
Mesa Pup Package Functional Specification

Version 6.0
October, 1980

This document describes the Mesa Pup Package and other facilities available for communication
using the Pup Protocols.

XEROX
SYSTEMS DEVELOPMENT DEPARTMENT
3333 Coyote Hill Road / Palo Alto / California 94304

c Xerox Corporation 1979, 1980

Introduction

This document describes the Mesa Pup Package. The FTP Package is described in the FTP

Functional Specification. The Stream Interface is described in appendix A.

If you are looking for some simple examples, the Mesa PupTest package is probably a good place to

start. Look at PtBSP.mesa and/or PtEcho.mesa.

Currently, November 20, 1979, the Pup Package has the following performance characteristics.

These numbers were obtained using FatPup with the default parameters and a very simple test

program so there is no disk activity or other significant interference. Even the display and the

keyboard/mouse interrupts were turned off. Things would, of course, go faster without the

Statistics option.

Checksums On Off Off-Local

Socket: 150kb 614kb 423kb

PktStream: 117kb 365kb 248kb

ByteStream: 106kb 331kb 226kb

Echo long packets: 38kb/110ms 222kb/19ms

Echo short packets: 21ms 18ms

Mesa Pup Package Functional Specification 3

The Pup Package consists of a set of modules built up in a layered structure, where each layer adds

more service to the structure of the previous layers. The client program may interface to the

package at any layer, trading service against speed and space for its particular application.

The layers are:

 Ethernet Driver (not directly accessible)

 PupRouter (not directly accessible)

 Socket

 PacketStream

 ByteStream

This document will describe the various interfaces to the Pup Package. First comes a section on

describing how to turn the Pup Package on. Then the ByteStream interface will be described,

followed by the Socket interface. (The PacketStream interface isn’t described because of lack of

interest. Contact me if you are interested.) Next comes the description of the name utilities, the

packet utilities, and the SIGNALs and ERRORs generated by the Pup Package. Finally, there are

sections describing the EFTP Package and the Stats Package.

Mesa Pup Package Functional Specification 4

Terminology

There are a lot of buzzwords in the network business. Here is my attempt to explain the important

ones.

Connections

The Ethernet hardware delivers packets from one machine to another with high probability.

Unfortunately, packets will be lost occasionally, so protocols are needed to transfer data reliably.

When two processes on two machines agree to communicate with each other, they establish a

connection. (Actually, they can be two portions of the same process, or two processes on the same

machine.) A connection has a local end and a remote end.

Streams

Once a connection is opened, a stream of data flows across it. Actually, since the Pup Package

supports full duplex connections, each connection has a send stream, and a receive stream. Note that

this is not the normal Mesa meaning of stream. Streams may be punctuated with marks, which are

useful for synchronizing both ends of a connection. A mark is sent in a seperate packet that

includes only one byte of data. Logically, it is like having a ninth bit on the data bytes. The Pup

Package uses marks to implement the SST Change operation. It can be considered like an End-Of-

Record or End-Of-File. Because they are sent in small (one data byte) packets, and may use the

SIGNAL machinery, marks are not very efficient. An interrupt (called attention in the stream

documentation) mechanisim is provided to bypaass the normal flow control restrictions. This is

useful, for example, in Chat if the sender wants to flush the output buffer but the receiver is busy

processing things in the buffer.

Address

Each end of a connection requires an address to identify it. Since there may be more than one

active process on a machine, an address includes a socket number (like a post office box number) as

well as the obvious network number and host number. In PupTypes, a PupAddress is a three

word record. It is also copied into PupStream.

PupAddress: TYPE = RECORD [
net: PupNetID, host: PupHostID, socket: PupSocketID];

PupNetID: TYPE = RECORD [Byte];
PupHostID: TYPE = RECORD [Byte];
PupSocketID: TYPE = RECORD [a, b: WORD];

There are a number of conventions associated with addresses (the second I in fillIn is a capital):

A local network of fillInNetID will be replaced by the local network number (if known).

A local host of fillInHostID will be replaced by the local host number.

A local socket of fillInSocketID will be replaced by a unique local socket number.

Mesa Pup Package Functional Specification 5

A local address of fillInPupAddress will be replaced by a unique local socket number.

A remote network of fillInNetID means use the local network.

A remote host of fillInHostID will be replaced by the local host number.

Servers, Users, and Listeners

Frequently a user will want to talk to another machine without having an operator at the remote

site. FTP is the common example. In this case, the remote site is called a server, and the local end

is referred to as the user site. The server is normally passive, merely responding to requests from

the user. In actual implementation, there is usually an extra process called a listener that only waits

passively for a user to try to establish a connection to a well known socket number, and then

accepts the connection and creates a server process to do the real work.

Packets

The raw unit of transfer is a data structure called a packet. A packet lives in a buffer which also

has room for all the other bookkeeping fields needed by the Pup Package. A packet consists of up

to 532 bytes of user supplied data, and 22 bytes of control information manipulated by both the

user and the Pup Package. Each packet has a source address and a destination address. These will

be the same as the local and remote addresses of the connection if the packet is flowing towards the

remote machine, but they will be reversed if the packet is flowing towards the user’s machine.

There are utility routines to implement most of the common operations on the control information,

but the only operations provided on the data are to set and retrieve its length.

Mesa Pup Package Functional Specification 6

Where to find it

The Alto Mesa Pup Package lives on the <Mesa>Pup> directory of your favorite file server. It

comes it two sizes: Tiny and Fat. The Tiny version is for production use. It does not include

anything extra. The Fat version includes a lot of consistency checks and the Stats Package, too.

Except for a few minor differences, they both export the same interfaces -- you can switch back and

forth without recompiling.

You will be interested in the following files:

PupTypes.bcd+mesa includes the basic RECORD type definitions and the enumerations for

PupType and other things that are not likely to change very often.

BufferDefs.bcd+mesa includes the definition for Buffer and PupBuffer.

PupDefs.bcd+mesa includes miscelleneaous PROCEDURE interfaces. You will need this if you

are programming at the socket level. Otherwise, you probably won’t need it unless you are doing

something fancy.

PupStream.bcd+mesa (it is a Defs file in spite of its name) includes the the interface to the

Pup ByteStream package. You will also need Stream.bcd to compile.

TinyPup.bcd is the tiny version of the PupPackage.

FatPup>FatPup.bcd is the fat version of the PupPackage. It contains the Stats package, and has

been compiled with NIL and bounds checking. If you are having troubles finding an obscure bug,

try using FatPup rather than TinyPup.

The bcd’s for code modules in FatPup are different from those used to build TinyPup. (The public

interfaces are the same.) If you want the debugger to cooperate, be sure to fetch the correct ones.

Mesa Pup Package Functional Specification 7

Turning the Pup Package on and off

The Pup Package uses some core for buffers and resident code if it is on. If it is not on, it cannot

send or receive Pups. The Pup Package is designed to be shared by several client programs that do

not know about each other. Thus each client program must turn it on and reserve its own copy of

the Pup Package.

PupPackageMake: PROCEDURE;
PupPackageDestroy: PROCEDURE;

PupPackageMake will bump a use count and turn the Pup Package on if needed.

PupPackageDestroy will decrement a use count and turn the Pup Package off if it reaches 0.

Turning things on involves allocating the buffer pool, locking things into core, turning on the

Ethernet Driver, and trying to initialize the Pup routing table. You can’t call MakeImage while

the Pup Package is on. (It gets very complicated to reinitalize the routing table and anything

involving host numbers when starting up again.)

AdjustBufferParms: PROCEDURE [bufferPoolSize, bufferSize: CARDINAL];

AdjustBufferParms can only be called while the PupPackage is off. bufferPoolSize is the

number of buffers that will be created when the PupPackage is turned on. The default is 15.

Remember that the Pup Package keeps 2 in reserve for itself, and the normal Ethernet Driver uses

2 input buffers. bufferSize is the number of data words that will fit into the pup body of each

buffer. The default is 266 words which is largest sized packet that gateways will forward. There is

also a lower limit on the size of buffers. If you make it too small, you won’t be able to talk to

other networks because you won’t be able to hear routing packets. The gateways break the routing

table up into several packets if the size overflows 64 words, so that is the practical minimum.
Actually, it is only the Mesa 6 Gateways that break the routing tables up into several packets, so the preceeding

description may not be correct when you read this.

GetBufferParms: PROCEDURE RETURNS [bufferPoolSize, bufferSize: CARDINAL];
GetPupPackageUseCount: PROCEDURE RETURNS [CARDINAL];

GetBufferParms simply returns the current values of bufferPoolSize and bufferSize. If the

PupPackage is not on, they are the numbers that will be used when it is next turned on.

GetPupPackageUseCount returns the current use count of the communications package. If it

is not 0, the Pup Package is on, and you should not call AdjustBufferParms, MakeImage or

similar things.

Mesa Pup Package Functional Specification 8

Byte Stream interface

The Pup Package ByteStream (BSP) implementation uses a Stream interface that is different from

the normal Mesa one defined in StreamDefs. See appendix A for a detailed description. This

section only discusses the peculiarities of Pup ByteStreams.

PupByteStreamCreate: PROCEDURE [
remote: PupAddress,
ticks: Tocks]
RETURNS [Stream.Handle];

Tocks: TYPE = RECORD [CARDINAL];
StreamClosing: ERROR [why: CloseReason, text: STRING];
CloseReason: TYPE = {

localClose, remoteClose,
noRouteToNetwork, transmissionTimeout, remoteReject};

PupByteStreamCreate is used to create a user end of a connection. It builds the necessary data

structures and tries to open a connection to the specified remote address. StreamClosing will

result if it can not be opened in a reasonable length of time.

If the connection gets into trouble for any reason, it is smashed closed, and any process that tries to

do a get or put on the stream will run into the StreamClosing ERROR. text is likely to be NIL.

If not, it is the text portion of the error or abort Pup provided by the remote end. localClose
means that the stream is in the process of being deleted. If you ever get this, you are in trouble

because you should not have any processes using a stream when you delete it. remoteClose
means that the connection was closed by the remote machine. The other three reasons can also

happen during PupByteStreamCreate. noRouteToNetwork means that the pup router does

not know (any longer) how to get packets to the remote machine. Currently it isn’t generated, but will

probably reappear in the future. There are problems with transients in the routing tables.

transmissionTimeout means that the remote machine has not responded within a reasonable

amount of time. Maybe it has crashed, or if during PupByteStreamCreate, maybe it is not

listening to the Ethernet. remoteReject means that the remote machine has explicitly rejected

the connection or connection request. This frequently happens if the remote machine has been

rebooted.

If the remote end has requested an ack, the PupPackage normally defers sending it until the

receiving process sucks up all the data from the buffer. (If it asks again, it will get a prompt reply.

Well, it was supposed to, but due to a bug...) If the sender is slightly faster than the receiver, this slight

delay greatly improves throughput by keeping the allocation window as large as possible, and hence

minimizing the number of ack packets that need to be generated and processed.

In addition to sending the current buffer, SendNow also requests that it be acknowledged. It will

send an empty packet if necessary. This allows a bulk data transfer operation (FTP) to cooridinate it’s

(disk) activity with the (disk) activity of the process at the other end. Consider the case where the

sender and receiver use the same size buffers, and the Pup buffers are slightly larger than the client

buffers. Assume that it takes both ends roughly the same amount of time to generate and consume

the data. Without the SendNow, the tail of the clump sits in the senders buffers while the sender

Mesa Pup Package Functional Specification 9

is fetching the second clump, and the receiver waits. Early in sending the second clump, the

allocation limit will be reached, and the sender must wait for the receiver to process the first clump

before the receiver asks for more data to trigger sending the ack. SendNow provides a way to

keep things synchronized. The result is that the sender and receiver get to overlap the (disk)

processing of the data. The current implementation waits in SendNow for the ack to arrive. Unless the receiving

process at the remote end has fallen behind, this is only a short time. In particular, it is much smaller that the time

necessary to write several pages on the disk.

Delete discards any partial buffer, if any, that has not yet been sent. This avoids bumping into

StreamClosing again if you are cleaning up the connection after the remote end has crashed. If

you want to send the data that might be buffered, be sure to call SendNow.

When you delete a stream, be sure that you don’t have any other PROCESSes using it or the rug

will get yanked out from underneath them.

Creating a listener tells the Pup Package that the client program will accept RFCs for the local

socket number (the Pup Package knows the host and network). A listener also answers echo pups if you

want a polite way to discover if it is alive.

CreatePupByteStreamListener: PROCEDURE [
local: PupSocketID,
proc: PROCEDURE [Stream.Handle, PupAddress],
ticks: Tocks,
filter: PROCEDURE [PupAddress] _ DontReject]
RETURNS [PupListener];

Tocks: TYPE = RECORD [CARDINAL];
DestroyPupListener: PROCEDURE [PupListener];
PupListener: TYPE = ... ;
DontReject: PROCEDURE [PupAddress];
RejectThisRequest: ERROR [error: STRING];

CreatePupByteStreamListener makes a ByteStream listener. local is the local socket number

to listen on. To stop listening, call DestroyPupListener.

The user supplied procedure will be FORKed to once for each connection that is setup with the local

socket number. (The new PROCESS gets Detached.) The client is expected to delete the

connection eventually. The PupAddress passed to proc is the address of the other end of the

connection. ticks is the timeout interval for get and put used for any streams that get created by

the listener.

Optionally, you can supply a procedure that may reject undesired connections. This is useful to

keep a server from crashing because it runs out of resources. (The default doesn’t reject anything.)

To reject a connection, the filter procedure should raise the ERROR RejectThisRequest. The

text will be sent back to the other end in an abort Pup. If the filter procedure returns the

connection will be accepted.

Mesa Pup Package Functional Specification 10

The Pup Package currently uses a very simple buffer allocation strategy. It allocates a fixed number

of buffers for each half of each ByteStream. (It does the correct things if the other end allocates

fewer buffers.) Thus it is easy to generate deadlocks. The default number is 5. (If you are

counting buffers, don’t forget the extra one that is being emptied/filled.) The default buffer pool

size is 15. That is large enough to prevent lockups if a program uses both halves of a stream, or 2

halves of 2 streams. If you are tight on core and only using one half of a stream (at a time -- FTP

is a good example), you should consider changing the buffer pool size.

SetMaxAllocation: PROCEDURE [CARDINAL];
SetMaxBufferSize: PROCEDURE [CARDINAL];

SetMaxAllocation will change the allocation limit for any ByteStreams that are created in the

future. SetMaxBufferSize will change the maximun number of bytes allowed in a data packet in

case you want to use less than the default. Existing streams are not effected.

SetPinging: PROCEDURE [BOOLEAN];

Normally, the PupPackage will try to verify that the remote end is still alive if the connection is idle

for a minnute or so. If it has crashed, StreamClosing[transmissionTimeout] will eventually

be generated. SetPinging will change this parameter for any ByteStreams that are created in the

future. Again, existing streams are not effected.

There are currently four occasions for Timeouts. First, when trying to open a connection, an

ERROR will be generated in one minute. Second, after a connection is opened, it will be smashed

closed in 1 minute if an allocate is not received. Third, while sending data, the connection will be

closed if a packet is not acknowledged within about 3 minutes. The Pup ByteStream package uses

an adaptive timeout heuristic, so it is impossible to predict the exact number of retransmissions. If

the other end goes into the debugger or otherwise dies, the retransmission interval should stabilize

at 5 seconds. Fourth, if a connection is idle for a minute, a ping (empty aData) will be generated.

Thereafter, they will be generated at the normal retransmission rate until an answer is received. If

an answer is not received within two more minutes, the connection will be smashed closed.

Mesa Pup Package Functional Specification 11

Various other goodies

SetPupStormy: PROCEDURE [BOOLEAN];

SetPupStormy controls the lightning option in the PupRouter. If lightning is on, then occasional

packets going in or out will be thrown away to simulate transmission errors. This is very handy for

debugging high level protocols. The default is off. This option is not included in TinyPup. If you need it,

use FatPup.

UseAltoChecksumMicrocode: PROCEDURE;
SetPupCheckit: PROCEDURE [BOOLEAN];

The packet format for a Pup provides for a software checksum in addition to any error checking

that the hardware provides. This is very useful for avoiding trashed files in spite of flakey hardware

or sick gateways. Internally, there are 3 options: ignore, software, and microcode. The

default is software. SetPupCheckit[FALSE] sets the switch to ignore. You should do this

only if you really need to go faster and won’t complain if your data gets corrupted occasionally.

SetPupCheckit[TRUE] sets the switch to software. UseAltoChecksumMicrocode sets the

switch to microcode. You should use this only if you are sure that the correct microcode is in the

RAM. RunMesa.run loads the RAM correctly if you are running on an Alto with 2K of PROM or a

3K RAM. The reason that the default isn’t to use the microcode if the configuration looks reasonable is to avoid

confusion when run with programs that load special microcode. Beware of getting restarted on a machine with

a different configuration after if you use UseAltoChecksumMicrocode and call MakeImage.

SetLocalOnly: PROCEDURE [BOOLEAN];

SetLocalOnly controls the activation of the normal Ethernet Driver. If it is on, a dummy device

is used rather than the Ethernet Driver. This allows bugs to be reproduced slowly without the

complications of random packets coming in over the ethernet at unscheduled times. Of course, you

won’t be able to talk to any other machines if localOnly is on, but you can talk to yourself. This is

not included in TinyPup. If you need it, include LoopBackPlug in your config.

CaptureErrors: PROCEDURE [PROCEDURE[ERROR]];

There are many internal consistency checks within the Pup Package. When a problem is detected, a

procedure is called with an ERROR as an argument. (The ERROR is simply a convient way to get the

compiler/system to generate a unique value. When an enumerated type is used, it is more time

consuming to add a new category of problem to the list.) The default error handler simply dives

into the debugger via CallDebuger from MiscDefs. If that happens to you, look at the stack.

Its argument will get printed in english if you have enough symbols on your disk. If not, the

SignalLister may help.

GetDoStats: PROCEDURE RETURNS [BOOLEAN];

The Pup Package includes a (compile time) optional statistics gathering facility. GetDoStats
returns TRUE if it has been compiled in.

Mesa Pup Package Functional Specification 12

InspectIncomingPups: PROCEDURE [BOOLEAN, PROCDURE [CARDINAL, PupBuffer]];
InspectOutgoingPups: PROCEDURE [BOOLEAN, PROCDURE [CARDINAL, PupBuffer]];

incomingPup: CARDINAL = 100;
outgoingPup: CARDINAL = 101;
zappedIncommingPup: CARDINAL = 102;
zappedOutgoingPup: CARDINAL = 103;

ShowPupBuffer: PROCEDURE [CARDINAL, PupBuffer];

There are also hooks for inspecting each Pup as it goes in or out, and a routine that prints them.

ShowPupBuffer is not part of the normal Pup Package. It lives in PupShow.bcd.

InspectIncomingPups[TRUE,ShowPupBuffer] will print all incoming Pups. You can, of

course, supply your own routine to print them in the format that you prefer and/or print only the

interesting ones.

Mesa Pup Package Functional Specification 13

Watchers

The watcher concept has two ideas. First, it allows a client program to look at Pups arriving when

there is no socket ready to receive them. This would allow it to fire up a listener when an RFC

arrives, and not clutter up core or other resources by listening when there is no need.

The second idea is to allow programs to pay attention to the Ethernet when the Pup Package is not

really on. This saves a lot of core if there is no real need for the Pup Package. Again, if an RFC

arrives, the Pup Package can be turned on and a listener started. (This has not been reimplemented

since Mesa 3; If you need it, please let me know.)

InspectStrayPups: PROCEDURE [
on: BOOLEAN,

seeBroadCast: BOOLEAN,

proc: PROCEDURE [PupBuffer] RETURNS [BOOLEAN]];

If on is TRUE, then watching is started. If not, it is stopped. After watching has been started, proc
will be called each time a Pup arrives for an unknown socket. If it is a broadcast Pup, then

seeBroadCast must also have been TRUE at the last call to InspectStrayPups. The proc
must not do anything to the buffer - in particular, do not call ReturnFreePupBuffer. If the

proc returns TRUE, the Pup Package sends an Error Pup (with subtype no-socket) back to the

sender if it is not a broadcast packet or an error Pup.

PupDebug

There is also a set of debugging routines that are accessed via Menu commands in the Debugger.

They only work if you are using FatPup. They are contained in PupDebug.bcd. It needs to be

loaded into the Debugger’s core image with a command line similar to the following:

>XDebug PupDebug/l

It adds its own menu to the main menu stack. The various commands will print the routing table,

the socket table, a summary of the buffer headers, summary of the packet contents, or the current

contents of the counters maintained by the Stats Package.

Mesa Pup Package Functional Specification 14

Name processing utilities

The Pup Package also provides a collection of commonly needed routines for translating names and

addresses.

GetPupAddress: PROCEDURE [POINTER TO PupAddress, STRING];
PupNameLookup: PROCEDURE [POINTER TO PupAddress, STRING];
EnumeratePupAddresses: PROCEDURE [

STRING, PROCEDURE [PupAddress] RETURNS [BOOLEAN]],
RETURNS [BOOLEAN];

PupAddressLookup: PROCEDURE [PupAddress, STRING];

PupNameTrouble: ERROR [e: STRING, code: NameLookupErrorCode];
NameLookupErrorCode: TYPE = {noRoute, noResponse, errorFromServer};

GetPupAddress first calls ParsePupAddressConstant, and if that fails, it calls

PupNameLookup. PupNameLookup makes a special case check for a name of "ME" (both

letters must be capitals). If so, it returns the address of the local machine. Otherwise it sends the

text string to the name lookup server which is normally running on a nearby Gateway. Since a

machine may have several addresses, PupNameLookup selects the best one of the answers

returned.

There are three reasons why PupNameLookup may not be able to supply a reasonable answer. If

so, it will generate the ERROR PupNameTrouble with a text string that might help a person and

an error code that might be useful by a program. In the first case, noRoute, the information was

received from the gateway, but there is no way to get to the target machine. In the second,

noResponse, no name lookup server responded within a reasonable length of time.

Unfortunately, the third case, errorFromServer, does not help a program much. The protocol

does not supply error codes useful to programs, but the desired information is probably in the text

string.

If the socket number from the text string is not explicitly specified, the socket number in the

PupAddress will not be updated. Be sure to initialize it!. This allows a program to initialize a

default value that can easily be overridden for debugging by a person typing in a text string that is

normally just a machine name.

The text string is either the name of a machine or the actual address of the machine encoded as

"<host>#" for a machine on the local network, or "<net>#<host>#" to specify an explicit network

number. If you also want to specify the remote socket number use "<name>+<soc>" or

"<net>#<host>#<soc>". <name> is a text string registered in the file <Portola>PUP-

NETWORK.TXT on Ivy. <net>, <host>, and <soc> are octal numbers. See Ed Taft’s memo,

[Maxc]<Pup>PupName.press, for the fine print.

EnumeratePupAddresses is similar to PupNameLookup but it gives the client all of the

addresses in the database in case there is more than one. This is useful for locating backup servers

in case the primary one is down. The nearest addresses are presented first and the order in the

name lookup database is preserved when there are several answers equally close. It an address is

currently not reachable, the entry is still presented to the client. (PupNameLookup simply picks

Mesa Pup Package Functional Specification 15

the first one.) Although it is possible to send and receive Pups from within the client supplied

procedure (for example, to see if that machine is up) that should probably be avoided since the

buffer that the answer arrived in (and others with duplicate answers if there is more than one name

lookup server on the local network) is still tied up. If the client procedure returns TRUE, the rest of

the entries are ignored. EnumeratePupAddresses returns FALSE if the client procedure never

returns TRUE.

ParsePupAddressConstant: PROCEDURE [POINTER TO PupAddress, STRING]
RETURNS [BOOLEAN];

ParsePupAddressConstant tries to parse the text string into a network address. The string

must be of the form <host>#, <net>#<host>#, or <net>#<host>#<soc>. Since socket numbers

may be 32 bits, the form <soc-high>|<soc-low> may also be used to specify a socket number. All

numbers are octal. Invalid characters, oversize numbers and whatever merely return FALSE.

AppendPupAddress: PROCEDURE [STRING, PupAddress];
AppendHostAddress: PROCEDURE [STRING, PupAddress];
AppendMyName: PROCEDURE [STRING];

AppendPupAddress appends a text translation of the specified address to the string. The format

is net#host#soc, where soc may be more than 16 bits. All numbers are in octal.

AppendHostAddress uses PupAddressLookup to translate the address into a name. If it

runs into troubles, it calls AppendPupAddress. AppendMyName fabricates an address for the

local machine, and then calls AppendHostAddress.

Although not really needed for name processing, GetHopsToNetwork is normally used along

with other routines in this section, so it is described here.

GetHopsToNetwork: PROCEDURE [PupNetID] RETURNS [CARDINAL];

GetHopsToNetwork can be used to help you decide which machine you want to talk to. It

returns a huge number if the network number is unreasonable or there is currently no way to get

there from here. In the future, the Pup Package may be able to provide more information.

Mesa Pup Package Functional Specification 16

Packet utilities

This section describes the basic things that client programs can do to packets and/or buffers. They

will be used by client programs that interface at the Socket level.

We have adopted the convention that fields in the buffer that can be simply read/written by client

programs should be accessed directly for efficiency. Such fields include the pupType, the source
and destination PupAddresses, and the data. A PupBuffer is an OVERLAID RECORD, so you

can access the data portion of it as b.pupBytes[i] (a PACKED ARRAY OF Bytes),

b.pupChars[i] (a PACKED ARRAY OF CHARACTERs) or b.pupWords[i] (an ARRAY OF WORDs).

If your data is a RECORD (a very good idea) you can LOOPHOLE a POINTER to your record to be

@b.pupBody. We have also provided a pair of simple routines to access the other interesting

field - the length.

SetPupContentsBytes: PROCEDURE [PupBuffer, CARDINAL];
SetPupContentsWords: PROCEDURE [PupBuffer, CARDINAL];
GetPupContentsBytes: PROCEDURE [PupBuffer] RETURNS [CARDINAL];
DataWordsPerPupBuffer: PROCEDURE RETURNS [CARDINAL];

There are two lengths involved here. pupLength is the total length of the pup in bytes, not words,

and exists as a field in the packet. The contents length includes only the text supplied by the user.

Today, pupLength is the contents length plus 22. Be sure not to overfill a buffer -- you will

clobber the header of the next buffer. DataWordsPerPupBuffer can be used to determine the

maximum number of words that will fit in the body of a Pup. There is no

GetPupContentsWords because I couldn’t think of anything reasonable to do if there was an

odd number of data bytes in the Pup.

Fine point: If somebody is playing with large buffers, and you expect your packets to be forwarded by a gateway, be

sure to round down to 266 words (PupDefs.maxDataWordsPerGatewayPup) before deciding how full you can fill

a buffer.

ReturnFreePupBuffer: PROCEDURE [PupBuffer];
GetFreePupBuffer: PROCEDURE RETURNS [PupBuffer];

ReturnFreePupBuffer is used to put a buffer back on the freeQueue. It must be called to

return the buffers obtained from socket.get. GetFreePupBuffer obtains one buffer from the

freeQueue. It will wait if there is not a buffer currently available. This is how a client program

gets a buffer to give to socket.put.

The Pup Package builds (at PupPackageMake time) a pool of 15 buffers. The Ethernet driver

uses two and GetFreePupBuffer always leaves two in reserve, so there are really only 11 left for

all the active users to share. Pup byte streams allocate a default of five packets, so lockups are

easily possible if you have several active streams. Note that each active half of a stream can use up

to 6 buffers.

Mesa Pup Package Functional Specification 17

SwapPupSourceAndDest: PROCEDURE [PupBuffer];

SwapPupSourceAndDest exchanges the source and dest fields of the PupBuffer. It fixes up

the new destination if the old destination Pup was broadcast. Of course, it only makes sense if the

buffer contains a packet that was transmitted from some (probably different) machine.

MoveStringBodyToPupBuffer: PROCEDURE [PupBuffer, STRING];
AppendStringBodyToPupBuffer: PROCEDURE [PupBuffer, STRING];

MoveStringBodyToPupBuffer copies the contents of the STRING into the body of the

PupBuffer and sets the length accordingly. It is handy for very simple protocols and is used by

PupNameLookup. AppendStringBodyToPupBuffer appends the contents of the STRING into

the body of the PupBuffer and adjusts the length accordingly. Both routines will call Glitch if

the STRING is NIL or it won’t fit in the buffer.

Mesa Pup Package Functional Specification 18

Socket interface

The lowest level of the Pup Package accessible to the user is the Socket interface. At this level

packets are delivered only with some reasonable probability, and there is no guarantee that they will

not arrive out of order or even twice. The functions performed at this level have to do only with

delivery. There is still the idea of local and remote addresses, and there is a routing function which

decides what to do with the packets depending on those addresses. The socket is basically an

interface to that routing function, which makes its name known in the appropriate tables and allows

multiple users to coexist in the same machine.

PupSocket: TYPE = POINTER TO PupSocketObject;
PupSocketObject: TYPE = RECORD [

put: PROCDURE [PupBuffer],
get: PROCDURE RETURNS [PupBuffer],
setRemoteAddress: PROCDURE [PupAddress],
getLocalAddress: PROCDURE RETURNS [PupAddress]];

The Socket Operations are:

PupSocketMake: PROCEDURE [
local: PupSocketID, remote: PupAddress, ticks: Tocks]
RETURNS [PupSocket];

Tocks: TYPE = RECORD [CARDINAL];

PupSocketMake creates the data structures necessary to communicate to the specified destination.

It initiates no actual communications. If fillInSocketID is specified for the local socket number, a

pseudo unique random socket number will be assigned.

PupSocketDestroy: PROCEDURE [PupSocket];

PupSocketDestroy reclaims the data structures used by a socket and removes the socket from

the routing tables.

socket.put[b];

socket.put sends the buffer to the previously specified destination. Any problems encountered

are ignored. When the buffer has been sent, which is normally right away, but may take several

seconds, the client’s requeue procedure is called. The requeue procedure lives in

b.requeueProcedure. It is initialized to ReturnFreePupBufffer by GetFreePupBuffer. If

you want to keep a buffer so that you can retransmit it (or otherwise reuse it) you must store

something into b.requeueProcedure. If you do use your own requeue procedure, be sure that

the buffer is eventually returned via ReturnFreePupBuffer.

PupBuffer _ socket.get[];

Mesa Pup Package Functional Specification 19

socket.get returns a buffer containing the next packet that is sent to the socket’s local socketID.

The Pup Package does not do any filtering on the source address, so you will get packets from

unexpected places. When you are finished processing the buffer, you should call

ReturnFreePupBufffer. If a packet does not arrive before the specified timeout, NIL is returned

instead. Note that the Pup may have come from anywhere, the remote address is only used for

sending. If you care, you should check the source of the Pup.

socket.setRemoteAddress[PupAddress];

socket.setRemoteAddress changes the destination used by socket.put. Until it is changed

again, all Pups send via socket.put will go to the specified address.

PupAddress _ socket.getLocalAddress[];

socket.getLocalAddress returns the local address of a socket. This tells you two things. One,

if you used fillInSocketID for the local socket number when you created the socket, it will tell

you the actual socket number that is in use. Second, if you have more than one hardware interface

on your machine, it will tell you which one is the best path.

The normal sequence of operations is to make a socket and then, enter a loop that gets a

PupBuffer from the freeQueue, fills it in, sends it, waits for a reply, processes the incoming

PupBuffer, and returns it to the freeQueue. Finally, when finished, don’t forget to delete the

socket. It is quite reasonable to have two PROCESSes, one to look at incoming packets and another

to send things out. Even if you don’t expect any incoming data, be sure to have some PROCESS

getting packets occassionally or buffers will pile up there if anybody ever does send you something.

It is quite likely that error pups will be returned if a Gateway runs out of buffers, or the other end

ever gets confused, rebooted, or

There are two other routines that are useful for sending Pups. In both cases the client program

must fill in the source and destination socket numbers.

PupRouterBroadcastThis: PROCEDURE [PupBuffer];
PupRouterSendThis: PROCEDURE [PupBuffer];

PupRouterBroadcastThis will broadcast a Pup on all directly connected networks. The Pup

Package will provide the correct destination net, source host, and source net numbers for each

network as the Pup is transmitted.

NB: Do not use the broadcast facility indiscriminately. Random undesired packets can have a

severe performance impact on some programs. In general, it should only be used to locate a

machine that you want to comunicate with.

PupRouterSendThis is the simplest way to send a packet. Don’t forget to fill in the source

socket, destination address, pupType and set the length. The Pup Package will fill in the correct

source net and host numbers. There is a special case check for a destination host of allHosts (0)

and a destination net of allNets (0). If so, the buffer is handed off to

PupRouterBroadcastThis. If you specify allHosts and a non 0 network, the Pup is a directed

broadcast, and it will be broadcast on that specific network, and not on all directly connected

Mesa Pup Package Functional Specification 20

networks. There is no way to broadcast a Pup on network 0 without broadcasting it on the other

networks too.

SendPup: PROCEDURE [b: PupBuffer, type: PupType, bytes: CARDINAL];
ReturnPup: PROCEDURE [b: PupBuffer, type: PupType, bytes: CARDINAL];

SendPup fills in the pupType and the length of the buffer, and then calls PupRouterSendThis.

ReturnPup calls SwapPupSourceAndDest and then calls SendPup.

SendErrorPup: PROCEDURE [PupBuffer, PupErrorCode, STRING];

SendErrorPup treats the buffer as a Pup that was sent to this machine, converts it into an Error

Pup with the specified error code and text, and sends it back to the original source. The buffer

must have been sent to this machine since SendErrorPup needs to know the network address

through which the packet arrived, so don’t pass it a buffer that you obtained from

GetFreePupBuffer. If STRING is NIL, a built in list of defaults is searched. Actually, the buffer

isn’t sent if it is already an error Pup, or if it is a broadcast Pup.

Mesa Pup Package Functional Specification 21

Tock conversion

There are several routines in the Pup Package that normally WAIT until something has happened.

The argument to the routines that setup the wait times is a simple record.

Tocks: TYPE = RECORD [CARDINAL];
veryLongWait: Tocks = [177777B];
veryShortWait: Tocks = [0];

veryLongWait is used to disable timeouts completely. veryShortWait is used to avoid waiting

at all. All other values are passed directly to ProcessDefs.SetTimeout.

SecondsToTocks: PROCEDURE [CARDINAL] RETURNS [Tocks];
MsToTocks: PROCEDURE [CARDINAL] RETURNS [Tocks];

These routines simply do a bit of arithmetic and the appropriate TYPE conversion. Their input is in

seconds and milliseconds respectively. Note that it is not possible to specify wait times longer than

about a minute in milliseconds.

Mesa Pup Package Functional Specification 22

Queue operations

The Pup Package provides a simple FIFO Queue Package which may be useful if you are operating

at the socket level. NB: The Queue Package does not provide any locks against preemption. The

client is expected to call the queue routines from within an appropriate MONITOR.

Queue: TYPE = POINTER TO QueueObject;
QueueObject: TYPE = RECORD [length: CARDINAL, ...];

length is the number of buffers currently on the queue. It is handy for various heuristics. In

particular, you may want to check for an empty queue before calling DequeuePup if you are

worried about performance.

QueueInitialize: PROCEDURE [Queue];
QueueCleanup: PROCEDURE [Queue];

QueueInitialize simply initializes the data structures within a QueueObject allocated by the

caller. It must be called before any other queue operations reference the QueueObject.
QueueCleanup returns any buffers on the queue to the freeQueue and marks it as invalid.

You must call QueueInitialize again before reusing the queue.

EnqueuePup: PROCEDURE [Queue, PupBuffer];
DequeuePup: PROCEDURE [Queue] RETURNS [PupBuffer];
ExtractPupFromQueue: PROCEDURE [Queue, PupBuffer] RETURNS [PupBuffer];

EnqueuePup puts a PupBuffer onto the tail of a queue. DequeuePup takes a PupBuffer off

of the head of a queue. If the queue is empty, it returns NIL. ExtractPupFromQueue pulls a

specified buffer out of the middle of a queue. If the buffer is not on the queue, it returns NIL.

QueueLength: PROCEDURE [Queue] RETURNS [CARDINAL];
QueueEmpty: PROCEDURE [Queue] RETURNS [BOOLEAN];

These are just fast, clean, and simple ways to see if there is anything in a Queue.

Mesa Pup Package Functional Specification 23

Bugs and gremlins

Note that most program bugs do not show up as uncaught SIGNALs, but instead call an error

handler, which defaults to a routine that calls the debugger. If you suddenly end up in the

debugger with a "PupGlitch" message, look at the stack. If you find Glitch, look at its parameter.

If you have enough symbols on your disk the name will usually be reasonably clear what the

problem is. If not, consult a friend or dig out the listings. Glitches are problems from which it is

not reasonable to recover. Usually, they are caused by bugs in the client program and/or

inadequate documentation. If you get one, you should not attempt to continue execution of your

program. Because of various validity checks in the Pup Package, core clobbers frequently show up

as Pup Glitches.

Signals

Except for the EFTP routines, the following summary is an exhaustive list of the signals explicitly

generated by the Pup Package. It does NOT include signals generated from within the system when

the Pup Package calls a system routine. They all represent well understood circumstances, and even

if you didn’t want the signal at that time, the Pup Package knows what is going on and is passing

the problem back to the client program where it belongs.

Stream.Timeout: SIGNAL;

Stream.Timeout is generated by the ByteStream input routines if enough data does not arrive in

time. The actual wait times are not very accurate.

StreamClosing: ERROR [why: CloseReason, text: STRING];
CloseReason: TYPE= {localClose, remoteClose,
 transmissionTimeout, noRouteToNetwork, remoteReject};

StreamClosing is generated by ByteStreamOpen when the remote site explicitly rejects the

connection, does not accept it in time, or there is not any way to get a packet to the remote site.

(Currently, the timeout is about 60 seconds.)

After a stream is opened, StreamClosing is activated by many ByteStream routines whenever an

attempt to use a connection is made after the Pup Package connection has been closed. It may be

closed by the remote end, or automatically by the Pup Package when it discovers some problem.

The connection is closed automatically when ever the remote end explicitly rejects a packet (maybe

it has been rebooted) or whenever a packet is not acknowledged soon enough (maybe it is in the

debugger). On input, all the data from the remote site is processed before activating the

StreamClosing ERROR.

PupNameTrouble: ERROR [e: STRING, code: NameLookupErrorCode];

Mesa Pup Package Functional Specification 24

NameLookupErrorCode: TYPE = {
noRoute, noResponse, errorFromServer};

PupNameTrouble is only generated by EnumeratePupAddresses and PupNameLookup
and GetPupAddress which call it, and PupAddressLookup. There are 3 reasons why

EnumeratePupAddresses or PupAddressLookup may not be able to supply a reasonable

answer. If so, it will generate the ERROR PupNameTrouble with a text string that might help a

person and an error code that might be useful by a program. In the first case, noRoute, the

information was received from the name server, but there is no way to get to the target machine.

In the second, noResponse, no name lookup server responded within a reasonable length of time.

Unfortunately, the third case, errorFromServer, does not help a program much. The protocol

does not supply error codes useful to programs, but the desired information is probably in the text

string.

Mesa Pup Package Functional Specification 25

EFTP Package

The EFTP Package implements a very simple Pup-based Ethernet File Transfer Protocol. This

protocol is currently used to communicate with Press printers in the Parc environment. The

package comes in two separate modules that are not included in either FatPup or TinyPup:

EFTPSend.bcd and EFTPRecv.bcd. Only one connection per module is supported: if you want

more than one active connection in the same direction you will have to make another instance.

Each half should not be called from more than one PROCESS. I doubt if it will recover correctly if

you ABORT it. The intention is that it will timeout often enough so that there will not be a need to

use ABORT.

EFTPTimeOut: SIGNAL;

Many of the procedure calls may generate the resumable SIGNAL EFTPTimeOut. The timeouts

used within the EFTP Package are very simple. The default timeout for both send and receive

wakeups is 1 second. Someday, I may get around to implementing an adaptive timeout scheme.

The SIGNAL is generated under the following situations:

Open for Sending SIGNALs every 10 retransmissions.

Put SIGNALs every 25 retransmissions.

Finish Sending SIGNALs every 10 retransmissions.

Open for Receiving SIGNALs every 10 ticks.

Get SIGNALs every tick.

EFTPSetSendTimeout: PROCEDURE [ms: CARDINAL, tries: CARDINAL];
EFTPSetRecvTimeout: PROCEDURE [ms: CARDINAL];

EFTPSetSendTimeout is used to change the timeout parameters used in the send side of the

EFTP Package. EFTPSetRecvTimeout is used to change the timeout used in the receive side of

the EFTP Package. The values of the timeouts are measured in milliseconds.

EFTPAbortCode: TYPE = RECORD [WORD];
eftpOK: EFTPAbortCode = [0]; -- pseudo code
eftpExternalSenderAbort: EFTPAbortCode = [1];
eftpExternalRecieverAbort: EFTPAbortCode = [2];
eftpReceiverBusyAbort: EFTPAbortCode = [3];
eftpOutOfSyncAbort: EFTPAbortCode = [4];
eftpRejected: EFTPAbortCode = [1001]; -- pseudo code

EFTPOpenForSending: PROCEDURE [
to: PupAddress, waitForAck: BOOLEAN _ TRUE];

EFTPAlreadySending: ERROR;

Mesa Pup Package Functional Specification 26

EFTPTroubleSending: ERROR [e: EFTPAbortCode, s: STRING];
EFTPTimeOut: SIGNAL;

EFTPOpenForSending is used to create an EFTP connection to the remote address to. If there

is already an EFTP connection then the ERROR EFTPAlreadySending is generated. If

waitForAck is TRUE, EFTPOpenForSending transmits a packet with sequence number 0 and

no data, until the packet is acknowledged. This is a way to be reasonably sure that the other end is

willing to talk to you if you don’t want to open a file or such until the connection is open. If there

is any problem in transmitting the packet, then the ERROR EFTPTroubleSending is generated.

The SIGNAL EFTPTimeOut will be generated if the initial packet is not acknowledged soon

enough. It may be resumed.

EFTPSendBlock: PROCEDURE [p: POINTER, l: CARDINAL];
EFTPNotSending: ERROR;
EFTPTroubleSending: ERROR [e: EFTPAbortCode, s: STRING];
EFTPTimeOut: SIGNAL;

EFTPSendBlock is used to send a block of data over the open EFTP connection. p is a pointer

to the data and l is the length in bytes. If the EFTP connection has not been opened then the

ERROR EFTPNotSending is generated. If there is any problem in transmitting the data, then the

ERROR EFTPTroubleSending is generated. The SIGNAL EFTPTimeOut may be generated.

This SIGNAL may be resumed.

EFTPAbortSending: PROCEDURE [s: STRING];

EFTPAbortSending is used to abort the EFTP connection and to transmit the string s to the

destination indicating some reason for aborting the EFTP connection.

EFTPFinishSending: PROCEDURE;
EFTPNotSending: ERROR;
EFTPTimeOut: SIGNAL;

EFTPFinishSending is used to terminate the EFTP connection. If the EFTP connection has not

been opened then the ERROR EFTPNotSending is generated. If there is any problem in

transmitting the data and closing the connection, then the ERROR EFTPTroubleSending is

generated. The SIGNAL EFTPTimeOut may be generated. This SIGNAL may be resumed.

EFTPOpenForReceiving: PROCEDURE [PupAddress] RETURNS [PupAddress];
EFTPAlreadyReceiving: ERROR;
EFTPTimeOut: SIGNAL;

EFTPOpenForReceiving is used to wait for an EFTP connection to be opened from any remote

address. If there is already an EFTP connection then the ERROR EFTPAlreadyReceiving is

generated. This procedure waits for a packet with sequence number 0, and acknowledges it. When

this happens the EFTP connection is open. The SIGNAL EFTPTimeOut may be generated. This

SIGNAL may be resumed.

Mesa Pup Package Functional Specification 27

EFTPGetBlock: PROCEDURE [p: POINTER, l: CARDINAL] RETURNS [CARDINAL];
EFTPNotReceiving: ERROR;
EFTPEndReceiving: ERROR;
EFTPTroubleReceiving: ERROR [e: EFTPAbortCode, s: STRING];
EFTPTimeOut: SIGNAL;

EFTPGetBlock is used to receive a block of data over the open EFTP connecction. p is a pointer

to the data block and l is the length in bytes. The procedure call returns the actual number of

bytes stored into the block. If the EFTP connection has not been opened then the ERROR

EFTPNotReceiving is generated. If the EFTP connection is terminated or aborted by the

remote end, then the ERROR EFTPEndReceiving is generated. If there is any problem in

receiving the data, then the ERROR EFTPTroubleReceiving is generated. The SIGNAL

EFTPTimeOut may be generated. This SIGNAL may be resumed.

EFTPAbortReceiving: PROCEDURE [s: STRING];

EFTPAbortReceiving is used to abort the EFTP connection and to transmit the string s to the

destination indicating some reason for aborting the EFTP connection.

EFTPFinishReceiving: PROCEDURE;
EFTPNotReceiving: ERROR;

EFTPFinishReceiving is used to terminate the EFTP connection. If the EFTP connection has

not been opened then the ERROR EFTPNotReceiving is generated.

Multiple EFTP connections

Since there is no handle passed to the EFTP routines, it is not possible for a particular instance of

the code to keep track of more than one connection (in a particular direction) at a time. If you

need more than one, you will have to Bind in more instances of EFTPSend or EFTPRecv inot

your config. Be sure that you do not use code links on your module that is calling EFTP if you

have several instances if it. Also, be careful when using code links on EFTPRecv. It imports

EFTPTimeOut from EFTPSend, and if you have several instances of both there is opportunity

for confusion.

Mesa Pup Package Functional Specification 28

ByteBlt

Within the Pup BSP implementation module, there is a complication that arises when buffers are

not aligned conveniently. In case anybody else ever runs into the same problem, the critical routine

has been split out into a separate interface called ByteBltDefs. ByteBlt uses Blt for the easy

case, and BitBlt to do the ripple.

ByteBlt: PROCEDURE [to, from: Stream.Block] RETURNS [nBytes: CARDINAL];
StartIndexGreaterThanStopIndexPlusOne: ERROR;

Block: TYPE = RECORD [
blockPointer: LONG POINTER,
startIndex, stopIndexPlusOne: CARDINAL];

ByteBlt moves as much as it can, and tells you what that was. Zero is ok.

StartIndexGreaterThanStopIndexPlusOne will be generated if either argument is trying to

wrap around memory.

ByteBlt will probably not work as desired if the source and destination overlap.

ShortenPointer: PROCEDURE [LONG POINTER] RETURNS [POINTER];
HyperSpaceNotSupported: ERROR;
NilRejected: ERROR;

On an Alto, the LONG POINTER in a Block must be shortened before it can be used. If either of

two unreasonable conditions are detected the obvious ERRORs are generated.

Mesa Pup Package Functional Specification 29

Stats Package

The Stats Package may help you to understand what your program is doing. Basically, it just

maintains a set of counters that can be printed out when desired. The counters are LONG

CARDINALs, and they are indexed by a huge enumerated type. Most of the types are pretty specific

to the Pup Package, but there are a clump of spares. The Stats Package is included in FatPup.

The interface is StatsDefs.

StatNew: PROCEDURE;
StatStart: PROCEDURE [STRING];
StatPrintCurrent: PROCEDURE;
StatFinish: PROCEDURE;

StatNew should be called before calling MakeImage. It just remembers the current date and

time to be used in a header line by StatStart. StatStart resets all the counters, and prints out a

header line. StatPrintCurrent prints out the current values of the counters without changing

them. StatFinish prints out the current values of the counters and resets them in case you start

another test. The printout also includes a few derived numbers, like bits per second sent and

received.

StatIncr: PROCEDURE [StatCounterIndex];
StatBump: PROCEDURE [StatCounterIndex, CARDINAL];
StatLog: PROCEDURE [StatCounterIndex, POINTER, CARDINAL];
StatCounterIndex: TYPE = {....};

StatIncr adds one to the specified counter. StatBump adds a specified amount. You will have

to look in StatsDefs to find the values of StatCounterIndex. They change every now and

then. StatLog adds one to the specified counter, and prints out the specified block of memory.

Someday, it may do something more interesting, like send the data someplace for later analysis.

The idea is that if an obscure glitch has happened, the data may be useful in tracking it down.

StatReady: PROCEDURE;
StatSince: PROCEDURE;

There is also another set of counters that can be used for specific tests without disturbing the main

counters. StatReady resets the secondary counters. StatSince prints out everything that has

happened since the last call to StatReady or StatSince, and then resets the secondary counters.

StatsStringToIndex: PROCEDURE [STRING] RETURNS [StatCounterIndex];
StatStringsFull: ERROR;

If you want to add your own counters at runtime, StatsStringToIndex will search the string

table, and assign a free slot if it isn’t already there. The answer can then be used as an argument to

StatIncr or StatBump. StatStringsFull will be generated if there are no more spare slots.

Feel free to use counters that are already there if you prefer.

Mesa Pup Package Functional Specification 30

StatUpdate: PROCEDURE;

StatsGetCounters: PROCEDURE RETURNS [
POINTER TO ARRAY StatCounterIndex OF LONG CARDINAL];

StatsGetText: PROCEDURE RETURNS [
POINTER TO ARRAY StatCounterIndex OF STRING];

If you get really desperate and need to wander around in the bits, these routines will give you

pointers to the inner secrets. If a string is NIL, that slot is considered to be unused. StatUpdate
updates several clock counters. You should call it before looking at any of them.

Mesa Pup Package Functional Specification 31

References

For details of the EFTP protocol: [Maxc]<Pup>EftpSpec.press.

For details on Error Pups: [Maxc]<Pup>Error.press.

For the truth on Pup Names: [Maxc]<Pup>PupName.press.

For general background about Pups: [Maxc]<Pup>PupSpec.press.

You might also want to browse through (the rest of) [Maxc]<Pup>*.press.

Mesa Pup Package Functional Specification 32

Appendix A: Stream Package

The Pup Package uses a stream interface different from the standard Alto/Mesa one. Pup’s version
includes, among other things, subsequences (a generalization of mark bytes) and an attention (break)
facility. Note that this appendix describes the stream interface in a general (device and
implementation independent) way; see the previous section on the Byte Stream Interface for Pup
specifics.

The stream package defined by the interface Stream provides a device and format independent
interface for sequential access to a stream of data. In particular,

It provides a vehicle by which processes or subsystems can communicate with each other,
whether they reside on the same machine or on different machines.

It permits processes or subsystems to transmit arbitrary data to or from storage media in a
device-independent way.

It defines a standard way for transforming the detailed interface for a device into a uniform,
high level interface which can be used by other client software.

It provides an environment for implementing simple transformations to be performed on
the data as it is being transmitted.

It provides optional access to and control over the mapping of data onto the physical format
of the storage or transmission medium being used.

The stream package provides several facilities, not all of which may be important to an individual
client. First, there is the stream interface, the set of procedures and data types by which a client
actually controls the transmission of a stream of information. Each of the operations of the stream
interface takes as a parameter a Stream.Handle which identifies the particular stream being
accessed. Second, the stream package defines the concepts of transducer and filter. A transducer is
a software entity (e.g. module or configuration) which implements a stream connected to a specific
device or medium. A filter also implements a stream, but only for the purpose of transforming,
buffering, or otherwise manipulating the data before passing it on to another stream. Transducers
and filters may be provided either by the system or by clients. Third, the stream package provides
a standard way of concatenating a sequence of filters (usually terminated with a transducer) to form
a compound stream called a pipeline. A pipeline is accessed by means of the normal stream
operations, and causes a sequence of separate transformations to be applied to data flowing between
the client program at one end and the physical storage (or transmission) medium at the other.

The use of pipelines permits clients to interpose new stream manipulation programs (filters and
transducers) between clients (producers and consumers of data) without modifying the interfaces
seen by the clients. For example, a data format conversion program can obtain its data either from
a tape or from a disk, using the same stream interface, and hence the same program logic for both.
Similarly, filters performing such functions as code conversion, buffering, data conversion,
encryption, etc. may be inserted into a pipeline without affecting the way the client sends and
receives data through the stream interface.

The stream facility transmits arbitrary data, regardless of format and without prejudice to its type or
characteristics. The data may comprise a sequence of bytes, words, or arbitrary Mesa data
structures. The stream facility does not presume or require the encoding of information according
to any particular protocol or convention. Instead, it permits clients to define their own protocols
and standards according to their own needs.

Mesa Pup Package Functional Specification 33

In this appendix, sections A.1, A.2, and A.3 will be of interest to all clients. Section A.4 will be of
interest only to those clients wishing to control the physical record characteristics of a particular
stream. Section A.5 will be of interest only to those clients wishing to implement their own filters
or transducers. In addition, the clients of a particular stream type (e.g. disk, tape, etc.) will normally
have to consult separate documentation regarding the details of that kind of stream.

A.1 Semantics of Streams

The stream facility supports transmission of a sequence of eight-bit bytes. This sequence may be
divided into identifiable subsequences, each of which has its own subsequence type.

Stream.Byte: TYPE = [0..255];

Stream.SubSequenceType: TYPE = [0..255];

A subsequence may be null; i.e., it may be of zero length and contain no bytes but still contain the
SubSequenceType information. This information allows all subsequences to be easily identified
and separated from each other while shielding clients from the bothersome problems of control-
codes (i.e. embedding control-codes into the stream, making them transparent, and building a parser
to implement such transparency).

Additionally, an attention flag may be inserted into a stream sequence. This is neither a byte nor a
SubSequenceType, but simply an indication of an extraordinary situation. Attention flags are
transmitted through the stream as quickly as possible, possibly bypassing bytes and changes in
SubSequenceType which were transmitted earlier but which are still in transit. This provides a
simple mechanism for implementing breaks (similar to the "attention-key" of many time-sharing
systems).

Streams per se have no notion of a byte number (i.e. an array index); they deal only with the
sequential order of successive bytes comprising the arbitrary binary data being transmitted. The
stream interface is thus unsuitable for applications requiring random access.

Streams have no intrinsic notion of the bytes passing through them being grouped into physical
records. The client program can completely ignore physical record structure and is thus relieved of
the burden of dealing with the associated packing and unpacking problems. If, however, it becomes
necessary to control or determine the underlying physical record structure, as determined by the
particular storage (or transmission) medium, the interface provides extended facilities which allow
this.

All of the procedures described here are synchronous and none returns until the indicated operation
is complete. That is, an input operation does not return until the data is actually available to the
client, and an output operation does not return until the data has been accepted by the stream and
client buffers may be reused. Note, however, that a stream component may do internal buffering
and that the acceptance of data means only that the stream component itself has a correct copy and
is in a position to proceed asynchronously to write or send it.

Streams are inherently full-duplex -- i. e., separate processes may be transmitting and receiving
simultaneously. The stream interface does not guarantee mutual exclusion among different
processes attempting to access the same stream. However, individual transducers or filters may
restrict themselves to half-duplex operation and/or may implement such mutual exclusion or more
elaborate forms of synchronization as are appropriate. Documentation for such filters and
transducers should be consulted on a case-by-case basis for details.

Mesa Pup Package Functional Specification 34

A.2 Operations on Streams

The stream interface provides the following information transmission operations: GetBlock,
GetByte, GetChar, GetWord, PutBlock, PutByte, PutChar, PutWord, SendNow,
SetSST, SendAttention, and WaitForAttention.

A client program identifies a particular instance of the stream interface by means of a
Stream.Handle.

Stream.Handle: TYPE = . . . ;

A Handle identifies an object (see :A.5.1) which embodies all of the information concerning the
transfer of data to and/or from the client program via stream operations. It is passed as a
parameter to each of the data transmission operations of the following sections to specify the stream
to which the operations apply.

A.2.1 GetBlock and PutBlock

The principal operations for transferring blocks of data are Stream.GetBlock and
Stream.PutBlock. Each of these takes a parameter specifying the block of virtual memory to or
from which bytes are to be transmitted.

Stream.Block: TYPE = RECORD [
blockPointer: LONG POINTER,

startIndex, stopIndexPlusOne: CARDINAL];

A Block describes a section of memory which will be the source and/or sink of the bytes
transmitted; the section of memory described is a sequence of bytes (not necessarily word aligned).
The blockPointer may be regarded as a base of a packed array of bytes; it selects a word such
that a startIndex of zero would select the left byte of that word (i.e., bits 0 - 7). The selected
block consists of the bytes blockPointer^[i] for i in [startIndex..stopIndexPlusOne). Notice
that a Block cannot describe more than 216-1 bytes or 215-1 words.

Note: Some of the operations of this section and the next may cause signals to be generated. If
such a signal is RESUMEd, transmission continues where it left off -- i.e., any changes
made by the catch phrase to the Block record and/or to the input options (see below)
are ignored. If, however, such a signal is RETRY’ed, the next byte of the stream sequence
is transmitted to or from the byte specified by the current value of the Block record
and/or input options, either of which might have been updated by the catch phrase. In
no case is the stream sequence itself "backed up." That is, bytes previously received
from input are not re-received, and bytes previously transmitted on output are not
withdrawn.

The primary input operation is Stream.GetBlock.

Stream.GetBlock: PROCEDURE [sH: Stream.Handle, block: Stream.Block]
RETURNS [bytesTransferred: CARDINAL, why: Stream.CompletionCode,
sst: Stream.SubSequenceType];

Mesa Pup Package Functional Specification 35

Stream.CompletionCode: TYPE = {normal, endRecord, sstChange,
endOfStream};

The parameter block describes the memory area into which the bytes will be placed. GetBlock
does not return until the input is terminated. Its exact behavior, however, is controlled by a set of
input options which may be set by the client using the following operation:

Stream.SetInputOptions: PROCEDURE [sH: Stream.Handle, options:
Stream.InputOptions];

Stream.InputOptions: TYPE = RECORD [
terminateOnEndPhysicalRecord, signalLongBlock, signalShortBlock,
signalSSTChange, signalEndOfStream: BOOLEAN];

Stream.defaultInputOptions: Stream.InputOptions = [FALSE, FALSE, FALSE, FALSE,
FALSE];

SetInputOptions controls exactly how GetBlock terminates and what signals it generates.
Ordinarily (i.e., with the parameter options set to defaultInputOptions) the transmission will
not terminate until the entire block of bytes is filled. However, under exceptional conditions
described in :A.4, the transmission may terminate before the block is filled and may also result in
a signal. In all cases the procedure will return the actual number of bytes transferred, a
CompletionCode indicating the reason for termination, and the latest SubSequenceType
encountered. The input operation may conveniently be restarted where it left off by first adding
the result bytesTransferred to block.startIndex to update the record describing the block of
bytes.

Two circumstances which always suspend the transmission of data before the block is filled are (a)
the detection of a change in SubSequenceType and (b) the endOfStream. If the input option
signalSSTChange is FALSE (the default case), then the procedure GetBlock terminates
immediately and returns the number of bytes transferred, with why = sstChange, and sst set to
the new value of the SubSequenceType. If the input option signalSSTChange is TRUE, then
the signal

Stream.SSTChange: SIGNAL [sst: Stream.SubSequenceType, nextIndex:
CARDINAL];

is generated. The parameter sst specifies the new SubSequenceType, and the parameter
nextIndex specifies the byte index within the block where the first byte of the new subsequence
will be placed. This signal may be resumed, and the effect is to continue the data transmission as
though the change in SubSequenceType had not occurred (i.e., in the same block of bytes).

Caution: A catch phrase for this signal must not attempt any other stream operations using the
same Stream.Handle, for this will corrupt the internal state information maintained for
the stream.

Implementation of the end-of-stream feature is strictly transducer and filter specific, and optional.
All transducers and filters need not implement this feature. Transducer and filter implementors may
implement an end-of-stream mechansim using any protocol they desire. Typically, this feature
would be implemented by exchanging subsequence types in some specific order. If implementors
use this mechansim, then they must document the subsequence types reserved for this, so that
clients do not inadvertantly use the same ones for their own protocol. When putting together a

Mesa Pup Package Functional Specification 36

pipeline from a transducer and filters, great care needs to be taken to preserve the end-of-stream
feature through all the stream components. If the input option signalEndOfStream is TRUE and
the stream component detects that the end-of-stream has occured, then the signal

Stream.EndOfStream: SIGNAL [nextIndex: CARDINAL];

is generated. The parameter nextIndex specifies the byte index immediately following the last
byte of the stream sequence filled into a client’s block.

Note: Stream component implementors may provide special procudure calls in order to actively
cause a stream to be terminated.

The principal output operation is Stream.PutBlock.

Stream.PutBlock: PROCEDURE [sH: Stream.Handle, block: Stream.Block,
endPhysicalRecord: BOOLEAN];

This operation is analogous to Stream.GetBlock. The parameter block describes the area of
memory from which information is transmitted. This procedure returns only after the data has been
accepted by the stream, at which time the client may reuse the block. If the client is ignoring
physical record boundaries (the default case) then parameter endPhysicalRecord should be set
to FALSE. Otherwise, see :A.4.

Note: Stream operations have the right to discard empty blocks, hence a PutBlock operation
specifying a block of length zero may be a no-op.

A.2.2 Additional Data Transmission Operations

In addition to GetBlock and PutBlock, the following operations are provided:

Stream.GetByte: PROCEDURE [sH: Stream.Handle] RETURNS [byte: Stream.Byte];

Stream.GetChar: PROCEDURE [sH: Stream.Handle] RETURNS [char: CHARACTER];

Stream.GetWord: PROCEDURE [sH: Stream.Handle]
RETURNS [word: Stream.Word];

Stream.Word: TYPE = [0..65535];

GetByte and GetChar operations get the next Byte or CHARACTER from the stream sequence
and return it. They are equivalent to a call upon Stream.GetBlock, specifying a Block containing
one byte. The GetWord operation gets the next Word from the stream sequence and returns it.
It is equivalent to a call upon Stream.GetBlock, specifying a Block containing
AltoDefs.BytesPerWord bytes. Input options are assumed to be signalShortBlock,
signalLongBlock, and endPhysicalRecord = FALSE, and signalEndOfStream and
signalSSTChange = TRUE. Thus, these operations may result in signal SSTChange or
EndOfStream.

Mesa Pup Package Functional Specification 37

Note: When the SIGNALs SSTChange or EndOfStream are generated, nextIndex should
be equal to 0. In the case of GetWord if nextIndex = 1, the caller is responsible for
processing the "half-word".

Stream.PutByte: PROCEDURE [sH: Stream.Handle, byte: Stream.Byte];

Stream.PutChar: PROCEDURE [sH: Stream.Handle, char: CHARACTER];

Stream.PutWord: PROCEDURE [sH: Stream.Handle, word: Stream.Word];

The PutByte and PutChar operations transmit the next Byte or CHARACTER to the medium.
They are equivalent to a call on Stream.PutBlock, specifying a Block containing one byte. The
PutWord operation transmits the next Word to the medium. This procedure is equivalent to call
on Stream.PutBlock, specifying a Block containing AltoDefs.BytesPerWord bytes. These output
operations specify endPhysicalRecord = FALSE.

Stream.SendNow: PROCEDURE [sH: Stream.Handle];

This operation flushes the stream sequence; it guarantees that all information previously output (by
means of PutBlock, PutByte, PutChar, PutWord or SetSST) will actually be transmitted to
the medium (perhaps asynchronously). This procedure is equivalent to a call on Stream.PutBlock,
specifying a Block containing no bytes and endPhysicalRecord = TRUE (see :A.4). Client
programs which are not concerned with physical record boundaries should nevertheless call
SendNow at appropriate times to ensure that the bytes and changes in SubSequenceType have
actually been sent and are not buffered internally within the stream, awaiting additional output
operations.

Stream.SetSST: PROCEDURE [
sH: Stream.Handle, sst: Stream.SubSequenceType];

This operation causes all subsequent bytes to have the indicated SubSequenceType. Even if the
subsequent sequence of bytes is null (i.e., a call on SetSST is immediately followed by another),
the SubSequenceType change demanded by this call will still be available to the receiver of the
stream sequence.

Note: SubSequenceTypes are intended to be used to delineate different kinds of
information flowing over the same stream (e.g. to identify control information, indicate
end-of-file, etc.) The interpretation of a SubSequenceType value is a function of the
particular stream.

Note: A SetSST operation specifying a SubSequenceType identical to the previous
SubSequenceType is a no-op. Otherwise, SetSST always has the side effect of
completing the current physical record, as explained in :A.4.

A.2.3 Attention Flags

The following operation causes an attention flag and an associated byte of data to be transmitted via
the stream facility.

Stream.SendAttention: PROCEDURE [sH: Stream.Handle, byte:Stream.Byte];

Mesa Pup Package Functional Specification 38

Note that neither the attention flag nor the data byte occupy a byte in the stream sequence. They
are out of band signals. Note also that an attention is not necessarily transmitted in sequence, but
may bypass bytes and changes in SubSequenceType which were transmitted before it.

Note: This operation may have the side effect of completing the current physical record, as
explained in :A.4. A client process will typically follow the SendAttention by a
change in SubSequenceType or some recognizable pattern of bytes. This permits the
recipient to identify where the SendAttention occurred.

Note: byte may be used by the client protocol to transmit other information regarding this
attention.

The following operation awaits the arrival of an attention flag.

Stream.WaitForAttention: PROCEDURE [sH: Stream.Handle] RETURNS [Stream.Byte];

When an attention is received on the stream sH, this procedure returns the byte of data associated
with the attention. It is the responsibility of the client program to determine the appropriate action
to take. If more than one attention flag has been sent, these will be queued by the stream. Each
return from a call on WaitForAttention corresponds to precisely one attention sent by
SendAttention.

Note: This operation is usually executed by a different process from that operating upon the
stream. It returns as soon as the attention is received, whether or not all of the bytes
preceding it in the stream have been transferred.

A.2.4 Timeouts

Any of the operations of this section (except SendAttention and WaitForAttention) may fail to
complete within a reasonable amount of time due to external conditions. For example, a stream
operation on a Pup stream may fail because the process at the other end has terminated, aborted, or
ceased to pay attention. In such a case the following signal is generated:

Stream.TimeOut: SIGNAL [nextIndex: CARDINAL];

The parameter of this signal indicates the position within the block of bytes where the next byte
would be placed. This signal may be resumed.

Note: If this signal is RETRY’ed all previously received data may be lost. This is because it is
likely that a stream component is performing internal bufferring (transferring data from
its buffer into the client’s block), and the action of RETRYing the SIGNAL may not tell the
component that it must refill the client’s block. Even if the component was informed of
this fact, it may have discarded data already transferred into the client’s block from its
internal buffer

Caution: A catch phrase for this signal must not attempt any other stream operations using the
same Stream.Handle, for this will corrupt the internal state information maintained for
the stream.

Mesa Pup Package Functional Specification 39

A.3 Creating and Deleting Streams

There are no general operations for creating streams. The reason for this is that the components of
a stream -- i.e., pipelines, transducers, and filters -- must be able to take arbitrary parameters at the
time they are created. It is not possible for the system to specify a general interface for their
creation without either compromising the basic typesafeness of Mesa or constraining the flexibility
and power of client-provided streams. Thus, the create function is implemented on a case-by-case
basis, and clients must therefore refer to documentation for individual stream components for the
correct interface for this operation. In this section, the general style is illustrated by means of a
hypothetical example.

For example, if a utility package implements a transducer to a particular device, it is obligated to
provide a means by which other clients can create instances of that transducer, use them, and later
delete them. Suppose the name of the interface module providing this function is DeviceStream.
Then it would provide the following operation:

DeviceStream.Create: PROCEDURE [--optional parameters--]
RETURNS [Stream.Handle, --optional other results--];

A client wishing to use the stream interface to access this device would thus call
DeviceStream.Create, then use the Stream.Handle returned from it as a parameter to the
stream operations of this chapter.

Similarly, a security package providing, say, an encryption facility might implement this by means of
a filter for a stream. In this case, the interface might be called EncryptionFilter, and it would
provide the following operation:

EncryptionFilter.Create: PROCEDURE [Stream.Handle, --optional other
parameters--] RETURNS [Stream.Handle, --optional other results--];

The client could easily couple an instance of this filter with the transducer above. This is done by
calling EncryptionFilter.Create, passing as a parameter the Stream.Handle returned from
DeviceStream.Create. Then the Stream.Handle returned from EncryptionFilter.Create
would be the one used in GetBlock, PutBlock, and the other operations of :A.2. The net effect
would be stream components which, on input, read bytes from the device, decrypt them, and pass
them to the client and which, on output, encrypt the bytes supplied by the client and write them on
the device.

In general, creating a filter accepts one Stream.Handle as a parameter and returns another as its
result. Thus, several filters, each implementing a simple transformation, may be concatenated
together to implement a more interesting transformation on the stream. The parameter passed to
each one is the result returned from the adjacent one. Such a concatenation, called a pipeline, is
illustrated in Figure A.1.

Mesa Pup Package Functional Specification 40

Figure A.1

This diagram illustrates how each Stream.Handle returned from a transducer or filter is passed as
parameter to the next adjacent filter, and how the last one is used directly by the client. In
particular, h1 is returned from the procedure which creates Transducer; it is passed to the
procedure which creates Filter B, returning h2. This is passed, in turn, to the next filter, and so
on, until hn is returned and passed to Filter A. Filter A is the last one in the pipeline, and its
Stream.Handle, h, is returned to the client.

Figure A.2 shows the flow of data through the pipeline and the use of the various Stream.Handles
as a result of a client call on Stream.GetBlock (calls on other data transmission operations are
analogous).

Figure A.2

Here, the client calls Stream.GetBlock[h, . . .], which is transformed by the stream interface into
an appropriate call on Filter A. Filter A, in turn, calls Stream.GetBlock[hn, . . .], which is
passed to the next filter in the pipeline, and so on, until eventually a call is made on
Stream.GetBlock[h2, . . .]. This is transformed into a call on Filter B, which then calls
Stream.GetBlock[h1, . . .], to invoke Transducer, which actually operates the device.

Note that the only difference between a transducer and a filter is that a transducer interfaces to
some device, while a filter interfaces to another stream -- i.e., indirectly to another filter or
transducer.

Note also that the client can construct a pipeline "manually," by tediously assembling the various
components, instantiating each of them, and binding them together. However, a pipeline can also
be presented as an integrated package, already assembled. For example, the two components
described above may have been assembled into a pipeline called EncryptingDeviceStream.
This pipeline might then provide the following two operations, which clients can call to create and
delete an instance of this pipeline:

EncryptingDeviceStream.Create: PROCEDURE [--optional parameters--]
RETURNS [Stream.Handle, --optional other results--];

EncryptingDeviceStream.Delete: PROCEDURE [Stream.Handle, --optional other
parameters--] RETURNS [--optional results--];

Transducer<<<< Filter A Filter B

h1h2hnh
Client

Transducer<<<< Filter A Filter B

h1h2hnh
GetBlock[h, . . .] GetBlock[hn, . .] GetBlock[h1, . .] Device

Operation

Mesa Pup Package Functional Specification 41

The client of such a stream would merely invoke these procedures to create and destroy the stream
without having to bother about finding and putting together the individual components.

A.4 Control over Physical Record Characteristics

Most of the time, the client will not wish to know about how the data comprising a stream sequence
is divided into physical records for recording or transmission. For some applications, however, this
is of vital importance. The stream facility has been designed so that the details of the physical
encoding can be ignored when desired, or completely known and controlled when that is necessary.
On output, complete control of the placement of bytes in physical records can be achieved for most
media. On input, complete information is available about how the bytes were arranged in physical
records.

Note: These facilities to control the placement of bytes on physical records are not meant to be
used as a means of transmitting information. In particular, a transducer might suppress
or generate empty physical records and will necessarily partition oversize "physical"
records into smaller ones. Any filter may rearrange (or completely obliterate) physical
record boundaries. Documentation for the individual transducer or filter and for the
individual transmission or storage medium should be consulted for full details.

The output and input cases will be treated separately. On output, bytes will be placed in turn into
the same physical record until one of the following events occurs:

1) The SendNow procedure is called; it has the side effect of causing the current record
to be sent. The next byte output will begin a new physical record. Thus, this is the main
mechanism for controlling physical record size on output.

2) A PutBlock procedure is called with an endPhysicalRecord parameter of TRUE.
After the transmission of this block of bytes, the current physical record is ended. If, at this
point, the physical record is at its maximum size (see (4) below), an empty record will not
be transferred.

3) A SetSST procedure has been called. The first byte of a new subsequence always
begins a new record and has the new SubSequenceType. This may cause the previous
record to be sent.

4) Enough bytes have been output to fill the physically maximal record. At this point the
record will be written and a new record started. This maximum number is a function of
the medium being written, hence documentation concerning the medium must be consulted
to determine this value.

5) Some other device-dependent event, such as a timeout, occurs. In this case, a buffer may
be flushed automatically. Details are documented with individual transducers.

On input, bytes will be placed in turn into the record until one of the following events occurs:

1) The end of the physical record is reached, the block of bytes described in the Block
record is not exhausted, and either of the input options endPhysicalRecord or
signalLongBlock is TRUE.

If signalLongBlock is TRUE, the following signal is generated:

Mesa Pup Package Functional Specification 42

Stream.LongBlock: SIGNAL [nextIndex: CARDINAL];

This signal indicates in nextIndex the position within the block of bytes where the next
byte will be placed. If it is resumed, transmission continues as if it had not been generated.

Caution: A catch phrase for this signal must not attempt any other stream operations using
the same Stream.Handle, for this will corrupt the internal state information
maintained for the stream.

If endPhysicalRecord is TRUE, the input is terminated, indicating the number of bytes
transferred and why = endPhysicalRecord. This applies whether or not a signal was
generated.

2) The end of the physical record is reached at the same time that the block of bytes is
exhausted. In this case, no signal is generated. If the input option endPhysicalRecord
is TRUE, then why is set to endPhysicalRecord; otherwise, it is set to normal.

3) The block of bytes is exhausted, the end of the physical record has not been reached,
and the input option signalShortBlock has the value TRUE. At this time the input is
terminated (without losing the subsequent bytes of the physical record, which are still
available for reading by subsequent GetBlock), and the signal Stream.ShortBlock is
generated.

Stream.ShortBlock: ERROR;

This signal may not be resumed.

The easiest approach is usually to establish a Block longer than the longest expected physical
record and specify input options signalLongBlock = FALSE, signalShortBlock = TRUE and
endPhysicalRecord = TRUE. At this point the transmission will cease with the entire contents
of the physical record in the block of bytes, and the number of bytes transmitted will be returned as
the result of the GetBlock procedure. In this way a signal will be generated only under unusual
circumstances.

A.5 Transducers, Filters, and Pipelines

The stream package is designed so that clients can implement their own stream components -- i.e.,
their own transducers, filters, and pipelines. The implementor of one of these has three different
obligations to fulfill. First, he must design an interface (i.e., Mesa DEFINITIONS module) in the style
described in :A.3, by which his clients create instances of that stream component. Such an
interface (together with its accompanying implementation modules) is called a stream component
manager. Second, he must provide a functional specification describing this interface and the
detailed behavior of the stream component, including any specific signals, errors, parameters, etc.,
which it defines. Third, he must implement the actual component, if it is a filter or transducer.
(Pipelines are assumed to be composed of previously implemented components which already have
their own component managers and documentation.)

This section describes the standards, data types, and operations to be used in defining a new stream
component. In :A.5.1, the precise interface which each instance of each filter or transducer must
provide is specified. In :A.5.2, a typical method for implementing a filter or transducer manager is
outlined.

Mesa Pup Package Functional Specification 43

A.5.1 Representing Filters and Transducers

At run time, a filter or transducer is represented by six procedures which execute in a common
context to provide the data transmission operations of the that filter or transducer. Descriptors for
these procedures are stored in a record defined by the stream package, pointed to by a
Stream.Handle.

Stream.Handle: TYPE = POINTER TO Stream.Object;

Stream.Object: TYPE = RECORD [
options: Stream.InputOptions,
get: Stream.GetProcedure,
put: Stream.PutProcedure,
setSST: Stream.SetSSTProcedure,
sendAttention: Stream.SendAttentionProcedure,
waitAttention: Stream.WaitAttentionProcedure,
delete: Stream.DeleteProcedure];

A client call on a stream operation is normally converted by the stream package into a call on the
appropriate procedure named in the Stream.Object pointed to by the Stream.Handle parameter
of that operation. Thus, it is the responsibility of the implementor of each filter and transducer to
exactly satisfy the specifications of the stream package. The stream package assists in this task by
utilizing the Mesa typechecking machinery and by defining the uniform interface encapsulated by
Stream.Object.

In this section, the meanings of the fields of Stream.Object are enumerated.

The options field specifies the currently valid input options for the stream.

options: Stream.InputOptions,

This field is set by Stream.SetInputOptions and its current value is passed as a parameter to the
get procedure described below. Implementors of filters and transducers need not be concerned
with maintaining or inspecting this field.

The get field specifies the input procedure of the transducer or filter.

get: Stream.GetProcedure,

Stream.GetProcedure: TYPE = PROCEDURE [
sH: Stream.Handle, block: Stream.Block, options: Stream.InputOptions]
RETURNS [bytesTransferred: CARDINAL,
why: Stream.CompletionCode, sst: Stream.SubSequenceType];

This procedure is called by GetBlock, GetByte, GetChar, and GetWord. It must implement
the semantics of GetBlock as described in :A.2.1 and :A.4. In particular, it must terminate
according to the specifications of that section and must generate the signals SSTChange,
LongBlock, ShortBlock, EndOfStream, and TimeOut (:A.2.4) as required.

Mesa Pup Package Functional Specification 44

Note: In a filter, the body of a GetProcedure will typically contain one or more calls on
GetBlock, GetByte, GetChar, or GetWord with a Stream.Handle parameter
pointing to the next stream component in the pipeline (i.e., the parameter passed at the
time this filter was created). In a transducer, the body of a GetProcedure will typically
have calls on input operations for the specific device being supported.

The put field specifies the output procedure provided by the filter or transducer.

put: Stream.PutProcedure,

Stream.PutProcedure: TYPE = PROCEDURE [
sH: Stream.Handle, block: Stream.Block, endPhysicalRecord: BOOLEAN];

This procedure is called by PutBlock, PutByte, PutChar, PutWord, and SendNow. It must
implement the semantics of PutBlock as described in :A.2.1 and :A.4. In particular, it must
regard the parameter endPhysicalRecord = TRUE as an indication to flush any output buffers
and actually initiate the physical transmission of information. It may suppress output requests
specifying a block of no bytes provided that there is no previous output, change in
SubSequenceType, or attention flag still waiting to be sent. This procedure may generate the
signal TimeOut if necessary.

Note: In a filter, the body of a PutProcedure will typically contain one or more calls on
PutBlock, PutByte, PutChar, PutWord, or SendNow with a Stream.Handle
parameter pointing to the next stream component in the pipeline (i.e., the parameter
passed at the time this filter was created). In a transducer, the body of a
PutProcedure will typically have calls on output operations for the specific device
being supported.

The setSST field specifies the procedure to change the current SubSequenceType of the
output side of the filter or transducer.

setSST: Stream.SetSSTProcedure,

Stream.SetSSTProcedure: TYPE = PROCEDURE [
sH: Stream.Handle, sst: Stream.SubSequenceType];

This procedure is called by Stream.SetSST and must conform to the semantics of that operation as
described in :A.2.2. In particular, it should be a no-op if the new SubSequenceType is the
same as the old one. Otherwise, it should have the effect of completing the current physical record
(as if a call on Stream.SendNow had been made immediately before).

Note: A call on setSST may have the effect of changing the internal state of the stream
component, or in the case of a filter, it may result in a call to SetSST to the next stream
component in the pipeline, or both.

The sendAttention and waitAttention fields specify the two procedures implementing the
sending of and waiting for attention flags in the transducer or filter.

sendAttention: Stream.SendAttentionProcedure,
waitAttention: Stream.WaitAttentionProcedure,

Mesa Pup Package Functional Specification 45

Stream.SendAttentionProcedure: TYPE = PROCEDURE [
sH: Stream.Handle, byte: Stream.Byte];

Stream.WaitAttentionProcedure: TYPE = PROCEDURE [sH: Stream.Handle]
RETURNS [Byte: Stream.Byte];

These two procedures will be called by Stream.SendAttention and Stream.WaitForAttention,
respectively, and they must conform to the semantics of those operations as specified in :A.2.3.

Note: In a filter, it is not always necessary to implement these two procedures (or any others of
this section) if all they do is call the corresponding operation in the next stream
component in the pipeline. Instead, it is satisfactory to copy the procedure descriptor
from one Stream.Object to the other. This has the effect of making the call pass
"straight through" the filter with no overhead.

The delete field specifies a procedure to be used during deletion of a filter or transducer.

delete: Stream.DeleteProcedure,

Stream.DeleteProcedure: TYPE = PROCEDURE [sH: Stream.Handle];

This procedure provides a convenient way of deleting an instance of a transducer or filter once it is
no longer needed; an example of its use is given in the next section. The parameter sH is provided
for convenience and may be used for whatever purpose is useful.

A.5.2 Stream Component Managers

Implementors of stream components may create instances of them by whatever means is most
appropriate to their requirements. A particular filter or transducer may, for example, consist of one
module, a collection of modules, a local frame used in conjuction with the Mesa PORT facility, or
some other construct. Moreover, it may exist on a given machine in only one or a limited number
of copies which are regarded as "serially reusable" resources (for example, a transducer to a
particular device, of which there is only one or a limited number on a machine), or it may exist in
as many copies as appropriate. It is the responsibility of the stream component manager to create
(or control access to) instances of that stream component, as appropriate. When access is granted,
the component manager must also provide a pointer to a Stream.Object containing procedure
descriptors for that component.

The typical way of implementing a component is as a single module which is instantiated at run-
time by the Mesa NEW statement. Declared within this module would be the procedures of the
component plus a Stream.Object containing their procedure descriptors. The component manager
executes NEW to create a new instance of the stream, followed by START to initialize it (possibly
passing parameters) and to obtain a pointer to its Stream.Object.

The component manager deletes instances of stream components by calling FrameDefs.UnNew or
FrameDefs.SelfDestruct.

FrameDefs.UnNew (the inverse of NEW) takes a GlobalFrameHandle as its parameter.
Component managers can determine the value of this parameter by calling
FrameDefs.GlobalFrame, which takes a procedure descriptor of a procedure residing in the
component to be deleted as a parameter, and returns a pointer to its global frame.
FrameDefs.UnNew frees space occupied by the component’s global frame.

Mesa Pup Package Functional Specification 46

Caution: The client must ensure that there are no outstanding references to the component module
being deleted -- i.e., no procedure descriptors or pointers which might be used. In
addition, any process waiting for attentions (i. e., a process which has called but not
returned from WaitForAttention) must be aborted and allowed to exit from the
module. Failure to observe this caution will result in unpredictable effects. In particular,
FrameDefs.UnNew must be called from outside the module being deleted.

FrameDefs.SelfDestruct sets the internal state of the process so that the module in which the
calling procedure is declared will be unnewed after the calling procedure returns to its caller.

This operation has the effect of placing a "self-destruct" mechanism in the module which will take
effect after the calling process exits from it. Thus, it is a means of deleting the stream component
from within that component.

Caution: As above, the client must ensure that there are no references to the module currently in
use by any process.

The typical use of FrameDefs.SelfDestruct will be from a procedure named in the delete entry
of the Stream.Object. The component manager will call h.delete[h] (where h is a
Stream.Handle). This procedure will perform the necessary finalization, such as flushing buffers,
closing files or connections, releasing storage and resources, etc. It will then call
FrameDefs.SelfDestruct and finally return to the component manager. After this return, the
module representing this instance of the stream component will be deleted and space occupied by
the stream’s global frame will be freed.

