [0..0) OF CARDINAL];

 END.

-- StackPrinter.mesa
-- Last Edited: Keith, October 21, 1980 10:38 PM

DIRECTORY
 DebugOps USING [Foo, LongREAD],
 DI USING [GetValue],
 DOutput USING [Char, Line, Octal, Text],
 Dump USING [AddPrinter],
 StackFormat USING [StackEntry, StackObject];

StackPrinter: PROGRAM IMPORTS DebugOps, DI, DOutput, Dump =
 BEGIN

 PrintRecord: PROC [lp, lps: LONG POINTER TO StackFormat.StackObject] =
{
 lpStack: LONG POINTER TO CARDINAL _ LOOPHOLE[@lps.stack];
 IF lp.top = 0 THEN DOutput.Text["empty "L]
 ELSE
 FOR i: CARDINAL DECREASING IN [0..lp.top) DO
 DOutput.Octal[DebugOps.LongREAD[lpStack + i]]; DOutput.Char[’];
 ENDLOOP;
 IF lp.overflowed THEN DOutput.Text["(overflow!) "L];
 IF lp.max = lp.top THEN DOutput.Text["(full!)"L];
 DOutput.Line[" "L]};

 PrintStack: PROC [f: DebugOps.Foo] = {
 g: LONG POINTER _ f.addr.base;
 DI.GetValue[f]; PrintRecord[f.addr.base, g]};

 Dump.AddPrinter[
 type: "LOOPHOLE[1400B, StackFormat$Stack]^", proc: PrintStack];

 END.

