| nter-Office Memorandum

To Mesa Users Date September 26, 1980
From Dick Sweset Location Palo Alto
Subject Mesa 6.0m Change Summary Organization SDD/SS/Mesa

XEROX

Filed on: [Igor]<AlphaMesa>Doc>Summary60m.bravo

This memo outlines changes made in Mesa since the last alpha update (Mesa 6.0u, July 11, 1980).
These changes will shortly be incorporated into the Mesa 6.0 Change Summary to correctly reflect
the differences between Mesa 5.0 and Mesa6.0. This document also includes alist of ARs fixed
since 6.0u.

Language
The language has been extended in the following aress:
Monitor Locks and Condition Variablesin Records

When constructing arecord, any fields not mentioned (and not having defaults) are not guaranteed
to have known values after the construction. In particular, they are not guaranteed to have their
previous values. This poses a problem in types containing "hidden" fields such as the queues of
processes in MONITORLOCKS and CONDITIONS, and with afew other types (see the attached memo
from Ed Satterthwaite). To protect users from inadvertantly overwriting these fields, the Mesa 6
compiler does not allow updating of variables of these types, or of any composite type containing a
field of these types. This does not mean that MONITORED RECORDS are read-only; they can be
assigned to field by field. However, it isillegal to write a constructor for an entire MONITORED
RECORD except at the point of declaration (or allocation, by the NEw operator).

Sequences
A sequenceis an indexable collection of objects, al of which have the sametype. In thisrespect, a

sequence resembles an array; however, the length of a sequence is not specified at compile time.
Consider some examples of "faked" sequences from Mesa 5.

ARecl: TYPE = RECORD [
common: . . .
count: CARDINAL, -- number of e ements

body: ARRAY [0..0) OF INTEGER];

ARec2: TYPE = RECORD |

Copyright ¢ Xerox Corporation 1980

Mesa 6.0m Change Summary

common: . ..

body: ARRAY [0..0) OF INTEGER];
arl: POINTER TO ARecl;
ar2: POINTER TO ARec2;

The record ARec1 contains a count of the number of INTEGERS in body. The number of elementsin
an ARec? is not contained in the record; it is kept elsewhere, say in aglobal variable, or computed
from the values of common fields. Note that these "variable length" arrays occur only at the end of
records (they obviously couldn’t occur in the middle). Also, since you aren't telling the compiler
how many elements are present in a given ARec*, it doesn’t make sense to declare one; you obtain
storage from your favorite allocator and access the elements using a pointer.

In Mesa 6, these constructs are built into the language. A SEQUENCE occurs as the last field of a
record. It optionally has a count of elements associated with the indexable portion. The following
Mesa 6 declarations are roughly equivalent to the Mesa 5 ones above:

SRecl: TYPE = RECORD [
common: . . .

body: SEQUENCE count: CARDINAL OF INTEGER];

SRec2: TYPE = RECORD [
common: . . .

body: SEQUENCE COMPUTED CARDINAL OF INTEGER];
srl: POINTER TO SRecl;
Sr2: POINTER TO SRec2;

Variables of type SRec* must also be dynamically allocated at runtime, since they are of variable
length. However, the NEw operator of Mesa 6 knows how to deal with sequences. Let zbe an
MDSZone, n a CARDINAL. The following are legal statements:

(1) sr1_zNeEw [SRecl[n]]; --setssrl.countton
(2) sr2 _zNEw[SRec2[Nn]];
(3) sr1_zNEw[SRecl[n] _[common: .. ., body: NULL]];

In statement (1), sufficient space is allocated to contain the common part of an SRecl plusn
elements (INTEGERS) in the sequence part. Additionally, the number of elements, count, isinitialized
to the value n. Thereafter, the value of count is readonly. The only way to set the length field of a
sequence is by the NEw operator. In statement (2), space is allocated for an SRec2 with n elements,
but there isno count field to initialize. Of course, in any of these statements, n could be replaced

by any constant or expression of type CARDINAL. In statement (3), the common fields are also set by
an initializing constructor. Note that the "array" part of the sequenceis voided in the constructor.

In Mesa 6, thereis no provision for writing a constructor for the variable length portion of a
SEQUENCE. One must write explicit code to initiaizeit.

Mesa 6.0m Change Summary

To access an element of the sequence, one attaches an indexing expression to the pointer to the
record containing the sequence. Thisis analogous to the treatment of type STRING (which is
essentially a sequence of the Mesa 6 variety).

i_srafj];
sr2fj] _i;

If one compiles a module with bounds checking enabled (/ b to the compiler), code will be
generated when accessing sri[j] to assurethat j IN [O..sr1.count).

Alternative, on may write (analogous to saying s.text[i] for a STRING):

i _srl.body[jl;
sr2.body[j] _i;

The attached memo from Ed Satterthwaite discusses the use and declaration of SEQUENCESIn
considerable detail.

Formatter

The Formatter is a program for transforming Mesa source files into a standard format. It usesthe
Compiler’s scanner and parser to determine nesting, and hence can be used only on syntactically
correct programs. Attached is the Appendix from the Mesa 6 Users Handbook (in progress) that
explains the use of the Formatter.

Binder

The binder now allows the association between file names and module or configuration names to be
given on the command line, in much the same way as the compiler. For example, the command
line

>Bi nder. bcd Taj o[TestPil ot: UnpackagedTest Pi | ot]

will bind Taj 0. conf i g using the previously bound configuration TestPilot that is stored in the
file named UnpackagedTest Pi | ot . bcd. One can best think of the the text inside the brackets
as defining (augmenting/replacing) a DIRECTORY statement at the beginning of the configuration.

System

All of the system interfaces have been recompiled for 6.0m. This means that all modules must be
recompiled/rebound to use the new Mesa. i mage. No source changes are necessary (except for
users of FTPDefs, as previously announced; see below).

To track development in other systems, minor revisions have been made in the Devel opment
Software interfaces Format, Inline, Runtime, System, and Time.

RunMesa

RunM esa has been upgraded to included Alto microcode for Pup checksums, |EEE floating point,
and HBIt (Griffin). This microcode is loaded with the XMesa overflow microcode on Altos with
the 2K ROM or 3K RAM option. Users who have been loading microcode for these functions need
no longer do so. This change affects Alto [I1sonly.

Mesa 6.0m Change Summary

Debugger

In addition to many bug fixes, the following changes and additions have been made:

Source Menus

Attach

The At t ach menu command has been added to the Source Ops source menu; it causes the
Debugger to ignore the creation date of the current source file when setting breakpoints or
positioning to a source line. Because this defeats type checking, this command should be used with
caution. If, after invoking this command, the Debugger sets breakpoints in strange places, chances
are that the source file does not match the object in the system you are debugging.

Commands

ReSet context [confirni

This command now requires two keystrokes, to avoid conflict with the ReMbt e debuggee
command (not yet implemented on the Alto).

Program-not-started Indication
When the debugger refers to a program module, it usually gives the address of its global frame, e.g
(G nnnnnB). If the module has not been started, the debugger now prints atilde (~) after the B.

If amodule has not been started, the user should not believe and should not modify the global
variables of that module.

Command Central

The options window has changed format and allows inclusion of default switch settings.

Performance Monitor
The Performance Monitor has been upgraded to Mesa 6.0. It isthe same asin Mesa 5.0 except that

debugger breakpoint numbers are used for Nodel Ds. Upgraded documentation will be
forthcoming.

Xfer Counter
The Xfer Counter has been upgraded to Mesa 6.0. A new mode of operation has been added to

gather information on the flow of control between groups of modules. Documentation for the Xfer
Counter is attached.

Pup
PupDefs
UseAltoChecksumMicrocode has been added to speed up processing if you are running on an

Alto Il with the 2K rRoM or 3K RAM option. The overflow microcode loaded into the RAM by
RunMesa. r un includes the necessary additions. (Beware if you load your own microcode.)

Mesa 6.0m Change Summary

Subtle implementation changes

GetPupAddress will nolonger return an address for adying net. EnumeratePupAddresses
will now pass the client-supplied procedure addresses on dead or dying nets, but only after
processing all the addresses on nets that are reachable. (It used to skip addresses on unreachable
nets.)

The byte stream internal s have been reworked to eliminate several unpleasant delays while opening
and closing connections. It is now possible to open a connection, send a thousand words, and close
the connection in less than a second. (Since Close UnNews three module instances, it will take
longer if you have alot of active global frames.) A byproduct of this cleanup isthat SendNow
will send an empty aData packet to request an acknowledgment even if the previous SendBlock
happened to end on a convenient packet boundary.

Bug fixes

The following change requests are closed by thisrelease:

5005 Delays when creating byte stream
5093 NameLookup vsdying nets
5098 Change priority of interrupt routine in EthernetDriver(s)

Ftp
FTPDefs

The arguments to the (client supplied) procedure passed to FTPInventoryDumpFile have been
extended to allow proper processing of create dates. It is now compatable with the procedure
passed to FTPEnumerateFiles.

Bug fixes

The following change requests are closed by thisrelease:

3987 StringBoundsFault from TimeExtras.PacketTimeFromString
4444 FTPInventorryDumpFile needs create date

4763 Troublesif forget to call IdentifyNextRejectedRecipient

5152 TimeExtras.PacketTimeFromString zone screwup

5198 Config with server and user things

Distribution:
Mesa Users
Mesa Group
SDSupport

I nter-Office M emorandum

To Mesa Users Date September 25, 1980
From Ed Satterthwaite Location Palo Alto
Subject Mesa 6.0m Compiler Changes Organization PARC/CSL

XEROX

Filed on: [Igor]J<AlphaMesa>Compiler60m.bravo (and .press) D RA FT

This memo documents additions and changes to the Mesa 6 language since the last apharelease
(Mesa6.0u, July 11, 1980). For a complete description of the differences between the Mesa 5 and
Mesa 6 languages, including the material below, see [1gor]<AlphaM esa>Compiler60.bravo (or .press).

Sequences

A sequencein Mesais an indexable collection of objects, al of which have the same type. Inthis
respect, a sequence resembles an array; however, you need not specify the length of the sequence
when itstypeis declared, only when an instance of that typeis created. Mesa 6 provides sequence-
containing types for applicationsin which the size of adynamically created array cannot be
computed statically. Note, however, that only a subset of a more general design for sequences has
been implemented. The contexts in which sequence types may appear are somewhat restricted, as
are the avail able operations on them. We believe that the subset provides enough functionality to
accomodate most uses of sequences, but you will encounter a number of annoying and sometimes
inconvenient restrictions that you must take note of in your Mesa 6 programming.

One can view a sequence type as a union of some number of array types, just as the variant part of
avariant record type can be viewed as a union of some (enumerated) collection of record types.
Mesa adopts this view, particularly with respect to the declaration of sequence-containing types, with
the following consequences:

A sequence type can be used only to declare afield of arecord. At most one such field may
appear within arecord, and it must occur last.

A sequence-containing object has atag field that specifies the length of that particular object
and thus the set of valid indices for its elements.

To access the elements of a sequence, you use ordinary indexing operations; no discrimination is
requi red. Inthissense, all sequences are overlaid, but simple bounds checking is sufficient to validate each access.

Uses of sequence-containing variables must follow a more restrictive discipline than is currently
enforced for variant records. The (maximum) length of a sequence is fixed when the object
containing that sequence is created, and it cannot subsequently be changed. In addition, Mesa 6
imposes the following restrictions on the uses of sequences:

Y ou cannot embed a sequence-containing record within another data structure. 'Y ou must
allocate such records dynamically and reference them through pointers. (The NEw operation
has been extended to make allocation convenient.)

Mesa 6.0m Compiler Changes

Y ou cannot derive a new type from a sequence-containing type by fixing the (maximum)
length; i.e., there is no analog of a discriminated variant record type.

There are no constructors for sequence-valued components of records, nor are such
components initialized automatically.

The following sections describe sequences in more detail.
Defining Sequence Types

Y ou may use segquence types only to declare fields of records. A record may have at most one such
field, and that field must be declared as the final component of the record:

Syntax
VariantPart = c.
| PackingOption SEQUENCE SeqTag OF TypeSpecification
SeqTag n= identifier : Access BoundsType
| COMPUTED BoundsType
BoundsType n= IndexType
TypeSpecification ::=

| Typeldentifier [Expression]

The TypeSpecification in VariantPart establishes the type of the sequence elements. The
BoundsType appearing in the SeqTag determines the type of the indices used to select from those
elements. It isasothetype of atag value that is associated with each particular sequence object to
encode the length of that object. For any such object, al valid indices are smaller than the value of
thetag. If Tisthe BoundsType, the sequencetypeis effectively aunion of array types with the
index types

T[FIRST[T] .. FIRST[T]), T[FIRST[T] .. SUCC[FIRST[T]]), ... T[FIRST[T] .. LAST[T])

and a sequence with tag value v has index type T[FIRST[T]..v). Note that the smallest interval in this
union isempty.

If you use thefirst form of SeqTag, the value of thetag is stored with the sequence and is
available for subscript checking. In the form using cOMPUTED, no such valueis stored, and no
bounds checking is possible.

Examples:

StackRep: TYPE = RECORD [
top: INTEGER _ 1,
item: SEQUENCE size: [0..LAST[INTEGER]] OF T]

Number: TYPE = RECORD [
sign: {plus, minus},
magnitude: SELECT kind: * FROM
short => [val: [0..1000)],
long => [val: LONG CARDINAL],
extended => [val: SEQUENCE length: CARDINAL OF CARDINAL]
ENDCASE]

Mesa 6.0m Compiler Changes

WordSeq: TYPE = RECORD [SEQUENCE COMPUTED CARDINAL OF Word]
Thefina exampleillustrates the recommended method for imposing an indexable structure on raw storage.

If Sisatype containing a sequence field, and n is an expression with atype conforming to
CARDINAL, both Sand §n] are TypeSpecifications. They denote different types, however, and the
valid uses of those types are different, as described below.

MACHINE DEPENDENT Sequences

Y ou may declare afield with a sequence type within a MACHINE DEPENDENT record. Such afield
must come last, both in the declaration and in the layout of the record, and the total length of a
record with a zero-component sequence part must be a multiple of the word length. If you
explicitly specify bit positions, the size of the sequencefield (if given) must describe a zero-length
sequence; i.e., it must account for just the space occupied by the tag field (if any). The CharSeq
exampl e below shows how to deal with explicit positions and computed tags.

Examples:

Node: TYPE = MACHINE DEPENDENT RECORD [
info (0: 0..7): CHARACTER,
sons (0: 8..15): SEQUENCE nSons (0: 8..15): [0..256) OF POINTER TO Node]

CharSeq: TYPE = MACHINE DEPENDENT RECORD |
length (0): CARDINAL,
char (1): PACKED SEQUENCE COMPUTED CARDINAL OF CHARACTER]

Allocating Sequences

If Sdesignates arecord type with afinal component that is a sequence, §n] is atype specification
describing arecord with a sequence part containing exactly n elements. The expression n must have
atype conforming to CARDINAL. Itsvalue need not be a compile-time constant; however, you can
use specifications of this form only to allocate sequence-containing objects (as arguments of NEW) or
to inquire about the size of such objects (as arguments of sizg). In particular, you cannot use gn]

to define or construct a new type or to declare avariable, even for constant n.

The value of the expression size[§n]] has type CARDINAL and is the number of words required to
store an object of type Shaving h componentsin its sequence part.

The value of the expression ZzNEW[n]] has type POINTER TO S(Or LONG POINTER TO Sor REF S
depending upon the type of the zone 2). The effect of its evaluation isto allocate size[§ n]] words
of storage from the zone z and to initialize that storage as follows:

Any fieldsin the common part of the record receive their default values.

The sequence tag field receives the value SUCCT[FIRST[T]], where T is the type of that field.

The elements of the sequence part have undefined values.
To supply initial values for the fields in the common part, you may use a constructor for type Sin
the call of NEw. There are currently no constructors for sequence parts, however, and you must
void the corresponding field. Inany case, you must explicitly program any required initialization of

the elements of the sequence part. In Mesa 6, thisistrue even if the element type has non-NULL
default value.

Mesa 6.0m Compiler Changes

Examples:
ps: POINTER TO StackRep _ zNEw[StackRep[100]]; --stop=1
pn: POINTER TO Node _ z.NEw[Node[degree[c]] _ [info: ¢, sons: NULL]]

pxn: POINTER TO extended Number _ zNEw[extended Number[2*K]]

Note that n specifies the maximum number of elementsin the sequence part and must conform to
CARDINAL no matter what BoundsType T, appearsin the SeqTag. The value assigned to the tag

fieldis SUCCn[FIRST[Ti]]. A bounds fault occursif thisis not avalid value of type T, i.e,, if n>
cardinality(T;), and you have requested bounds checking.

If FIRST[T;] =0, SUCCn[FIRST[Ti]] isjust n, i.e,, theinterpretation of the tag is most intuitiveif T; is
azero-origin subrange. Usually you will specify aBoundsType (e.g., CARDINAL) with arange that
comfortably exceeds the maximum expected sequence length. If, however, some maximum length
N isimportant to you, you should consider using [0..N] as the BoundsType; then the value of the
tag field in a sequence of length n (n < N) isjust n and the valid indices are in the interval [0..n).

Operations on Sequences

Y ou can use a sequence-containing type Sonly as the argument of the type constructor POINTER TO
(or REF). Note that the type of ZNEW[SN]] iSPOINTER TO S(not POINTER TO §n]). If the type of
an object is S the operations defined upon that object are

ordinary access to fieldsin the common part
readonly access to the tag field (if not COMPUTED)
indexing of the sequencefield

constructing a descriptor for the components of the sequence field (if not COMPUTED).

There are no other operations upon either type Sor the sequence type embedded within S, In
particular, you cannot assign or compare sequences or segquence-containing records (except by
explicitly programming operations on the components).

Indexing: Y ou may use indexing to select elements of the sequence-containing field of arecord by
using ordinary subscript notation, e.g., s.seq[i]. Thetype of the indexing expression i must conform
to the BoundsType appearing in the declaration of the sequence field and must be less than the
value of the tag, as described above. The result designates a variable with the type of the

seguence’ s elements. A bounds fault occursiif the index is out of range, the sequence is not
COMPUTED, and you have requested bounds checking.

By convention, the indexing operation upon sequences extends to records containing sequence-
valued fields. Thusyou need not supply the field name in the indexing operation. Note too that
both indexing and field selection provide automatic dereferencing.

Examples:

pst.item[pstop] psitem[pstop] pspstop] -- al equivalent

Descriptors: You may apply the DESCRIPTOR operator to the sequence field of arecord; theresult is
adescriptor for the elements of that field. The resulting value has a descriptor type with index and
component types and PACKED attribute equal to the corresponding attributes of the sequence type.

By extension, DESCRIPTOR may be applied to a sequence-containing record to obtain a descriptor for
the sequence part. The DESCRIPTOR operator does not automatically dereference its argument.

Mesa 6.0m Compiler Changes

Y ou cannot use the single-argument form of the DESCRIPTOR operator if the sequence is COMPUTED.
The multiple-argument form remains available for constructing such descriptor values explicitly (and
without type checking).

In any new programming, you should consider the following style recommendation: use sequence-containing types for
allocation of arrays with dynamically computed size; use array descriptor types only for parameter passing. This style will
become mandatory in the safe subset of Cedar Mesa.

Examples:

DESCRIPTOR[pn] DESCRIPTOR[pn.sons] -- equivalent

String Bodiesand TEXT

The type SringBody provided by previous versions of Mesaillustrates the intended properties and
uses of sequences. For compatibility reasons, it has not been redefined as a sequence; the
declarations of the types STRING and SringBody remain as follows:

STRING: TYPE = POINTER TO SringBody;

StringBody: TYPE = MACHINE DEPENDENT RECORD [
length (0): CARDINAL _ 0,
maxlength (1): --READONLY-- CARDINAL,
text (2): PACKED ARRAY [0..0) OF CHARACTER]

The operations upon sequence-containing types have, however, been extended to SringBody so that
its operational behavior issimilar. In these extensions, the common part of the record consists of
the field length, maxlength serves as the tag, and text is the collection of indexable components
(packed characters). Thus zNEwW[SringBody[n]] creates a SringBody with maxiength = n and
returns a STRING; if sisaSTRING, d[i] is an indexing operation upon the text of s, DESCRIPTOR[SY]
creates a DESCRIPTOR FOR PACKED ARRAY OF CHARACTER, €fC.

There are two anomalies arising from the actual declaration of StringBody: s.text[i] never uses bounds checking,
and DESCRIPTOR([s.text] produces a descriptor for an array of length 0. Use §[i] and DESCRIPTOR([S"] instead.

Type TEXT

The following types, which describe a structure similar to a SringBody as a true sequence, are
predeclared in Mesa 6. Thetype TEXT is primarily intended for users of Cedar, where the type REF
TEXT (Or REF READONLY TEXT) will replace most current uses of type STRING.

TEXT: TYPE = MACHINE DEPENDENT RECORD |
length (0): [0..LAST[INTEGER]] _ 0,
text (1): PACKED SEQUENCE maxLength (1): [0..LAST[INTEGER]] OF CHARACTER]

Restrictions on Assignment

The assignment operations defined upon certain types have been restricted so that variables of those
types can beinitialized (either explicitly or by default) when they are created but cannot
subsequently be updated. A variable is considered to be created at its point of declaration or, for
dynamically allocated objects, by the corresponding NEW operation. Thisrestriction is made so that
"invisible" fields such as queues of waiting processes cannot be smashed in avariable that is already
inuse.

In Mesa 6, the following types have restricted assignment operations:

Mesa 6.0m Compiler Changes

MONITORLOCK

CONDITION

any type constructed using PORT

any type constructed using SEQUENCE

any type constructed using ARRAY in which the component type has a restricted assignment
operation.

any type constructed using RECORD in which one of the field types has a restricted assignment
operation.

Note that the restrictions upon assignment for a type do not impose restrictions upon assignment to
component types. Thus selective updating of fields of a variable may be possible even when the
entire variable cannot be updated; e.g., thetimeout field of a CONDITION variable can be updated by
ordinary assignment.

In Mesa 5, when a variable was allocated at runtime, it was necessary to call system proceduresto
initialize any fields of types MONITORLOCK or CONDITION. |f one uses the Mesa 6 NEW operator, this
initialization takes place automatically as aresult of the defaulting mechanism.

Distribution:
Mesa Users
Mesa Group

Formatter

Appendix B: Formatter

The Formatter transforms Mesa source files into a standard format. It establishes the horizontal
and vertical spacing of the program in away which reflectsitslogical structure.

This appendix describes the formatting rules and the operation of the formatter, including the run-
time options and messages.

Preparing Source Files

See this section in Appendix A: Compiler. Since the formatter uses the scanner and parser of the
compiler in order to determine structure, only syntactically correct programs may be formatted.
Examples

The formatter takes commands only from the command line: follow "For mat t er " with alist of
filenames, separated by spaces. Let us consider first afew simple examples:

The command

>Formatter ProgNane
will read the file Pr ogNane. mesa, copy itsold contentsto For mat t er . scr at ch$, and
assuming that it has no syntax errors, will produce a new, plain text, consistently formatted version
of Pr ogNane. nesa.
The command

>Formatter ProgName/ -tk

will read the file Pr ogNane. nesa, and produce a two column landscape listing of the modulein
thefile Pr ogNane. pr ess. The program will be formatted using multiple fonts and faces.

There are numerous other options described below.

Command Line Description

The simplest form of command is just the name of a source file to be formatted. If you supply the
command sour cef i | e with no period and no extension, the formatter assumes you mean
sourcefil e. mesa.

During formeatting, the display is turned off and the compiler’ s pass-one die is displayed in the
Ccursor.

The formatter reports the result of each command in For mat t er . | og with amessage having one
of the following forms (each * is replaced by an appropriate number; bracketed items appear only
when relevant):

Formatter

file. mesa -- source tokens: *, tinme: *
Formatting was successful. The source file has been rewritten. The original can be found
inFormatt er. scrat ch$. If several files are formatted in the same run, the original of
only thelast filewill bein For mat t er . scr at ch$.

file. mesa -- aborted, * errors [and * warnings] on file errlog

Formatting was unsuccessful. The output of the formatter is undefined if syntax errors exist
intheinput file. The origina fileis undisturbed.

File error
The formatter could not find the specified file.
If any error or warning messages were issued, it brings this to your attention by putting "Type Key"

into the cursor. The formatter will not return to the executive or run another subsystem until you
acknowledge the message. (Y ou can change this behavior by using switches, described below.)

Formatting rules

General Rule

Asageneral rule, the Formatter changes only the white space in the program. It does not insert or
delete any printing characters. On the other hand, it may insert white space where there previously
was none.

Spacing

Indentation is done by a combination of tabs and spacesin plain-text mode (assuming that a tab
equals eight spaces), and by spaces alone in Bravo formatted mode.

The decision of where to break lines is made independently of the output mode: pressfile, plain
text, or Bravo looks.

A logical unit will be placed on asinglelineif it fits.

A simple carriage return in the input file is treated as a space. The occurrence of two consecutive
carriage returns (a blank line) is preserved in the output file. Three or more consecutive returns
(two or more blank lines) result in two blank lines in the output file. Since al Bravo looks are
discarded by the scanner, paragraph leading done with looks is not preserved.

For output files that contain fonts and faces (Press or Bravo) these additional rules apply:
Comments are set initalics.
The names of procedures are bold where they are defined.

Reserved words and predeclared identifiers are in Font 1.

Formatter

Font 1 should be smaller than font 0. The fonts Helvetica 10 and Helvetica 8 work well in
Bravo mode. For pressfiles, the formatter choses Helvetica 10 and 8 for portrait listings
and Helvetica 8 and 6 for landscape listings.

In genera there are no spaces before or after atoms containing only specia characters. Exceptions
to thisrule are asfollows:

A space or carriage return follows (but does not precede) a comma, semicolon, or colon.

A space precedes a left square bracket when the bracket follows any of the keywords
RECORD, MACHINE CODE, PROCEDURE, RETURNS, SIGNAL, PORT, and PROGRAM.

Spaces surround the left-arrow operator.

The exclamation point (enabling) and equal-greater (chooses) operators are always
surrounded by spaces. Thisisalso true for equal signs used in initialization and for
asterisks used in place of variant record tags.

Some arithmetic operators, depending on their precedence, are surrounded by spaces.

The equivalent of two spaces are used for each level of indenting.

Structure

The formatter determines the indenting structure of the program by the brackets that surround the
bodies of compounds. The bracketsinclude {}, (), [], BEGIN-END, DO-ENDLOOP, and FROM-ENDCASE.
An attempt is made to maximize the amount of information on a page. For example, consider:

Record: TYPE = RECORD | Record: TYPE = RECORD
field: Type, [
field: Type]; field: Type,
field: Type,

I;

In both cases, the structureis clear; it isindicated by the indenting, not the placement of the
brackets. The formatter generates the form on the | eft.

The body of each compound, assuming it does not fit on asingle line, isindented one nesting level.
The placement of the brackets depends on the bracket and on its prefix and its suffix. For
example, aloop statement has the following possible prefixes, brackets, and suffixes:

Prefixes Brackets Suffixes
FOR, WHILE DO OPEN
UNTIL, (empty) ENDLOOP ENABLE

The following paragraphs contain a number of examples. They observe the following rules for the
placement of opening and closing brackets:

The opening brackets {, [, FROM, and DO appear on the same line astheir prefixes; BEGIN
startson anew line.

If the remainder of the statement fits on asingle line (with its closing bracket), it is placed
there, indented one level. Otherwise, al closing brackets except | and } appear on lines by
themselves. If } ispreceded by a semicolon, then it isalso placed on aline by itself.

Formatter

The statement following a THEN or ELSE isindented one level, unlessit fits on the same line. THEN
is on the same line as its matching IF, and ELSE is indented the same amount as IF.

IF bool THEN IF bool THEN statement
BEGIN ELSE {body}
body
END
ELSE IF bool THEN {
BEGIN statement;
body statement}
END

Thelabels of aSELECT (and its terminating ENDCASE) are indented one level, and the statements a
second level, unless they fit on the same line with the |abel.

SELECT tag FROM
case => statement;
case =>
long statement;
ENDCASE

Each compound BEGIN-END, DO-ENDLOOP, or bracket pair isindented one level. When the rules for
IF and SELECT call for indenting a statement, a BEGIN is not indented an extralevel.

These rules are not exhaustive, but are intended to give the flavor of the formatter output.

Formatter Switches

Switches allow you to modify command input. A command has the general form
file[/s] {file2[/s] . . .}

where [] indicates an optional part and s is a sequence of switch specifications. A switch
specification is aletter, identifying the switch, optionally preceded by a’- ’ or '~' to reverseits sense.
Thevalid switches are

compile input file after formatting

don't close pressfile at end of input file

generate a press file (does not force ~t)

generate a two-column landscape press file (does not force ~t)
pause after formatting if there are errors

terminate formatting and run the program contained in file
overwriteinput file with plain text formatted version (default)
overwrite input file with bravo looks using fonts 6 and 7
overwrite input file with bravo looks using fonts 0 and 1

N<—+T-T XITQO

Each switch has a default setting, The command sour cefi | e isequivalent to

sourcefil e/ ~c~g~h~k~p~rt ~u~x~z if you use the standard defaullts, i.e., the formatter only
generates aplain text file to replace the original source. Note that the"r " switch changes the
interpretation of f i | e, which should name a subsystem.

If the assignment of switch names does not seem too mnemonic, realize that with the/ ¢ switch, al
additional switches are passed to the compiler. For example,

Formatter

>Formatter Foo/cj-a
would reformat Foo. nesa and then call
>Conpi | er Fool/j -a.

Y ou can also change the default setting of any switch by using aglobal switch. Switches given with
no sourcefile establish the default setting. Unless overridden or reset, that default appliesto al
subsequent commands. See, for example, the multiple program Press output example below.

Here is some information about the options:

g If apressfileisbeing generated, it is not closed at the end of the current input file. Itis
expected that another file in the command list will also be generating press file output
and asingle pressfile will contain multiple input files. The name of the press file will
be that of the first to which press output is being generated. If the type of pressfile
(landscape versus portrait) changes, the first will be forced closed and another pressfile
will be started. Be careful not to generate a press file larger than will be accepted by
your printer.

v, z These switches cause the formatted version of the source file to contain bravo looks.
The"Z" switch isintended to be used on a standard Mesa Programming disk that has
Helvetica 10 and Helvetica8 asfonts0 and 1. The "v" switch usesfonts 6 and 7 and
produces output that is more convenient for including in documentation. Indenting is
handled slightly differently for bravo format output files. In plain text mode, indentation
is done by a combination of tabs and spaces: the font is assumed to be fixed pitch and
the tab is assumed to be 8 times the width of a space. The z switch causes all
indentation to be done with spaces only. For v, each level of indentation is indicated by
asingletab.

Examples:

f oo

Format f 0o using all the default switch settings (standard or established by a global
switch).

fool/ -tk

Formatsf oo into atwo-column, landscape press file, leaving the original source unchanged.

/-tkg ProgA ProgB ProgC ProgD/ -g

Produces a two-column, landscape pressfile Pr ogA. pr ess that containslisting of all four
programs, each starting on a new page.

Ther (run) andp (pause) switches have identical semantics as in the compiler.

Formatter Failures

The message reporting a formatter failure has the following form:

Formatter

FATAL FORMATTER ERROR, at id[index] :
(source text)
Pass=1,signal = s, nessage = m

Such a message indicates that the formatter has noticed some internal inconsistency. The formatter
will skip the remainder of the command lineif this happens. If you get such a message (or
encounter other formatter problems), you should submit an change request as described in Section
1.8. Besureto preserve the relevant files and to mention the octal codes identifying the signal (s)
and message (m) in your change request. If you were overwriting theinput file (i.e. not saying/ -

t) you can find the original contents of thefilein For mat t er . scr at ch$.

I nter-Office M emorandum

To Mesa Users Date September 21, 1980
From J. Sandman Location Palo Alto
Subject Control Transfer Counting Tool Organization SDD/SS/Mesa

XEROX

Filed on: [IRIS]<Mesa>Doc>XferCounter.bravo .press D RAFT

Thistool for studying the behavior of Mesa programs counts the number of control transfers
(XFERS) to amodule and records the time spent executing in amodule; it can also be used to gather
information on the flow of control between groups of modules. An XFER isthe general control
transfer mechanism in Mesa. The following are all XFERS: procedure calls, returns from procedures,
traps, and process switches.

The system isimplemented as a set of commands that can be executed from the Mesa Debugger, a
routine that intercepts all XFERS and collects statistics about them, plus aroutine that intercepts
conditional breakpoints for turning the XFER monitoring on and off. Existing Debugger commands
are used to specify where XFER monitoring is enabled, and additional commands are provided for
controlling the counting of XFERS and outputting the results.

Thistool isintended to provide a global view of the behavior of a system. With thistool, a user
can identify modules that warrant closer study with other tools such as the Performance Monitor.

Components

CountTool isthe component of the tool that lives with user programs built on top of Alto/Mesa.
This configuration contains one module: Counter. It contains the XFER trap handler and a
breakpoint handler. CountTool must be loaded and started in the system it will monitor. This
may be done by including CountTool in the client configuration whose control module imports
and starts XferCountDefs.Counter or by executing the following command to the Alto
Executive:

>Mesa Count Tool dient

CountPackage isthe component that lives as atool in the Mesa Debugger. It implementsthe
basic commands required to enable XFER monitoring and to output measurement results.
CountPackage must be loaded into the Debugger before its commands can be executed. Itis
easiest to load it when installing the Debugger by executing the following command to the Alto
Executive:

Xfer Counting Tool

>XDebug CountPackage/ |

The CountPackage creates awindow through which all interactions with the tool take place.

Operation

There are two modes of operation, plain and matrix. Plain mode (the default) simply records the
time spend in amodule and the number of XFER to that module. Matrix modeis used to gather
information on the flow of control between groups of modules. Each module is a member of one
of 16 groups. A 16 by 16 matrix of counts and times is maintained by the Counter. The rows of
the matrix are the groups of the source of the Xfer, the f r omgroup. The columns of the matrix
are the groups of the destination of the Xfer, thet o group.

In plain mode, when XFER monitoring is enabled and a XFER occurs, the trap handler calculates the
time since the last XFER and adds that to the cumulative time for the current module. It then
calculates which module is the destination of the XFER and makes that the current module,
incrementing its count. In matrix mode, the trap handler updates the appropriate element of the
matrix. The XFER handler then completes the XFER, and the user program continues.

The state of XFER monitoring can be controlled by two methods. Thefirst is by setting a
conditional break to be handled by the tool’ s breakpoint handler. The second is by calling the
procedures XferCountDefs.StartCounting and XferCountDefs.StopCounting.

When the break handler intercepts a breakpoint, it checksto seeif the breakpoint is conditional. |If
not, the break handler proceeds to the Debugger. Otherwise, the state of XFER monitoring is
changed and program execution isresumed. A condition of zero turns XFER monitoring on; a
condition of one toggles the state of XFER monitoring; a condition of two turns XFER monitoring
off. Any other condition has no effect.

The procedures XferCountDefs.StartCounting and XferCountDefs.StopCounting provide
an aternative method of enabling XFER monitoring. These procedures may be called from
statements in the user’ s program, or they may be called using the Debugger’ s interpreter.

Since multiple processes may interact with each other, there is the concept of the tracked process. If
this processis not NIL, only those XFERS that are encountered during execution of the tracked
process are counted; all others are simply resumed. |f the tracked process processisNiL, then all
processes contribute to the accumulated data.

The CountPackage determines group membership by reading afile that associates group

numbers with global frames. The easiest way to produce thisfile isto use the Debugger’s

Di spl ay d obal FranmeTabl e command and then edit the file Debug. | og. Append the desired
group number to the line for that module. If no group number is specified for aling, it goesin the

group specified by the previous line. Modules not assigned group numbers are in group zero. For
example:

StringsB, G 173134B, ¢gfi:33B 1 group 1
StringsA, G 173140B, gfi:32B group 1
StreansC, G 173144B, gfi:31B 2 group 2
StreansB, G 173150B, g¢fi: 30B group 2
StreansA, G 173154B, ofi:27B group 2
Segnent sB, G 173160B, gfi:26B 3 group 3
Segnment sA, G 173164B, gfi:25B group 3

Qur Process, G 173170B, gfi:24B 4 group 4

Xfer Counting Tool

NonResi dent, G 173210B, gfi:23B group 4
Modul es, G 173214B, gfi:22B group 4
M scel | aneous, G 173220B, gfi:21B group 4
Mesalnit, G 173224B, gfi:20B 0O group 0
MesaDebug, G 173234B, gfi:17B group O

Window and Commands
Interaction with the CountPackage isthrough itswindow. There are three subwindows: the
message subwindow, the form subwindow, and the log subwindow. Error messages and warnings
are displayed in the message subwindow. Commands are invoked in the form subwindow. All
output is displayed in the log subwindow and written on Count . | og. Anillustration of the
window during a sample session is shown in Figure 1.
The elements of the form subwindow are explained below:
Monitor: {off, on}
Turns off/on the tools breakpoint handler. All conditional breakpoints will affect the state
of XFER monitoring when the monitor is on, and will behave like normal conditional
breakpoints when it is off.
Zer o Tabl es!
Zerosout al counts and times.

Condi ti on Breaks!

Makes al non-conditional breakpointsinto conditional breakpoints by adding the condition
"1" to them.

Print Tabl es!
Displays all the statistics for each module in order of increasing global frame table index
(gfi) for plain mode. In matrix mode, it displays the statistics for each nonzero element of
the matrix. The output format of timesissec. nsec: usec. May be aborted by typing
~DEL.

Print Sorted!
Displays al the statistics for each module in order of decreasing time or decreasing number
of XFERs depending on thevalue of Sort by. May be aborted by typing~"DEL. Not
allowed in matrix mode.

Sort by: {count, tine}

When setto count , thePri nt Sort ed command displaysin order of decreasing number
of XFERS, otherwise it displaysin order of decreasing time.

Print Modul e!

Displays the statistics for the module specified by Modul e. Not alowed in matrix mode.

Xfer Counting Tool

Modul e:

Specifysthe moduletothe Pri nt Modul e command. It is either the module's global
frame table index (gfi), its global frame address (g), or its module name (if the current
configuration contains the desired module€).

Set Process!

Tellsthe Counter to count only those XFERS that are executed by the specified process.
An octal ProcessHandle as obtained from the Debugger’sLi st Processes commandis
acceptable as input to thiscommand. The default caseisto track all processes.

Process:

Used by the Set Pr ocess command. It contains an octal ProcessHandle as obtained
from the Debugger'sLi st Processes command. If Process isempty, al processes are
tracked.

Mode: {plain, matrix}
When set to pl ai n (default) the Counter functionsasin Mesa 6.0. Whensettomat ri x
the Counter records the flow from one group to another.

Load Matri x!
Using the current selection as a file name, reads the file to input group information.

Show Group!

Using the current selection as a group number, prints the names of the modules bel onging
to that group. May be aborted by typing DEL.

Limitations

1. Execution Speed: Xfer monitoring slows down the executions of a program considerably since
extraprocessing is done on every XFER. Asaresult, interrupt processes that are triggered by clocks
will run relatively more frequently; e.g. the keyboard process being interrupted by the display.

2. 1dle Loop Accounting: When no processis running, the Mesa Emulator runsin itsidle loop
waiting for a process to becomeready. Thisidletimeis charged to the process that was last
running.

3. Time Base: The time base available on the Alto is a 26-bit counter, where the basic unit of time
is 38 microseconds. Thus the counter turns over every 40 minutes, and no individual time greater
than 40 minutes is meaningful. Total times are 32-bit numbers and will overflow after 340 minutes.

4. Overhead Calculation: Due to implementation restrictions and timer granularity, some of the
overhead of processing an XFER trap isincorrectly assigned to the client program instead of the
CountTool. Asaresult, times must be interpreted as only arelative measure of the time spent in
amodule.

5. Counter Sizes. Counts are 32-bit numbers. The maximum total count is 4,294,967,295 XFERS!

6. Memory Requirements: The CountTool requires seven pages of resident memory: two for its
code and five for its frames and tables. This may affect the performance of some systems that use a

Xfer Counting Tool

lot of memory, especially on the Alto.

7. CountTool’s break handler acts like aworry mode breakpoint; as a consequence, you may find
you cannot Qui t from the Debugger after your session. Usethe Ki | | Debugger command instead.
Getting Started

Outlined below are the steps required for using the measurement tool.

1. obtain the bed’sfor CountTool and CountPackage.

2. install the CountPackage in the Mesa Debugger (version 6.0).

3. start your program executing with the CountTool included.

4. enter the Debugger and set conditional breakpoints to enable monitoring as desired.

5. turn the break handler on by setting the Moni t or parameter to on.

6. proceed with program execution.

7. return to the Debugger via control-swat or an unconditional breakpoint.

8. display results with the Pr i nt commands.

Xfer Counting Tool

Sample Session

The following annotated listing of Debug. | og and Count . | og should give afair idea of the use of
the measurement tool. The Debugger was invoked by the Mesa Executive’ s Debug command

Al t o/ Mesa Debugger 6.0m of
25-Sep-80 9:56

5-Sep-80 12:02

You cal | ed?

>SEt Root configuration: MesaExec

>SEt Modul e context: MesaExec

>Break Entry procedure: LoadNew Breakpoi nt #1.
loading

>Break Xit procedure: LoadNew Breakpoint #2.
--the Condi ti on Breaks command will make these conditional breaks

-- now interact with the Count Package. Condition breaks and set the process

>Proceed [Confirni

You cal | ed?

-- now look at the results

>--Test. map -- file containing group information

-- now set modeto mat ri x andload group information using Load Matri x command
>Proceed [Confirm

You cal | ed?

-- Count XFER involved with

-- now look at the matrix
session [Confirni

>Ki | |

Xfer Counter 6.0 of 19-Sep-80 9:53
25- Sep-80 10: 48

Track process:

3647B

Condi tional i zed breaks

-- ignore keyboard and interrupt key

--Output of Print Tabl es commandwith nbde = plain
Total Xfers 4,088
Total Tine 1. 329: 842
&i Frane Modul e #Xfers UXfers Time 9%ine
1B 174164B Resi dent 12 29 6: 286 .47
3B 174030B Di skl O 869 21. 25 583:996 43.91
4B 174000B Swapper 530 12. 96 96: 050 7.22
5B 173344B MDSRegi on 538 13. 16 200: 367 15.06
7B 173314B BFS 1 .02 76 .00
10B 173304B Directory 80 1.95 38: 900 2.92
11B 173270B Di skkKD 2 .04 533 .04
13B 173260B Fil es 140 3.42 15: 392 1.15
15B 173254B FSP 100 2. 44 15: 468 1.16
16B 173240B LoadSt ate 97 2. 37 105: 384 7.92
22B 173214B Modul es 96 2.34 35: 471 2. 66
23B 173210B NonResi dent 3 .07 457 .03
25B 173164B Segnent sA 74 1.81 17: 945 1.34
26B 173160B Segnent sB 89 2.17 13: 487 1.01
27B 173154B StreansA 55 1.34 10: 629 .79
30B 173150B StreansB 44 1.07 8: 115 .61
31B 173144B StreansC 55 1.34 10: 629 .79
32B 173140B StringsA 89 2.17 9: 525 .71
33B 173134B StringsB 19 . 46 3:924 .29
35B 173124B Al Font 176 4. 30 21: 107 1.58

Xfer Counting Tool

36B 173104B Al t oLoader 237 5.79
40B 173100B BcdOper ati ons 153 3.74
45B 172720B Loader Core 516 12.62
47B 172660B Stream O 23 . 56
50B 172650B SystenDi spl ay 82 2.00
54B 170274B MesaExec 8 .19
I gnored Xfers 98
| gnored Time 309: 943

--Output of Print Sorted commandwith Sorted by = count

Total Xfers 4,088
Total Tinme 1.329: 842
&i Frane Modul e #Xfers UXfers
3B 174030B Di skl O 869 21. 25
5B 173344B NMDSRegi on 538 13. 16
4B 174000B Swapper 530 12. 96
45B 172720B Loader Core 516 12. 62
36B 173104B Al t oLoader 237 5.79
35B 173124B Al Font 176 4.30
40B 173100B BcdOper ati ons 153 3.74
13B 173260B Fi |l es 140 3.42
15B 173254B FSP 100 2.44
16B 173240B LoadSt at e 97 2.37
22B 173214B Modul es 96 2.34
26B 173160B Segnent sB 89 2.17
32B 173140B StringsA 89 2.17
50B 172650B Syst enDi spl ay 82 2.00
10B 173304B Directory 80 1.95
25B 173164B Segnent sA 74 1.81
27B 173154B StreansA 55 1.34
31B 173144B StreansC 55 1.34
30B 173150B StreansB 44 1. 07
47B 172660B Stream O 23 . 56
33B 173134B StringsB 19 . 46
1B 174164B Resi dent 12 .29
54B 170274B MesaExec 8 .19
23B 173210B NonResi dent 3 .07
11B 173270B Di skKD 2 . 04
7B 173314B BFS 1 .02
I gnored Xfers 98
I gnored Time 309: 943

--Output of Print Sorted commandwith Sorted by = tinme

Total Xfers 4,088

Total Tine 1.329: 842
Gi Franme Modul e #Xfers WXfers
3B 174030B Di skl O 869 21. 25
5B 173344B MDSRegi on 538 13. 16
16B 173240B LoadSt at e 97 2.37
4B 174000B Swapper 530 12. 96
45B 172720B Loader Cor e 516 12. 62
10B 173304B Directory 80 1.95

22B 173214B Modul es 96 2.34

29:
16:
74:

13:

070
421
256
: 057
830
457

1629
1115
. 057
1924
: 286
457
457
533
76

.18
.23
.58

.15

.03

PNNPRPRPEDNON

L

Xfer Counting Tool

36B
35B
25B
40B
15B
13B
50B
26B
31B
27B
32B
30B

1B
33B
47B
11B
23B

173104B
173124B
173164B
173100B
173254B
173260B
172650B
173160B
173144B
173154B
173140B
173150B
174164B
173134B
172660B
173270B
173210B
54B 170274B

7B 173314B
I gnored Xfers
I gnored Time

Matri x | oaded

-- Output of Print Tabl es commandwith node

Total Xfers
Total Tinme
From-> To

->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->

=

=

=
OPRPONOPRPWONNONOOPLPWNOOP,PWROOURANPEFPWNE

N~NOOOO0OOOOOOUIRARRRRMBREADRERDMWWWWWNNNNNNERPE

Al t oLoader

Al Font

Segnent sA
BcdOper ati ons
FSP

Files

Syst enDi spl ay
Segnent sB
StreansC

St reansA
StringsA
StreansB

Resi dent
StringsB
Streanl O

D skKD
NonResi dent
MesaExec

BFS

98
309: 943

3,834
871: 004
#Xfers

179
64
13

124
61

1, 105
87

82

14
87
207
36
12

37

Ll

237
176
74
153
100
140
82
89
55
55
89
44
12
19

N
R0 WN W

mat ri x

79
30
81
74
44
42
00

34
34
17

PhMRERENNODOER RGO

.29
.46
.56
.04
.07
.19
.02

19:

264:
16:

13:

[6200\¥]

AN i

29:
21:
17:
16:
15:
15:
13:
13:
10:
1629
: 525
1115
: 286
1924
: 057

[
N WO 00wWOo

070
107
945
421
468
392
830
487
629

533
457
457

76

PRPEPPREERN

18
58
34
23
16
15
03

.79
.79
.71
.61
.47
.29
.15
.04
.03
.03
.00

Xfer Counting Tool

7 ->
9 ->
10 ->
10 ->
10 ->
10 -> 10

DWN B~

I gnored Xfers
I gnored Time

759
11
59

1
12
23

396
673: 569

19.79
.28
1.53
.02
.31
.59

221:

932
647

1944

152

: 543
1171

25.48
.07
1.14
.01
.40
.24

JMonitor; {off, ER+ Zero Takbles!
{Print Tabhles! Print Sorted!

HPrint Module! [Module:

dMode: TIERE. matrixd Load Matrix!

Condition Breaks!

Sort by: SRR, timel

Set Processz!
Show Groupl

[Process: 3476

j “fer Counter B,0 of 198-5Sep-3@ 9:53
4 EB-Sep-50 11:11

|

Report on file:

Nunb
er

490

650

801

1169
2039
3128
4038
4250
4416
4478
4502
4514
4593
4656
4658
4676
4765
4766
4924
5392
5393
5727
5842
5885
5887
5950
792

911

1034
1969
2068
2622
2858
3335
3653
3660
3797
4351
4464
4537
4547
4608
4657
4681
4742
4774
4899
4941
4956
4997
5112
5114
5148
5151
5172
5182
5215
5221
5231
5264
5276
5281
5294
5298
5324
5337
5343
5385
5405
5415
5417
5424
5488

Origi nat or

Mur r ay
Johnsson
Mur r ay

W ck
Mur r ay
d st ead
Evans
Knut sen
Mur r ay
LNel son
BLyon
Knut sen
Luni ewski
nmbr own
Johnsson
LNel son
Newran
Newman
Newman
Luni ewski
Luni ewsk
LNel son
LNel son
Johnsson
Mar zul | o
Snokey
McJones
McJones
Mur r ay
Redel
Mur r ay
Howar d
Morri son
Newman
MBr own
Sweet
Howar d
Guyt on
Tanaka. ES
McJones
Levin
Hami | t on
Schwart z
maxwel |
m t chel
ayers
Sweet
Newran
McJones
Swi nehart
AWl | s
AWl | s
Luni ewsk
Mur r ay
Nel son
Knut sen
Newran
Avel | s
Wat t

LSt ewart
Levin
Newman
schm dt
Artibee
Newran
AWl | s
Levin
Ludol ph
AIMAM T- ML
Dani el s
Mar zul | o
Fay

Knut sen

Subsyst em
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Bi nder
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er

Conpi | er

Fi xed60m rpt 1 25- Sep-80 15: 54: 56

Subj ect

Conpi | er doesn’t check Defs for unEXPORTED exports

Packed bit on MI Records not set

Unbound procedure vs. Binder /r

Configurations Specifying List of Control Mdul es

Abort For "C After Error

Error nessages re: different versions

Lock rel eased once too often when zap target bcd

Issue Warning if two /c itens

Whi ch nmodul e can't be packed

Bi nder under Tajo

"I MPORT' instead of 'I MPORTS in a CONFIG bl ew the binder up
Copying code to bcd w "code" gives "Ref’d in diff versions"
Qutput files incorrectly chosen

switch syntax: "bind /c foo" vs. "bind foo/c"

Command line '; eats next char

Bi nder patches for Star

"Foo.run/r" puts "Foo.run/" in Comcm

"Foo.image/r" doesn’'t work

Fails to pause after syntax error

Uni mpl ement ed command |ine args not detected

Command |ine overriding of Directory statenents

Fatal Binder Error: 1015B

LongBi nder hung on config that standard binder handled OK
Passing LI NKS: CCDE to pre-bound Config

bi ndi ng packaged code wi th code copy

Fat al Bi nder ERROR

Break Entry with DO as first statenent

Franes | ost from UNW ND

Hel p on interupt routines

Bad Fine-grain Table

Poor Code For a+b*c

Fatal conpiler error, Pass 5, 267601B

Bad code generated for an I NLINE (RXLPL) causes AddressFaul t
Doc: Pitfalls in allocating bound variants froma heap
Error nessage for expressions in extractors

bounds checking strings

RETURN W TH ERROR i n ENTRY | NLI NE does wrong thing

Short Poi nter code generated from LONG DESCRI PTORS
Subrange type in Defs gives bogus results

Zero-size field in MD. record with explicit field positions
Bad FGT entry

ALL[ALL bombs pass 5

Conpi l er hangs in pass 5 when null EXI TS cl auses

Crash in pass 5

fatal, pass 5, variant record el ement conmpare W nil checking
Error Messages’ Construction

Constant Table: zero length constants entered in the table
Doc: ABORTED total ly undocunent ed

Extra FREE for large result record in FOR | oop expression
Machi ne Dependent Records Bug

Bad code generation for array initialization

Internal stack overflow in recursive type declaration
Fatal conpiler error pass 5

FOR C ause Problem - 1ong variable and constant bounds
Variant record defaults

Conparing expr to field of result of inline blows up

Type m smat ches invol ving zone. NEW gi ve poor error nessages
Lack of defaults for declared return variables

Fatal fromcall on an I NLI NE procedure

a, b: DESCRIPTOR _ [NIL,0] => "Miltiple init wptr"

CV and M. addresses

Confused about conpile-time constants & subrange types
NEW of extrenely |large arrays

Opt Cat chPhrase on WaitStnt soneti mes nandatory

Can’t zone.NEWfor objects with non-constant size
Conpi |l er dropping into the debugger in pass 5
@onstructor gives fatal error

LOOP in | oopexitsclause of inner |oop repeats inner |oop
Ml ti-nodul e MONI TOR

Fatal conpiler error after ill-formed DI RECTORY cl ause
The same tenporary location is assigned twice in a | oop
StackModel ling Error in long, zero-based IN tests
MachDepRec conpl ai ns of gaps

5492
5546
5614
5622
5687
5689
5710
5720
5754
5783
5805
5846
1161
2155
2191
2432
2455
2460
2531
2598
2618
2767
2910
3047
3182
3410
3456
3610
3662
3663
4020
4160
4437
4445
4525
4564
4598
4614
4633
4655
4672
4680
4732
4741
4743
4745
4757
4759
4761
4764
4776
4777
4783
4789
4791
4804
4808
4824
4825
4827
4839
4843
4844
4851
4858
4864
4869
4873
4874
4875
4877
4880
4887
4889
4890
4894
4916
4918

McJones
LSt ewar t
Newman
Newran
Newman
For rest
Newran
Al fvin
Dani el s
Swi nehart
Swi nehart
Sweet
Morri son
Karlton
Johnsson
Schwart z
Schwart z
Schwart z
mal asky
Selly
Charli Levy
Pur vy
charnl ey
bear d

ol mst ead
Sandman
Mur r ay
Birrel
Birrel
Birrel
Newman
LNel son
Mur r ay
Levin
Frei er
Kayashi ma
Ham | t on
Kayashi ma
nmbr own
nmbr own
Gobbe
norris
birrel
Wat t
Levin
Mur r ay
Newman
Newman
Newman
Newran
Mur r ay
Mur r ay
ayers
ayers
Mur r ay
Levin
Levin
Newman
Newran
Newnman
birrel
Newman
Newran
Cattel
MG egor
Cattel
Johnsson
Johnsson
Karlton
Sweet
Sweet

Mal asky
Newman
Newman
Newran
MBr own
Newran
Newman

Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Conpi | er
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger

Catch phrase should not be all owed on RETURN W TH ERROR
Fl oating point conpare to zero code generator

Mai nli ne code | ocal variables allocated in global frane
Type mismatch for PROC RETURNS [UNCOUNTED ZONE] (or MDSZone)
Bad code for record constructor containing proc calls
Long pointer to Packed ARRAY of >4K bits generates bad code
St ackModel i ngError, pass 5 from LONG CARDI NAL | oop iteration
NI L as an acceptabl e ZONE val ue

Fatal System Error (Punt) in Pass 5

Conpiler loops in pass 5 with nil-checking on

Code generation bug -- long pointers

[1 _ ERROR SigReturnsVal ues

Command to Redi splay Uncaught Signal Messages

I ndirect Type-in For DebugW ndow

p%-i | eNamre$Type fails

Doc: Cursor actions on tiny wi ndows need docunenting
Doc: >> pronpt not docunented

Doc: Some finepoints

Doc: Find Variable vs Search Context

Doc: Set Cctal Context exanpl es; Frane$var

Di splay Stack source listing in error

Doc: Reporting debugger problens

can't break at entry

Debugger’ s unawar eness of new source file

Doc: conditional breakpoints

Perf Moni tor and XferCounter trap handl ers and NOOPs
-1,-1 fromTrace All Xits

Doc: Going into Swat and overwiting Swatee

Attach Inmage to use current |oad state

Doc: Ascii read increnents start address w ong

Doc: Sone variables print out followed by " R
Condi ti on breaks vs subranges

process not bound

Debugger frane trouble

Di spl ay of variable of type PROCESS

Xdebug Hangs when Move or G ow sized wi ndow

Doc: Attach Synbols

Stripping Bravo Trailers

Conf usi on about contexts

Attach Mesa Source command

Debugger bitnmap goes away sonetines if Edit is used.
Debugger crash

I ncorrect handling of multiple instances of nodul es
COremap bug

Lockup whil e repainting w ndows

Can’'t install Internal Debugger

Di spl ayi ng argunents of Signaller.ErrorList goes to // node
Fails to find synbols in files retrieved with FileToo

M sl eadi ng error nessage from Di splay Frane

Spurious "...is not a valid field selector”

1001 while trying to Kil

cont ext m xup

Debuggers erxtra-nmenory bitnmap space

<al phamesa>t enp>xdebug. i mage Intall problenms

Bound OVERLAI D vari ants

Debugger bootl oading: N L Puntlnfo gives PointerFault

| rported LONG DESCRI PTOR

Interpreter doesn’'t know size of UNSPECI Fl ED
Interpeting "array[Type[val ue]] gives uncaught signa
Enurer at ed val ues not found

Clear Al Traces m ssing

Li st Breaks says nothing if no breaks set

ATt ach Condi ton conmmand rej ected

Doc: No [non-wi zard] way to get debugger to redisplay SIGNAL
Debugger Inline eval bug

Not Rel ocat ed SI GNAL from debugger on call to user routine
CL? doesn’t list all options

? for unknown PROCEDURE

W1l not display Ascii.NULs

Cl ear Break #

Di spl ay Break #

“Nval i date cache command

M ssing comand "CLear Modul e" ??

ATt ach Expression to nonexi stent break => no error nsg
LI st Breaks doesn’t display attached expressions..

br eakpoi nt set on "BEG N' of proc body snashes entry break?
"Break ?" shows invalid options

"CLear ?" |eaves sone options out

4950
4963
4966
4979
5014
5027
5028
5046
5119
5120
5131
5143
5176
5225
5228
5229
5232
5244
5251
5284
5285
5286
5299
5301
5302
5315
5328
5364
5365
5384
5389
5484
5695
5742
5863
5883
5910
1823
2092
2438
2558
2766
2880
2906
3626
3863
3900
3987
4131
4174
4352
4444
4456
4499
4544
4550
4552
4590
4612
4763
4809
4904
5005
5062
5093
5098
5132
5152
5195
5198
5236
5527
1230
2063
2135
2186
2242
2253

Hayes
Newran
Newman
Fr ankel
Newman
Newran
Newran
Mur r ay
Sapsford
birrell
MBr own
kol I'i ng
JElIlis
MBr own
Mur r ay
Mur r ay
kol l'i ng
Newran
Mur r ay
Newran
Newnman
Newman
Newran. ES
Mur r ay
Mur r ay
Mur r ay
Mur r ay
JEIIlis
JElIlis
Dani el s
norris
Dani el s
McJones
Cattell

I srael

St ewart

i srael
Hami | t on
Mal asky
Schwart z
LNel son
Hami | t on
Cl enons
i srael
Mur r ay
Murray. PA
Mur r ay
Sapsford
Levin
Hami | t on
Karlton
Schmi dt . PA
Birrell
Mur r ay
birrell
Levin
Birrell
birrell
Ham | t on
Newnman
Levin
Levin
birrell
kol I'i ng
Mur r ay
Mur r ay
MBr own
Mur r ay
birrell
birrell
Newman
Newman
Judd
Ayers

Mal asky
McJones
Johnsson
ato

Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Debugger
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
Et her
O her
O her
O her
O her
O her
Q her

Fil eTool, PupAndFTP won't install manually in Int. Debugger
Di spl aySt ack-source: cl obbers editabl e w ndow

"Trace ?" displays invalid options

Synbol table reset infinite | oop

Di spl ayStack + "?" |eaves sone options out

Initial position of wi ndows shouldn’t be overlaid
Interpreter won't display variables of type MDSZone

Cctal Read hangs

ARRAY[i nterval] does not account for bias

Re-setting breaks

Doc: what does output of the interpreter’s ? operator nmean?
Doc: Resetting synmbol table

Resetting Synbol Table vs Find Variable

Di splay Module | oses track of who is in the w ndow

AScii Read should check CI-DEL

Gar bage PC gi ves | ast PROCEDURE

source w ndow sel ections, breakpoints, etc.

Naned return values vs. exit breaks

PC to PROC mi xup

"size msnmatch" for Display Queue of CONDITION variable

Di spl ay Queue of MONI TORLOCK => "100000B is invalid Process"
Di spl ay Queue of octal nunber fails

Interpreter: subrange assignnment error

PC mi xup after clearing break

47201 from Set Mdul e Context (anbigious)

Sour ceW ndow. cont ext m xup

Di spl ay G obal FranmeTabl e

No response to <nodul e nane>$<vari abl e nane>

Interpreted rel ati onal expression produces Uncaught Signal
Falling into // node fromlInterpreter

Br eakpoi nt not found.

Incorrect printing of variant records

Spurious question mark for value of |arge cardinal subrange
al l ows attaching condition to non-existent breakpoint

Rel ative string

PACKED ARRAY printing

Rel ative array descriptors.

FTPtool: no filstats

Chat Tool : Should Attach O Log In

Fi | eTool : behaves strangely when opened a second tine.

Fil eTool : close connection logic is defective.

FTPtool: "IFS full" funnies

Fil eTool : C oses connection unnecessarily

Pup: FTP: Sl ow on Dorado

FTP: sending mail

Fetch: Make it nore |ike FTPtool

FTP: UNWND from FTPEnunerate/retrieve

FTP: Ti meExtras. PackedTi neFronString vs StringBoundsFaul t
FTP: FTPServers. config

Fil eTool : deletion fails

FTP: FTPAItoFil e. PreProcessFil e does a blind Rel easeFile
FTP: FTPI nvent oryDunpFi | e needs create date paraneter

Pup: FTP: Reconpil e packages to fix long return record bug
FTP: FTPTransferFile doesn’t pass through the creation date
FTP: FTPRetrieve hangs until tineout on a "no" nark

Fil eTool : "del ete" bugs

Pup: ByteStream ti neout

FileTool: returns slowy if the client stops an enuneration
FileTool: shift col.2 left; move "verify"

FTP: Forgetting to call |dNxtRejRecip => disaster

Fil eTool : Local Delete: error nmessage is nisleading
FileTool: fails to restore command buttons

Pup: 2 sec delay creating Byte Streans

Pup: DriverDefs. debugPoi nt er

Pup: NaneLookup vs dying nets

Pup: EthernetDriver priority

Fil eTool : does not set creation date properly

FTP: Ti meExtras: zone screwup

Fi | eTool : wi ndow si ze

FTP: nmake single config available with everything

Fil eTool : obsol ete free page count

Fl |l eTool : treat enpty "source" field as "*"

DOC: Exanpl es

Perf. Mnitor: Inproved Handling OF Node String Printout
Two CursorProcesses In Put After NewSession

Li ster: Code Listings To Show d obal Frame Size

I ncl udeChecker vs. Conpiler swtches

I ncl udeChecker chokes on STAR

2255 Karlton O her I ncl udeChecker should specify conpilation as |ate as possi bl

2339 Wck O her Copyright Notice on Mesa Source Files

2392 Ladner Q her XFER Tool Enhancenents

3303 Newnan O her I ncl udeChecker: bug fixes

3744 Johnsson O her RunMesa 34.8 |lies about wi debody non XMesa machi nes
4166 Levin O her RunMesa: optionally restricting nenory use

4647 Luni ewski O her Packager: Crashes if errors while processing

4650 Luni ewski O her Packager: /| produces both .list and .map files

4651 Luni ewski O her Packager: Fatal error: Unbound procedure

4659 Luni ewski O her Packager: /moption - Mre information requested

4663 Luni ewski O her Packager: /moption produces fatal error

4683 Luni ewski O her Packager: Mssing file does not produce error nessage
4707 Luni ewski O her Packager: multiple nodul e i nstances

4737 Evans O her Formatter: Doesn't DO x_SELECT.. 1=>n, ENDCASE=>ERROCR;
4863 Luni ewski O her Packager: Can’'t process conpiler bcd' s

4865 Cobbel O her Formatter spaces too wi de

4939 Levin O her CommandCentral selection glitch

5058 forrest Q her Formatter adds extra blank Iines

5082 BlLew s O her Formatter: Inproper treatnent of "~=" operator

5084 BlLew s O her Formatter: Inproper treatnent of "~(a OR b)"

5250 CGobbel Q her Formatter should use snall font for predeclared identifiers.
5311 Sapsford O her Formatter: Extraneous CR

5313 M tchell O her Formatter: Use of tabs and spaces

5325 Nel son O her Formatter handl es string contants w ong

5327 Morris O her Formatter problem

5344 Levin O her Formatter: comments on END procedure |ines

5434 Daniels O her Statistics: InsufficientVMraised upon initialization
5480 Johnsson Q her Formatter: Overlaid variant records

2007 Murray System I mage Files Poisoned Wth Bad FP

2161 Mirray System Swapper/Disk 1O Difficulties

2224 Ayers System ERROR i n MakeCheckPoi nt

3061 israel System Ni | and bounds checki ng

3129 d nstead System Request for info

3661 Birrell System Aborting process in ReadChar |eaves keyboard nonitor | ocked
3668 Birrell System XMesa Nucl eus: determ ning nenory size

4397 Murray System Loadi ng garbage: Uncaught BadFile

4405 Schnidt.PA System Readi ng | eader pages: don’'t change read-date

4574 Newnan System RESUMEI ng a Poi nt er Faul t =>uncaught SI GNAL | nval i dd obal Frane
4604 Newnan System FrameDef s. [New Run] Confi g should return a G obal FraneHandl e
4847 AWl s System Bug in turning off echos in ReadLine (IODefs)

4932 Levin System Bug in AltolLoader. Load

4933 Sandnman System BcdOps. ProcessSpaces | acks *Sl| ZE[Spacel D]

4938 Levin System CommandCentral : Expand @ilel @ile2 fails

4958 Levin System Bug in Wart: InitLoadState was changed

4970 Evans System Debugger | ooses bitmap when client makes checkpoi nt
4985 Newnan System Loader doesn’t link up inported PO NTER TO FRAVE

5003 Evans System Makel mage: Di sk Descriptor not swapped in when needed
5057 kol ling System Doc: Were is the stuff that used to be in bootdefs?
5065 MG egor System Preserving /k when com ng back from a MakeCheckpoi nt
5094 Murray System Makel mage di es

5108 Karlton System Time: add Tinme. Packed to ease conpatibility problens
5147 Levin System Nasty FSP bug. .. again!

5154 Murray System Ti meConvert. PackDT of f by an hour

5184 Levin System Hyper Regi on bug: rover not in bounds

5185 Levin System Al ocVM specific allocation too restrictive

5190 M:Jones System CommandCentral should parse the options w ndow fields
5191 MJones System Uncaught signal when CommandCentral can’'t find conpiler
5296 Hayes System Menory Conpetition Tajo vs. Debugger

5342 schni dt System GetID vs. Getld in Charl O nesa

5416 Levin System Debugger snashes Hyper Regi on

5449 Levin System M ssing Start Traps

5479 kol ling System where is debugnub. bcd/ mesa?

5626 Levin System LoadConfi g returns Control Mbdul e, not G obal Frane

5627 Levin System Killing off the Interrupt process

