
Copyright c Xerox Corporation 1980

Inter-Office Memorandum

To Mesa Users Date September 26, 1980

From Dick Sweet Location Palo Alto

Subject Mesa 6.0m Change Summary Organization SDD/SS/Mesa

XEROX

Filed on: [Igor]<AlphaMesa>Doc>Summary60m.bravo

This memo outlines changes made in Mesa since the last alpha update (Mesa 6.0u, July 11, 1980).
These changes will shortly be incorporated into the Mesa 6.0 Change Summary to correctly reflect
the differences between Mesa 5.0 and Mesa 6.0. This document also includes a list of ARs fixed
since 6.0u.

Language

The language has been extended in the following areas:

Monitor Locks and Condition Variables in Records

When constructing a record, any fields not mentioned (and not having defaults) are not guaranteed
to have known values after the construction. In particular, they are not guaranteed to have their
previous values. This poses a problem in types containing "hidden" fields such as the queues of
processes in MONITORLOCKs and CONDITIONs, and with a few other types (see the attached memo
from Ed Satterthwaite). To protect users from inadvertantly overwriting these fields, the Mesa 6
compiler does not allow updating of variables of these types, or of any composite type containing a
field of these types. This does not mean that MONITORED RECORDs are read-only; they can be
assigned to field by field. However, it is illegal to write a constructor for an entire MONITORED

RECORD except at the point of declaration (or allocation, by the NEW operator).

Sequences

A sequence is an indexable collection of objects, all of which have the same type. In this respect, a
sequence resembles an array; however, the length of a sequence is not specified at compile time.
Consider some examples of "faked" sequences from Mesa 5.

. . .
ARec1: TYPE = RECORD [

common: . . .

count: CARDINAL, -- number of elements

body: ARRAY [0..0) OF INTEGER];
. . .
ARec2: TYPE = RECORD [

Mesa 6.0m Change Summary 2

common: . . .

body: ARRAY [0..0) OF INTEGER];

ar1: POINTER TO ARec1;

ar2: POINTER TO ARec2;

The record ARec1 contains a count of the number of INTEGERs in body. The number of elements in
an ARec2 is not contained in the record; it is kept elsewhere, say in a global variable, or computed
from the values of common fields. Note that these "variable length" arrays occur only at the end of
records (they obviously couldn’t occur in the middle). Also, since you aren’t telling the compiler
how many elements are present in a given ARec*, it doesn’t make sense to declare one; you obtain
storage from your favorite allocator and access the elements using a pointer.

In Mesa 6, these constructs are built into the language. A SEQUENCE occurs as the last field of a
record. It optionally has a count of elements associated with the indexable portion. The following
Mesa 6 declarations are roughly equivalent to the Mesa 5 ones above:

. . .
SRec1: TYPE = RECORD [

common: . . .

body: SEQUENCE count: CARDINAL OF INTEGER];
. . .
SRec2: TYPE = RECORD [

common: . . .

body: SEQUENCE COMPUTED CARDINAL OF INTEGER];

sr1: POINTER TO SRec1;

sr2: POINTER TO SRec2;

Variables of type SRec* must also be dynamically allocated at runtime, since they are of variable
length. However, the NEW operator of Mesa 6 knows how to deal with sequences. Let z be an
MDSZone, n a CARDINAL. The following are legal statements:

(1) sr1 _ z.NEW [SRec1[n]]; -- sets sr1.count to n

(2) sr2 _ z.NEW[SRec2[n]];

(3) sr1 _ z.NEW[SRec1[n] _ [common: . . ., body: NULL]];

In statement (1), sufficient space is allocated to contain the common part of an SRec1 plus n
elements (INTEGERs) in the sequence part. Additionally, the number of elements, count, is initialized
to the value n. Thereafter, the value of count is readonly. The only way to set the length field of a
sequence is by the NEW operator. In statement (2), space is allocated for an SRec2 with n elements,
but there is no count field to initialize. Of course, in any of these statements, n could be replaced
by any constant or expression of type CARDINAL. In statement (3), the common fields are also set by
an initializing constructor. Note that the "array" part of the sequence is voided in the constructor.
In Mesa 6, there is no provision for writing a constructor for the variable length portion of a
SEQUENCE. One must write explicit code to initialize it.

Mesa 6.0m Change Summary 3

To access an element of the sequence, one attaches an indexing expression to the pointer to the
record containing the sequence. This is analogous to the treatment of type STRING (which is
essentially a sequence of the Mesa 6 variety).

i _ sr1[j];
sr2[j] _ i;

If one compiles a module with bounds checking enabled (/b to the compiler), code will be
generated when accessing sr1[j] to assure that j IN [0..sr1.count).

Alternative, on may write (analogous to saying s.text[i] for a STRING):

i _ sr1.body[j];
sr2.body[j] _ i;

The attached memo from Ed Satterthwaite discusses the use and declaration of SEQUENCEs in
considerable detail.

Formatter

The Formatter is a program for transforming Mesa source files into a standard format. It uses the
Compiler’s scanner and parser to determine nesting, and hence can be used only on syntactically
correct programs. Attached is the Appendix from the Mesa 6 Users Handbook (in progress) that
explains the use of the Formatter.

Binder

The binder now allows the association between file names and module or configuration names to be
given on the command line, in much the same way as the compiler. For example, the command
line

>Binder.bcd Tajo[TestPilot: UnpackagedTestPilot]

will bind Tajo.config using the previously bound configuration TestPilot that is stored in the
file named UnpackagedTestPilot.bcd. One can best think of the the text inside the brackets
as defining (augmenting/replacing) a DIRECTORY statement at the beginning of the configuration.

System

All of the system interfaces have been recompiled for 6.0m. This means that all modules must be
recompiled/rebound to use the new Mesa.image. No source changes are necessary (except for
users of FTPDefs, as previously announced; see below).

To track development in other systems, minor revisions have been made in the Development
Software interfaces Format, Inline, Runtime, System, and Time.

RunMesa

RunMesa has been upgraded to included Alto microcode for Pup checksums, IEEE floating point,
and HBlt (Griffin). This microcode is loaded with the XMesa overflow microcode on Altos with
the 2K ROM or 3K RAM option. Users who have been loading microcode for these functions need
no longer do so. This change affects Alto IIs only.

Mesa 6.0m Change Summary 4

Debugger

In addition to many bug fixes, the following changes and additions have been made:

Source Menus

Attach

The Attach menu command has been added to the Source Ops source menu; it causes the
Debugger to ignore the creation date of the current source file when setting breakpoints or
positioning to a source line. Because this defeats type checking, this command should be used with
caution. If, after invoking this command, the Debugger sets breakpoints in strange places, chances
are that the source file does not match the object in the system you are debugging.

Commands

ReSet context [confirm]

This command now requires two keystrokes, to avoid conflict with the ReMote debuggee
command (not yet implemented on the Alto).

Program-not-started Indication

When the debugger refers to a program module, it usually gives the address of its global frame, e.g
(G: nnnnnB). If the module has not been started, the debugger now prints a tilde (~) after the B.
If a module has not been started, the user should not believe and should not modify the global
variables of that module.

Command Central

The options window has changed format and allows inclusion of default switch settings.

Performance Monitor

The Performance Monitor has been upgraded to Mesa 6.0. It is the same as in Mesa 5.0 except that
debugger breakpoint numbers are used for NodeIDs. Upgraded documentation will be
forthcoming.

Xfer Counter

The Xfer Counter has been upgraded to Mesa 6.0. A new mode of operation has been added to
gather information on the flow of control between groups of modules. Documentation for the Xfer
Counter is attached.

Pup

PupDefs

UseAltoChecksumMicrocode has been added to speed up processing if you are running on an
Alto II with the 2K ROM or 3K RAM option. The overflow microcode loaded into the RAM by
RunMesa.run includes the necessary additions. (Beware if you load your own microcode.)

Mesa 6.0m Change Summary 5

Subtle implementation changes

GetPupAddress will no longer return an address for a dying net. EnumeratePupAddresses
will now pass the client-supplied procedure addresses on dead or dying nets, but only after
processing all the addresses on nets that are reachable. (It used to skip addresses on unreachable
nets.)

The byte stream internals have been reworked to eliminate several unpleasant delays while opening
and closing connections. It is now possible to open a connection, send a thousand words, and close
the connection in less than a second. (Since Close UnNews three module instances, it will take
longer if you have a lot of active global frames.) A byproduct of this cleanup is that SendNow
will send an empty aData packet to request an acknowledgment even if the previous SendBlock
happened to end on a convenient packet boundary.

Bug fixes

The following change requests are closed by this release:

5005 Delays when creating byte stream
5093 NameLookup vs dying nets
5098 Change priority of interrupt routine in EthernetDriver(s)

Ftp

FTPDefs

The arguments to the (client supplied) procedure passed to FTPInventoryDumpFile have been
extended to allow proper processing of create dates. It is now compatable with the procedure
passed to FTPEnumerateFiles.

Bug fixes

The following change requests are closed by this release:

3987 StringBoundsFault from TimeExtras.PacketTimeFromString
4444 FTPInventorryDumpFile needs create date
4763 Troubles if forget to call IdentifyNextRejectedRecipient
5152 TimeExtras.PacketTimeFromString zone screwup
5198 Config with server and user things

Distribution:
Mesa Users
Mesa Group
SDSupport

Inter-Office Memorandum

To Mesa Users Date September 25, 1980

From Ed Satterthwaite Location Palo Alto

Subject Mesa 6.0m Compiler Changes Organization PARC/CSL

XEROX

Filed on: [Igor]<AlphaMesa>Compiler60m.bravo (and .press) DRAFT

This memo documents additions and changes to the Mesa 6 language since the last alpha release
(Mesa 6.0u, July 11, 1980). For a complete description of the differences between the Mesa 5 and
Mesa 6 languages, including the material below, see [Igor]<AlphaMesa>Compiler60.bravo (or .press).

Sequences

A sequence in Mesa is an indexable collection of objects, all of which have the same type. In this
respect, a sequence resembles an array; however, you need not specify the length of the sequence
when its type is declared, only when an instance of that type is created. Mesa 6 provides sequence-
containing types for applications in which the size of a dynamically created array cannot be
computed statically. Note, however, that only a subset of a more general design for sequences has
been implemented. The contexts in which sequence types may appear are somewhat restricted, as
are the available operations on them. We believe that the subset provides enough functionality to
accomodate most uses of sequences, but you will encounter a number of annoying and sometimes
inconvenient restrictions that you must take note of in your Mesa 6 programming.

One can view a sequence type as a union of some number of array types, just as the variant part of
a variant record type can be viewed as a union of some (enumerated) collection of record types.
Mesa adopts this view, particularly with respect to the declaration of sequence-containing types, with
the following consequences:

A sequence type can be used only to declare a field of a record. At most one such field may
appear within a record, and it must occur last.

A sequence-containing object has a tag field that specifies the length of that particular object
and thus the set of valid indices for its elements.

To access the elements of a sequence, you use ordinary indexing operations; no discrimination is
required. In this sense, all sequences are overlaid, but simple bounds checking is sufficient to validate each access.

Uses of sequence-containing variables must follow a more restrictive discipline than is currently
enforced for variant records. The (maximum) length of a sequence is fixed when the object
containing that sequence is created, and it cannot subsequently be changed. In addition, Mesa 6
imposes the following restrictions on the uses of sequences:

You cannot embed a sequence-containing record within another data structure. You must
allocate such records dynamically and reference them through pointers. (The NEW operation
has been extended to make allocation convenient.)

Mesa 6.0m Compiler Changes 2

You cannot derive a new type from a sequence-containing type by fixing the (maximum)
length; i.e., there is no analog of a discriminated variant record type.

There are no constructors for sequence-valued components of records, nor are such
components initialized automatically.

The following sections describe sequences in more detail.

Defining Sequence Types

You may use sequence types only to declare fields of records. A record may have at most one such
field, and that field must be declared as the final component of the record:

Syntax

VariantPart ::= . . .
 | PackingOption SEQUENCE SeqTag OF TypeSpecification

SeqTag ::= identifier : Access BoundsType
 | COMPUTED BoundsType

BoundsType ::= IndexType

TypeSpecification ::= . . .
 | TypeIdentifier [Expression]

The TypeSpecification in VariantPart establishes the type of the sequence elements. The
BoundsType appearing in the SeqTag determines the type of the indices used to select from those
elements. It is also the type of a tag value that is associated with each particular sequence object to
encode the length of that object. For any such object, all valid indices are smaller than the value of
the tag. If T is the BoundsType, the sequence type is effectively a union of array types with the
index types

T[FIRST[T] .. FIRST[T]), T[FIRST[T] .. SUCC[FIRST[T]]), ... T[FIRST[T] .. LAST[T])

and a sequence with tag value v has index type T[FIRST[T]..v). Note that the smallest interval in this
union is empty.

If you use the first form of SeqTag, the value of the tag is stored with the sequence and is
available for subscript checking. In the form using COMPUTED, no such value is stored, and no
bounds checking is possible.

Examples:

StackRep: TYPE = RECORD [
 top: INTEGER _ �1,
 item: SEQUENCE size: [0..LAST[INTEGER]] OF T]

Number: TYPE = RECORD [
 sign: {plus, minus},
 magnitude: SELECT kind: * FROM

 short => [val: [0..1000)],
 long => [val: LONG CARDINAL],
 extended => [val: SEQUENCE length: CARDINAL OF CARDINAL]
 ENDCASE]

Mesa 6.0m Compiler Changes 3

WordSeq: TYPE = RECORD [SEQUENCE COMPUTED CARDINAL OF Word]

The final example illustrates the recommended method for imposing an indexable structure on raw storage.

If S is a type containing a sequence field, and n is an expression with a type conforming to
CARDINAL, both S and S[n] are TypeSpecifications. They denote different types, however, and the
valid uses of those types are different, as described below.

MACHINE DEPENDENT Sequences

You may declare a field with a sequence type within a MACHINE DEPENDENT record. Such a field
must come last, both in the declaration and in the layout of the record, and the total length of a
record with a zero-component sequence part must be a multiple of the word length. If you
explicitly specify bit positions, the size of the sequence field (if given) must describe a zero-length
sequence; i.e., it must account for just the space occupied by the tag field (if any). The CharSeq
example below shows how to deal with explicit positions and computed tags.

Examples:

Node: TYPE = MACHINE DEPENDENT RECORD [
 info (0: 0..7): CHARACTER,
 sons (0: 8..15): SEQUENCE nSons (0: 8..15): [0..256) OF POINTER TO Node]

CharSeq: TYPE = MACHINE DEPENDENT RECORD [
 length (0): CARDINAL,
 char (1): PACKED SEQUENCE COMPUTED CARDINAL OF CHARACTER]

Allocating Sequences

If S designates a record type with a final component that is a sequence, S[n] is a type specification
describing a record with a sequence part containing exactly n elements. The expression n must have
a type conforming to CARDINAL. Its value need not be a compile-time constant; however, you can
use specifications of this form only to allocate sequence-containing objects (as arguments of NEW) or
to inquire about the size of such objects (as arguments of SIZE). In particular, you cannot use S[n]
to define or construct a new type or to declare a variable, even for constant n.

The value of the expression SIZE[S[n]] has type CARDINAL and is the number of words required to
store an object of type S having n components in its sequence part.

The value of the expression z.NEW[S[n]] has type POINTER TO S (or LONG POINTER TO S or REF S,
depending upon the type of the zone z). The effect of its evaluation is to allocate SIZE[S[n]] words
of storage from the zone z and to initialize that storage as follows:

Any fields in the common part of the record receive their default values.

The sequence tag field receives the value SUCCn[FIRST[T]], where T is the type of that field.

The elements of the sequence part have undefined values.

To supply initial values for the fields in the common part, you may use a constructor for type S in
the call of NEW. There are currently no constructors for sequence parts, however, and you must
void the corresponding field. In any case, you must explicitly program any required initialization of
the elements of the sequence part. In Mesa 6, this is true even if the element type has non-NULL

default value.

Mesa 6.0m Compiler Changes 4

Examples:

ps: POINTER TO StackRep _ z.NEW[StackRep[100]]; -- s.top = �1

pn: POINTER TO Node _ z.NEW[Node[degree[c]] _ [info: c, sons: NULL]]

pxn: POINTER TO extended Number _ z.NEW[extended Number[2*k]]

Note that n specifies the maximum number of elements in the sequence part and must conform to
CARDINAL no matter what BoundsType Ti appears in the SeqTag. The value assigned to the tag

field is SUCCn[FIRST[Ti]]. A bounds fault occurs if this is not a valid value of type Ti, i.e., if n >
cardinality(Ti), and you have requested bounds checking.

If FIRST[Ti] = 0, SUCCn[FIRST[Ti]] is just n, i.e., the interpretation of the tag is most intuitive if Ti is
a zero-origin subrange. Usually you will specify a BoundsType (e.g., CARDINAL) with a range that
comfortably exceeds the maximum expected sequence length. If, however, some maximum length
N is important to you, you should consider using [0..N] as the BoundsType; then the value of the
tag field in a sequence of length n (n < N) is just n and the valid indices are in the interval [0..n).

Operations on Sequences

You can use a sequence-containing type S only as the argument of the type constructor POINTER TO

(or REF). Note that the type of z.NEW[S[n]] is POINTER TO S (not POINTER TO S[n]). If the type of
an object is S, the operations defined upon that object are

ordinary access to fields in the common part

readonly access to the tag field (if not COMPUTED)

indexing of the sequence field

constructing a descriptor for the components of the sequence field (if not COMPUTED).

There are no other operations upon either type S or the sequence type embedded within S. In
particular, you cannot assign or compare sequences or sequence-containing records (except by
explicitly programming operations on the components).

Indexing: You may use indexing to select elements of the sequence-containing field of a record by
using ordinary subscript notation, e.g., s.seq[i]. The type of the indexing expression i must conform
to the BoundsType appearing in the declaration of the sequence field and must be less than the
value of the tag, as described above. The result designates a variable with the type of the
sequence’s elements. A bounds fault occurs if the index is out of range, the sequence is not
COMPUTED, and you have requested bounds checking.

By convention, the indexing operation upon sequences extends to records containing sequence-
valued fields. Thus you need not supply the field name in the indexing operation. Note too that
both indexing and field selection provide automatic dereferencing.

Examples:

ps^.item[ps.top] ps.item[ps.top] ps[ps.top] -- all equivalent

Descriptors: You may apply the DESCRIPTOR operator to the sequence field of a record; the result is
a descriptor for the elements of that field. The resulting value has a descriptor type with index and
component types and PACKED attribute equal to the corresponding attributes of the sequence type.
By extension, DESCRIPTOR may be applied to a sequence-containing record to obtain a descriptor for
the sequence part. The DESCRIPTOR operator does not automatically dereference its argument.

Mesa 6.0m Compiler Changes 5

You cannot use the single-argument form of the DESCRIPTOR operator if the sequence is COMPUTED.
The multiple-argument form remains available for constructing such descriptor values explicitly (and
without type checking).

In any new programming, you should consider the following style recommendation: use sequence-containing types for
allocation of arrays with dynamically computed size; use array descriptor types only for parameter passing. This style will
become mandatory in the safe subset of Cedar Mesa.

Examples:

DESCRIPTOR[pn^] DESCRIPTOR[pn.sons] -- equivalent

String Bodies and TEXT

The type StringBody provided by previous versions of Mesa illustrates the intended properties and
uses of sequences. For compatibility reasons, it has not been redefined as a sequence; the
declarations of the types STRING and StringBody remain as follows:

STRING: TYPE = POINTER TO StringBody;

StringBody: TYPE = MACHINE DEPENDENT RECORD [
 length (0): CARDINAL _ 0,
 maxlength (1): --READONLY-- CARDINAL,
 text (2): PACKED ARRAY [0..0) OF CHARACTER]

The operations upon sequence-containing types have, however, been extended to StringBody so that
its operational behavior is similar. In these extensions, the common part of the record consists of
the field length, maxlength serves as the tag, and text is the collection of indexable components
(packed characters). Thus z.NEW[StringBody[n]] creates a StringBody with maxlength = n and
returns a STRING; if s is a STRING, s[i] is an indexing operation upon the text of s, DESCRIPTOR[s^]
creates a DESCRIPTOR FOR PACKED ARRAY OF CHARACTER, etc.

There are two anomalies arising from the actual declaration of StringBody: s.text[i] never uses bounds checking,
and DESCRIPTOR[s.text] produces a descriptor for an array of length 0. Use s[i] and DESCRIPTOR[s^] instead.

Type TEXT

The following types, which describe a structure similar to a StringBody as a true sequence, are
predeclared in Mesa 6. The type TEXT is primarily intended for users of Cedar, where the type REF

TEXT (or REF READONLY TEXT) will replace most current uses of type STRING.

TEXT: TYPE = MACHINE DEPENDENT RECORD [
 length (0): [0..LAST[INTEGER]] _ 0,
 text (1): PACKED SEQUENCE maxLength (1): [0..LAST[INTEGER]] OF CHARACTER]

Restrictions on Assignment

The assignment operations defined upon certain types have been restricted so that variables of those
types can be initialized (either explicitly or by default) when they are created but cannot
subsequently be updated. A variable is considered to be created at its point of declaration or, for
dynamically allocated objects, by the corresponding NEW operation. This restriction is made so that
"invisible" fields such as queues of waiting processes cannot be smashed in a variable that is already
in use.

In Mesa 6, the following types have restricted assignment operations:

Mesa 6.0m Compiler Changes 6

MONITORLOCK

CONDITION

any type constructed using PORT

any type constructed using SEQUENCE

any type constructed using ARRAY in which the component type has a restricted assignment
operation.

any type constructed using RECORD in which one of the field types has a restricted assignment
operation.

Note that the restrictions upon assignment for a type do not impose restrictions upon assignment to
component types. Thus selective updating of fields of a variable may be possible even when the
entire variable cannot be updated; e.g., the timeout field of a CONDITION variable can be updated by
ordinary assignment.

In Mesa 5, when a variable was allocated at runtime, it was necessary to call system procedures to
initialize any fields of types MONITORLOCK or CONDITION. If one uses the Mesa 6 NEW operator, this
initialization takes place automatically as a result of the defaulting mechanism.

Distribution:
Mesa Users
Mesa Group

Formatter 1

Appendix B: Formatter

The Formatter transforms Mesa source files into a standard format. It establishes the horizontal
and vertical spacing of the program in a way which reflects its logical structure.

This appendix describes the formatting rules and the operation of the formatter, including the run-
time options and messages.

Preparing Source Files

See this section in Appendix A: Compiler. Since the formatter uses the scanner and parser of the
compiler in order to determine structure, only syntactically correct programs may be formatted.

Examples

The formatter takes commands only from the command line: follow "Formatter" with a list of
filenames, separated by spaces. Let us consider first a few simple examples:

The command

>Formatter ProgName

will read the file ProgName.mesa, copy its old contents to Formatter.scratch$, and
assuming that it has no syntax errors, will produce a new, plain text, consistently formatted version
of ProgName.mesa.

The command

>Formatter ProgName/-tk

will read the file ProgName.mesa, and produce a two column landscape listing of the module in
the file ProgName.press. The program will be formatted using multiple fonts and faces.

There are numerous other options described below.

Command Line Description

The simplest form of command is just the name of a source file to be formatted. If you supply the
command sourcefile with no period and no extension, the formatter assumes you mean
sourcefile.mesa.

During formatting, the display is turned off and the compiler’s pass-one die is displayed in the
cursor.

The formatter reports the result of each command in Formatter.log with a message having one
of the following forms (each * is replaced by an appropriate number; bracketed items appear only
when relevant):

Formatter 2

file.mesa -- source tokens: *, time: *

Formatting was successful. The source file has been rewritten. The original can be found
in Formatter.scratch$. If several files are formatted in the same run, the original of
only the last file will be in Formatter.scratch$.

file.mesa -- aborted, * errors [and * warnings] on file.errlog

Formatting was unsuccessful. The output of the formatter is undefined if syntax errors exist
in the input file. The original file is undisturbed.

File error

The formatter could not find the specified file.

If any error or warning messages were issued, it brings this to your attention by putting "Type Key"
into the cursor. The formatter will not return to the executive or run another subsystem until you
acknowledge the message. (You can change this behavior by using switches, described below.)

Formatting rules

General Rule

As a general rule, the Formatter changes only the white space in the program. It does not insert or
delete any printing characters. On the other hand, it may insert white space where there previously
was none.

Spacing

Indentation is done by a combination of tabs and spaces in plain-text mode (assuming that a tab
equals eight spaces), and by spaces alone in Bravo formatted mode.

The decision of where to break lines is made independently of the output mode: press file, plain
text, or Bravo looks.

A logical unit will be placed on a single line if it fits.

A simple carriage return in the input file is treated as a space. The occurrence of two consecutive
carriage returns (a blank line) is preserved in the output file. Three or more consecutive returns
(two or more blank lines) result in two blank lines in the output file. Since all Bravo looks are
discarded by the scanner, paragraph leading done with looks is not preserved.

For output files that contain fonts and faces (Press or Bravo) these additional rules apply:

Comments are set in italics.

The names of procedures are bold where they are defined.

Reserved words and predeclared identifiers are in Font 1.

Formatter 3

Font 1 should be smaller than font 0. The fonts Helvetica 10 and Helvetica 8 work well in
Bravo mode. For press files, the formatter choses Helvetica 10 and 8 for portrait listings
and Helvetica 8 and 6 for landscape listings.

In general there are no spaces before or after atoms containing only special characters. Exceptions
to this rule are as follows:

A space or carriage return follows (but does not precede) a comma, semicolon, or colon.

A space precedes a left square bracket when the bracket follows any of the keywords
RECORD, MACHINE CODE, PROCEDURE, RETURNS, SIGNAL, PORT, and PROGRAM.

Spaces surround the left-arrow operator.

The exclamation point (enabling) and equal-greater (chooses) operators are always
surrounded by spaces. This is also true for equal signs used in initialization and for
asterisks used in place of variant record tags.

Some arithmetic operators, depending on their precedence, are surrounded by spaces.

The equivalent of two spaces are used for each level of indenting.

Structure

The formatter determines the indenting structure of the program by the brackets that surround the
bodies of compounds. The brackets include {}, (), [], BEGIN-END, DO-ENDLOOP, and FROM-ENDCASE.
An attempt is made to maximize the amount of information on a page. For example, consider:

Record: TYPE = RECORD [Record: TYPE = RECORD

field: Type, [
field: Type]; field: Type,

field: Type,
];

In both cases, the structure is clear; it is indicated by the indenting, not the placement of the
brackets. The formatter generates the form on the left.

The body of each compound, assuming it does not fit on a single line, is indented one nesting level.
The placement of the brackets depends on the bracket and on its prefix and its suffix. For
example, a loop statement has the following possible prefixes, brackets, and suffixes:

Prefixes Brackets Suffixes
FOR, WHILE DO OPEN

UNTIL, (empty) ENDLOOP ENABLE

The following paragraphs contain a number of examples. They observe the following rules for the
placement of opening and closing brackets:

The opening brackets {, [, FROM, and DO appear on the same line as their prefixes; BEGIN

starts on a new line.

If the remainder of the statement fits on a single line (with its closing bracket), it is placed
there, indented one level. Otherwise, all closing brackets except] and } appear on lines by
themselves. If } is preceded by a semicolon, then it is also placed on a line by itself.

Formatter 4

The statement following a THEN or ELSE is indented one level, unless it fits on the same line. THEN

is on the same line as its matching IF, and ELSE is indented the same amount as IF.

IF bool THEN IF bool THEN statement
BEGIN ELSE {body}
body
END

ELSE IF bool THEN {
BEGIN statement;
body statement}
END

The labels of a SELECT (and its terminating ENDCASE) are indented one level, and the statements a
second level, unless they fit on the same line with the label.

SELECT tag FROM

case => statement;
case =>
 long statement;
ENDCASE

Each compound BEGIN-END, DO-ENDLOOP, or bracket pair is indented one level. When the rules for
IF and SELECT call for indenting a statement, a BEGIN is not indented an extra level.

These rules are not exhaustive, but are intended to give the flavor of the formatter output.

Formatter Switches

Switches allow you to modify command input. A command has the general form

file[/s] {file2[/s] . . .}

where [] indicates an optional part and s is a sequence of switch specifications. A switch
specification is a letter, identifying the switch, optionally preceded by a ’-’ or ’~’ to reverse its sense.
The valid switches are

c compile input file after formatting
g don’t close press file at end of input file
h generate a press file (does not force ~t)
k generate a two-column landscape press file (does not force ~t)
p pause after formatting if there are errors
r terminate formatting and run the program contained in file
t overwrite input file with plain text formatted version (default)
v overwrite input file with bravo looks using fonts 6 and 7
z overwrite input file with bravo looks using fonts 0 and 1

Each switch has a default setting, The command sourcefile is equivalent to
sourcefile/~c~g~h~k~p~rt~u~x~z if you use the standard defaults, i.e., the formatter only
generates a plain text file to replace the original source. Note that the "r" switch changes the
interpretation of file, which should name a subsystem.

If the assignment of switch names does not seem too mnemonic, realize that with the /c switch, all
additional switches are passed to the compiler. For example,

Formatter 5

>Formatter Foo/cj-a

would reformat Foo.mesa and then call

>Compiler Foo/j-a.

You can also change the default setting of any switch by using a global switch. Switches given with
no sourcefile establish the default setting. Unless overridden or reset, that default applies to all
subsequent commands. See, for example, the multiple program Press output example below.

Here is some information about the options:

g If a press file is being generated, it is not closed at the end of the current input file. It is
expected that another file in the command list will also be generating press file output
and a single press file will contain multiple input files. The name of the press file will
be that of the first to which press output is being generated. If the type of press file
(landscape versus portrait) changes, the first will be forced closed and another press file
will be started. Be careful not to generate a press file larger than will be accepted by
your printer.

v, z These switches cause the formatted version of the source file to contain bravo looks.
The "z" switch is intended to be used on a standard Mesa Programming disk that has
Helvetica 10 and Helvetica 8 as fonts 0 and 1. The "v" switch uses fonts 6 and 7 and
produces output that is more convenient for including in documentation. Indenting is
handled slightly differently for bravo format output files. In plain text mode, indentation
is done by a combination of tabs and spaces: the font is assumed to be fixed pitch and
the tab is assumed to be 8 times the width of a space. The z switch causes all
indentation to be done with spaces only. For v, each level of indentation is indicated by
a single tab.

Examples:

foo

Format foo using all the default switch settings (standard or established by a global
switch).

foo/-tk

Formats foo into a two-column, landscape press file, leaving the original source unchanged.

/-tkg ProgA ProgB ProgC ProgD/-g

Produces a two-column, landscape press file ProgA.press that contains listing of all four
programs, each starting on a new page.

The r (run) and p (pause) switches have identical semantics as in the compiler.

Formatter Failures

The message reporting a formatter failure has the following form:

Formatter 6

FATAL FORMATTER ERROR, at id[index]:
 (source text)
Pass = 1, signal = s, message = m

Such a message indicates that the formatter has noticed some internal inconsistency. The formatter
will skip the remainder of the command line if this happens. If you get such a message (or
encounter other formatter problems), you should submit an change request as described in Section
1.8. Be sure to preserve the relevant files and to mention the octal codes identifying the signal (s)
and message (m) in your change request. If you were overwriting the input file (i.e. not saying /-
t) you can find the original contents of the file in Formatter.scratch$.

Inter-Office Memorandum

To Mesa Users Date September 21, 1980

From J. Sandman Location Palo Alto

Subject Control Transfer Counting Tool Organization SDD/SS/Mesa

XEROX

Filed on: [IRIS]<Mesa>Doc>XferCounter.bravo .press DRAFT

This tool for studying the behavior of Mesa programs counts the number of control transfers
(XFERs) to a module and records the time spent executing in a module; it can also be used to gather
information on the flow of control between groups of modules. An XFER is the general control
transfer mechanism in Mesa. The following are all XFERs: procedure calls, returns from procedures,
traps, and process switches.

The system is implemented as a set of commands that can be executed from the Mesa Debugger, a
routine that intercepts all XFERs and collects statistics about them, plus a routine that intercepts
conditional breakpoints for turning the XFER monitoring on and off. Existing Debugger commands
are used to specify where XFER monitoring is enabled, and additional commands are provided for
controlling the counting of XFERs and outputting the results.

This tool is intended to provide a global view of the behavior of a system. With this tool, a user
can identify modules that warrant closer study with other tools such as the Performance Monitor.

Components

CountTool is the component of the tool that lives with user programs built on top of Alto/Mesa.
This configuration contains one module: Counter. It contains the XFER trap handler and a
breakpoint handler. CountTool must be loaded and started in the system it will monitor. This
may be done by including CountTool in the client configuration whose control module imports
and starts XferCountDefs.Counter or by executing the following command to the Alto
Executive:

>Mesa CountTool Client

CountPackage is the component that lives as a tool in the Mesa Debugger. It implements the
basic commands required to enable XFER monitoring and to output measurement results.
CountPackage must be loaded into the Debugger before its commands can be executed. It is
easiest to load it when installing the Debugger by executing the following command to the Alto
Executive:

Xfer Counting Tool 2

>XDebug CountPackage/l

The CountPackage creates a window through which all interactions with the tool take place.

Operation

There are two modes of operation, plain and matrix. Plain mode (the default) simply records the
time spend in a module and the number of XFER to that module. Matrix mode is used to gather
information on the flow of control between groups of modules. Each module is a member of one
of 16 groups. A 16 by 16 matrix of counts and times is maintained by the Counter. The rows of
the matrix are the groups of the source of the Xfer, the from group. The columns of the matrix
are the groups of the destination of the Xfer, the to group.

In plain mode, when XFER monitoring is enabled and a XFER occurs, the trap handler calculates the
time since the last XFER and adds that to the cumulative time for the current module. It then
calculates which module is the destination of the XFER and makes that the current module,
incrementing its count. In matrix mode, the trap handler updates the appropriate element of the
matrix. The XFER handler then completes the XFER, and the user program continues.

The state of XFER monitoring can be controlled by two methods. The first is by setting a
conditional break to be handled by the tool’s breakpoint handler. The second is by calling the
procedures XferCountDefs.StartCounting and XferCountDefs.StopCounting.

When the break handler intercepts a breakpoint, it checks to see if the breakpoint is conditional. If
not, the break handler proceeds to the Debugger. Otherwise, the state of XFER monitoring is
changed and program execution is resumed. A condition of zero turns XFER monitoring on; a
condition of one toggles the state of XFER monitoring; a condition of two turns XFER monitoring
off. Any other condition has no effect.

The procedures XferCountDefs.StartCounting and XferCountDefs.StopCounting provide
an alternative method of enabling XFER monitoring. These procedures may be called from
statements in the user’s program, or they may be called using the Debugger’s interpreter.

Since multiple processes may interact with each other, there is the concept of the tracked process. If
this process is not NIL, only those XFERs that are encountered during execution of the tracked
process are counted; all others are simply resumed. If the tracked process process is NIL, then all
processes contribute to the accumulated data.

The CountPackage determines group membership by reading a file that associates group
numbers with global frames. The easiest way to produce this file is to use the Debugger’s
Display GlobalFrameTable command and then edit the file Debug.log. Append the desired
group number to the line for that module. If no group number is specified for a line, it goes in the
group specified by the previous line. Modules not assigned group numbers are in group zero. For
example:

StringsB, G:173134B, gfi:33B 1 group 1
StringsA, G:173140B, gfi:32B group 1
StreamsC, G:173144B, gfi:31B 2 group 2
StreamsB, G:173150B, gfi:30B group 2
StreamsA, G:173154B, gfi:27B group 2
SegmentsB, G:173160B, gfi:26B 3 group 3
SegmentsA, G:173164B, gfi:25B group 3
OurProcess, G:173170B, gfi:24B 4 group 4

Xfer Counting Tool 3

NonResident, G:173210B, gfi:23B group 4
Modules, G:173214B, gfi:22B group 4
Miscellaneous, G:173220B, gfi:21B group 4
MesaInit, G:173224B, gfi:20B 0 group 0
MesaDebug, G:173234B, gfi:17B group 0

Window and Commands

Interaction with the CountPackage is through its window. There are three subwindows: the
message subwindow, the form subwindow, and the log subwindow. Error messages and warnings
are displayed in the message subwindow. Commands are invoked in the form subwindow. All
output is displayed in the log subwindow and written on Count.log. An illustration of the
window during a sample session is shown in Figure 1.

The elements of the form subwindow are explained below:

Monitor: {off, on}

Turns off/on the tools breakpoint handler. All conditional breakpoints will affect the state
of XFER monitoring when the monitor is on, and will behave like normal conditional
breakpoints when it is off.

Zero Tables!

Zeros out all counts and times.

Condition Breaks!

Makes all non-conditional breakpoints into conditional breakpoints by adding the condition
"1" to them.

Print Tables!

Displays all the statistics for each module in order of increasing global frame table index
(gfi) for plain mode. In matrix mode, it displays the statistics for each nonzero element of
the matrix. The output format of times is sec.msec:usec. May be aborted by typing
^DEL.

Print Sorted!

Displays all the statistics for each module in order of decreasing time or decreasing number
of XFERs depending on the value of Sort by. May be aborted by typing ^DEL. Not
allowed in matrix mode.

Sort by: {count, time}

When set to count, the Print Sorted command displays in order of decreasing number
of XFERs, otherwise it displays in order of decreasing time.

Print Module!

Displays the statistics for the module specified by Module. Not allowed in matrix mode.

Xfer Counting Tool 4

Module:

Specifys the module to the Print Module command. It is either the module’s global
frame table index (gfi), its global frame address (g), or its module name (if the current
configuration contains the desired module).

Set Process!

Tells the Counter to count only those XFERs that are executed by the specified process.
An octal ProcessHandle as obtained from the Debugger’s List Processes command is
acceptable as input to this command. The default case is to track all processes.

Process:

Used by the Set Process command. It contains an octal ProcessHandle as obtained
from the Debugger’s List Processes command. If Process is empty, all processes are
tracked.

Mode: {plain, matrix}

When set to plain (default) the Counter functions as in Mesa 6.0. When set to matrix
the Counter records the flow from one group to another.

Load Matrix!

Using the current selection as a file name, reads the file to input group information.

Show Group!

Using the current selection as a group number, prints the names of the modules belonging
to that group. May be aborted by typing ^DEL.

Limitations

1. Execution Speed: Xfer monitoring slows down the executions of a program considerably since
extra processing is done on every XFER. As a result, interrupt processes that are triggered by clocks
will run relatively more frequently; e.g. the keyboard process being interrupted by the display.

2. Idle Loop Accounting: When no process is running, the Mesa Emulator runs in its idle loop
waiting for a process to become ready. This idle time is charged to the process that was last
running.

3. Time Base: The time base available on the Alto is a 26-bit counter, where the basic unit of time
is 38 microseconds. Thus the counter turns over every 40 minutes, and no individual time greater
than 40 minutes is meaningful. Total times are 32-bit numbers and will overflow after 340 minutes.

4. Overhead Calculation: Due to implementation restrictions and timer granularity, some of the
overhead of processing an XFER trap is incorrectly assigned to the client program instead of the
CountTool. As a result, times must be interpreted as only a relative measure of the time spent in
a module.

5. Counter Sizes: Counts are 32-bit numbers. The maximum total count is 4,294,967,295 XFERs!

6. Memory Requirements: The CountTool requires seven pages of resident memory: two for its
code and five for its frames and tables. This may affect the performance of some systems that use a

Xfer Counting Tool 5

lot of memory, especially on the Alto.

7. CountTool’s break handler acts like a worry mode breakpoint; as a consequence, you may find
you cannot Quit from the Debugger after your session. Use the Kill Debugger command instead.

Getting Started

Outlined below are the steps required for using the measurement tool.

1. obtain the bcd’s for CountTool and CountPackage.

2. install the CountPackage in the Mesa Debugger (version 6.0).

3. start your program executing with the CountTool included.

4. enter the Debugger and set conditional breakpoints to enable monitoring as desired.

5. turn the break handler on by setting the Monitor parameter to on.

6. proceed with program execution.

7. return to the Debugger via control-swat or an unconditional breakpoint.

8. display results with the Print commands.

Xfer Counting Tool 6

Sample Session

The following annotated listing of Debug.log and Count.log should give a fair idea of the use of
the measurement tool. The Debugger was invoked by the Mesa Executive’s Debug command

Alto/Mesa Debugger 6.0m of 5-Sep-80 12:02
25-Sep-80 9:56

You called?
>SEt Root configuration: MesaExec
>SEt Module context: MesaExec
>Break Entry procedure: LoadNew Breakpoint #1. -- Count XFER involved with
loading
>Break Xit procedure: LoadNew Breakpoint #2.
-- the Condition Breaks command will make these conditional breaks
-- now interact with the CountPackage. Condition breaks and set the process
>Proceed [Confirm]
You called?
-- now look at the results
>--Test.map -- file containing group information
-- now set mode to matrix and load group information using Load Matrix command
>Proceed [Confirm]
You called?
-- now look at the matrix
>Kill session [Confirm]

Xfer Counter 6.0 of 19-Sep-80 9:53
25-Sep-80 10:48

Track process: 3647B -- ignore keyboard and interrupt key
Conditionalized breaks

-- Output of Print Tables command with mode = plain
Total Xfers 4,088
Total Time 1.329:842
 Gfi Frame Module #Xfers %Xfers Time %Time
---- ------- ------------------ ----------- ------- ----------- ------
 1B 174164B Resident 12 .29 6:286 .47
 3B 174030B DiskIO 869 21.25 583:996 43.91
 4B 174000B Swapper 530 12.96 96:050 7.22
 5B 173344B MDSRegion 538 13.16 200:367 15.06
 7B 173314B BFS 1 .02 76 .00
 10B 173304B Directory 80 1.95 38:900 2.92
 11B 173270B DiskKD 2 .04 533 .04
 13B 173260B Files 140 3.42 15:392 1.15
 15B 173254B FSP 100 2.44 15:468 1.16
 16B 173240B LoadState 97 2.37 105:384 7.92
 22B 173214B Modules 96 2.34 35:471 2.66
 23B 173210B NonResident 3 .07 457 .03
 25B 173164B SegmentsA 74 1.81 17:945 1.34
 26B 173160B SegmentsB 89 2.17 13:487 1.01
 27B 173154B StreamsA 55 1.34 10:629 .79
 30B 173150B StreamsB 44 1.07 8:115 .61
 31B 173144B StreamsC 55 1.34 10:629 .79
 32B 173140B StringsA 89 2.17 9:525 .71
 33B 173134B StringsB 19 .46 3:924 .29
 35B 173124B AlFont 176 4.30 21:107 1.58

Xfer Counting Tool 7

 36B 173104B AltoLoader 237 5.79 29:070 2.18
 40B 173100B BcdOperations 153 3.74 16:421 1.23
 45B 172720B LoaderCore 516 12.62 74:256 5.58
 47B 172660B StreamIO 23 .56 2:057 .15
 50B 172650B SystemDisplay 82 2.00 13:830 1.03
 54B 170274B MesaExec 8 .19 457 .03
Ignored Xfers 98
Ignored Time 309:943

-- Output of Print Sorted command with Sorted by = count
Total Xfers 4,088
Total Time 1.329:842
 Gfi Frame Module #Xfers %Xfers Time %Time
---- ------- ------------------ ----------- ------- ----------- ------
 3B 174030B DiskIO 869 21.25 583:996 43.91
 5B 173344B MDSRegion 538 13.16 200:367 15.06
 4B 174000B Swapper 530 12.96 96:050 7.22
 45B 172720B LoaderCore 516 12.62 74:256 5.58
 36B 173104B AltoLoader 237 5.79 29:070 2.18
 35B 173124B AlFont 176 4.30 21:107 1.58
 40B 173100B BcdOperations 153 3.74 16:421 1.23
 13B 173260B Files 140 3.42 15:392 1.15
 15B 173254B FSP 100 2.44 15:468 1.16
 16B 173240B LoadState 97 2.37 105:384 7.92
 22B 173214B Modules 96 2.34 35:471 2.66
 26B 173160B SegmentsB 89 2.17 13:487 1.01
 32B 173140B StringsA 89 2.17 9:525 .71
 50B 172650B SystemDisplay 82 2.00 13:830 1.03
 10B 173304B Directory 80 1.95 38:900 2.92
 25B 173164B SegmentsA 74 1.81 17:945 1.34
 27B 173154B StreamsA 55 1.34 10:629 .79
 31B 173144B StreamsC 55 1.34 10:629 .79
 30B 173150B StreamsB 44 1.07 8:115 .61
 47B 172660B StreamIO 23 .56 2:057 .15
 33B 173134B StringsB 19 .46 3:924 .29
 1B 174164B Resident 12 .29 6:286 .47
 54B 170274B MesaExec 8 .19 457 .03
 23B 173210B NonResident 3 .07 457 .03
 11B 173270B DiskKD 2 .04 533 .04
 7B 173314B BFS 1 .02 76 .00
Ignored Xfers 98
Ignored Time 309:943

-- Output of Print Sorted command with Sorted by = time
Total Xfers 4,088
Total Time 1.329:842
 Gfi Frame Module #Xfers %Xfers Time %Time
---- ------- ------------------ ----------- ------- ----------- ------
 3B 174030B DiskIO 869 21.25 583:996 43.91
 5B 173344B MDSRegion 538 13.16 200:367 15.06
 16B 173240B LoadState 97 2.37 105:384 7.92
 4B 174000B Swapper 530 12.96 96:050 7.22
 45B 172720B LoaderCore 516 12.62 74:256 5.58
 10B 173304B Directory 80 1.95 38:900 2.92
 22B 173214B Modules 96 2.34 35:471 2.66

Xfer Counting Tool 8

 36B 173104B AltoLoader 237 5.79 29:070 2.18
 35B 173124B AlFont 176 4.30 21:107 1.58
 25B 173164B SegmentsA 74 1.81 17:945 1.34
 40B 173100B BcdOperations 153 3.74 16:421 1.23
 15B 173254B FSP 100 2.44 15:468 1.16
 13B 173260B Files 140 3.42 15:392 1.15
 50B 172650B SystemDisplay 82 2.00 13:830 1.03
 26B 173160B SegmentsB 89 2.17 13:487 1.01
 31B 173144B StreamsC 55 1.34 10:629 .79
 27B 173154B StreamsA 55 1.34 10:629 .79
 32B 173140B StringsA 89 2.17 9:525 .71
 30B 173150B StreamsB 44 1.07 8:115 .61
 1B 174164B Resident 12 .29 6:286 .47
 33B 173134B StringsB 19 .46 3:924 .29
 47B 172660B StreamIO 23 .56 2:057 .15
 11B 173270B DiskKD 2 .04 533 .04
 23B 173210B NonResident 3 .07 457 .03
 54B 170274B MesaExec 8 .19 457 .03
 7B 173314B BFS 1 .02 76 .00
Ignored Xfers 98
Ignored Time 309:943

Matrix loaded

-- Output of Print Tables command with mode = matrix
Total Xfers 3,834
Total Time 871:004
From -> To #Xfers %Xfers Time %Time
---- --- ----------- ------- ----------- ------
 1 -> 1 2 .05 114 .01
 1 -> 2 1 .02 114 .01
 1 -> 3 4 .10 266 .03
 2 -> 1 1 .02 419 .04
 2 -> 2 542 14.13 110:756 12.71
 2 -> 4 126 3.28 17:487 2.00
 2 -> 5 87 2.26 11:201 1.28
 2 -> 6 7 .18 342 .03
 2 -> 10 53 1.38 17:221 1.97
 3 -> 1 4 .10 228 .02
 3 -> 3 179 4.66 37:719 4.33
 3 -> 4 64 1.66 5:829 .66
 3 -> 6 13 .33 2:247 .25
 3 -> 10 1 .02 38 .00
 4 -> 2 124 3.23 19:240 2.20
 4 -> 3 61 1.59 6:705 .76
 4 -> 4 1,105 28.82 264:795 30.40
 4 -> 6 87 2.26 16:725 1.92
 4 -> 7 9 .23 1:790 .20
 4 -> 9 8 .20 5:486 .62
 5 -> 2 82 2.13 13:563 1.55
 6 -> 2 7 .18 495 .05
 6 -> 3 14 .36 2:057 .23
 6 -> 4 87 2.26 27:089 3.11
 6 -> 6 207 5.39 54:330 6.23
 6 -> 7 36 .93 7:658 .87
 6 -> 10 12 .31 1:066 .12
 7 -> 4 9 .23 2:552 .29
 7 -> 6 37 .96 5:067 .58

Xfer Counting Tool 9

 7 -> 7 759 19.79 221:932 25.48
 9 -> 4 11 .28 647 .07
 10 -> 2 59 1.53 9:944 1.14
 10 -> 3 1 .02 152 .01
 10 -> 6 12 .31 3:543 .40
 10 -> 10 23 .59 2:171 .24

Ignored Xfers 396
Ignored Time 673:569

Report on file: Fixed60m.rpt1 25-Sep-80 15:54:56

Numb Originator Subsystem Subject
er

490 Murray Binder Compiler doesn’t check Defs for unEXPORTED exports
650 Johnsson Binder Packed bit on MT Records not set
801 Murray Binder Unbound procedure vs. Binder /r
1169 Wick Binder Configurations Specifying List of Control Modules
2039 Murray Binder Abort For ^C After Error
3128 Olmstead Binder Error messages re: different versions
4038 Evans Binder Lock released once too often when zap target bcd
4250 Knutsen Binder Issue Warning if two /c items
4416 Murray Binder Which module can’t be packed
4478 LNelson Binder Binder under Tajo
4502 BLyon Binder ’IMPORT’ instead of ’IMPORTS’ in a CONFIG blew the binder up
4514 Knutsen Binder Copying code to bcd w/ "code" gives "Ref’d in diff versions"
4593 Luniewski Binder Output files incorrectly chosen
4656 mbrown Binder switch syntax: "bind /c foo" vs. "bind foo/c"
4658 Johnsson Binder Command line ’; eats next char
4676 LNelson Binder Binder patches for Star
4765 Newman Binder "Foo.run/r" puts "Foo.run/" in Com.cm
4766 Newman Binder "Foo.image/r" doesn’t work
4924 Newman Binder Fails to pause after syntax error
5392 Luniewski Binder Unimplemented command line args not detected
5393 Luniewski Binder Command line overriding of Directory statements
5727 LNelson Binder Fatal Binder Error: 1015B
5842 LNelson Binder LongBinder hung on config that standard binder handled OK
5885 Johnsson Binder Passing LINKS: CODE to pre-bound Config.
5887 Marzullo Binder binding packaged code with code copy
5950 Smokey Binder Fatal Binder ERROR
792 McJones Compiler Break Entry with DO as first statement
911 McJones Compiler Frames lost from UNWIND
1034 Murray Compiler Help on interupt routines
1969 Redell Compiler Bad Fine-grain Table
2068 Murray Compiler Poor Code For a+b*c
2622 Howard Compiler Fatal compiler error, Pass 5, 267601B
2858 Morrison Compiler Bad code generated for an INLINE (RXLPL) causes AddressFault
3335 Newman Compiler Doc: Pitfalls in allocating bound variants from a heap
3653 MBrown Compiler Error message for expressions in extractors
3660 Sweet Compiler bounds checking strings
3797 Howard Compiler RETURN WITH ERROR in ENTRY INLINE does wrong thing
4351 Guyton Compiler Short Pointer code generated from LONG DESCRIPTORS
4464 Tanaka.ES Compiler Subrange type in Defs gives bogus results
4537 McJones Compiler Zero-size field in M.D. record with explicit field positions
4547 Levin Compiler Bad FGT entry
4608 Hamilton Compiler ALL[ALL bombs pass 5
4657 Schwartz Compiler Compiler hangs in pass 5 when null EXITS clauses
4681 maxwell Compiler Crash in pass 5
4742 mitchell Compiler fatal, pass 5, variant record element compare w/nil checking
4774 ayers Compiler Error Messages’ Construction
4899 Sweet Compiler Constant Table: zero length constants entered in the table
4941 Newman Compiler Doc: ABORTED totally undocumented
4956 McJones Compiler Extra FREE for large result record in FOR loop expression
4997 Swinehart Compiler Machine Dependent Records Bug
5112 AWells Compiler Bad code generation for array initialization
5114 AWells Compiler Internal stack overflow in recursive type declaration
5148 Luniewski Compiler Fatal compiler error pass 5
5151 Murray Compiler FOR Clause Problem - long variable and constant bounds
5172 Nelson Compiler Variant record defaults
5182 Knutsen Compiler Comparing expr to field of result of inline blows up
5215 Newman Compiler Type mismatches involving zone.NEW give poor error messages
5221 AWells Compiler Lack of defaults for declared return variables
5231 Wyatt Compiler Fatal from call on an INLINE procedure
5264 LStewart Compiler a, b: DESCRIPTOR _ [NIL,0] => "Multiple init w/ptr"
5276 Levin Compiler CV and ML addresses
5281 Newman Compiler Confused about compile-time constants & subrange types
5294 schmidt Compiler NEW of extremely large arrays
5298 Artibee Compiler OptCatchPhrase on WaitStmt sometimes mandatory
5324 Newman Compiler Can’t zone.NEW for objects with non-constant size
5337 AWells Compiler Compiler dropping into the debugger in pass 5
5343 Levin Compiler @constructor gives fatal error
5385 Ludolph Compiler LOOP in loopexitsclause of inner loop repeats inner loop
5405 AJM@MIT-ML Compiler Multi-module MONITOR
5415 Daniels Compiler Fatal compiler error after ill-formed DIRECTORY clause
5417 Marzullo Compiler The same temporary location is assigned twice in a loop.
5424 Fay Compiler StackModelling Error in long, zero-based IN tests
5488 Knutsen Compiler MachDepRec complains of gaps

5492 McJones Compiler Catch phrase should not be allowed on RETURN WITH ERROR
5546 LStewart Compiler Floating point compare to zero code generator
5614 Newman Compiler Mainline code local variables allocated in global frame
5622 Newman Compiler Type mismatch for PROC RETURNS [UNCOUNTED ZONE](or MDSZone)
5687 Newman Compiler Bad code for record constructor containing proc calls
5689 Forrest Compiler Long pointer to Packed ARRAY of >4K bits generates bad code
5710 Newman Compiler StackModelingError, pass 5 from LONG CARDINAL loop iteration
5720 Alfvin Compiler NIL as an acceptable ZONE value
5754 Daniels Compiler Fatal System Error (Punt) in Pass 5
5783 Swinehart Compiler Compiler loops in pass 5 with nil-checking on
5805 Swinehart Compiler Code generation bug -- long pointers
5846 Sweet Compiler [] _ ERROR SigReturnsValues;
1161 Morrison Debugger Command to Redisplay Uncaught Signal Messages
2155 Karlton Debugger Indirect Type-in For DebugWindow
2191 Johnsson Debugger p%FileName$Type fails
2432 Schwartz Debugger Doc: Cursor actions on tiny windows need documenting
2455 Schwartz Debugger Doc: >> prompt not documented
2460 Schwartz Debugger Doc: Some finepoints
2531 malasky Debugger Doc: Find Variable vs Search Context
2598 Selly Debugger Doc: Set Octal Context examples;Frame$var
2618 CharliLevy Debugger Display Stack source listing in error
2767 Purvy Debugger Doc: Reporting debugger problems
2910 charnley Debugger can’t break at entry
3047 beard Debugger Debugger’s unawareness of new source file
3182 olmstead Debugger Doc: conditional breakpoints
3410 Sandman Debugger PerfMonitor and XferCounter trap handlers and NOOPs
3456 Murray Debugger -1,-1 from Trace All Xits
3610 Birrell Debugger Doc: Going into Swat and overwriting Swatee
3662 Birrell Debugger Attach Image to use current load state
3663 Birrell Debugger Doc: Ascii read increments start address wrong
4020 Newman Debugger Doc: Some variables print out followed by "^R"
4160 LNelson Debugger Condition breaks vs subranges
4437 Murray Debugger process not bound
4445 Levin Debugger Debugger frame trouble
4525 Freier Debugger Display of variable of type PROCESS
4564 Kayashima Debugger Xdebug Hangs when Move or Grow sized window
4598 Hamilton Debugger Doc: Attach Symbols
4614 Kayashima Debugger Stripping Bravo Trailers
4633 mbrown Debugger Confusion about contexts
4655 mbrown Debugger Attach Mesa Source command
4672 Gobbel Debugger Debugger bitmap goes away sometimes if Edit is used.
4680 morris Debugger Debugger crash
4732 birrell Debugger Incorrect handling of multiple instances of modules
4741 Wyatt Debugger COremap bug
4743 Levin Debugger Lockup while repainting windows
4745 Murray Debugger Can’t install Internal Debugger
4757 Newman Debugger Displaying arguments of Signaller.ErrorList goes to // mode
4759 Newman Debugger Fails to find symbols in files retrieved with FileTool
4761 Newman Debugger Misleading error message from Display Frame
4764 Newman Debugger Spurious "...is not a valid field selector"
4776 Murray Debugger 1001 while trying to Kill
4777 Murray Debugger context mixup
4783 ayers Debugger Debuggers erxtra-memory bitmap space
4789 ayers Debugger <alphamesa>temp>xdebug.image Intall problems
4791 Murray Debugger Bound OVERLAID variants
4804 Levin Debugger Debugger bootloading: NIL PuntInfo gives PointerFault
4808 Levin Debugger Imported LONG DESCRIPTOR
4824 Newman Debugger Interpreter doesn’t know size of UNSPECIFIED
4825 Newman Debugger Interpeting "array[Type[value]] gives uncaught signal
4827 Newman Debugger Enumerated values not found
4839 birrell Debugger Clear All Traces missing
4843 Newman Debugger List Breaks says nothing if no breaks set
4844 Newman Debugger ATtach Conditon command rejected
4851 Cattell Debugger Doc: No [non-wizard] way to get debugger to redisplay SIGNAL
4858 McGregor Debugger Debugger Inline eval bug
4864 Cattell Debugger NotRelocated SIGNAL from debugger on call to user routine
4869 Johnsson Debugger CL? doesn’t list all options
4873 Johnsson Debugger ? for unknown PROCEDURE
4874 Karlton Debugger Will not display Ascii.NULs
4875 Sweet Debugger Clear Break #
4877 Sweet Debugger Display Break #
4880 Malasky Debugger ^Nvalidate cache command
4887 Newman Debugger Missing command "CLear Module" ??
4889 Newman Debugger ATtach Expression to nonexistent break => no error msg
4890 Newman Debugger LIst Breaks doesn’t display attached expressions...
4894 MBrown Debugger breakpoint set on "BEGIN" of proc body smashes entry break?
4916 Newman Debugger "Break ?" shows invalid options
4918 Newman Debugger "CLear ?" leaves some options out

4950 Hayes Debugger FileTool, PupAndFTP won’t install manually in Int. Debugger
4963 Newman Debugger DisplayStack-source: clobbers editable window
4966 Newman Debugger "Trace ?" displays invalid options
4979 Frankel Debugger Symbol table reset infinite loop
5014 Newman Debugger DisplayStack + "?" leaves some options out
5027 Newman Debugger Initial position of windows shouldn’t be overlaid
5028 Newman Debugger Interpreter won’t display variables of type MDSZone
5046 Murray Debugger Octal Read hangs
5119 Sapsford Debugger ARRAY[interval] does not account for bias
5120 birrell Debugger Re-setting breaks
5131 MBrown Debugger Doc: what does output of the interpreter’s ? operator mean?
5143 kolling Debugger Doc: Resetting symbol table
5176 JEllis Debugger Resetting Symbol Table vs Find Variable
5225 MBrown Debugger Display Module loses track of who is in the window
5228 Murray Debugger AScii Read should check Ctl-DEL
5229 Murray Debugger Garbage PC gives last PROCEDURE
5232 kolling Debugger source window selections, breakpoints, etc.
5244 Newman Debugger Named return values vs. exit breaks
5251 Murray Debugger PC to PROC mixup
5284 Newman Debugger "size mismatch" for Display Queue of CONDITION variable
5285 Newman Debugger Display Queue of MONITORLOCK => "100000B is invalid Process"
5286 Newman Debugger Display Queue of octal number fails
5299 Newman.ES Debugger Interpreter: subrange assignment error
5301 Murray Debugger PC mixup after clearing break
5302 Murray Debugger 47201 from Set Module Context (ambigious)
5315 Murray Debugger SourceWindow: context mixup
5328 Murray Debugger Display GlobalFrameTable
5364 JEllis Debugger No response to <module name>$<variable name>
5365 JEllis Debugger Interpreted relational expression produces Uncaught Signal
5384 Daniels Debugger Falling into // mode from Interpreter
5389 morris Debugger Breakpoint not found.
5484 Daniels Debugger Incorrect printing of variant records
5695 McJones Debugger Spurious question mark for value of large cardinal subrange
5742 Cattell Debugger allows attaching condition to non-existent breakpoint
5863 Israel Debugger Relative string
5883 Stewart Debugger PACKED ARRAY printing
5910 israel Debugger Relative array descriptors.
1823 Hamilton Ether FTPtool: no filstats
2092 Malasky Ether ChatTool: Should Attach Or Log In
2438 Schwartz Ether FileTool: behaves strangely when opened a second time.
2558 LNelson Ether FileTool: close connection logic is defective.
2766 Hamilton Ether FTPtool: "IFS full" funnies
2880 Clemons Ether FileTool: Closes connection unnecessarily
2906 israel Ether Pup: FTP: Slow on Dorado
3626 Murray Ether FTP: sending mail
3863 Murray.PA Ether Fetch: Make it more like FTPtool
3900 Murray Ether FTP: UNWIND from FTPEnumerate/retrieve
3987 Sapsford Ether FTP: TimeExtras.PackedTimeFromString vs StringBoundsFault
4131 Levin Ether FTP: FTPServers.config
4174 Hamilton Ether FileTool: deletion fails
4352 Karlton Ether FTP: FTPAltoFile.PreProcessFile does a blind ReleaseFile
4444 Schmidt.PA Ether FTP: FTPInventoryDumpFile needs create date parameter
4456 Birrell Ether Pup: FTP: Recompile packages to fix long return record bug
4499 Murray Ether FTP: FTPTransferFile doesn’t pass through the creation date
4544 birrell Ether FTP: FTPRetrieve hangs until timeout on a "no" mark
4550 Levin Ether FileTool: "delete" bugs
4552 Birrell Ether Pup: ByteStream timeout
4590 birrell Ether FileTool: returns slowly if the client stops an enumeration
4612 Hamilton Ether FileTool: shift col.2 left; move "verify"
4763 Newman Ether FTP: Forgetting to call IdNxtRejRecip => disaster
4809 Levin Ether FileTool: Local Delete: error message is misleading
4904 Levin Ether FileTool: fails to restore command buttons
5005 birrell Ether Pup: 2 sec delay creating Byte Streams
5062 kolling Ether Pup: DriverDefs.debugPointer
5093 Murray Ether Pup: NameLookup vs dying nets
5098 Murray Ether Pup: EthernetDriver priority
5132 MBrown Ether FileTool: does not set creation date properly
5152 Murray Ether FTP: TimeExtras: zone screwup
5195 birrell Ether FileTool: window size
5198 birrell Ether FTP: make single config available with everything
5236 Newman Ether FileTool: obsolete free page count
5527 Newman Ether FIleTool: treat empty "source" field as "*"
1230 Judd Other DOC: Examples
2063 Ayers Other Perf. Monitor: Improved Handling Of Node String Printout
2135 Malasky Other Two CursorProcesses In Put After NewSession
2186 McJones Other Lister: Code Listings To Show Global Frame Size
2242 Johnsson Other IncludeChecker vs. Compiler switches
2253 Otto Other IncludeChecker chokes on STAR

2255 Karlton Other IncludeChecker should specify compilation as late as possibl
2339 Wick Other Copyright Notice on Mesa Source Files
2392 Ladner Other XFER Tool Enhancements
3303 Newman Other IncludeChecker: bug fixes
3744 Johnsson Other RunMesa 34.8 lies about widebody non XMesa machines
4166 Levin Other RunMesa: optionally restricting memory use
4647 Luniewski Other Packager: Crashes if errors while processing
4650 Luniewski Other Packager: /l produces both .list and .map files
4651 Luniewski Other Packager: Fatal error: Unbound procedure
4659 Luniewski Other Packager: /m option - More information requested
4663 Luniewski Other Packager: /m option produces fatal error
4683 Luniewski Other Packager: Missing file does not produce error message
4707 Luniewski Other Packager: multiple module instances
4737 Evans Other Formatter: Doesn’t DO x_SELECT..1=>n,ENDCASE=>ERROR;
4863 Luniewski Other Packager: Can’t process compiler bcd’s
4865 Gobbel Other Formatter spaces too wide
4939 Levin Other CommandCentral selection glitch
5058 forrest Other Formatter adds extra blank lines
5082 BLewis Other Formatter: Improper treatment of "~=" operator
5084 BLewis Other Formatter: Improper treatment of "~(a OR b)"
5250 Gobbel Other Formatter should use small font for predeclared identifiers.
5311 Sapsford Other Formatter: Extraneous CR
5313 Mitchell Other Formatter: Use of tabs and spaces
5325 Nelson Other Formatter handles string contants wrong
5327 Morris Other Formatter problem
5344 Levin Other Formatter: comments on END procedure lines
5434 Daniels Other Statistics: InsufficientVM raised upon initialization
5480 Johnsson Other Formatter: Overlaid variant records
2007 Murray System Image Files Poisoned With Bad FP
2161 Murray System Swapper/Disk IO Difficulties
2224 Ayers System ERROR in MakeCheckPoint
3061 israel System Nil and bounds checking
3129 Olmstead System Request for info
3661 Birrell System Aborting process in ReadChar leaves keyboard monitor locked
3668 Birrell System XMesa Nucleus: determining memory size
4397 Murray System Loading garbage: Uncaught BadFile
4405 Schmidt.PA System Reading leader pages: don’t change read-date
4574 Newman System RESUMEing a PointerFault=>uncaught SIGNAL InvalidGlobalFrame
4604 Newman System FrameDefs.[New/Run]Config should return a GlobalFrameHandle
4847 AWells System Bug in turning off echos in ReadLine (IODefs)
4932 Levin System Bug in AltoLoader.Load
4933 Sandman System BcdOps.ProcessSpaces lacks *SIZE[SpaceID]
4938 Levin System CommandCentral: Expand @file1 @file2 fails
4958 Levin System Bug in Wart: InitLoadState was changed
4970 Evans System Debugger looses bitmap when client makes checkpoint
4985 Newman System Loader doesn’t link up imported POINTER TO FRAME
5003 Evans System MakeImage: Disk Descriptor not swapped in when needed
5057 kolling System Doc: Where is the stuff that used to be in bootdefs?
5065 McGregor System Preserving /k when coming back from a MakeCheckpoint
5094 Murray System MakeImage dies
5108 Karlton System Time: add Time.Packed to ease compatibility problems
5147 Levin System Nasty FSP bug...again!
5154 Murray System TimeConvert.PackDT off by an hour
5184 Levin System HyperRegion bug: rover not in bounds
5185 Levin System AllocVM: specific allocation too restrictive
5190 McJones System CommandCentral should parse the options window fields
5191 McJones System Uncaught signal when CommandCentral can’t find compiler
5296 Hayes System Memory Competition Tajo vs. Debugger
5342 schmidt System GetID vs. GetId in CharIO.mesa
5416 Levin System Debugger smashes HyperRegion
5449 Levin System Missing Start Traps
5479 kolling System where is debugnub.bcd/mesa?
5626 Levin System LoadConfig returns ControlModule, not GlobalFrame
5627 Levin System Killing off the Interrupt process

