
Copyright c Xerox Corporation 1980

Inter-Office Memorandum

To Mesa Users Date October 27, 1980

From John Wick Location Palo Alto

Subject Mesa 6.0 Change Summary Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>Summary60.bravo (and .press)

This memo outlines changes made in Mesa since the last release (Mesa 5.0, April 9, 1979). The first
section lists references which should be consulted for more detailed information. The second
section contains an overview of the changes. The final section describes operational differences
which you must know in order to use Mesa 6.0.

For most programs, you should be able to begin converting to Mesa 6.0 after reading only this
memo; then consult the various updates when details of new features are required. If your
application relies on the extended memory support previously provided by XMesa, you will
probably need to read the System and XMesa updates before converting.

References

The following documents can be found on <Mesa>Doc>. (In Palo Alto, the official Mesa release directory
is maintained on Iris (there is also a copy on Ivy); in El Segundo, it is on Isis. For other locations, consult your support
group.) In addition, the file Mesa60.press is a compilation of this and other material (about 75
pages); hardcopy is available through your support group.

Mesa 6.0 Change Summary. Summary60.press

Mesa 6.0 Compiler Update. Compiler60.press

Mesa 6.0 Binder Update. Binder60.press

Mesa 6.0 System Update. System60.press

Mesa 6.0 XMesa Update. XMesa60.press

Mesa 6.0 Debugger Update. Debugger60.press

Mesa 6.0 Utilities Update. Utilities60.press

Mesa 6.0 Pup and Ftp Update. PupFtp60.press

The above memos describe changes since the last release. The <Mesa>Doc> directory also includes
new versions of the following documents:

Mesa System Documentation. System.press

Mesa Debugger Documentation. Debugger.press

Mesa User’s Handbook. Muhb.press

Mesa Pup Package Functional Specification. Pup.press

Mesa 6.0 Change Summary 2

Mesa Ftp Functional Specification. Ftp.press

Integrated Mesa Environment. CommandCentral.press (in Utilities60.press)

Performance Mesaurement Tool. PerformanceTool.press

Control Transfer Counting Tool. XferCounter.press

Debugger: Extended Features. XDF.press (in Debugger60.press)

Because the language changes are upward compatible with Mesa 5.0, a new version of the Mesa
Language Manual will not be issued with this release; consult the Compiler Update and the Binder
Update for information on additions to Mesa and C/Mesa.

Highlights

The primary emphasis in this release has been on the following areas:

A number of significant new language features are included: extended defaults, floating point
support, machine dependent records and enumerated types, dynamic storage allocation, sequences,
and exported types. Less major revisions and extensions have been made in the following areas:
syntactic and semantic glitches, keyword array constructors, packed array representation, successor
and predecessor operations, the DIRECTORY statement, implicitly imported interfaces, type TEXT, loop
control variables, extended NIL, the REJECT statement, and the ABORTED signal. The language
changes are compatible with Mesa 5.0, and will not affect existing source code (there are some minor

exceptions; see below). In addition, the Compiler’s user interface and command line syntax have
changed substantially. See the Compiler Update and Appendix A of the Mesa User’s Handbook for
details.

A Mesa source formatter is available with this release. It establishes a standard representation for
source text, and will produce both plain and formatted .bravo and .press files. Complete
documentation can be found in Appendix B of the Mesa User’s Handbook.

The Binder has been updated to agree with the Compiler’s treatment of the DIRECTORY statement
and its user interface and command line syntax. In addition, it now supports multiple control
modules in a single configuration. See the Binder Update and Appendix C of the Mesa User’s
Handbook for details.

Support for extended memory beyond 64K, formerly provided by XMesa, is now part of the
standard system. The BasicMesa configuration has been abandoned in favor of facilities which
dynamically delete non-essential components of the system. Support for subdirectories, fast
directory scanning, floating point, Pup checksums, and 3K RAMs have been added. (Appendix G of
the Mesa User’s Handbook details extensions made to RunMesa.) Other than memory allocation
facilities, changes to the System and Pup and Ftp interfaces are minor; see the updates for details.

The Debugger has a new user interface, a new interpreter, and a simple cut and paste editor. The
Debugger’s command language is essentially unchanged, but several extensions in window
operations and source window facilities have been added. A description of the new FileTool is
attached to the Debugger Update.

Several new commands have been added to the Lister, and the IncludeChecker has been extensively
modified to support large configurations more efficiently. A new package, CommandCentral, is
available for use with the Debugger; it serves as a small executive for controlling the editing,
compilation, binding, and debugging of applications software. This package greatly speeds up the
edit�compile�bind�debug cycle when small changes are involved. Documentation is attached to
the Utilities Update.

Mesa 6.0 Change Summary 3

A new mode has been added to the Control Transfer Counting Tool which allows modules to be
assigned to groups and information to be collected on cross group as well as cross module transfers.
The performance measurement tools are documented separately as described in the first section of
this memo.

Operational Changes

This section summarizes important operational differences which you must know in order to use
Mesa 6.0; do not begin to convert to Mesa 6.0 until you have read it. More complete information is
contained in the update memos listed in the first section of this document.

General

On large programs, performance of the Mesa 6.0 Compiler and Debugger on 64K Altos is
considerably worse than in Mesa 5.0; an extended memory machine with a minimum of 128K is
recommended.

Alto Operating System version 18 and Executive version 11 or later are required to run Mesa 6.0.

The new file creation date standard is now supported. The compiler inserts the creation date of the
source file into the .bcd (as does the Binder), and the Debugger checks that the source and object
file versions match. The IncludeChecker also makes use of these dates. Therefore, you must use an
editor and a file server that support the file date standard. If you use dump files, be sure you have
the latest version of Ftp.

Language

With two exceptions, Mesa 5.0 source files are compatible with Mesa 6.0. In file names in the
DIRECTORY statement, names inside angle brackets are no longer ignored; they are treated as
subdirectories of the Alto file system (use of this feature is not recommended). The following new
reserved words have been added: FREE, PRED, PROC, REJECT, SEQUENCE, SUCC, UNCOUNTED, and
ZONE.

Compiler

The order of evaluating the items in constructors (including argument lists) and the operands of
infix operators (except AND and OR) has been changed, particularly in cases involving embedded
procedure calls; it is no longer always left to right. In particular, expressions of the form word _
get[s]*256+get[s] are suspect, and probably incorrect.

Except during initialization, constructors for records containing MONITORLOCKs, CONDITIONs, and
PORTs are not allowed (to prevent unintentionally overwriting these fields with their default values).
Such records must be assigned to field�by�field.

For element sizes of four bits or less, the internal representation of packed arrays has changed.
This is a potential problem in reading files containing packed arrays created by earlier versions of
Mesa.

The Compiler no longer supports interactive command input; it reads commands only from the
command line, and does not use the keyboard or display (limited feedback is via the cursor). The
command language has been extended and switch processing has changed. The /c switch has been
deleted; global switches must now be specified with a null file name, e.g. Compile /p Defs Impl.

Mesa 6.0 Change Summary 4

Switches are restricted to a single letter. Do not use complete switch names such as /pause (each
letter will be interpreted as a separate switch). Until you understand the full syntax of the
command language, it is best to group all global switches at the beginning of the command line
following a single slash.

The log is now written on Compiler.log, not Mesa.typescript; separate .errlog files are
still produced. The error log (if any) is deleted if the compilation is successful; conversely, if the
compilation fails, the .bcd (if any) is deleted.

The implementation of floating point has changed considerably; the IEEE standard format is now
used, and the compiler generates calls directly to user-supplied microcode (this will produce
undefined results if the proper microcode is not loaded). Calls to software floating point as in Mesa
5.0 can be generated with the /-f switch. Do not use type REAL without first consulting with the
supplier of your floating point package.

Because of bug fixes, previously acceptable programs may no longer compile.

Binder

The Binder is now available only as a .bcd file; you must have Mesa.image to run it. Like the
Compiler, the Binder takes commands only from the command line and does not use the keyboard
or display; it writes its log file on Binder.log.

The meaning of switches used to copy code and symbols has changed substantially; read the Binder
Update if you use these options. Compressed symbols have been compressed still further to include
only procedure and signal names (without parameters or results); this substantially reduces the size
of these .symbol files.

Because of bug fixes, previously acceptable configurations may no longer bind.

System

Mesa 6.0 is compatible with XMesa 5.0 microcode version 39 (but some new features are not
available with the old microcode; e.g., extended memory BITBLT).

Features previously implemented by BasicMesa and XMesa are now a standard part of
Mesa.image. MakeImage is no longer a part of the standard system; ImageMaker must be
loaded or bound with the client configuration if it is needed.

The standard system now supports only command line input; the MesaExec can be loaded to
provide interactive input. The command line switch /b can be used to convert the standard system
to a basic one. The /k switch will disable the allocation of space for the Debugger’s bitmap on
extended memory machines (see below).

The default maximum numbers of processes (75) and modules (384) have been increased. A
version of the System called SmallMesa allows 33 processes and 256 modules.

Interface changes are described in the System Update.

Mesa 6.0 Change Summary 5

Debugger

The Debugger has also been enhanced to take advantage of extended memory. If you have more
than two banks (128K) of memory, see the installation section of the Debugger Update for an
explanation of the options available; otherwise, the standard defaults will "do the right thing".

The Debugger now requires a strike font named SysFont.strike or MesaFont.strike; a
version of Gacha10 is available on <Mesa>MesaFont.strike. Additional fonts are available on
[Maxc]<AltoFonts>. (Strike fonts that include kerning are not supported.)

The selection scheme and the assignment of function keys and mouse buttons has changed.
Clicking RED once selects a character, clicking twice selects a word, three times a line, etc.; the
selection can be extended to the left or right with BLUE. The menu button is now YELLOW

(formerly BLUE). FL4 is no longer the stuff key; use FR4 (Spare2) or Keyset2.

Scrollbars no longer occupy a dedicated part of the window, but instead come up on top of the left
edge. To obtain a scroll bar, move left just past the edge of the window, then move right slightly,
back into the window.

New source window menu commands have been added, and they have been factored into several
menus. The Debugger’s wisk window has been replaced by a more general Split menu
command. There are now also Normalize Insertion and Normalize Selection commands.

The interpreter can now be used when in Display Stack and Display Process subcommand
mode. Several commands now invoke the interpreter automatically (e.g., Octal Read: @p, n:
SIZE[R]). The interpreter does procedure calls (the Interpret Call command has been
deleted).

The constructs ABS, ERROR, LONG, LOOPHOLE, MAX, MIN, NIL, POINTER TO, PROC, PROCEDURE, SIGNAL,
WORD, and open and half open intervals have been added to the interpreter’s grammar. Type
expressions following % must be enclosed in parentheses. The interpreter syntax Expression?
replaces the Interpret Expression command.

Each breakpoint is now assigned a unique number used for displaying and clearing it. There are
new commands for attaching conditions to break and tracepoints. Break/Tracepoints can no longer
be set by typing a source line, and the Break Module and Break Procedure commands and
corresponding Trace and Clear commands have been deleted; the menu commands must be
used. Clear All Entries/Xits clears both break and tracepoints.

Tracepoints now automatically invoke the normal Display Stack command processor (with
subcommand p(arameters), v(ariables), or r(esults) as appropriate). The q(uit)
subcommand (not b(reak)) exits to the Debugger’s command level; it no longer continues
execution of the client.

If the source window is loaded with the s(ource) subcommand of Display Stack, the window
will remember the appropriate context for setting breakpoints. For an exit break, the s(ource)
subcommand now displays the declaration line of the procedure.

The Debugger no longer ignores case, and the case commands have been deleted; identifiers must be
typed with their correct capitalization.

Mesa 6.0 Change Summary 6

Distribution:
Mesa Users
Mesa Group
SDSupport

Copyright c Xerox Corporation 1980

Inter-Office Memorandum

To Mesa Users Date October 27, 1980

From Ed Satterthwaite Location Palo Alto

Subject Mesa 6.0 Compiler Update Organization PARC/CSL

XEROX

Filed on: [Iris]<Mesa>Doc>Compiler60c.bravo, Compiler60d.bravo, and Compiler60.press

This memo describes changes to the Mesa language and compiler that have been made since the
release of Mesa 5.0 (April 9, 1979).

Definitions of syntactic phrase classes used but not defined in this document come from the Mesa
Language Manual, Version 5.0, Appendix F.

Compatibility

Because of changes in symbol table and BCD formats, you must recompile all existing Mesa
programs after obtaining recompiled versions of the interfaces and packages that they depend upon.

Language Changes

Our goal for language compatibility has been to accept any valid Mesa 5 source program as a valid
Mesa 6 source program. We are aware of the following incompatibilities:

There are some new reserved words, as follows:

FREE PRED PROC REJECT SEQUENCE SUCC UNCOUNTED ZONE

Some of the quoted file names that appear in DIRECTORY clauses have different
interpretations. Text inside angle brackets is no longer ignored; it is treated as the name of a
local subdirectory (but we do not recommend using local subdirectories for Mesa programs at
the present time).

The orders of evaluating the items in constructors (including argument lists) and the operands
of infix operators (except AND and OR) have changed somewhat. In particular, programs that
assumed a left-to-right order of procedure calls in these contexts (e.g., Divide[Pop[], Pop[]]) are
unlikely to work correctly.

The assignment operation is no longer available for updating objects containing MONITORLOCK

or CONDITION values; updating of such objects must be done component-by-component.

The granularity of packed arrays has changed. If the components of a packed array can be
stored in four or less bits, the storage structures defined by the declaration of that array will
differ between Mesa 5 and Mesa 6. This is a potential problem in reading files created by
earlier versions of Mesa. Also, the DESCRIPTOR operator cannot be applied to packed arrays
occupying less than a word.

Mesa 6.0 Compiler Update 2

If you have been using type REAL, check with the supplier of your floating point package to
determine the effect of Mesa 6 changes in that area.

Bug Fixes

A large number of Mesa 5 bugs have been fixed. The most notable of these involve

expansion of inline procedures that are defined in DEFINITIONS modules,

expansion of inline procedures when an argument is itself an expanded inline,

proper retention of the tag of a variant record within an arm of a discriminating selection,

proper identification of object files that have been renamed.

Because of certain bug fixes, the compiler may reject previously acceptable programs or may issue
new warning messages.

As usual, the list of compiler-related change requests closed by Mesa 6.0 will appear separately as
part of the Software Release Description.

Language Rationalization

Mesa 6 attempts to remove certain minor anomalies and to add some obvious generalizations to the
existing language.

Syntactic Glitches Removed

List Punctuation: For most lists that are explicitly bracketed by symbols other than [and], the
allowable forms are described by the following meta-BNF:

list ::= empty | item | item separator list

In other words, the list may be empty or may be a sequence of items separated by, and optionally
terminated by, a separator. This rule now applies to the following constructs:

 form separator notes

VariantList ,
CatchSeries ; ANY must come last
ChoiceSeries ;
ExitSeries ;
StatementSeries ;
StmtChoiceSeries ;
ChoiceList ,
ExprChoiceList ,

When the bracketing symbols are [and] or when the length of a list is significant, a trailing
separator is not allowed unless it is semantically meaningful (as in constructors and extractors), but
empty lists are allowed. This change affects the following syntactic entities:

UsingClause: The form USING [] is now permitted (e.g., to emphasize that an interface is
only being exported).

VariantFieldList: In the declaration of a variant record, the form [] (empty brackets) may
be used instead of NULL (and is recommended).

Mesa 6.0 Compiler Update 3

FieldList: The form [] is permitted in the declaration of a ParameterList or
ReturnsClause (it is equivalent to omitting the list or clause).

Directory: The form DIRECTORY ; may be used in place of an empty directory.

ImportsList (ExportsList): The form IMPORTS (EXPORTS) may be used when the
corresponding list is empty.

The last two items reflect the view that DIRECTORY, IMPORTS and EXPORTS introduce formal parameter lists,
even though their punctuation omits [and].

Declarations in Loop Bodies: A declaration series can now appear between DO and ENDLOOP (after
the OPEN and ENABLE clauses, if any); no additional bracketing is required. Its scope is limited to
the DeclarationSeries and StatementSeries in the loop body.

A Bit Less Verbiage

PROC: PROC is accepted as a short form of PROCEDURE.

Statement Brackets: The bracket pair { } can be used any place the bracket pair BEGIN END can
be used (but not conversely).

Semantic Glitches Removed

LONG Arithmetic: Compile-time evaluation of expressions with constant operands now works for 32-
bit quantities just as it does for 16-bit quantities.

Dereferencing with OPEN: A pointer expression following OPEN or WITH will be dereferenced an
arbitrary number of times (not just once) to obtain an expression designating a record.

Renaming with OPEN: An OPEN clause may give an alternative local name to an interface that it
opens (formerly, only to a record).

Nested Extractors: An ExtractItem may itself be an Extractor. This allows extraction from records
embedded within records. In particular, this form is useful in situations where a single-component record is not
automatically converted to its single component, e.g., extraction from a record that is the only component of a return
record.

Extractor Expressions: An assignment with an Extractor as its left side may be used as an
expression. This allows, among other things, multiple extraction. The value of such an assignment
is the value of its right side.

Interface Aliases: An interface module may have multiple identifiers (preceding ": DEFINITIONS").
In the DIRECTORY clause of another module, you can reference that interface using any one of the
identifiers. A type obtained from such an interface is equivalent to the same type obtained through
a naming path that uses any other identifier of the interface.

Mesa 6.0 Compiler Update 4

New Language Features

Extended Defaults

You can associate a default initial value with a type (not just with a field of a record). If a type is
constructed from other types using one of Mesa’s type operators (e.g., RECORD), the default value
for that type is determined by the default values of the component types and by rules associated
with each operator. When you declare a named type, you have the option of explicitly specifying a
default for that type.

With this extension, you will find that uses of defaults in Mesa generally fall into two classes.
Default values for fields of records make the corresponding constructors more concise and more
convenient to use. On the other hand, the usual reason for associating a default initial value with a
type is to ensure that storage allocated for that type is well-formed, i.e., that any variable of such a
type always has a meaningful value. There is some interaction between these uses; the default value
of a record type is partly determined by any default values specified for its fields, and a record field
may inherit its default value from the type of that field. The details appear below.

The rules for inheritance of defaults are designed to provide the following property (currently not
quite preserved by sequence or variant record types): if a type T has been given a non-NULL default
value, any type derived from T will have a defined and non-NULL default value for any embedded
component of type T. Because of the potential cascading effect implied by this, you should
carefully consider the relative costs and benefits of specifying a default, especially one that does not
include NULL as an alternative.

Defaults are ignored in determining equivalence and conformance of types. Thus it is possible to
have two compatible types with different default initializations.

Specification of Default Initialization

None of the built-in types (INTEGER, CARDINAL, BOOLEAN, CHARACTER, STRING and REAL) has a
default initial value.

The following rules determine the default initial value of a type designated by an expression
involving a type operator:

The default initial value for a type constructed using RECORD (or ARRAY) is defined field-by-
field (or element-by-element). For each field (element), it is the default value for that field if
there is one; otherwise, it is the default initial value for the type of that field (element) or is
undefined if there is no such default.

The default initial value for any port type, constructed using PORT, is NIL (see below).

Types constructed using other operators have no implied default initialization.

The default initial value of a type designated by a declared type identifier T depends upon the form
of the declaration of T, as follows:

T: TYPE = TypeExpr;

 T receives all the attributes of TypeExpr including any default.

T: TYPE = TypeExpr _ e;

 T receives all the attributes of TypeExpr except that its default initial value is e.

Mesa 6.0 Compiler Update 5

Examples

Flag: TYPE = BOOLEAN _ FALSE;
Rec1: TYPE = RECORD [f: Flag]; -- default value is [f: FALSE]
Rec2: TYPE = RECORD [f: Flag] _ []; -- ditto (the field defaults)
Rec3: TYPE = RECORD [f: Flag] _ [TRUE]; -- explicit default
Rec4: TYPE = Rec3; -- default value is [f: TRUE]
Rec5: TYPE = Rec3 _ [f: FALSE]; -- default value is [f: FALSE]

Any DefaultSpecification is acceptable in a type declaration (see Mesa Language Manual, Version
5.0, page 37). A declaration giving a type T a NULL default cannot, however, equate T to a type
with a default that does not include NULL. A default appearing in a type definition within a
DEFINITIONS module must be either NULL or an expression with a compile-time constant value.

Default values associated with types are used

to initialize local variables of procedures and programs, in the absence of explicit initialization,

to initialize variables that are dynamically allocated using NEW, in the absence of explicit
initialization (see below),

to construct records (except argument and result records), in the absence of an explicit value
for a field in the constructor and of a default value for that field in the record declaration,

to construct arrays, in the absence of an explicit value for an element (see below).

Defaults in Argument and Result Records

You may specify default values for the fields of argument and result records. Such default values
must be constructed from constants or variables that are declared outside of the procedure type
definition. In particular, you cannot use a value of another field of the same record or, in the case
of a result record, a value from the associated argument record to define such a default.

You may omit a field in the constructor of an argument or result record only if the definition of
that record specifies an explicit default value for the field; default initial values associated with the
types of such fields are not inherited (for example, this protects you from assigning a value to a
return variable and then forgetting to mention it in a RETURN statement, causing the default for its
type to be returned). On the other hand, protection against ill-formed storage is inherited; you may
not void or elide a field unless the type of that field allows a NULL initialization.

Any defaults that you specify in the declaration of a result record serve two purposes. Since the
fields of such a record can be used as local variables within the procedure body, a default
specification affects the initialization of those variables; in addition, it allows abbreviation in the
constructors of the corresponding return records. The precise rules are the following:

Upon entry to a procedure, each field of the result record is initialized with the default value
specified for that field, if any; otherwise, with the default initial value for the type of that
field, if there is one; otherwise, its initial value is undefined.

If a RETURN is followed by an explicit constructor, the default specifications appearing in the
declaration of the result record control the values of any omitted or elided fields, even if other
assignments have been made to the result variables within the procedure body. If the RETURN

stands by itself, without such a constructor, or if the RETURN is implicit, the return record is
constructed using the current values of the result variables.

Mesa 6.0 Compiler Update 6

Examples

T: TYPE = INTEGER _ 1;

Proc1: PROC [i: INTEGER _ 0, j: T];

Proc2: PROC RETURNS [m: T, n: INTEGER _ 2] = {
 -- m initialized to 1 (from T), n to 2
 Proc1[j: 3]; -- Proc1[i:0, j:3];
 Proc1[i: 3]; -- illegal (j does not default to 1)
 ...
 m _ 4; n _ 5;
 ... RETURN; -- returns [4, 5]
 ... RETURN [m, n]; -- also returns [4, 5]
 ... RETURN [m]; -- returns [4, 2]
 ... RETURN [NULL, n]; -- illegal (declaration of T disallows voiding of m)
 ... RETURN [, n]; -- ditto (m does not default to 1 or 4)
 ... RETURN [6, 7]; -- returns [6, 7]
 ... }; -- implicitly returns [4, 5]

Defaults and Variant Records

You may specify a default for the entire variant part in the declaration of a variant record type. In
the absence of such a specification, the default value of that part, including the tag, is undefined
with respect to the undiscriminated record type.

The default initial value of a discriminated variant record type has a tag value corresponding to the
discriminating adjective, and defaults for the other fields of the variant part are those implied by the
fields selected by that tag. In particular, the declaration or allocation of a variable with discriminated record type
sets the tag correctly.

Example

VRec: TYPE = RECORD [
 common: INTEGER _ 0,
 variant: SELECT tag: * FROM

 red => [r1: BOOLEAN _ FALSE],
 green => [g1: INTEGER _ 0]
 ENDCASE _ red[TRUE] | NULL];

v: VRec; -- initial value is [common: 0, variant: red[r1: TRUE]]
v1: VRec _ [common: 10]; -- initial value is [common: 10, variant: red[r1: TRUE]]
v2: VRec _ [variant: NULL]; -- tag and variant part are undefined, v2.common = 0
v3: VRec _ NULL; -- illegal (declaration of common does not allow NULL)
rv: red VRec; -- initial value is [common: 0, variant: red[r1: FALSE]]
gv: green VRec; -- initial value is [common: 0, variant: green[g1: 0]]

Defaulted Array Elements

Elements in an array constructor may be voided or elided. Omission of elements is permitted in a
keyword constructor (see below) but not in a positional constructor. The empty constructor ([]) is a
keyword constructor with all items omitted. An elided or omitted element receives the default value
for the type of the components of the array (if any); the value of a voided element is undefined.

ALL abbreviates a positional constructor of the appropriate length; thus ALL[] elides all elements
(defaulting if possible) and ALL[NULL] voids all positions.

Mesa 6.0 Compiler Update 7

Keyword Array Constructors

You can use keyword array constructors when the index type of the array is an enumeration or
subrange thereof. The acceptable keywords are the constants appearing in the enumeration. In the
case of a subrange, the endpoints must be defined by expressions involving only those constants, the
operators FIRST, LAST, SUCC and PRED, and identifiers equated by declaration to such expressions.
If the component type of the array has a defined default value (including NULL), keyword items can
be omitted; the corresponding elements receive the default value.

Packed Arrays

If you specify the PACKED attribute for an array type, the granularity of packing is 1, 2, 4, 8 or 16n
bits and is determined by the component type of the array (formerly just 8 or 16n bits).

The value of the construct SIZE[T, n] is the size, in words, of the storage required by a packed array
of n items of type T. (SIZE[T] continues to yield the number of words occupied by a single item of
type T.)

Example

Bit: TYPE = BOOLEAN _ FALSE;
BitSet: TYPE = PACKED ARRAY Color OF Bit;
AllBits: BitSet = ALL[TRUE];
threeBits: BitSet _ [yellow: TRUE, red: TRUE, blue: TRUE];

Successor and Predecessor Operations

The operators SUCC and PRED operate upon values of any ordered type except REAL. For numeric
and character types, SUCC[x] and PRED[x] are equivalent to x+1 and x�1 respectively. For
enumerated types, the values are the successor and predecessor of x in the enumeration; a bounds
fault occurs if there is no such element and you requested bounds checking.

Directories

You can now override the association established by the DIRECTORY clause between the names of
included modules and the names of the files containing those modules. Any file names implied by
convention can be omitted entirely; they will be computed from the interface identifiers.

Syntax

IncludeList ::= IncludeItem
| IncludeList , IncludeItem

IncludeItem ::= identifier UsingClause
| identifier : FROM FileName UsingClause
| identifier : TYPE UsingClause
| identifier : TYPE identifier UsingClause

UsingClause ::= empty | USING [IdList] | USING []

The (initial) identifier in an IncludeItem names a module. If you specify the name of the file
containing that module when you invoke the compiler (as a keyword parameter with keyword
identifier, see below), that name is used, even if a FileName appears in the IncludeItem.
Otherwise, if such a FileName appears, it is used. If you supply neither a compile-time argument
nor a FileName, the name identifier.bcd is used.

Mesa 6.0 Compiler Update 8

One approach to describing systems built from collections of Mesa modules views the DIRECTORY

clause as the declaration of (compile-time) formal parameters of type TYPE. Mesa 6 provides the
final two forms of IncludeItem primarily for compatibility with this view. The identifier preceding
the colon names the formal parameter; it is also used to derive a file name as described above. The
identifier following TYPE constrains the set of acceptable actual parameters; it must match the
ModuleName used in the definition of the module that you intend to include (see the Mesa
Language Manual, Version 5.0, Section 7.2).

You can use the final form to change the name by which one module is known within another,
notably to avoid duplicate names in a DIRECTORY clause. For example, you might need to reference
two different versions or parameterizations of an interface Defs within a single program. The
IncludeItems

LongDefs: TYPE Defs,
ShortDefs: TYPE Defs

declare LongDefs and ShortDefs as identifiers within that program of possibly different modules,
each with the ModuleId Defs. As IncludeItems, the forms

identifier
identifier: TYPE

each abbreviate

identifer: TYPE identifier

and the name in the DIRECTORY must be identical to the ModuleId if you use one of these forms.

Implicitly Imported Interfaces

An implicitly imported interface is one from which imported values are required for binding the
free variables of another, explicitly imported interface. For example, interface D1 might import
interface D2 to gain access to a procedure or exported variable supplied by the latter. D2 is then
implicitly imported by any program module M that imports D1 (see the Mesa Language Manual,
Version 5.0, Section 7.4.4).

In Mesa 6, the free variables of D2 that are used by D1 are bound to the principal instance of D2 in
M. An import is a principal instance if it is the only instance of that interface imported by a
module or if it is unnamed. Furthermore, if M imports no instances of D2, a principal instance will
be created automatically. If module M has no other reason to mention D2, D2 then need not
appear in either the DIRECTORY or the IMPORTS list of M. Explicitly importing a principal instance
of D2 in such a situation is not an error, and you must do so if

you plan to use positional notation to specify the imports of M in a C/Mesa configuration
description, since the positions of automatically created interface instances are not defined, or

you already import more than one instance of D2, each of which is named.

In a C/Mesa configuration, principal instances of interfaces are not supplied automatically; you must import them
explicitly if they cross (sub)configuration boundaries.

Mesa 6.0 Compiler Update 9

Real Numbers

Mesa 6 has adopted the proposed IEEE standard for floating-point arithmetic (see, e.g., Coonen, An
implementation guide to a proposed standard for floating-point arithmetic, Computer, January 1980,
pp. 68-79). In support of this, the language provides floating-point literals and the compiler
performs a limited number of operations upon floating-point constants.

Syntax

primary ::= ... | realLiteral

realLiteral ::= unscaledReal
| unscaledReal scaleFactor
| wholeNumber scaleFactor

unscaledReal ::= wholeNumber fraction
| fraction

fraction ::= . wholeNumber

scaleFactor ::= E optSign wholeNumber | e optSign wholeNumber

optSign ::= empty | + | �

wholeNumber ::= digit | wholeNumber digit

An unscaledReal has its usual interpretation as a decimal number. The scaleFactor, if present,
indicates the power of 10 by which the unscaledReal or wholeNumber is to be multiplied to
obtain the value of the literal.

Mesa 6 represents REAL numbers by 32 bit approximations as defined in the IEEE standard. The
rounding mode used to convert literals is "round-to-nearest." A literal that overflows the internal
representation is an error; one that underflows is replaced by its so-called "denormalized"
approximation. In Mesa 6, the value of the unscaledReal in a literal must be a valid LONG

INTEGER when the decimal point is deleted.

No spaces are allowed within a realLiteral. Note that such a literal can begin, but not end, with a
decimal point. Thus the interpretation of [0...1) is unambiguous (but perhaps surprising; use [0 .. .1)
or [0.0..0.1) instead).

Operations

The compiler performs the following operations involving floating-point constants:

Unary negation (with �0 = 0)
ABS

Fixed-to-Float (in "round-to-nearest" mode).

Other operations are deferred until runtime, even if all their operands are constant, so that the
programmer can control the treatment of rounding and exceptions (see the proposed standard).

Unless you specify the compilation option -f (see below), the compiler generates instructions for floating-point
operations that require hardware or microcode support. If you are in doubt about the state of your machine or
its microcode, see a local floating-point expert.

Mesa 6.0 Compiler Update 10

Machine Dependent Enumerations

Sometimes a programmer can enumerate the values of some type but requires control of the
encoding of each value or of the number of bits used to represent the type (usually for future
expansion). Mesa 6 provides machine-dependent enumerations for such applications.

Syntax

EnumerationTC ::= MachineDependent { ElementList }

MachineDependent ::= empty | MACHINE DEPENDENT

ElementList ::= Element | ElementList , Element

Element ::= identifier
| identifier (Expression)
| (Expression)

Examples

Status: TYPE = MACHINE DEPENDENT {off(0), ready(1), busy(2), finished(4), broken(7)}

Color: TYPE = MACHINE DEPENDENT {red, blue, green, (255)} -- reserve 8 bits

Each Expression in an EnumerationTC must denote a compile-time constant, the value of which is
an unsigned integer.

In an enumerated type with the MACHINE DEPENDENT attribute, the values used to represent the
enumeration constants are assigned according to the following rules. If a parenthesized expression
follows the element identifier, the value of that expression is used; otherwise, the representation of
an element is one greater than the representation of the preceding element. If you specify only a
representation, the corresponding element (normally a place holder) is anonymous. If the
representation of the initial element is not given, the value zero is used.

You cannot explicitly specify the representation of any element unless the attribute MACHINE

DEPENDENT appears in the type constructor. Two element identifiers cannot be represented by the
same value (either given explicitly or determined implicitly as described above). The ordering of
elements determined by position in the ElementList must agree with the ordering determined by
the (unsigned) arithmetic ordering of the representations.

Sparse Enumerations

A machine-dependent enumerated type is sparse if there are gaps within the set of values used to
represent the constants of that type or if the smallest such value is not zero. Mesa 6 takes the
following position on gaps: they are filled by valid but anonymous elements of the enumerated
type. These elements can be generated only by the operators FIRST, SUCC and PRED (or by the
iteration forms that implicitly use these operators).

If you use a sparse enumerated type as the index type of an array, the array itself will have
components for all elements of the enumeration, including the anonymous ones. The latter
are awkward to access (except through ALL) and may cause problems in constructors,
comparison operations, etc., as well as wasted space. (For example, ARRAY Color OF INTEGER

would occupy 256 words.)

Mesa 6.0 Compiler Update 11

Machine Dependent Records

Machine-dependent records are provided for situations in which the exact position of each field is
important. In Mesa 6, you can explicitly specify word- and bit-positions in the declaration of the
record type. This form provides better documentation and usually is easier to use than the
previous, purely positional form. You should use it in preference to the old form, which remains
for compatiblity.

Syntax

VariantFieldList ::= CommonPart FieldId : Access VariantPart
| VariantPart
| NamedFieldList
| UnnamedFieldList
| empty

CommonPart ::= NamedFieldList , | empty

NamedFieldList ::= NamedField | NamedFieldList , NamedField

NamedField ::= FieldIdList :
Access TypeSpecification DefaultOption

FieldIdList ::= FieldId | FieldIdList , FieldId

FieldId ::= identifier | identifier (FieldPosition)

Tag ::= FieldId | ...

FieldPosition ::= Expression : Expression .. Expression
| Expression

Examples

InterruptWord: TYPE = MACHINE DEPENDENT RECORD [
 channel (0: 8..10): [0..nChannels), -- nChannels <= 8
 device (0: 0..7): DeviceNumber,
 stopCode (0: 11..15): MACHINE DEPENDENT {finishedOK(0), errorStop(1), powerOff(3)},
 command (1: 0..31): ChannelCommand];

Node: TYPE = MACHINE DEPENDENT RECORD [
 type (0: 0..15): TypeIndex,
 rator (1: 0..13): OpName,
 rands (1: 14..47): SELECT valence (1: 14..15): * FROM

 nonary => [],
 unary => [left (1: 16..31): POINTER TO Node],
 binary => [left (1: 16..31), right (1: 32..47): POINTER TO Node]
 ENDCASE]

An identifier with an explicitly specified FieldPosition can occur only in the declaration of a field
of a record defined to have the MACHINE DEPENDENT attribute. If the position of any field of a
record is specified, the positions of all must be. Each Expression in a FieldPosition must denote a
compile-time constant, the value of which is an unsigned integer.

The first expression appearing in a FieldPosition specifies the (zero-origin) record-relative index of
the word containing the start of the field; the second and third specify the indices (zero-origin) of
the first and last bits of the field with respect to that word. The second and third expressions may
specify a bit offset greater than the word size if the word offset is adjusted accordingly. Similarly,
the difference between the second and third expressions may exceed the word size. If the bit

Mesa 6.0 Compiler Update 12

positions are not specified, a specification of 0..n*WordSize-1 is assumed, where n is the minimum
number of words required by the type of the field.

Each field must be at least wide enough to store any value of the corresponding type. Values are
stored right-justified within the fields. The current implementation of Mesa imposes the following
additional restrictions on the sizes and alignment of fields:

A field smaller than a word (16 bits) cannot cross a word boundary.

Any field occupying a word or more must begin at bit zero of a word and have a size that is
a multiple of the word size.

A variant part may begin at any bit position (as determined by its tag field).

If the sizes of all variants of a record type are less then a word, those sizes must be equal;
otherwise, the size of each variant of the type must be a multiple of the word length.

In the definition of a machine-dependent record type, explicitly specified field positions must not
overlap. For a variant record type, this requirement applies to the variant part (including the tag)
considered in conjunction with the fields of the common part; the tag and fields particular to each
variant must lie entirely within the variant part.

The order of fields in a record type declaration need not agree with the order of those fields in the
representation of the record; however, no gaps are permitted. For variant records, the fields of at
least one variant (including the tag field) must fill the position specified for the variant part.

Dynamic Storage Allocation

In Mesa 6, you can use special constructs to describe the dynamic allocation and deallocation of
variables. You are still responsible for managing the storage and guarding against dangling
pointers; the new features handle certain routine aspects of allocation and deallocation (such as
computing sizes), provide proper default initialization of newly allocated variables, and reduce the
total number of LOOPHOLEs required to deal with an allocator.

Zones

Allocation and deallocation are done with respect to zones. A zone need not be associated with any
specific storage area; it is just an object characterized by procedures for allocation and deallocation
as described below. The storage managed by a zone in Mesa 6 is said to be uncounted. In such
zones, object management is the responsibility of the programmer, who must explicitly program the
deallocation.

To use an uncounted zone, you must provide the procedures that manage the zone and implement
the required set of operations. Many users will be able to import a suitable implementation from a
standard package; the details of writing such packages are discussed below.

A zone object has a value and a type. You will normally obtain a zone value by calling a
procedure exported by some package implementing zones. Typically, such a procedure constructs a
zone (and perhaps an initial storage pool) according to user-supplied parameters.

The type of a zone value must belong to a new class of types, called zone types. Mesa 6 provides
two such types, UNCOUNTED ZONE and MDSZone. Transactions with objects having these types are
generally in terms of LONG POINTER and POINTER values respectively (see below).

Mesa 6.0 Compiler Update 13

Syntactically, UNCOUNTED ZONE is a type constructor. MDSZone is a predeclared identifier; you may think of it as a
synonym for MDS RELATIVE UNCOUNTED ZONE (which you currently cannot write directly).

You may declare variables having zone types (for which fixed initialization is recommended). Zone
types may also be used to construct other types. In particular, you may choose to deal with pointers to zones;

the NEW and FREE constructs described below provide automatic dereferencing.

Allocating Storage

The operator NEW allocates new storage of a specified type, initializes it appropriately, and returns a
pointer to that storage. The NEW operation is considered an attribute of a zone, which must be
specified explicitly.

Syntax

Primary ::= ...
| Variable . NEW [TypeSpecification Initialization OptCatch]
| (Expression) . NEW [TypeSpecification Initialization OptCatch]

Initialization ::= empty | _ InitExpr | = InitExpr

OptCatch ::= empty | ! CatchSeries

The value of the Variable or Expression identifies the zone to be used, either directly or after an
arbitrary number of dereferencing operations. The TypeSpecification determines the type of the
allocated object. If an InitExpr is provided, it must conform to the specified type and its value is
used to initialize the new object; otherwise, the default value associated with that type (if any) is
used. Only signals raised or propagated by the allocation procedure activate a CatchSeries
attached to NEW.

The value of the Primary is a pointer to the newly allocated object. The type of that pointer
depends upon the type of the zone and the form of the Initialization. If the argument of NEW is
some type T, the type of the result is

LONG POINTER TO T, if the type of the zone is equivalent to UNCOUNTED ZONE

POINTER TO T, if the type of the zone is equivalent to MDSZone.

If you specify fixed (=) initialization, the result is a read-only pointer with type LONG POINTER TO

READONLY T or POINTER TO READONLY T respectively.

The InitExpr cannot be the special form for string body initialization ([Expression]). You can,
however, allocate string bodies with dynamically computed sizes by using a new form of
TypeSpecification (see below). If you do so, the Initialization must be empty.

Releasing Storage

Uncounted zones have FREE operations. When applied to an object, this operation releases the
storage allocated for that object.

Syntax

Statement ::= ...
| Variable . FREE [Expression OptCatch]
| (Expression) . FREE [Expression OptCatch]

The zone used in a FREE operation is determined as described for NEW; it should be the zone from
which the variable was originally allocated. The argument of FREE is the address of a pointer to the
variable to be deallocated; FREE sets the pointer to NIL and deallocates the storage for the variable.

Mesa 6.0 Compiler Update 14

Only signals raised or propagated by the deallocation procedure activate a CatchSeries on a FREE.

Implementing Uncounted Zones

This section describes the assumptions currently made by the compiler about the user-supplied
implementations of uncounted zones. These assumptions are compatible with the style of "object-
oriented" programming that has proven successful in a number of applications. You need to read
this section only if you are designing the interface between a storage management package and the
zone features of the language.

An uncounted zone dealing with LONG POINTER values is represented by a two word value, which
the compiler assumes to be a long pointer compatible with the following skeletal structure:

UncountedZoneRep: TYPE = LONG POINTER TO MACHINE DEPENDENT RECORD [
 procs (0:0..31): LONG POINTER TO MACHINE DEPENDENT RECORD [

 alloc (0): PROC [zone: UncountedZoneRep, size: CARDINAL] RETURNS [LONG POINTER],
 dealloc (1): PROC [zone: UncountedZoneRep, object: LONG POINTER]
 -- possibly followed by other fields--],
 data (2:0..31): LONG POINTER -- optional, see below
 -- possibly followed by other fields--];

If z is an uncounted zone, the code generated for p _ z.NEW[T] is equivalent to

p _ z^.procs^.alloc[z, SIZE[T]]

and the code generated by z.FREE[@p] is equivalent to

{temp: LONG POINTER _ p; p _ NIL; z^.procs^.dealloc[z, temp]}.

Within this framework, you may design a representation of zone objects appropriate for your
storage manager. In general, you should create an instance of a finger (the record with fields procs
and data) for each instance of a zone. The record designated by the procs pointer can be shared by
all zones with the same implementation. The data pointer normally designates a particular zone
and/or the state information characterizing that zone. Note that the compiler makes no assumptions
about the designated object and does not generate any code referencing the data field. The extra
level of indirection provided by that field is not obligatory; you may replace it with state
information contained directly in the finger (but following the procs field).

The compiler assumes a similar (but single word) representation for an MDSZone value; the
skeletal structure is as follows:

MDSZoneRep: TYPE = POINTER TO MACHINE DEPENDENT RECORD [
 procs (0:0..15): POINTER TO MACHINE DEPENDENT RECORD [

 alloc (0): PROC [zone: MDSZoneRep, size: CARDINAL] RETURNS [POINTER],
 dealloc (1): PROC [zone: MDSZoneRep, object: POINTER]
 -- possibly followed by other fields--],
 data (1:0..15): POINTER -- optional
 -- possibly followed by other fields--];

Mesa 6.0 Compiler Update 15

Sequences

A sequence in Mesa is an indexable collection of objects, all of which have the same type. In this
respect, a sequence resembles an array; however, you need not specify the length of the sequence
when its type is declared, only when an instance of that type is created. Mesa 6 provides sequence-
containing types for applications in which the size of a dynamically created array cannot be
computed statically. Note, however, that only a subset of a more general design for sequences has
been implemented. The contexts in which sequence types may appear are somewhat restricted, as
are the available operations on them. We believe that the subset provides enough functionality to
accomodate most uses of sequences, but you will encounter a number of annoying and sometimes
inconvenient restrictions that you must take note of in your Mesa 6 programming.

One can view a sequence type as a union of some number of array types, just as the variant part of
a variant record type can be viewed as a union of some (enumerated) collection of record types.
Mesa adopts this view, particularly with respect to the declaration of sequence-containing types, with
the following consequences:

A sequence type can be used only to declare a field of a record. At most one such field may
appear within a record, and it must occur last.

A sequence-containing object has a tag field that specifies the length of that particular object
and thus the set of valid indices for its elements.

To access the elements of a sequence, you use ordinary indexing operations; no discrimination is
required. In this sense, all sequences are overlaid, but simple bounds checking is sufficient to validate each access.

Uses of sequence-containing variables must follow a more restrictive discipline than is currently
enforced for variant records. The (maximum) length of a sequence is fixed when the object
containing that sequence is created, and it cannot subsequently be changed. In addition, Mesa 6
imposes the following restrictions on the uses of sequences:

You cannot embed a sequence-containing record within another data structure. You must
allocate such records dynamically and reference them through pointers. (The NEW operation
has been extended to make allocation convenient.)

You cannot derive a new type from a sequence-containing type by fixing the (maximum)
length; i.e., there is no analog of a discriminated variant record type.

There are no constructors for sequence-valued components of records, nor are such
components initialized automatically.

The following sections describe sequences in more detail.

Defining Sequence Types

You may use sequence types only to declare fields of records. A record may have at most one such
field, and that field must be declared as the final component of the record:

Syntax

VariantPart ::= . . .
 | PackingOption SEQUENCE SeqTag OF TypeSpecification

Mesa 6.0 Compiler Update 16

SeqTag ::= identifier : Access BoundsType
 | COMPUTED BoundsType

BoundsType ::= IndexType

TypeSpecification ::= . . .
 | TypeIdentifier [Expression]

The TypeSpecification in VariantPart establishes the type of the sequence elements. The
BoundsType appearing in the SeqTag determines the type of the indices used to select from those
elements. It is also the type of a tag value that is associated with each particular sequence object to
encode the length of that object. For any such object, all valid indices are smaller than the value of
the tag. If T is the BoundsType, the sequence type is effectively a union of array types with the
index types

T[FIRST[T] .. FIRST[T]), T[FIRST[T] .. SUCC[FIRST[T]]), ... T[FIRST[T] .. LAST[T])

and a sequence with tag value v has index type T[FIRST[T]..v). Note that the smallest interval in this
union is empty.

If you use the first form of SeqTag, the value of the tag is stored with the sequence and is
available for subscript checking. In the form using COMPUTED, no such value is stored, and no
bounds checking is possible.

Examples:

StackRep: TYPE = RECORD [
 top: INTEGER _ �1,
 item: SEQUENCE size: [0..LAST[INTEGER]] OF T]

Number: TYPE = RECORD [
 sign: {plus, minus},
 magnitude: SELECT kind: * FROM

 short => [val: [0..1000)],
 long => [val: LONG CARDINAL],
 extended => [val: SEQUENCE length: CARDINAL OF CARDINAL]
 ENDCASE]

WordSeq: TYPE = RECORD [SEQUENCE COMPUTED CARDINAL OF Word]

The final example illustrates the recommended method for imposing an indexable structure on raw storage.

If S is a type containing a sequence field, and n is an expression with a type conforming to
CARDINAL, both S and S[n] are TypeSpecifications. They denote different types, however, and the
valid uses of those types are different, as described below.

MACHINE DEPENDENT Sequences

You may declare a field with a sequence type within a MACHINE DEPENDENT record. Such a field
must come last, both in the declaration and in the layout of the record, and the total length of a
record with a zero-component sequence part must be a multiple of the word length. If you
explicitly specify bit positions, the size of the sequence field also must describe a zero-length
sequence; i.e., it must account for just the space occupied by the tag field (if any).

Mesa 6.0 Compiler Update 17

Examples:

Node: TYPE = MACHINE DEPENDENT RECORD [
 info (0: 0..7): CHARACTER,
 sons (0: 8..15): SEQUENCE nSons (0: 8..15): [0..256) OF POINTER TO Node]

CharSeq: TYPE = MACHINE DEPENDENT RECORD [
 length (0): CARDINAL,
 char (1): PACKED SEQUENCE COMPUTED CARDINAL OF CHARACTER]

Allocating Sequences

If S designates a record type with a final component that is a sequence, S[n] is a type specification
describing a record with a sequence part containing exactly n elements. The expression n must have
a type conforming to CARDINAL. Its value need not be a compile-time constant; however, you can
use specifications of this form only to allocate sequence-containing objects (as arguments of NEW) or
to inquire about the size of such objects (as arguments of SIZE). In particular, you cannot use S[n]
to define or construct a new type or to declare a variable.

The value of the expression SIZE[S[n]] has type CARDINAL and is the number of words required to
store an object of type S having n components in its sequence part.

The value of the expression z.NEW[S[n]] has type POINTER TO S (or LONG POINTER TO S, depending
upon the type of the zone z). The effect of its evaluation is to allocate SIZE[S[n]] words of storage
from the zone z and to initialize that storage as follows:

Any fields in the common part of the record receive their default values.

The sequence tag field receives the value SUCCn[FIRST[T]], where T is the type of that field.

The elements of the sequence part have undefined values.

To supply initial values for the fields in the common part, you may use a constructor for type S in
the call of NEW. There are currently no constructors for sequence parts, however, and you must
void the corresponding field. In any case, you must explicitly program any required initialization of
the elements of the sequence part. In Mesa 6, this is true even if the element type has non-NULL

default value.

Examples:

ps: POINTER TO StackRep _ z.NEW[StackRep[100]]; -- s.top = �1

pn: POINTER TO Node _ z.NEW[Node[degree[c]] _ [info: c, sons: NULL]]

pxn: POINTER TO extended Number _ z.NEW[extended Number[2*k]]

Note that n specifies the maximum number of elements in the sequence part and must conform to
CARDINAL no matter what BoundsType Ti appears in the SeqTag. The value assigned to the tag

field is SUCCn[FIRST[Ti]]. A bounds fault occurs if this is not a valid value of type Ti, i.e., if n >
cardinality(Ti), and you have requested bounds checking.

If FIRST[Ti] = 0, SUCCn[FIRST[Ti]] is just n, i.e., the interpretation of the tag is most intuitive if Ti is
a zero-origin subrange. Usually you will specify a BoundsType (e.g., CARDINAL) with a range that
comfortably exceeds the maximum expected sequence length. If, however, some maximum length
N is important to you, you should consider using [0..N] as the BoundsType; then the value of the
tag field in a sequence of length n (n < N) is just n and the valid indices are in the interval [0..n).

Mesa 6.0 Compiler Update 18

Operations on Sequences

You can use a sequence-containing type S only as the argument of the type constructor POINTER TO.
Note that the type of z.NEW[S[n]] is POINTER TO S (not POINTER TO S[n]). If the type of an object
is S, the operations defined upon that object are

ordinary access to fields in the common part

readonly access to the tag field (if not COMPUTED)

indexing of the sequence field

constructing a descriptor for the components of the sequence field (if not COMPUTED).

There are no other operations upon either type S or the sequence type embedded within S. In
particular, you cannot assign or compare sequences or sequence-containing records (except by
explicitly programming operations on the components).

Indexing: You may use indexing to select elements of the sequence-containing field of a record by
using ordinary subscript notation, e.g., s.seq[i]. The type of the indexing expression i must conform
to the BoundsType appearing in the declaration of the sequence field and must be less than the
value of the tag, as described above. The result designates a variable with the type of the sequence
elements. A bounds fault occurs if the index is out of range, the sequence is not COMPUTED, and
you have requested bounds checking.

By convention, the indexing operation upon sequences extends to records containing sequence-
valued fields. Thus you need not supply the field name in the indexing operation. Note too that
both indexing and field selection provide automatic dereferencing.

Examples:

ps^.item[ps.top] ps.item[ps.top] ps[ps.top] -- all equivalent

Descriptors: You may apply the DESCRIPTOR operator to the sequence field of a record; the result is
a descriptor for the elements of that field. The resulting value has a descriptor type with index and
component types and PACKED attribute equal to the corresponding attributes of the sequence type.
By extension, DESCRIPTOR may be applied to a sequence-containing record to obtain a descriptor for
the sequence part. The DESCRIPTOR operator does not automatically dereference its argument.

You cannot use the single-argument form of the DESCRIPTOR operator if the sequence is COMPUTED.
The multiple-argument form remains available for constructing such descriptor values explicitly (and
without type checking).

In any new programming, you should consider the following style recommendation: use sequence-containing types for
allocation of arrays with dynamically computed size; use array descriptor types only for parameter passing.

Examples:

DESCRIPTOR[pn^] DESCRIPTOR[pn.sons] -- equivalent

String Bodies and TEXT

The type StringBody provided by previous versions of Mesa illustrates the intended properties and
uses of sequences. For compatibility reasons, it has not been redefined as a sequence; the
declarations of the types STRING and StringBody remain as follows:

Mesa 6.0 Compiler Update 19

STRING: TYPE = POINTER TO StringBody;

StringBody: TYPE = MACHINE DEPENDENT RECORD [
 length (0): CARDINAL _ 0,
 maxlength (1): --READONLY-- CARDINAL,
 text (2): PACKED ARRAY [0..0) OF CHARACTER]

The operations upon sequence-containing types have, however, been extended to StringBody so that
its operational behavior is similar. In these extensions, the common part of the record consists of
the field length, maxlength serves as the tag, and text is the collection of indexable components
(packed characters). Thus z.NEW[StringBody[n]] creates a StringBody with maxlength = n and
returns a STRING; if s is a STRING, s[i] is an indexing operation upon the text of s, DESCRIPTOR[s^]
creates a DESCRIPTOR FOR PACKED ARRAY OF CHARACTER, etc.

There are two anomalies arising from the actual declaration of StringBody: s.text[i] never uses bounds checking,
and DESCRIPTOR[s.text] produces a descriptor for an array of length 0. Use s[i] and DESCRIPTOR[s^] instead.

Type TEXT

The type TEXT, which describes a structure similar to a StringBody as a true sequence, is predeclared
in Mesa 6. Its components length and maxLength are declared to have a type compatible with
either signed or unsigned numbers (but with only half the range of INTEGER or CARDINAL).

TEXT: TYPE = MACHINE DEPENDENT RECORD [
 length (0): [0..LAST[INTEGER]] _ 0,
 text (1): PACKED SEQUENCE maxLength (1): [0..LAST[INTEGER]] OF CHARACTER]

Exported Types

An exported type is a type designated by an identifier that is declared in an interface and
subsequently bound to some concrete type supplied by a module exporting that interface. This is
analogous to the current treatment of procedures in interfaces, where the implementations of
procedures (i.e., the procedure bodies) do not appear in the interface but are defined separately.
The advantages are twofold:

The internal structure of the type is guaranteed to be invisible to clients of the interface.

There are no compilation dependencies between the definition of the concrete type and the
interface module. The definition of that type can be changed and/or recompiled at any time
(perhaps subject to a size constraint; see below) without requiring recompilation of either the
interface or any client of the interface.

The uses of an exported type are the same as those of any other type, e.g, to construct other types.
The value provided by the interface is constant but has no accessible internal structure. In Mesa 6,
there are two other important differences between exported procedures and exported types.

The first is a restriction necessary to ensure type safety across module boundaries. Different
exporters of an interface can supply different implementations of any particular procedure in that
interface. In Mesa 6, this is not true for exported types; all exporters of a particular type within a
configuration must supply the same concrete type, which is called the standard implementation of
that exported type. Because of this restriction, clients can safely interassign values with exported
type T, no matter how obtained. In addition, any exporter of T may convert a value of type T to a
value of the concrete type it uses to represent T and conversely.

The second difference is that it is not necessary to import an interface to access an exported type
defined within it or to distinguish among values of such a type coming from different imported

Mesa 6.0 Compiler Update 20

instances. This is another consequence of the fact that, in Mesa 6, all interfaces must reference the
standard implementation of the exported type.

Interface Modules

An exported type is declared in an interface (DEFINITIONS) module using one of the following two
forms:

T: TYPE;
T: TYPE [Expression];

The first of these introduces a type T, no properties of which are known in the interface or to any
client of the interface. In particular, the size of T is not known; this is adequate (and desirable) if
the interface and clients deal only with values of type POINTER TO T.

The second form specifies the size of the values used in the representation of the type. The value
of Expression, which must denote a compile-time constant with an unsigned integer value, gives
this size in units of machine words. Supplying the size of an exported type is a shorthand for
exporting a set of fundamental operations (creation, _ , =, and #) upon that type. In Mesa 6, the
eventual concrete type must supply the standard implementations of these operations, which are
defined as follows:

creation allocate the specified number of words, with no initialization

_ copy an uninterpreted bit string

=, # compare uninterpreted bit strings

Note that a type with non-NULL default value does not have the standard creation operation. Such types cannot be
exported with known size. You should therefore consider writing your interfaces in terms of POINTER TO T, where T
is a completely opaque exported type and not subject to these restrictions.

Client Modules

A client has no knowledge of the type T beyond those properties specified in the interface. If the
size is not specified there, no operations on T are permitted. If the size is available from the
interface, SIZE[T] is legal; also declaration of variables (including record fields and array
components) and the operations _, =, # are defined for type T.

Implementation Modules

An implementor exports a type T to some interface Defs by declaring the type with the required
identifier, the PUBLIC attribute, and a value that is the concrete type; e.g., in

T: PUBLIC TYPE = S;

S specifies the concrete type. If the size of T appears in the interface, the definition of T in the
exporter must specify a type with that size and with the standard fundamental operations (the
compiler checks this).

Within an exporter, Defs.T and T conform freely and are assignment compatible. Otherwise, Defs.T
is treated opaquely there and is not equivalent to T (except for the purpose of checking exports).
You should therefore attempt to write an exporting module entirely in terms of concrete types.
Consider the following example:

Mesa 6.0 Compiler Update 21

Interface Module (Defs):

T: TYPE;
H: TYPE = POINTER TO T;
R: TYPE = RECORD [f: H, ...];
Proc1: PROC [h: H];
Proc2: PROC [r: POINTER TO R];
...

Exporting Module:

T: PUBLIC TYPE = RECORD [v: ...];
P: TYPE = POINTER TO T;
Proc1: PUBLIC PROC [h: P] = {... h.v ...};
Proc2: PUBLIC PROC [r: POINTER TO Defs.R] = {
 q: P = r.f;
 ... q.v ...};
...

If the type of h were Defs.H in the implementation of Proc1, the reference to h.v would be illegal.
By defining a type such as P and using it within the exporter instead of H, you can avoid most such
problems. (Note that Proc1 is still exported with the proper type.) This strategy of creating
concrete types in one-to-one correspondence to interface types involving T fails for record types
such as R (because of the uniqueness rule for record constructors). In this example, you must use
Defs.R to define the type of r in the implementation of Proc2, but a reference to r.f.v is illegal. In
such cases, a LOOPHOLE-free implementation may require redundant assignments, such as the one to
q. Alternatively, you should consider making the record type another exported type, and defining
its concrete type within the exporter also.

Binding

For each interface containing some exported type T, all exporters of that interface must provide
equivalent concrete types for T (the binder and loader check this). In Mesa 6, the concrete types
must in fact be identical; if two modules export T, they must obtain the same concrete definition of
T, e.g., from another shared interface module (typically, a private one).

Control Variables

You can now declare the control variable of a loop as part of the FOR clause attached to that loop.
Such an identifier cannot be accessed outside the loop and cannot be updated except by the FOR

clause in which it is declared.

Syntax

Iteration ::= FOR identifier Direction IN LoopRange
| FOR identifier : TypeExpression Direction IN LoopRange

Assignation ::= FOR identifier _ Expression , Expression
| FOR identifier : TypeExpression _ Expression , Expression

The forms of Iteration and Assignation with ": TypeExpression" declare a new control variable.
That variable cannot be explicitly updated (except by the FOR clause itself). Its scope is the entire
LoopStmt introduced by the Iteration or Assignation including any LoopExitsClause. Note,
however, that the value of a control variable used in an Iteration is undefined in the FinishedExit.

Mesa 6.0 Compiler Update 22

Extended NIL

In Mesa 6, null values are available for all address-containing types. An address-containing type is
one constructed using POINTER, DESCRIPTOR, PROCEDURE, PROGRAM, SIGNAL, ERROR, PROCESS,
PORT, ZONE or a LONG or subrange form of one of the preceding. The built-in type STRING is
address-containing. A relative pointer or relative descriptor type is not considered to be address-containing in Mesa
6.

Null values are denoted as follows:

If T designates any address-containing type, NIL[T] denotes the corresponding null value.

Whenever T is implied by context, NIL abbreviates NIL[T].

If T is not implied by context, NIL means NIL[POINTER TO UNSPECIFIED] and thus continues to
match any POINTER or LONG POINTER type.

A fault will occur if you attempt to dereference a null value and have requested NIL checking; a
fault will occur unconditionally if you attempt to transfer control through a null value.

Reject Statement

Within a catch phrase, you can use the statement REJECT to explicitly reject a signal, i.e., to
terminate execution of that catch phrase and propagate the signal to the enclosing one. (Note that
each catch phrase is currently terminated by an implicit REJECT.)

Process Extensions

Aborting a process now raises the predeclared signal ABORTED. The predeclared types
MONITORLOCK and CONDITION are now defined with default initialization. The only client-visible
field is timeout in CONDITION; its default initial value is 100 ticks.

Restrictions on Assignment

The assignment operations defined upon certain types have been restricted so that variables of those
types can be initialized (either explicitly or by default) when they are created but cannot
subsequently be updated. A variable is considered to be created at its point of declaration or, for
dynamically allocated objects, by the corresponding NEW operation.

In Mesa 6, the following types have restricted assignment operations:

MONITORLOCK

CONDITION

any type constructed using PORT

any type constructed using SEQUENCE

any type constructed using ARRAY in which the component type has a restricted assignment
operation.

any type constructed using RECORD in which one of the field types has a restricted assignment
operation.

Note that the restrictions upon assignment for a type do not impose restrictions upon assignment to
component types. Thus selective updating of fields of a variable may be possible even when the

Mesa 6.0 Compiler Update 23

entire variable cannot be updated; e.g., the timeout field of a CONDITION variable can be updated by
ordinary assignment. Also, you may apply the operator @ to obtain the address of the entire
variable in such a situation.

Operational Changes

User Interface

The standard Mesa 6 Compiler reads commands only from the executive’s command line; it no
longer supports interactive input. During compilation, the display and keyboard are disabled. The
cursor provides a limited amount of feedback; it moves down the screen to indicate progress
through a sequence of commands and to the right as errors are detected. At the end of
compilation, the message "Type Key" is displayed in a flashing cursor if there are errors and you
have requested the compiler to pause. Typing Shift-Swat aborts the Executive’s current
command sequence; Ctrl-Swat invokes the Mesa Debugger; any other character causes normal
exit from the compiler.

A summary of compilation commands is written on the file Compiler.log (formerly,
Mesa.typescript).

Command Line Arguments

The Mesa 6 Compiler allows you to control the association between modules and file names at the
time you invoke the compiler. The compiler accepts a series of commands, each of which has the
form

outputFile _ inputFile[id1: file1, ..., idn: filen]/switches

Only inputFile is mandatory; it names the file containing the source text of the module to be
compiled, and its default extension is .mesa. Any warning or error messages are written on the
file outputRoot.errlog, where outputRoot is the string obtained by deleting any extension
from outputFile, if given, otherwise from inputFile. If there are no errors or warnings, any
existing error log with the same name is deleted at the end of the compilation.

If a list of keyword arguments appears between brackets, each item establishes a correspondence
between the name idi of an included module, as it appears in the DIRECTORY of the source
program, and a file with name filei; the default extension for such file names is .bcd. (If the
name of an included module is not mentioned on the command line, its file name is computed
from information in the DIRECTORY statement; see above).

The optional switches are a sequence of zero or more letters. Each letter is interpreted as a
separate switch designator, and each may optionally be preceded by - or ~ to invert the sense of
the switch.

If outputFile (and _) are omitted, the object code and symbol tables are written on the file
inputRoot.bcd, where inputRoot is inputFile with any extension deleted. Otherwise code
and symbols are written on outputFile, for which a default extension of .bcd is supplied. If
the compiler detects any errors, the output file is not written and any existing file with the same
name is deleted.

The compiler accepts a sequence of one or more commands from the executive’s command line
(through the file Com.cm). Commands are separated by semicolons, but you may omit a semicolon

Mesa 6.0 Compiler Update 24

between any two successive identifiers (file names or switches), or between a] and an identifier (but
not between an identifier and a /). Note that any required semicolon in an Alto Executive
command must be quoted.

You can set global switches by a command with an empty file name. In the form /switches,
each letter designates a different switch. Unless a command to change the global switch settings
comes first in the sequence of commands, you must separate it from the preceding command by an
explicit semicolon. Note that the form switch/c is no longer available for setting global switches.

Switches

The following compilation options have been added:

Switch Option Controlled

 f implementation of floating-point operations

 l treatment of long pointers

 y warning on runtime calls

If the f switch is set, the compiler generates byte code instructions for floating-point operations
(these require microcode support); otherwise, it generates calls through the system dispatch vector
(SD) to software routines implementing such operations. If the a and l switches are both set, the
compiler generates code using an variant of the Alto Mesa instruction set that implements long
pointer accesses to a virtual memory larger than 64K (code generated using the l switch cannot be
executed on an Alto, even if long pointers are not used). If you specify -a, the l switch is ignored.
The y switch indicates that a warning message should be issued whenever the compiler generates
code to invoke a runtime procedure (including some "instructions" which are actually implemented
in software).

The default settings for these switches are f, -l and -y.

Distribution:
 Mesa Users
 Mesa Group
 SD Support

Copyright c Xerox Corporation 1980

Inter-Office Memorandum

To Mesa Users Date October 27, 1980

From Brian Lewis, Ed Satterthwaite Location Palo Alto

Subject Mesa 6.0 Binder Update Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>Binder60.bravo (and .press)

This memo describes changes to the C/Mesa language and the Binder that have been made since
the release of Mesa 5.0 (April 9, 1979).

Definitions of syntactic phrase classes used but not defined in this document come from the Mesa
Language Manual, Version 5.0, Section 7.7.

Compatibility

Because of changes in BCD formats, you must rebind all your existing Mesa configurations after
obtaining recompiled versions of their components. There is one potential incompatibility:

Some of the quoted file names that appear in DIRECTORY clauses have different
interpretations. Text inside angle brackets is no longer ignored; it is treated as the name of a
local subdirectory (but we do not recommend using local subdirectories for Mesa programs at
the present time).

A number of bugs have been fixed. As usual, the list of Binder-related change requests closed by
Mesa 6.0 will appear separately as part of the Software Release Description. The most notable
involve

correctly checking the types of interfaces when positional notation is used,

proper treatment of named imports or exports of a configuration,

proper identification of object files that have been renamed.

Because of bug fixes, the Binder may reject previously acceptable configuration descriptions or may
issue new warning messages. A number of error or warning messages now use symbolic names
whenever the corresponding symbol tables are available.

Mesa 6.0 Binder Update 2

New Language Features

Bracket Symbols

The bracket pair { } can be used in place of BEGIN END.

Syntax

CBody ::= BEGIN CStatementSeries END

| { CStatementSeries }

Multiple Control Modules

You can now specify an ordered list of control modules for any configuration.

Syntax

ControlClause ::= CONTROL IdList
| empty

IdList ::= identifier | IdList , identifier

When a (sub)configuration is started, either explicitly or as the result of a start trap (see the Mesa
Language Manual, Version 5.0, Section 7.8.4), each of the modules named in the ControlClause is
started in order.

Note that, if there are calls from a control module to one of its successors in the list, the order of
starting will not necessarily follow the order of the ControlClause. In starting a configuration, any
control modules that have already been started are skipped.

Operational Changes

The Binder is now available only as a .bcd file; you must have Mesa.image to run it. When

compressing symbols, SymbolCompressor.bcd must be loaded first; see the description of the /x switch below.

User Interface

The Binder now reads commands only from the Alto Executive’s command line; it no longer
supports interactive input. At the start of the first binding, the message "Bind" is displayed in the
cursor. If there are any warnings, "Warning" is displayed, and if there are errors "Errors" is shown.
At the end of binding, the message "Type Key" is displayed in a flashing cursor if there are errors
and you have requested the Binder to pause. Typing Shift-Swat aborts the executive’s current
command sequence; Ctrl-Swat invokes the Mesa Debugger; any other character causes normal
exit from the Binder.

A summary of binder commands is written on the file Binder.log (formerly
Mesa.typescript).

Mesa 6.0 Binder Update 3

Commands

The Mesa 6.0 Binder allows you to control the names and contents of various output files when you
invoke it; it accepts a series of commands, each of which usually has one of the following forms:

inputFile/switches

outputFile _ inputFile/switches

[key1: file1, ... keym: filem] _ inputFile/switches

(It is also possible to control the association between included modules and configurations and their
file names; this is described below.) In the last form, key is one of bcd, code, or symbols.

The string inputFile names the file containing the source text of the configuration description,
and its default extension is .config.

There is a principal output file, the name of which is determined as follows:

If you use the first command form, it is inputRoot.bcd, where inputRoot is the string
obtained by deleting any extension from inputFile.

If you use the second form, it is outputFile, with default extension .bcd.

If you use the third form and keyi is bcd, it is filei, with default extension .bcd;
otherwise, it is obtained as described for the first form.

If the Binder detects any errors, the principal output file is not written, and any existing file with
the same name is deleted.

You may also request that the code and/or symbols of the constituent modules be copied to an
output file, as follows:

You request copying of code by specifying the /c switch or by using the third command form
with keyword code. Code is copied to the principal output file unless you use the third form
and keyi is code, in which case the code is copied to a file named filei, with default
extension .code.

You request copying of symbols by specifying the /s or /x switch or by using the third
command form with keyword symbols. Symbols are copied to the file
inputRoot.symbols unless you use the third form and keyi is symbols, in which case
they are copied to a file named filei, with default extension .symbols. Compressed
symbols are copied if the /x switch is specified.

Any warning or error messages are written on the file outputRoot.errlog, where outputRoot
is the string obtained by deleting any extension from the name of the principal output file. If there
are no errors or warnings, any existing error log with the same name is deleted at the end of the
bind.

When more than one Binder command is given on the command line, the commands must be
separated by semicolons. However, you may omit a semicolon between any two successive
identifiers (file names or switches), or between a] and an identifier (but not between an identifier
and a /). Note that any required semicolon in an Alto Executive command must be quoted.

Mesa 6.0 Binder Update 4

Switches

The optional switches are a sequence of zero or more letters. Each letter is interpreted as a
separate switch designator, and each may optionally be preceded by - or ~ to invert the sense of
the switch.

The Binder recognizes the switches:

/c - copy code
/s - copy symbols
/x - copy compressed symbols
/p - pause after binding if there are errors or warnings
/r - run the specified .image or .run file
/g - (has no effect; retained for compatibility with Mesa 5)

The Mesa 5 Binder switch /o (output file) is no longer available.

In earlier versions of the Binder, copying symbols was an error if not all of the symbol files were
available at bind time. The Binder now copies all symbols that it can find, leaves the symbol table
references for the other modules in the original (unavailable) files, and issues a warning.

The switches /c and /s are interpreted differently in Mesa 6 than they were in Mesa 5. The
following table outlines these changes.

Mesa 6 Mesa 5 meaning

file/c file/c code to file.bcd

file/cs file/c file/s code to file.bcd;
symbols to file.symbols

[symbols: file.bcd] _ file/c file/cs code and symbols to file.bcd

Note that file/cs has quite a different meaning in Mesa 6 than before. Also, the common Mesa
5 command sequence file/c file/s will bind file twice in Mesa 6, the first time copying only
code and the second time only symbols.

Compressed symbols are copied with the /x switch. In this mode, only the following symbols are
included: all procedures, and the signals declared at the top level of modules. Symbols for their
parameters and results are not copied. This option allows limited but often adequate debugging,
and substantially reduces the size of the symbols file (typically by more than 50%). To copy
compressed symbols, SymbolCompressor.bcd must be loaded ahead of the Binder. Thus

>Mesa.image SymbolCompressor.bcd Binder.bcd MySystem/x

will create MySystem.bcd and MySystem.symbols (compressed).

Global switches are set by a command with an empty file name. In the form /switches, each
letter designates a different switch. The switches to copy code (/c), to copy symbols (/s), and to
compress symbols (/x) may now be given as global switches, and hence apply to all source files
thereafter. Unless a command to change the global switch settings comes first in the sequence of
commands, it must be separated from the preceding command by an explicit semicolon.

Mesa 6.0 Binder Update 5

Associating File Names with Modules and Configurations

The Binder now lets you control the association between file names and modules or
subconfigurations when you call it. This is done by specifying a list of component identifier-file
name pairs inside brackets after the input file name. For example, the command

MySystem[Test: UnpackedTest]

will bind MySystem.config using the previously bound configuration Test that is stored on the
file UnpackedTest.bcd. A command that includes one of these optional component-file name
lists will have one of the forms:

inputFile[id1: file1, ... idn: filen]/switches

outputFile _ inputFile[id1: file1, ... idn: filen]/switches

[key1: file1, ... keym: filem] _ inputFile[id1: file1, ...
idn: filen]/switches

The module or configuration named by idi in the configuration description will be read from the
file filei; .bcd is the default extension.

Distribution:
 Mesa Users
 Mesa Group
 SD Support

Copyright c Xerox Corporation 1980

Inter-Office Memorandum

To Mesa Users Date October 27, 1980

From John Wick Location Palo Alto

Subject Mesa 6.0 System Update Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>System60.bravo (and .press)

This memo outlines changes made in the Mesa system interfaces since the last release (Mesa 5.0,
April 9, 1979). A number of internal changes made in the system and the microcode are also
discussed.

This memo is intended as a quick guide to conversion, not a detailed specification of the changes.
Names in square brackets refer to sections of the Mesa System Documentation or to other publicly
available reference documents (e.g., the Alto Operating System Reference Manual).

External Interfaces

Major changes include integrated support for Alto extended memory and elimination of BasicMesa.
The System also now exports versions of the following Development Software interfaces: Ascii,
Format, Inline, Process, Runtime, Storage, String, System, and Time. (Note that
implementation of these interfaces may not be complete.) Other changes are relatively minor.

AllocDefs

Private types and operations have been removed. AllocInfo, MakeDataSegment, and
MakeSwappedIn are now defined in SegmentDefs, and temporarily duplicated here for
compatibility. [Segment Package]

AltoDefs

MaxVMPage has been increased to support up to a million words of memory; MaxMDSPage
and PagesPerMDS have been added. [Segment Package]

AltoDisplay

MaxBitsPerLine has been changed to 608 (it was 606). Cursor, CursorBits, and
CursorHandle define the location and format of the cursor. Coordinate, CursorXY, and
MouseXY define the location and format of the cursor and mouse coordinates. [Display Package]

AltoFileDefs

Support for the DiskShape and PartitionName properties of the directory’s leader page has
been added. The definition of a file serial number (SN) has been changed to isolate the flag bits
(directory, random, and nolog) into a separate structure (SNBits). [Alto Operating System
Reference Manual]

Mesa 6.0 System Update 2

AltoHardware

This new interface defines most structures of the Alto hardware, including the processor, display,
keyboard, mouse, keyset, printer interface, disk, and Ethernet. [Alto Hardware Manual]

Ascii

This new interface defines the ASCII control character codes; for compatibility, these continue to be
defined in IODefs. [StreamIO Package]

BasicMesa

The facilities of BasicMesa have been replaced by procedures in the standard system and a
command line switch (/b) which can be used to destroy the display and keyboard packages (see
DisplayDefs and StreamDefs). MakeImage is no longer a standard part of Mesa.image,
and must be loaded separately. [Section 3]

BitBltDefs

The extended memory option now supports use of the normal and alternate bank registers, whose
values are supplied in the unused word of the BBTable (this option is not supported under XMesa
5.0 microcode (version 39)). AlignedBBTable (and BBTableSpace) can be used to properly
align BITBLT argument records. [Alto Hardware Manual]

CharIO

This new interface provides many of the functions of IODefs, but each operation takes a
StreamDefs.StreamHandle as its first parameter, allowing formatted input and output to any
standard stream. [StreamIO Package]

DirectoryDefs

This interface has been changed slightly to speed up directory searches (by about a factor of 3). In
addition, support for subdirectories was added (see Alto Operating System Reference Manual). The
following items have changed (note that a NIL DiskHandle does not imply the system directory):

EnumerateEntries: PROCEDURE [
 dir: DiskHandle,
 proc: PROCEDURE [CARDINAL, StreamScan.Handle, DEptr] RETURNS [BOOLEAN],
 inspectFree: POINTER TO READONLY BOOLEAN,
 lengthFilter: CARDINAL _ 0] RETURNS [index: CARDINAL];

The procedure proc is called for each directory entry; free entries are passed only if
inspectFree^ is TRUE. If the lengthFilter is non-zero, only entries with a filename length equal
to lengthFilter characters will be passed to proc.

The following procedure inserts an entry into the directory; unlike Lookup, it does not create a
file. If the file already exists, TRUE is returned (and fp^ is undisturbed).

Insert: PROCEDURE [
 dir: DiskHandle, fp: POINTER TO AltoFileDefs.FP, name: STRING]
 RETURNS [old: BOOLEAN];

ParseFileName replaces ExpandFileName; it strips the leading directory information from
name, puts the result in filename (appending a period if necessary), and returns a stream (with
access dirAccess) open on the directory in which the file should be looked up.

ParseFileName: PROCEDURE [
 name, filename: STRING, dirAccess: SegmentDefs.AccessOptions]
 RETURNS [StreamDefs.DiskHandle];

Mesa 6.0 System Update 3

The following procedures set and return the directory used for looking up files which do not specify
a directory name (initially set to "<SysDir.").

SetWorkingDir: PROCEDURE [dir: SegmentDefs.FileHandle];

GetWorkingDir: PROCEDURE RETURNS [dir: SegmentDefs.FileHandle];

Finally, the signal BadDirectory no longer takes a string parameter. [Directory Package, Alto
Operating System Reference Manual]

DisplayDefs

DestroyDisplay can be used to delete the display package; it turns off the display, deallocates the
bitmap, destroys the font, and UNNEWs all the display modules. [Display Package]

DoubleDefs

This interface is no longer implemented or supported, since LONG data types are now a standard
part of the language and runtime support.

FrameDefs

Validate(Global)Frame and Invalid(Global)Frame now take (return) UNSPECIFIED. The
procedure

LoadConfig: PROCEDURE [name: STRING] RETURNS [PROGRAM];

loads a configuration without starting it and returns its control module or control module list (or NIL

if there is no control module). Note that this will not handle configurations whose control modules
take parameters. [Modules]

FSPDefs

The error ZoneTooLarge is now raised by Make(New)Zone and AddTo(New)Zone when an
attempt is made to make a zone of more than 32K words. [Storage Management]

ImageDefs

MakeImage takes an optional second parameter (merge: BOOLEAN _ TRUE);
MakeUnMergedImage has been temporarily retained for compatibility. The ImageMaker
package is no longer a part of the standard system; it must be loaded or bound with the client
configuration. [Image Files]

InlineDefs

The LongCOPY operation for use with long pointers is now implemented by the extended
memory microcode. The types BytePair and BcplLongNumber have been added; the
procedures MesaToBcplLongNumber and BcplToMesaLongNumber implement conversion
between Mesa and BCPL long numbers. [Miscellaneous]

IODefs

The procedure WriteSubString has been added. [StreamIO Package]

MiscDefs

The ByteBlt procedure has been added. [Miscellaneous]

Mesa 6.0 System Update 4

MiscOps

ReleaseDebuggerBitmap can be used to free the storage normally allocated (on extended
memory machines) for the Debugger’s bitmap. [Section 3]

OsStaticDefs

The type of ClockSecond has been changed to use InlineDefs.BcplLongNumber. [Alto
Operating System Reference Manual]

ProcessDefs

Aborted has been redefined to be equal to the predeclared error ABORTED. A Pause procedure
has been added which delays execution of its caller by the specified number of ticks. Detach and
GetCurrent now take (return) a PROCESS instead of an UNSPECIFIED. [Processes and Monitors]

SegmentDefs

The majority of changes in SegmentDefs are due to the incorporation of XMesa and extended
memory support into the standard system. Clients of XMesa should see the XMesa update
document.

The definition of SegmentObjects has changed to allow for a twelve bit page number. The
read bit in FileSegmentObjects has been deleted (read access is always assumed) and
MaxSegLocks has been reduced to fifteen (MaxSegLocks and MaxFileLocks replace
MaxLocks).

A type field has been added to DataSegmentObjects with predefined values UnknownDS,
FrameDS, TableDS, HeapDS, SystemDS, BitmapDS, StreamBufferDS, and
PupBufferDS. These types are interpreted by the Debugger’s Coremap command.

For clients of low level memory allocation, the definition of AllocInfo has changed and the
constants HardUp, HardDown, EasyUp, and EasyDown have been defined. The procedures
MakeDataSegment and MakeSwappedIn have been moved here from AllocDefs.

The access options ReadWrite, WriteAppend and ReadWriteAppend have been added.
NewFile and InsertFile now default the access and version parameters.

The following two procedures have been added to provide access to file times:

GetFileTimes: PROCEDURE [file: FileHandle]
 RETURNS [read, write, create: TimeDefs.PackedTime];

SetFileTimes: PROCEDURE [
 file: FileHandle,
 read, write, create: TimeDefs.PackedTime _ TimeDefs.DefaultTime];

GetFileTimes does not modify any of the file’s times. In SetFileTimes, if any of the times are
defaulted, the current time is used. [Segment Package]

StreamDefs

DestroyKeyHandler can be used to delete the standard keyboard handler; it destroys the
keyboard process and UNNEWs all the keyboard modules. [Keyboard]

The type StreamPosition, defined as a LONG CARDINAL, can be used in place of a
StreamIndex. The operations GetPosition, SetPosition, and ModifyPosition are similar to
the corresponding index operations; IndexToPosition and PositionToIndex perform
conversions between positions and indicies. The access options ReadWrite, WriteAppend, and
ReadWriteAppend have been added, as has the signal FileNameError. [Disk Streams]

Mesa 6.0 System Update 5

StreamScan

This new interface allows overlapped disk input when reading from a stream. It is a transliteration
of the same code from the Alto Operating System (version 17). The following are defined in
StreamScan.mesa:

Descriptor: TYPE = RECORD [
 da: AltoFileDefs.vDA,
 pageNumber: CARDINAL,
 numChars: CARDINAL,
 -- private fields];

Handle: TYPE = POINTER TO READONLY Descriptor;

Init: PROCEDURE [
 stream: StreamDefs.StreamHandle, bufTable: POINTER, nBufs: CARDINAL]
 RETURNS [Handle];

GetBuffer: PUBLIC PROCEDURE [ssd: Handle] RETURNS [POINTER];

Finish: PROCEDURE [ssd: Handle];

Init sets up a scan stream from a disk stream. In addition to the stream, the client supplies a vector
of pointers to 256 word areas useable as disk buffers (bufTable). The number of buffers supplied
is nBufs. At least one buffer must be supplied (the normal stream buffer is also used). Each call
to GetBuffer will return a pointer to the next sequential page of the file and returns the previous
buffer page to the buffer pool (first call returns data page 0; file page 1). The public fields of the
Handle are correct for the page returned by the most recent call to GetBuffer. GetBuffer
returns NIL when there are no more pages to be read. A call to Finish terminates the scan. No
other stream operations should be performed between Init and Finish. [Disk Streams Package]

StringDefs

CompareStrings lexically compares two strings and returns -1, 0, or 1 if the first is less than,
equal to, or greater than the second; an optional parameter may be supplied to ignore case
differences. All procedures in this interface now handle NIL string parameters. [String Package]

SystemDefs

CopyString allocates storage from the system heap and copies its argument into it, optionally
making the new string longer. ExpandString performes a similar function, allocating a new string
(and freeing the old one) if necessary. Even and Quad can be used to align pointers on double
and quad word boundaries. [Storage Management]

TimeDefs

The type HardwareTime has been replaced by InlineDefs.BcplLongNumber. Default values
have been added to UnpackDT, PackDT, and AppendDayTime. ReadClock returns the
current value of the Alto’s realtime clock (part of which can be found at location
RealTimeClock). [Time Package]

TrapDefs

StackError no longer takes a parameter; UnboundProcedure now takes an UNSPECIFIED. The
following signals have been added (not all of which can be generated by Alto/Mesa):
ZeroDivisor, DivideCheck, UnimplementedInst, WakeupError, PageFault, Write-
ProtectFault, and HardwareError. [Traps]

Mesa 6.0 System Update 6

XMesa Extended Memory Support

Functions formerly provided by XMesa are now integrated with the standard system. A 3K RAM or
Mesa microcode in ROM1 is required to support the extended memory option. [Segment Package]

Internal Interfaces

The following changes are internal to the implementation and do not affect public interfaces; they
may affect performance and/or space requirements, however. Note that Mesa 6.0 continues to
support version 39 of the XMesa microcode available with Mesa 5.0; obviously, certain new features
listed below are not available if your ROM contains the old microcode (e.g., Long BitBlt).

3K RAM Support

Mesa now supports the Alto 3K RAM option (available only on extended memory machines).

Debugger Bitmap

If the extended memory option is present, the system allocates part of the client’s memory for use
by the debugger for its display bitmap; this improves the debugger’s response times considerably.
The debugger bitmap may be deallocated by the procedure MiscOps.ReleaseDebuggerBitmap
or the command line switch /k (in the former case, the call must be made before the debugger is
first entered).

Long Copy, Long BitBlt

These opcodes now include support for extended memory.

Misc Opcodes

Misc opcodes (except for RCLK) now provide a general escape to user microcode in the RAM if
Mesa is running on a 2K ROM or 3K RAM machine; they produce undefined results otherwise.
Alpha bytes for the currently implemented MISC functions are defined in MiscAlpha.

Overflow Microcode

RunMesa has been upgraded to include microcode support for Pup checksums, IEEE floating point,
and HBlt (used by Griffin). This microcode is loaded with the XMesa overflow microcode on Altos
with the 2K ROM (with version 41 microcode) or 3K RAM option. Users who have been loading
microcode for these functions need no longer do so. This change affects Alto IIs only.

Range Checking

The bounds check instruction (BNDCK) is now implemented correctly.

Distribution:
Mesa Users
Mesa Group
SDSupport

Copyright c Xerox Corporation 1979, 1980

Inter-Office Memorandum

To Mesa Users Date October 27, 1980

From Jim Sandman, John Wick Location Palo Alto

Subject Mesa 6.0 XMesa Update Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>XMesa60.bravo (and .press)

This memo describes the changes in Mesa 6.0 runtime support which incorporate the facilities of
XMesa 5.0 into the standard system.

Overview of Extended Memory Support

Mesa now uses the extended memory of Alto II XMs as additional swapping space for code. This
means that code and data need not co-exist in the MDS, the primary 64K of memory. Mesa takes
advantage of any available extra space automatically; standard Alto programs do not need to be
modified to run. Support is provided for up to one million words of memory in blocks of 64K
words.

Because Mesa uses extended memory for code segments, it includes a page-level storage allocator
for the additional banks. Client programs may request storage in the additional banks by using
extensions of the standard procedures in SegmentDefs. Mesa provides primitive mechanisms to
read and write words in extended memory and to copy blocks of data between banks of memory,
but gives no other assistance in accessing information in the extended memory. In particular,
arbitrary use of LONG POINTERs is not supported on the Alto.

Public Interfaces

Unless otherwise stated, all of the facilities in this section are defined in SegmentDefs.

Configuration Information

The Mesa runtime system has an internal data structure that contains information about the
hardware configuration of the machine on which it is running. Clients may obtain a copy of this
data structure by calling GetMemoryConfig and should normally test for the existence of
extended memory by examining the useXM field. The extant banks of memory are indicated by
MemoryConfig.banks, which is a bit mask (e.g., MemoryConfig.banks=140000B implies
that banks zero and one exist). Note that this bit mask has been expanded to allow for up to
sixteen banks; constants used to test against it must be changed.

Mesa 6.0 XMesa Update 2

BankIndex: TYPE = [0..17B];

ControlStoreType: TYPE = {Ram0, RamandRom, Ram3k, unknown};

MachineType: TYPE = {unknown0, AltoI, AltoII, AltoIIXM, . . . };

MemoryConfig: TYPE = MACHINE DEPENDENT RECORD [
 reserved: [0..37B],
 AltoType: MachineType,
 xmMicroCode: BOOLEAN,
 useXM: BOOLEAN,
 mdsBank: BankIndex,
 controlStore: ControlStoreType,
 banks: [0..177777B],
 mesaMicrocodeVersion: [0..177777B]];

memConfig: PUBILC READONLY MemoryConfig;

GetMemoryConfig: PROCEDURE RETURNS [MemoryConfig] = INLINE

 BEGIN RETURN[memConfig] END;

The field memConfig.useXM is true if and only if the following conditions hold:

1) the machine is an Alto II with XM modifications (AltoType = AltoIIXM),
2) the Alto has more than one memory bank installed (banks ~= 100000B),
3) the Alto has a 3K RAM, or it has a second ROM containing an appropriate version of

the XMesa microcode.

The microcode version field tells only the microcode version, not the Mesa release number. (For
example, for Mesa 6.0, mesaMicrocodeVersion is 41; Mesa 5.0 version 39 microcode is also
supported, although not all features are available.)

Extended Memory Management

The facilities described in this section can be used regardless of the state of useXM.

Segments in extended memory are created with the usual primitives in SegmentDefs. However,
additional "default" parameter values for those procedures that expect a VM base page number
have been provided. DefaultMDSBase requests allocation anywhere in the MDS.
DefaultXMBase requests allocation anywhere in the extended memory banks but not in the
MDS. DefaultBase0, DefaultBase1, DefaultBase2 and DefaultBase3 request allocation
in particular banks. DefaultANYBase requests allocation anywhere in the extended memory
banks or the MDS. DefaultBase is equivalent to DefaultANYBase if the segment is a code
segment, otherwise, it is equivalent to DefaultMDSBase.

The following procedures convert between segment handles and long pointers, and work for
segments anywhere in the 20-bit address space.

LongVMtoSegment: PROCEDURE [a: LONG POINTER] RETURNS [SegmentHandle];

Mesa 6.0 XMesa Update 3

LongSegmentAddress: PROCEDURE [seg: SegmentHandle] RETURNS [LONG POINTER];

LongVMtoDataSegment: PROCEDURE [a: LONG POINTER] RETURNS

[DataSegmentHandle];

LongDataSegmentAddress: PROCEDURE [seg: DataSegmentHandle]
RETURNS [LONG POINTER];

LongVMtoFileSegment: PROCEDURE [a: LONG POINTER] RETURNS

[FileSegmentHandle];

LongFileSegmentAddress: PROCEDURE [seg: FileSegmentHandle]
RETURNS [LONG POINTER];

The following definitions have been added to AltoDefs; they define parameters of the extended
memory system.

MaxVMPage: CARDINAL = 7777B;

MaxMDSPage: CARDINAL = 377B;

PagesPerMDS: CARDINAL = MaxMDSPage+1;

The following procedures convert between page numbers and long pointers, and are analogous to
AddressFromPage and PageFromAddress.

LongAddressFromPage: PROCEDURE [page: AltoDefs.PageNumber]
RETURNS [lp: LONG POINTER];

PageFromLongAddress: PROCEDURE [lp: LONG POINTER]
RETURNS [page: AltoDefs.PageNumber];

The following procedures check the validity of long pointers and page numbers and raise the
indicated errors.

ValidateVMPage: PROCEDURE [page: UNSPECIFIED];

InvalidVMPage: ERROR [page: UNSPECIFIED];

ValidateLongPointer: PROCEDURE [a: LONG UNSPECIFIED];

InvalidLongPointer: ERROR [lp: LONG UNSPECIFIED];

The signal ImmovableSegmentInXM is raised when MakeImage (or CheckPoint) discovers a
segment in the extended memory banks that cannot be swapped out. (See the section on
restrictions, below, for more information about image files).

Long Pointer Support

The facilities described in this section should be used only when useXM (see above) is TRUE.

XCOPY is no longer implemented; clients should use InlineDefs.LongCOPY. It may only be
called when memConfig.xmMicrocode is TRUE.

Mesa 6.0 XMesa Update 4

LongCOPY: PROCEDURE [from: LONG POINTER, nwords: CARDINAL, to: LONG POINTER];

LongCOPY makes no attempt to validate the long pointers; if they exceed 20 bits or reference
non-existent memory, LongCOPY will produce unpredictable results.

XBitBlt is no longer implemented; the following extension is not supported by XMesa 5.0 ROMs.
The normal AltoIIXM sourcealt and destalt fields of the BitBlt record (BitBltDefs.BBTable)
should be used (do not use the long pointer options). In addition, if the unused word in the
BBTable is nonzero, the microcode sets the emulator bank register to that value for the duration
of the BitBlt. In effect, BitBlt can only be used to move data within a single bank or between the
MDS (bank zero) and some other bank.

Restrictions, Limitations, and "Features"

Images and Checkpoints. MakeImage cannot preserve the contents of extended memory in the
image file it constructs. If MakeImage is invoked when useXM is TRUE, it will swap out all
unlocked file segments in extended memory. (It will also move any locked code segments to the
MDS.) If any segments then remain in extended memory, MakeImage will refuse to build the
image file. Analogous comments apply to CheckPoint.

Bank Registers. Mesa assumes it has exclusive control of the emulator bank register on AltoIIXMs.
Client programs must not attempt to alter the bank register, but rather must use the public
interfaces for moving data to and from extended memory (see LongCOPY and BitBlt, above).

Segment Alignment. Segments may not cross bank boundaries. The first page of each non-MDS
bank is reserved for internal allocation tables.

Swapper Algorithms. The swapper loads a segment into extended memory by first swapping it into
primary memory, then copying it to extended memory and releasing the MDS memory space.
Thus, if the MDS is so full that the requested segment cannot be swapped in, InsufficientVM will
be raised, even though sufficient space for the segment may exist in other banks. (Analogous
comments apply when swapping out segments that must be written to disk.)

Distribution:
Mesa Users
Mesa Group
SDSupport

Copyright c Xerox Corporation 1980

Inter-Office Memorandum

To Mesa Users Date October 27, 1980

From Bruce Malasky, John Wick Location Palo Alto

Subject Mesa 6.0 Debugger Update Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>Debugger60.bravo (and .press)

This memo outlines changes made in the Mesa Debugger since the last release (Mesa 5.0, April 9,
1979); it is intended as a concise guide to conversion, not a detailed specification of the changes.
Complete documentation on the Mesa 6.0 Debugger can be found in the Mesa Debugger
Documentation.

User Interface

The Debugger’s user interface incorporates changes made in Tajo (the Tools Environment); the
window package Wisk has been converted to use Vista, the new window package. For more
complete documentation on the Tajo design, see the Tajo User’s Guide and the Tajo Functional
Specification.

Typein

The assignment of some function keys and mouse buttons has changed. The menu button is now
YELLOW (formerly BLUE). FL4 is no longer the stuff key; use FR4 (Spare2), Keyset2, or ^S. The
following function keys are implemented (see the section on editing for an explanation of the
functions):

Function ADL Keyboard Microswitch Keyboard Keyset Control Key

Cut DEL DEL Keyset5 ^C

Paste LF LF Keyset1 ^F

Next FL3 (none) Keyset3 ^N

Replace FL4 (none) Keyset4 ^R

Swat FR1 Spare3 (none) (none)
Stuff FR4 Spare2 Keyset2 ^S

Back Word BW Spare1 (none) ^W

Replace/Next FR5 (none) (none) ^K

Typein is directed to the Debugger if the cursor is not in any window. Source windows will accept
input until a file is loaded; they then direct typein to the Debugger (unless they are editable; see
below).

Mesa 6.0 Debugger Update 2

Selections

The selection scheme has changed. Clicking RED once selects a character, clicking twice selects a
word, three times a line, etc. The selection can be extended to the left or right with BLUE; a
character selection is extended by characters, a word selection by words, and so on. The current
selection is now video reversed.

Scrollbars

Scrollbars no longer occupy a dedicated part of the window, but instead come up on top of the left
edge. They are twice as wide as before, and you can "see through" them. To obtain a scroll bar,
move left just past the edge of the window, then move right slightly, back into the window.

Name Stripe

The name stripe and tiny windows now video reverse when the cursor is in the sections that
function as accelerators for the window manager menu commands (Move, Grow, Size, Top,
Bottom, and Zoom).

Menus

Except for the change from BLUE to YELLOW, the way menus are invoked has not changed.
However, some new menus and commands have been added.

Standard Menus

In addition to Move, Grow, Size, Top, Bottom, and Zoom, the standard window manager menu
now also includes the following command:

Deactivate

This command deactivates the selected window; it will no longer appear on the screen and
the resources used by it will be freed. The window’s name is added to a menu of
deactivated windows, which is available outside all windows. The window may be made
active again by selecting its menu item.

A new Text Ops menu is now supplied with the Debug.log and source windows in addition to the
Window Manager menu. It contains Find, Position, Split, Normalize Insertion,
Normalize Selection, and Wrap; the following commands are new:

Split

The Debugger’s wisk window has been replaced by the more general Split window
command. Feedback is similar to that in Laurel: the split line can be picked up using RED

and moved vertically. The subwindow is destroyed by moving the split line off the top or
bottom of the (sub)window.

Normalize Insertion

For windows containing an insert point (Debug.log and editable source windows), this
command will position the text in the (sub)window so that the line containing the insert
point is at the top.

Mesa 6.0 Debugger Update 3

Normalize Selection

This command positions the text in the (sub)window so that the line containing the left
most position of the current selection is at the top.

Debugger Menu

A separate Debugger menu no longer exists; the Alter Bitmap function has been deleted, Move
Boundary has been superseded by Split (see above), and Stuff It is now available only on the
keyboard.

Source Menus

In addition to the standard menus, the source window has two additional menus, Source Ops and
File Ops. The Source Ops menu contains the following commands, which are unchanged: Create,
Destroy, SetBreak, SetTrace, and ClearBreak; the last three commands are available only
if a file has been loaded into the window. The Source Ops menu contains the following new
command:

Attach

Causes the Debugger to ignore the creation date of the current source file when setting
breakpoints or positioning to a source line. This command is essentially a LOOPHOLE;
because the source-object correspondence may not be correct, it should be used with caution.
If, after using Attach, the Debugger sets breakpoints in strange places, chances are that
the source file does not match the version of the object in the system you are debugging.

The File Ops menu includes the following new commands (plus Load, which functions as before):

Edit

Enables editing of the currently loaded read only file (see below). Empty windows are
always editable, but because they have no backing store (until they are Saved or Stored
on a file), the amount of information in the window should be kept small.

Save

Outputs the contents of the window to its current file; overwriting the file requires
confirmation. A backup "$" file is created that is a copy of the unedited version. After the
Save command completes, access reverts to read only.

Store

Outputs the contents of the window to the file named by the current selection; if the file
already exists, overwriting it requires confirmation. After the Store command completes,
access reverts to read only.

Reset

Discards all edits that have been made to the window (during this session) and resets access
to read only. If the file is not editable, the window is made empty.

The Edit command is available only if a file has been associated with the window (by a previous
Load, Store, or Save); Store and Save apply only if the window has been edited.

Mesa 6.0 Debugger Update 4

Editing

The standard source window facilities now provide a simple cut and paste editor. Editing is
modeless and is accomplished by moving the insert point and typing the desired text. (Note that
unlike Bravo, the insert point is independent of the location of the current selection.) Backspace
and backword functions (BS and BW) are always available. The following functions are provided:

^RED Moves the insert point (represented by a blinking caret) to the cursor
position.

DEL (Keyset5) ^C Cut deletes the current selection and puts the deleted text in the
TrashBin (see LF).

LF (Keyset1) ^F Paste inserts the TrashBin at the insert point (see DEL).

FL4 (Keyset4) ^R Replace does a cut and moves the insert point to the place where the
text was deleted.

FR4 (Spare2) ^S Stuff inserts the current selection at the insert point.

The message Please terminate editing of <filename> appears in the Debug.log if you try
to Kill or Quit from the Debugger while editing a file.

Caution: The editing facilities are designed not to alter the original file until it is Saved or
Stored, much like Bravo; the original contents are copied to a file with "$" appended to its name.
This is however, a new facility and should be used with caution. It is designed to support a
moderate number of localized changes to programs, not to replace your favorite document creation
system.

Debugger Commands

Changes in Debugger commands are relatively minor. The Debugger’s interpreter is more generally
available and more consistent with the language. Tracepoints have been re-implemented as a minor
extension of the standard breakpoint facilities.

Old Commands

Ascii/Octal Read

The Ascii and Octal Read commands no longer automatically increment the default value
produced by ESC.

Break/Trace Points

Break and trace points can no longer be set by typing a source line, and the Break Module and
Break Procedure commands and corresponding Trace and Clear commands have been
deleted; the menu commands must be used.

The distinction between trace and breakpoints has been removed. An optional command string can
now be attached to each breakpoint which will be executed when the breakpoint is taken. A
tracepoint then becomes a breakpoint with a standard default command string. LIst Breaks lists
both break and tracepoints (List Traces has been deleted). Clear All Entries/Xits clears
both break and tracepoints.

Mesa 6.0 Debugger Update 5

Tracepoints automatically invoke the normal Display Stack command processor (with
subcommand p(arameters), v(ariables), or r(esults) as appropriate). The q(uit)
subcommand (not b(reak)) exits to the Debugger’s command level, where the normal Proceed
command continues execution of the client.

The method of specifying conditional break and tracepoints has changed; see the ATtach
Condition command in the next section.

When an exit break is set, the Debugger breaks on any return of the procedure by setting the actual
breakpoint on a common return instruction. The Debugger has no way of telling which return was
taken if there is more than one. When asked to display the source line when at an exit break, the
Debugger now shows the declaration line of the procedure instead of the last return statement.

Case On/Off

The Debugger no longer ignores case, and the case commands have been deleted; identifiers must be
typed with their correct capitalization.

Control DEL

Typing ^DEL will now abort the display of long arrays and strings, as well as most searches. This
key combination no longer has to be held down to be recognized.

COremap

This command now prints more information about some data segments; the (system-assigned) types
currently recognized are heap, system, frame, table, bitmap, stream buffer, and Pup buffer.
Unrecognized types (assigned by the user) are displayed as data(t); an unknown type is displayed
as data(?).

Display Process [process]

The subcommand space (SP) can now be used to invoke the interpreter.

Display Stack

The new subcommand "g" displays the global variables of the module containing the current
procedure. A space (SP) invokes the interpreter. If the source window is loaded with the
s(ource) subcommand, the window will remember the appropriate context for setting
breakpoints.

Interpret Call

The Interpret Call command has been deleted; the Debugger’s interpreter should be used.
There are no longer any restrictions on when the interpreter may be called.

ReSet Context [confirm]

This command now requires two keystrokes, to avoid conflict with the ReMote debuggee
command (not yet implemented on the Alto).

STart [address] [Confirm]

This command now requires confirmation.

Mesa 6.0 Debugger Update 6

New Commands

AScii Display [address, count]

Interprets address as POINTER TO PACKED ARRAY OF CHARACTER and displays count characters (each
character separately, not as a string).

ATtach Condition [number, condition]

This command replaces old style conditional breaks; it changes a normal breakpoint into a
conditional one. Arguments are a breakpoint number and a condition, which is evaluated in the
context of the breakpoint. The breakpoint number is displayed when the break/tracepoint is set,
and may also be obtained using the LIst Breaks command.

ATtach Keystrokes [number, command]

Arbitrary command strings can now be attached to break and tracepoints; they are executed by the
Debugger when the breakpoint is taken. Arguments are a breakpoint number and a command
string terminated with a CR. A CR can be embedded in the command string by quoting it with ^V.

ATtach Loadstate [filename]

Like ATtach Image, except that the initial rather than the current loadstate of the image file is
used; this command is for wizards only.

Break All Entries/Xits [module]

This new command is the same as Trace All Entries/Xits, except that breakpoints are set.

CLear Break [number]

This command clears breakpoints by number. Typing CR in place of a number will clear the
current breakpoint, i.e., the one that transferred control into the Debugger.

CLear Condition [number]

This command changes a conditional breakpoint into a normal one. Typing CR in place of a
number behaves as in CLear Break.

CLear Keystrokes [number]

This command clears any command string associated with the breakpoint. Typing CR in place of a
number behaves as in CLear Break.

LOgin [user, password]

This command sets the default user name and password for the debugging session. The new user
name and password are not written into the client’s core image or onto the disk.

ReMote Debugee [host]

This command is not implemented on the Alto.

Trace Stack

This command is used when the Debugger breaks and enters the debugger nub ("//" mode); it
dumps the Debugger’s call stack in octal to the log. Change requests reporting Debugger problems
that result in an uncaught signal or other problem should be accompanied by a Debug.log which
includes the output of this command.

Mesa 6.0 Debugger Update 7

Interpreter

The interpreter provides support for all of the new language features introduced in Mesa 6. All
commands requiring numeric input now invoke the interpreter automatically (e.g., Octal Read:
@p, n: SIZE[r]).

Grammar

A summary of the revised grammar is attached. The constructs ABS, ERROR, LONG, LOOPHOLE, MAX,
MIN, NIL, POINTER TO, PROC, PROCEDURE, SIGNAL, WORD, and open and half open intervals have been
added to the interpreter’s grammar; type REAL has been added for output only. Type expressions
following % must be enclosed in parentheses. The interpreter syntax Expression? has replaced
the Interpret Expression command; it prints the value of the expression in several formats
including octal and decimal.

Target Typing

The interpreter now does a much better job of target typing. As a result, arguments to procedure
calls and right hand sides of assignments are type checked. In addition, assignments to enumerated
types now work correctly.

The interpreter also does a better job of determining signed/unsigned representation. For example,
any octal number is assumed to be unsigned.

Symbol Lookup

Even if a module has compressed symbols, the debugger will first look for the file
modulename.bcd to see if it is the original compiler output for that module (by checking the
version stamp). If so, it will use those symbols. Thus, there is no need to Attach Symbols if the
proper file is on the disk. It makes sense to use compressed symbols for large systems and to also
have present the complete symbol files for the specific modules undergoing detailed debugging.

Output Conventions

In display stack mode, variables declared in nested blocks are now shown indented according to
their nesting level.

A "?" in a variable display now uniformly means that the value is out of range; ". . ." indicates
that there are additional fields present which cannot be displayed due to lack of symbol table
information.

When the debugger refers to a program module, it usually gives the address of its global frame, e.g.,
"G: nnnnnB". If the module has not been started, the debugger now prints a "~" after the B. If a
module has not been started, the user should not modify the global variables of that module, nor
should they be displayed, as they are uninitialized.

New Error Messages

The warning Eval stack not empty! will be printed if the debugger is entered via either an
interrupt or a breakpoint with variables still on the evaluation stack; this indicates that the current
value of some variables may not be in main memory, where the interpreter normally looks.
Exceptions to this are at entry and exit breaks; the debugger has enough information to decode the

Mesa 6.0 Debugger Update 8

argument records that are on the stack in this case (if the appropriate symbol tables are available).

Before the debugger permits any breakpoints to be set using the source window, the creation date in
the source file is checked against the corresponding date recorded by the compiler in the BCD. The
message Can’t use <module> of <time> instead of version created <time> will result if
the versions do not match (but see the Attach source menu command above).

The message Resetting symbol table! is displayed when the interpreter’s scratch symbol table
overflows; the command is retried automatically. The Debugger’s performance decreases somewhat
until the symbol table is reinitialized.

If a program is compiled with cross-jumping, the debugger will print the warning Cross jumped!
before displaying the source.

Installation

Fonts

The Debugger now requires a strike font named MesaFont.strike or SysFont.strike; a
version of Gacha10 is available on <Mesa>MesaFont.strike. Additional strike fonts are stored
on [Maxc]<AltoFonts>. (Strike fonts which include kerning are not supported.)

Switches

Installing the debugger with the /b switch will video reverse the display (i.e., white characters on a
black background).

Memory Bank Management

When running on machines with more than 64K of memory, the client system supplies space to the
Debugger for its bitmap (unless all but one bank has been disabled; see below); the client can
disable this option by using the /k switch or by calling a system procedure before the Debugger is
first invoked (see the Mesa 6.0 System Update).

It is also possible for the Debugger to be installed with more than one bank of memory available
for code swapping; this is done by reducing the amount of memory available to the client using the
RunMesa bank switches or the Alto Executive MesaBanks.~ command (in Executive version 11 or
later).

MesaBanks.~

This command establishes the default memory allocation available to client programs.
Arguments can be in two forms: a sixteen bit octal mask (followed by an optional /b
switch) indicating the available banks; a one in bit position n of the mask (counting from
the left) indicates that bank n is available. Form two is a series of decimal bank numbers
each followed by the /x switch; each bank mentioned is excluded from use by the client.
Note that a request to exclude bank zero will be ignored. If no argument is present, the
command will display the current value of the bank mask.

The MesaBanks.~ command establishes the available memory for each .image or .bcd
program invoked directly by the Alto Executive. The default may be overridden by
explicitly using RunMesa to invoke the program and optionally specifying bank switches on
its command line, before the .image file name. The bank switches have the same format
as the arguments to MesaBanks.~ (except that the /b switch is required in the case of a

Mesa 6.0 Debugger Update 9

bitmask). In the absense of any bank switches, RunMesa always assumes that all banks are
available to the client.

Using these facilities, it is possible to set up the defaults so that the Debugger has extra banks of
memory at the expense of the client program. For example, on a three bank Alto, the following
commands might be used to set the default and then install the Debugger:

MesaBanks.~ 2/x
RunMesa.run 1/x XDebug.image

Under this arrangement, the client would use banks zero and one, and the Debugger would use
banks zero and two (because bank zero is swapped onto Swatee, it can be used by both).
Actually, because the client (by default) is also allocating space for the Debugger’s display bitmap,
the client actually has only one-and-one-half banks, and the Debugger has two-and-one-half; this
can be changed by running the client with the /k switch, resulting in two banks available to each.

Note that the MesaBanks.~ command affects all Mesa programs invoked by the Alto Executive,
including the Compiler and Binder. So the above example would run the Compiler in only two
banks, not three; this can be changed by saying RunMesa Compiler on the command line, which,
because there are no bank switches specified, defaults to all banks available (not really necessary in
this case, since the Compiler runs almost as well in two banks as in three). On the next new
session, the Debugger is smart enough to notice that the Compiler (or whoever) has smashed what it
thought was in bank two. (It is also smart enough not to use any memory that the client owns, so
that the 1/x switch on the command line above is actually unnecessary.)

Since there are a lot of options here, some "standard" examples of client and Debugger
configurations might be helpful:

Two Banks: Normally, do nothing; client and Debugger will each have one-and-one-half
banks. For small clients and better Debugger performance, use RunMesa 1/x
Mesa.image Client.bcd, which will give the client one bank and the Debugger two.
(If you were to use MesaBanks.~ 1/x in this case, the Compiler would also be restricted
to one bank).

Three Banks: As in the three bank example above.

Four Banks: Use MesaBanks.~ 3/x to give the client and the Debugger two-and-one-half
banks each and the Compiler three; use MesaBanks.~ 2/x 3/x and Client/k to
increase the Debugger’s allocation to three banks and restrict the client to two. Obviously,
this can be adjusted based on the size of the client and the desired performance of the
Debugger.

Extended Features

Nearly all of Alto/Tajo is now included in the Debugger (Librarian support and communications
are not). Accordingly, there is little (if any) distinction between UserProcs and Tools, and Fetch
(the FileTool plus communications) which runs in the Debugger is the same as the FileTool
provided by Alto/Tajo. A copy of section 10 of the Tajo User’s Guide describing the FileTool is
attached to this memo.

Distribution:
Mesa Users
Mesa Group
SDSupport

Debugger Summary

Version 6.0

AScii
Read [address, count]
Display [address, count]

ATtach
Image [filename]
Condition [number, condition]
Keystrokes [number, command]
Loadstate [filename]
Symbols [globalframe, filename]

Break
All

Entries [module/frame]
Xits [module/frame]

Entry [procedure]
Xit [procedure]

CLear
All

Breaks [confirm]

Entries [module/frame]
Traces [confirm]

Xits [module/frame]
Break [number]
Condition [number]
Entry

Break [procedure]
Trace [procedure]

Keystrokes [number]
Xit
Break [procedure]
Trace [procedure]

COremap [confirm]

CUrrent context

Display
Break [number]
Configuration
Eval-stack
Frame [address] (g,j,l,n,p,q,r,s,v)

GlobalFrameTable
Module [module]

Display
Process [process] (l,n,p,q,r,s)

Queue [identifier] (l,n,p,q,r,s)

ReadyList (l,n,p,q,r,s)

Stack (g,j,l,n,p,q,r,s,v)

Find variable [identifier]
Kill session [confirm]

LIst
Breaks [confirm]

Configurations [confirm]

Processes [confirm]

LOgon [user, password]
Octal

Clear break [globalframe, bytepc]
Read [address, number]
Set break [globalframe, bytepc]
Write [address, value]

Proceed [confirm]

Quit [confirm]

ReSet context [confirm]

ReMote debuggee [host] [confirm]
SEt

Configuration [config]
Module context [module/frame]
Octal context [address]
Process context [process]
Root configuration [config]

STart [address] [confirm]

Trace
All

Entries [module/frame]
Xits [module/frame]

Entry [procedure]
Stack
Xit [procedure]

Userscreen [confirm]

Worry

off [confirm]

on [confirm]

^Debug [confirm]

Debugger Interpreter Grammar
Version 6.0

StatementList ::= Statement | StatementList; | StatementList; Statement

Statement ::= LeftSide Interval | LeftSide _ Expression |
MEMORY Interval | Expression | Expression ?

LeftSide ::= identifier | (Expression) | LeftSide Qualifier |
identifier $ identifier | number $ identifier |
MEMORY [Expression] | LOOPHOLE [Expression] |
LOOPHOLE [Expression , TypeExpression]

Qualifier ::= ^ | . identifier | [ExpressionList]

Interval ::= [Bounds] | [Bounds) | (Bounds] | (Bounds) |
[Expression ! Expression]

Bounds ::= Expression .. Expression

Expression ::= Sum

Sum ::= Product | Sum AddOp Product

AddOp ::= + | �

Product ::= Factor | Product MultOp Factor

MultOp ::= * | / | MOD

Factor ::= � Primary | Primary

Primary ::= Literal | LeftSide | @ LeftSide | BuiltinCall |
Primary % | Primary % (TypeExpression)

Literal ::= number | character | string

BuiltinCall ::= NIL | NIL [TypeExpression] | PrefixOp [ExpressionList] |
TypeOp [TypeExpression]

PrefixOp ::= ABS | BASE | LENGTH | LONG | MAX | MIN

ExpressionList ::= empty | Expression | ExpressionList, Expression

TypeOp ::= SIZE

TypeExpression ::= identifier | TypeIdentifier | TypeConstructor

TypeIdentifier ::= BOOLEAN | INTEGER | CARDINAL | WORD | REAL | CHARACTER |
STRING | UNSPECIFIED | PROC | PROCEDURE | SIGNAL | ERROR |
identifier identifier | identifier TypeIdentifier |
identifier . identifier | identifier $ identifier

TypeConstructor ::= LONG TypeExpression | @ TypeExpression |
POINTER TO TypeExpression

Wisk Summary

Version 6.0

WHAT WISK MOUSE BUTTONS DO:

Scroll Bar Text Area

RED Scroll Up Select
YELLOW Thumb Menu
BLUE Scroll Down Extend

NAME STRIPE/SMALL WINDOW COMMANDS:

Left Middle Right

RED Top/Bottom Zoom Top/Bottom
YELLOW Grow (corner) Grow (edge) Grow (corner)
BLUE Move Size Move

STANDARD WINDOW MENU COMMANDS:

Move Size Bottom Grow Top Zoom Deactivate

STANDARD TEXT OPS MENU COMMANDS:

Find [selection] Normalize Insertion Split
Position [selection] Normalize Selection Wrap

SOURCE WINDOW SOURCE OPS MENU COMMANDS:

Create Set Break [selection] Clear Break [selection]

Destroy Set Trace [selection] Attach

SOURCE WINDOW FILE OPS MENU COMMANDS:

Load [selection] Store [selection] Reset
Edit Save

T/B G M MGT/BZoom Size

/\
R Y B BYR R Y B

Tajo User’s Guide 52

10.0 File Tool

The File Tool provides a means of dealing with local as well as remote file systems from within the
Development Environment.

10.1 The User Illusion

The File Tool employs the standard features of the Development Environment. See section 3 for
further details.

10.2 Tool Appearance

Below is an illustration of a File Tool with the List Options window (explained below) visible.

10.3 Parameter Subwindow

The upper form subwindow contains parameters that can be set by the user; they will be used by
the next File Tool command.

Tajo User’s Guide 53

Host: the name of the host to be used for remote file operations. If a connection is already open,
any editing of this field causes it to be closed; if a transfer is in progress, the connection
will not be closed until it is complete.

Directory: the default remote directory. If empty, the value in the User: field is used.

Source: a list of files (separated by spaces or returns) to be operated on. If the first character of a
file name is "@", then the file is taken to be an indirect file and its contents are used as a
list of files. Indirect files may nest.

Dest’n: file name for the destination of a transfer. If this field is left blank, the file name is the
same as the source.

Pages= number of free pages left on the disk. This item is read only.

User:, Password: the primary directory and the associated password. This field is initialized from
the value of the user’s last Alto Operating System login. Editing of this field is local to the
File Tool and does not affect the user’s login in the Alto Operating System.

Update only store or retrieve the file if the source is newer than the destination (comparing
creation dates). The default is false.

Connect:, Password: the secondary directory and the associated password.

Verify request confirmation for each file operation. The default is false.

10.4 Command Subwindow

File Tool commands are available in the second form subwindow. Some of the commands are
accomplished by a background process. Those commands clear the Command subwindow so that a
second operation cannot be invoked while one is under way. The Copy! command operates only
on the local disk. It does not take a list of files to operate upon. Close! closes a remote connection
(if there is one).

It is important to remember that the commands are postfix; e.g., fill in the Host: and Source: fields
before invoking the Retrieve! command. The following commands are available:

Retrieve! transfers the file specified in Source: from the remote file system to the local disk. The
file name must conform to the file-naming conventions on the remote host. You may
designate multiple files by the use of * expansion only to the extent that the remote server
supports it. If the local file is already in use, the transfer will not be made and the message "<filename>:
can’t be modified" will be displayed in both the message window and the log window. See warning in Section
10.6

Local-List! lists all files on the local disk corresponding to the name in Source:. This command
will expand *s and #s.

Remote-List! lists all files on the remote file system corresponding to the name in Source:. This
must conform to the file naming conventions of the remote host. You may designate
multiple files by the use of * expansion only to the extent that the remote server supports it
(currently Maxc and IFS do, but differently).

Copy! makes a copy of a local file on the local disk. Only a single file may be copied and *s and
#s are not allowed.

Tajo User’s Guide 54

List-Options! creates a List Options window if one does not already exist.

Store! transfers the file specified in Source: from the local disk to the remote Host. Alto file
name conventions apply to the local file.

Local-Delete! deletes the files specified in Source: from the local disk. If the local file is already in use,
the delete will be skipped and the message "<filename>: can’t be modified" will be displayed in both the
message window and the log window. See warning in Section 10.6

Remote-Delete! deletes the file specified in Source: from the remote file system. You may
designate multiple files by the use of * expansion only to the extent that the remote server
supports it.

Close! closes the currently open FTP connection.

If Verify is TRUE, then for each file that might be acted upon, the following commands are
displayed

Confirm! do the operation.

Deny! abort the operation.

Stop! abort the operation and terminate the command. This will close the connection with the server if a

retrieve is being aborted.

10.5 List Options window

The List Options window is created by the List-Options! command. The properties that will be
displayed, in addition to the file name, by a Local-List! or Remote-List! are governed by the
booleans in this window. After changing the options, use Apply! to effect those changes. The
Abort! command will restore the options which existed before the List-Options! command was
selected. Choosing either of the commands in the List Options window will cause that window to
be removed.

If the Type attribute is requested for a Local-List! and the type is unknown, it will be listed as such
to prevent the time it would take to read the file and determine the type.

10.6 Exceptions

The actual transfer takes place in a background process, so the user is free to issue other commands
or even change the values in the parameter subwindow without affecting the command currently
executing. Changing a parameter while the File Tool is waiting for Confirm! will not affect the
name of the destination file; you should skip the transfer (by using Deny!) and reissue the
command with the desired parameter correctly set.

Warning: Do not attempt to use a file while it is being retrieved. This includes issuing commands
to the Debugger that cause it to try to reference the file. For example, Display Stack may cause
the Debugger to reference symbols contained in the file being retrieved.

Warning: If you are using the File Tool in the Debugger, be careful not to change any files out
from under the program you are debugging; the file tool makes no provisions for checking if the
file is in use in the client world when you modify a local file.

Copyright c Xerox Corporation 1980

Inter-Office Memorandum

To Mesa Users Date October 27, 1980

From Bruce Malasky Location Palo Alto

Subject Debugger: Extended Features Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>XDF.bravo (and .press) DRAFT

This memo discusses Debugger User Procedures (UserProcs) and contains a sample Printer, a special
type of UserProc.

The Debugger is now the functional equivalent of the Alto/Tajo environment (with the exception of
Librarian support and communications). As a result, there are no longer any differences between
the FileTool and ChatTool that run in Alto/Tajo and the versions that run in the Alto/Mesa
Debugger.

Loading User Procedures

To install the Debugger from the command line with some UserProcs, type:

XDebug YourProc1[/l] YourProc2[/l] ...

to the Alto Executive. To load files in an installed debugger, simply enter the Debugger nub; then
do a >New filename, followed by >Start globalframe. More information on the mechanism for
loading programs into the Debugger can be found in the Mesa User’s Handbook and the Mesa
Debugger Documentation.

Hints for Writing User Procedures

The Debugger gives you added help in gaining access to the information it already knows about
your program. The Debugger’s configuration exports all of the Debugger’s and Tajo’s interfaces;
see XDebug.config for details. A user program can access any of the Debugger’s public
procedures simply by importing the definitions modules of the procedures that you want to use.
When writing your own debugging routines, look carefully at some of the utility routines that the
Debugger already provides (e.g., Name, Frame, ShortREAD, etc.). In particular,
DebugUsefulDefs contains most of the interesting procedures you might want. The interface
DOutput contains utility procedures for displaying information in the Debug.log (a la IODefs).
You should also look at the <MesaLib> and <AlphaHacks> directories for UserProcs that other
Mesa users have already written and debugged.

Warning: The Mesa Group makes no guarantees about the stability of these interfaces between
releases. Use at your own risk!

Debugger: Extended Features 2

Printers

The Debugger is capable of calling a user supplied procedure to print variables of specific types.
To do this, a program must first register any type it will display by calling

AddPrinter: PROC [type: STRING, proc: PROC [DebugOps.Foo]]

from the interface Dump. The Debugger’s interpreter evaluates type at the beginning of each
session and remembers the target type of the result. Unfortunately, type is not a simple type
expression, but rather a statement evaluated by the interpreter; the type is extracted from the result.
Any additional information such as the address of a variable used when evaluating the statement is ignored.

Later, whenever the Debugger encounters a variable of that type, it will call proc to display it. If,
for a given printer, calling proc or evaluating type ever causes an UNWIND, the printer is never
called again. The parameter to proc is defined as follows:

Foo: TYPE = POINTER TO Fob;

Fob: TYPE = RECORD [
 there: BOOLEAN,
 addr: BitAddress,
 words: CARDINAL,
 bits: [0..WordLength),
 . . .]];

BitAddress: TYPE = RECORD [
 base: LONG POINTER,
 offset: [0..WordLength],
 . . .];

If there is TRUE, the BitAddress is a location in the user core image. For large structures,
LongREAD and LongCopyREAD from DebugUsefulDefs should be used to access the data;
for small structures the procedure GetValue in the interface DI (it takes a Foo as its argument)
copies the information into the Debugger’s core image and updates the addr. The Debugger owns
the storage for Foos and the values copied into them from the user’s core image; they are freed by
the Debugger between commands.

A good technique for debugging the string used in the call to AddPrinter is to actually try it out
using the interpreter. All REALs could be intercepted by supplying the following STRING to
AddPrinter:

0%(REAL)

The following STRING is used by the sample printer attached at the end of this memo.

LOOPHOLE[1400B, StackFormat$Stack]^

The constant 1400B is simply a location that is always mapped; AddPrinter’s evaluation of the STRING does not
actually use that location.

Once StackPrinter is instantiated in the Debugger, PrintStack is called whenever the Debugger
wants to display a StackObject. Since PrintStack understands the format of StackObjects, it
can show the complete contents of a stack, something the Debugger is unable to do because of the
zero length array.

Debugger: Extended Features 3

-- StackFormat.mesa
-- Last Edited: Keith, October 21, 1980 10:30 PM

StackFormat: DEFINITIONS =
 BEGIN

 Stack: TYPE = POINTER TO StackObject;

 StackObject: TYPE = RECORD [
 top: CARDINAL _ 0,
 max: CARDINAL _ 0,
 overflowed: BOOLEAN _ FALSE,
 stack: ARRAY [0..0) OF CARDINAL];

 END.

-- StackPrinter.mesa
-- Last Edited: Keith, October 21, 1980 10:38 PM

DIRECTORY
 DebugOps USING [Foo, LongREAD],
 DI USING [GetValue],
 DOutput USING [Char, Line, Octal, Text],
 Dump USING [AddPrinter],
 StackFormat USING [StackEntry, StackObject];

StackPrinter: PROGRAM IMPORTS DebugOps, DI, DOutput, Dump =
 BEGIN

 PrintRecord: PROC [lp, lps: LONG POINTER TO StackFormat.StackObject] =
{
 lpStack: LONG POINTER TO CARDINAL _ LOOPHOLE[@lps.stack];
 IF lp.top = 0 THEN DOutput.Text["empty "L]
 ELSE
 FOR i: CARDINAL DECREASING IN [0..lp.top) DO
 DOutput.Octal[DebugOps.LongREAD[lpStack + i]]; DOutput.Char[’];
 ENDLOOP;
 IF lp.overflowed THEN DOutput.Text["(overflow!) "L];
 IF lp.max = lp.top THEN DOutput.Text["(full!)"L];
 DOutput.Line[" "L]};

 PrintStack: PROC [f: DebugOps.Foo] = {
 g: LONG POINTER _ f.addr.base;
 DI.GetValue[f]; PrintRecord[f.addr.base, g]};

 Dump.AddPrinter[
 type: "LOOPHOLE[1400B, StackFormat$Stack]^", proc: PrintStack];

 END.

Copyright c Xerox Corporation 1980

Inter-Office Memorandum

To Mesa Users Date October 27, 1980

From Brian Lewis, Jim Sandman, Dick Sweet Location Palo Alto

Subject Mesa 6.0 Utilities Update Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>Utilities60.bravo (and .press)

This memo outlines the changes made in the utility packages since the last release (Mesa 5.0, April
9, 1979). More complete information can be found in the Mesa User’s Handbook.

Major changes include some new commands in the Lister and an extensively reworked
IncludeChecker. In addition, there is a version of the SignalLister that reads .bcd files.

Lister

The lister is now available only as a .bcd file. The user interface has been changed slightly:
commands that take string parameters no longer need string quotes. The command scanner takes
all characters up to the next comma or right bracket as the parameter. Thus

Code[ListerRoutines] and Code["ListerRoutines"]

are equivalent. The new commands (and "improved" old ones) are listed below. Note that several
of the new commands (and some of the old ones) are useful only for internal (Compiler) debugging.

CodeInConfig[config, module]
OctalCodeInConfig[config, module]

Config names a bound configuration; module is a module within that configuration. A code
listing is produced for the module (see the Code and OctalCode commands). This is of
particular interest for packaged configurations where the code has been rearranged among
segments and code packs.

CompressUsing[file]

The named file should contain a list of BCD file names. The using lists of the directory
statement are generated for each module in the list; they are then sorted to show for each
interface, and for each item in the interface, which modules reference that item. The same
caveat about implicitly included symbols applies as for the Using command (see below).
The output is written to file.ul.

Hexify[], Octify[]

The code lister normally prints addresses (and opcodes for "octal" listings) in base eight.
For microcode debugging, base sixteen is sometimes preferable. Hexify[] puts the code
lister into hexadecimal mode; Octify[] reverts to octal mode.

Mesa 6.0 Utilities Update 2

Implementors[file]

The named file should contain a list of compiler output BCDs (interfaces and program
modules). This command creates a file, File.iml, showing for each interface exported by
any program in the list, where the various interface items are implemented. If the list also
includes the BCD for a particular interface, the interface items not implemented by any
program are also shown. In order to run this command, one needs not only the BCDs in the
list, but also the BCDs for the interfaces exported by the programs therein. Missing BCDs
are reported and the command attempts to forge on.

Stamps[file]

File names a compiler or binder output BCD. This command generates a file, File.bl,
that shows the version stamps of any modules bound in the file, and of all imports and
exports of the top level configuration in the file.

UnboundExports[file]

File names a compiler or binder output BCD. This command examines all of the exported
interfaces and enumerates interface items in those interfaces that are not exported by this
module or configuration.

Using[file]

Given a compiler output BCD, this command generates a directory statement with its
included identifier lists (on file.ul). Since there is not enough information in the BCD to tell
which symbols were implicitly included, the USING clauses will contain a superset of those items actually
needed. The Mesa 6 Lister does a much better job of weeding out extraneous names in the
USING clauses.

Version[file]

File names a compiler or binder output BCD, or an IMAGE file. This command shows, on
Mesa.typescript, the object, source, and creator version stamps of the file.

XrefByCallee[file], XrefByCaller[file]

File names a file that contains a list of BCD file names. For each module in the list, a scan
is made of the code to find all procedure calls. The <caller, callee> pairs are then sorted by
either caller or callee. These commands produce output on file.xle and file.xlr,
respectively.

There are three kinds of procedure calls: local, external, and stack. The program can figure
out which procedure is being called for local and external calls. Stack function calls are
used for procedure variables (e.g., stream.get[...]) and for nested procedure calls. The
program ignores nested calls and indicates a callee of * for procedure variables.

Include Checker

The most significant differences between this version of the IncludeChecker and the one released
with Mesa 5.0 are the following:

1. It handles more files, and requires less processing time for large numbers of files.

2. It executes either from the command line or interactively.

3. It obtains the creation dates for source files from their leader page, rather than from
the first few lines of the source text (however, see the description of the new switch
/t below).

Mesa 6.0 Utilities Update 3

There have been other minor changes to command syntax. The entire section of the Mesa User’s
Handbook on the IncludeChecker is included below.

The IncludeChecker is a program that examines a collection of Mesa source and BCDs for
consistency. It produces an output listing that gives a compilation order for the files, and for each
BCD, a list of all the BCDs that it includes, and a list of the BCDs which include it. Any
inconsistencies (which are described below) are flagged in this listing by an asterisk. As an option,
the IncludeChecker will also generate a compilation command on Line.cm that can be executed to
make the files consistent.

The IncludeChecker determines that an inconsistency exists among the input files if either:

1. A BCD includes another BCD with a version different from the one currently on the disk.
This might happen, for example, if the included BCD had been recompiled.

2. A source file is "newer" than the corresponding BCD. This could happen if the source had
been edited, or if the source had been retrieved from a remote file server. The
IncludeChecker compares the creation date of the source file against the creation date
recorded in the BCD of the source file from which the BCD was derived.

The IncludeChecker operates in either command line or interactive mode. To use it in command
line mode, type to the Alto executive:

>IncludeChecker [outputfile][/switches] [filename1 filename2 ...]

where

outputfile is the name of the file written. If no extension or switches are given, .list
is assumed. If no file name is specified, the file Includes.list is assumed.

filename1 filename2 . . . is the list of file names specifying the source and .bcd
files to be checked. It is not necessary to give an extension, since the IncludeChecker will
look for any .mesa or .bcd file with the specified name. If no input files are specified,
all .mesa and .bcd files on the disk are examined.

To use the IncludeChecker interactively just type:

>IncludeChecker

It will then prompt for the output file name and switches, and then a list of the files to check.
These are typed one at a time, and the list of file names is terminated by a CR. Typing ? CR in
interactive mode displays a short summary of the IncludeChecker’s parameters and use.

Each switch can be preceded by a - or ~ to turn it off. The switches are:

/o Print a compilation order in the output file (this is the default); -o suppresses this
listing.

/i Print both the includes and included by relationships in the output file (default).

/t Obtain the creation date of source files from their leader page (default); -t will
attempt to get the creation date from the first few lines of the source text.

Mesa 6.0 Utilities Update 4

/c Write a consistent compilation command in Line.cm (-c is the default). In
addition, list as comments any BCDs and source files not on the disk which are
needed to do the compilation.

/m Use multiple output files (-m is default). The compilation order is written on
source.outputfile. The includes and included by relations are written onto
outputfile.includes and outputfile.includedBy, respectively. This
switch is useful if the output would otherwise be too large to fit into Bravo.

/n Do not compile source files that do not currently have corresponding .bcds on the
disk (-n is default).

/p Place a /p after every change of inclusion depth (see below) in the compilation
command (-p is default). This will cause the Compiler to pause if errors are
found while compiling that or any previous module.

/s Same as /c-i-o. This is used when only a consistent compilation command is
needed.

The default switches are /oit-c-m-n-p-s.

Note: The IncludeChecker only checks for consistency of the files that you specify. Thus, the list of
files that you give should include, for example, any important system files upon which your files are
dependent.

You should also inspect the compilation command before executing it, since the IncludeChecker’s
idea of what should be recompiled may not be the same as yours.

If a source file but no BCD is found on the disk, the IncludeChecker outputs a warning on the
display; in addition, it adds that file to the compilation command if /c and /-n are in effect. A
warning is also displayed if a BCD is found that was created by an obsolete version of the Compiler;
its source file is also added to the compilation command.

The IncludeChecker lists the file names of the compilation order and the consistent compilation
command by inclusion depth, with the files that are the most deeply included first. Within that
constraint, definitions modules are printed before program modules. In general, then, the "lowest
level" definitions modules appear first, while the "highest level" program modules appear last.

As an example of the IncludeChecker’s use, the command line

>IncludeChecker IC/c IODefs IOPkg LexiconDefs Lexicon
LexiconClient

will produce a consistent compilation command in Line.cm and the output shown below on
IC.list.

Compilation Order (by inclusion depth):
 LexiconDefs streamdefs stringdefs
 IODefs
 oldstringdefs systemdefs tty windowdefs
 IOPkg Lexicon LexiconClient

IODefs (4-May-80 16:20:37 60#203#) (compilation source: 14-Apr-80 17:37:16)

Mesa 6.0 Utilities Update 5

includes
 streamdefs
 stringdefs

IOPkg (28-May-80 9:30:01 60#203#) (compilation source: 28-May-80 9:08:43)
 (source on disk: [same]) includes
 IODefs (4-May-80 16:20:37 60#203#)
 oldstringdefs
 streamdefs
 tty
 windowdefs

Lexicon (28-May-80 9:30:29 60#203#) (compilation source: 28-Apr-80
17:02:20)
 (source on disk: [same]) includes
 IODefs (4-May-80 16:20:37 60#203#)
 LexiconDefs (14-May-80 10:48:49 60#205#)
 oldstringdefs
 systemdefs

LexiconClient (28-May-80 10:02:50 60#203#) (compilation source: 28-May-80
10:02:14)
 (source on disk: [same]) includes
 IODefs (4-May-80 16:20:37 60#203#)
 LexiconDefs (14-May-80 10:48:49 60#205#)
 oldstringdefs

LexiconDefs (14-May-80 10:48:49 60#205#) (compilation source: 18-Apr-79
19:19:11)
 (source on disk: [same]) includes nothing

IODefs is included by
 IOPkg Lexicon
 LexiconClient

IOPkg is included by nothing

Lexicon is included by nothing

LexiconClient is included by nothing

LexiconDefs is included by
 Lexicon LexiconClient

BcdSignals

BcdSignals is an Alto/Mesa program which will produce a signal listing from a .bcd file; it works
much like the Alto/Mesa SignalLister for listing the signals in a .image file (see the Mesa User’s
Handbook). To produce the signal listing Foo.signals from Foo.bcd, type to the Alto
Executive:

Mesa 6.0 Utilities Update 6

>BcdSignals [octalNumber/switch] Foo[/switches]

where

/n takes octalNumber to be the global frame index of the first frame in
this BCD. This will normally be the first free global frame index in the
system into which the BCD will be loaded.

/x takes octalNumber to be the StartPilot loadmap form of a global frame
index. This is the number in brackets beside the module name in the
loadmap. It should be 200B times the octal number used with the /n
switch.

/p lists the name, byte PC, and length of each procedure in Foo on
Foo.procs.

/s list the signals of Foo on Foo.signals (default).

As usual, a - or ~ can be used to invert the sense of the /s switch.

Distribution:
Mesa Users
Mesa Group
SDSupport

Copyright c Xerox Corporation 1980

Inter-Office Memorandum

To Mesa Users Date October 27, 1980

From Jim Sandman, John Wick Location Palo Alto

Subject Integrated Mesa Environment Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>CommandCentral.bravo (and .press)

This memo documents a small executive called Command Central; this Tool is intended to be
installed with the Debugger and can be used to invoke the Compiler, the Binder, and client
programs, all of which upon completion are directed to return to Command Central rather than to
the Alto Executive. The idea is that, while programming in Mesa, you enter Command Central’s
control only once, and you rarely have to leave it; this is made possible by the editor that is now
included in the Debugger, as well as by the context switching facilities provided by Command
Central.

Installation

To include Command Central in the Debugger, type the following Alto Executive command when
installing, after retrieving <Mesa>Fetch.bcd (which contains TinyPup, Stps, and the FileTool)
and <Mesa>Utilities>CommandCentral.bcd. (If you have more than 64K of memory, be sure to

consult the Installation section of the Debugger documentation before proceeding.)

>XDebug Fetch/l CommandCentral/l

While it is possible to use Command Central without also installing the FileTool, including it will
help minimize the number of times you have to leave the Mesa environment. If you have enough
memory on your machine, you might consider installing other Tools with your Debugger as well
(e.g., ChatTool, SendMessageTool).

Note: Tools loaded via the command line are initially inactive (i.e., no window is showing); move
the cursor into the gray area outside all windows and use the menu found there to activate them.

Entering Command Central

When using Command Central, the Debugger becomes the executive from which all programs are
invoked. To first enter this environment, type

>Mesa/d

to the Alto Executive. You can now use the FileTool to retrieve the modules you wish to work on
and the Tools editor to modify them. When you have finished your changes, turn your attention to
the Command Central window.

Integrated Mesa Environment 2

Command Central Window

This window provides command lines for compiling, binding, and running your program, the
context switching commands, and an option sheet; it also supports the standard window operations
(scrolling, growing, etc.).

The three fields contain command lines for the Compiler, the Binder, and the System; their
contents are written to Com.cm when the commands are invoked. (A special global switch /q is added so

that control is returned to the Debugger rather than to the Alto Executive.)

The Compile!, Bind!, and Run! commands invoke the appropriate programs using the command
lines constucted from the Compile:, Bind:, and Run: fields, respectively. The Run! command
can be used to invoke .bcd, .image, and .run files (see below). The Go! command constructs a
combined command line using all non-null fields and executes the appropriate programs in order.
Note that the Debugger will complain if you issue any of these commands while a file is being
edited (since the edits might be lost as a result of executing them).

The parameter fields also recognize command files preceeded by the traditional at-sign (e.g.,
@file.cm); the Expand! command will expand all such references into their contents and write
the result back into the window. Indirect references are also automatically expanded when any of
the other commands are invoked.

The Options! command produces the options window which allows you to specify the names of
the compiler, binder and system you are using. The names are parsed to allow default switches to
be included. The Apply! command will save the new names and the Abort! command will
restore the names to their previous state (the default names are shown above). Both Apply! and
Abort! will remove the options window.

If the Compiler or the Binder detect errors (and the pause switch is in effect), they will invoke the
Debugger with an appropriate message instead of pausing. You can then load the appropriate error
log into a window and step through it and your source file together. Because the file index of the
error is included in each message, the position menu command can be used to find the source of
the error quickly.

Integrated Mesa Environment 3

Invoking Other Programs

Any Mesa .bcd which expects to be loaded into Mesa.image and obtains its commands from the
command line (Com.cm) can be invoked by Command Central using the Run: field and the Run!
command. (As above, the global /q switch is added to the command line so that control will return to the Debugger.)

Some obvious programs which you might include on your disk are Access and Print.

You can also run arbitrary .image and .run files using Command Central, but unless they have
made provision to return control to the Debugger, they will exit to the Alto Executive upon
completion. Use the Mesa/d command to reenter Command Central.

Limitations

If you use the Compile!, Bind!, Run!, or Go! commands when you are in the middle of a
debugging session (at a breakpoint or an uncaught signal, for example), the state of the client will
be lost. In particular, normal termination processing of the client will not take place (e.g., open files
will be left dangling).

Distribution:
Mesa Users
Mesa Group
SDSupport

Copyright c Xerox Corporation 1980

Inter-Office Memorandum

To Mesa Users Date October 27, 1980

From Hal Murray, Mark Sapsford Location Palo Alto

Subject Mesa 6.0 Pup and Ftp Update Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>PupFtp60.bravo (and .press)

This memo outlines changes made in the Mesa Pup and Ftp Packages since the University release
of December 20, 1979. This release is essentially a recompilation of the Pup and Ftp packages
using Mesa 6.0. As usual, a number of bugs have also been fixed, and minor changes have been
made to the interfaces. More complete information is available in the functional specifications
stored on <Mesa>Doc> as PupPackage.press and FtpPackage.press.

Pup Summary

Changes

The following changes were made to Stream. The procedure types GetProcedure,
PutProcedure, SetSSTProcedure, SendAttentionProcedure, and WaitAttention-
Procedure now take a new initial argument sh: Handle. In addition, SendAttention-
Procedure now takes a second argument byte: Byte (which is ignored), and
WaitAttentionProcedure now returns a Byte (which should be ignored). As a result of these
type redefinitions, the inline procedures SendAttention and WaitAttention have different
calling sequences, and a new return value has been added to WaitAttention.

The following changes were made to PupDefs. PupRouterSendThis no longer returns a
SendReturnCode. SendReturnCode (a TYPE) has been deleted. If the buffer could not be
sent, it is discarded.

The arguments to EnumeratePupAddresses are now named. The order of the two arguments
to PupAddressLookup has been reversed. The second argument to AppendPupAddress is
now a PupAddress, instead of a POINTER TO PupAddress. Similarly, the argument to Print-
PupAddress is now a PupAddress, instead of a POINTER TO PupAddress. The local:
PupSocketID argument to PupPktStreamCreate and PupByteStreamCreate has been
removed.

Additions

The procedures AppendHostName and AppendMyName have been added to PupDefs.

UseAltoChecksumMicrocode has been added to speed up processing if you are running on an
Alto with XMesa in the ROM or an Alto with a 3K RAM. The overflow microcode loaded into the
RAM by RunMesa.run includes the necessary additions. (Beware if you load your own
microcode.)

Mesa 6.0 Pup and Ftp Update 2

Subtle Implementation Changes

GetPupAddress will no longer return an address for a dying net. EnumeratePupAddresses
will now pass the client supplied procedure addresses on dead or dying nets, but only after
processing all the addresses on nets that are reachable. (It used to skip addresses on unreachable
nets.)

The byte stream internals have been reworked to eliminate several unpleasant delays while opening
and closing connections. It is now possible to open a connection, send a thousand words, and close
the connection in less than a second. (Since closing deletes three module instances, it will take
longer if there are many active global frames.) A byproduct of this cleanup is that SendNow will
send an empty aData packet to request an acknowledgment even if the previous SendBlock
happened to end on a convenient packet boundary.

When sending a packet whose destination is the local machine, the Ethernet driver puts a copy on
the input queue and acts as though it had sent the packet. It now also copies broadcast packets to
the input queue, so clients should check to be sure that their programs will not take undesired
actions if they hear their own broadcasts. Packets that are sent to the local machine are now also
sent out over the wire; this allows PeekPup.run to be used when analyzing timing problems.

Bug Fixes

The following change requests are closed by this release:

2848 GetMyName (actually net address) procedure
2906 Slow on Dorado
2998 Error strings in NameConversion
3311 Pup ByteStream close
3341 Trivial bug in PupTypes
3708 PupNameLookup+PupAddressLookup PupGlitch
4456 Recompile packages to fix long return record bug
4552 ByteStream timeout
5005 Delays when creating byte stream
5093 NameLookup vs dying nets
5098 Change priority of interrupt routine in EthernetDriver(s)

Ftp Summary

The arguments to the (client supplied) procedure passed to FTPInventoryDumpFile have been
extended to allow proper processing of create dates. It is now compatable with the procedure
passed to FTPEnumerateFiles.

The following change requests are closed by this release:

2906 Slow on Dorado
3584 Ftp vs IFS 1.23
3626 Sending mail
3664 MTP user: require sender property on SendMessage
3900 UNWIND from FTPEnumerate/retrieve
3987 StringBoundsFault from TimeExtras.PacketTimeFromString
4335 FTPUtilities.TransferBytes
4352 FTPAltoFile.PreProcessFile does a blind ReleaseFile
4444 FTPInventorryDumpFile needs create date
4456 Recompile packages to fix long return record bug

Mesa 6.0 Pup and Ftp Update 3

4499 FTPTransferFile doesn’t pass through the creation date
4544 FTPRetrieve hangs on a timeout on a "no" mark
4763 Troubles if forget to call IdentifyNextRejectedRecipient
5152 TimeExtras.PacketTimeFromString zone screwup
5198 Config with server and user things

Distribution:
Mesa Users
Mesa Group
SDSupport

