| nter-Office Memorandum

To Mesa Users Date October 27, 1980
From John Wick Location Palo Alto
Subject Mesa 6.0 Change Summary Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>Summary60.bravo (and .press)

This memo outlines changes made in Mesa since the last release (Mesa 5.0, April 9, 1979). Thefirst
section lists references which should be consulted for more detailed information. The second
section contains an overview of the changes. The final section describes operational differences
which you must know in order to use Mesa 6.0.

For most programs, you should be able to begin converting to Mesa 6.0 after reading only this
memo; then consult the various updates when details of new features are required. If your
application relies on the extended memory support previously provided by XMesa, you will
probably need to read the System and X Mesa updates before converting.

References

The following documents can be found on <Mesa>Doc>. (InPdlo Alto, the official Mesa release directory
ismaintained on Iris (thereis aso acopy on Ivy); in El Segundo, itison Isis. For other locations, consult your support
group) In addition, thefile Mesa60. pr ess isacompilation of this and other material (about 75
pages); hardcopy is available through your support group.

Mesa 6.0 Change Summary. Sunmmar y60. pr ess
Mesa 6.0 Compiler Update. Conpi | er 60. press
Mesa 6.0 Binder Update. Bi nder 60. press
Mesa 6.0 System Update. Syst en60. pr ess
Mesa 6.0 XMesa Update. XMesa60. pr ess

Mesa 6.0 Debugger Update. Debugger 60. press
Mesa 6.0 UtilitiesUpdate. Utiliti es60. press
Mesa 6.0 Pup and Ftp Update. PupFt p60. pr ess

The above memos describe changes since the last release. The <Mesa>Doc > directory also includes
new versions of the following documents:

Mesa System Documentation. Syst em pr ess

Mesa Debugger Documentation. Debugger . pr ess
Mesa User’s Handbook. Muhb. press

Mesa Pup Package Functional Specification. Pup. pr ess

Copyright ¢ Xerox Corporation 1980

Mesa 6.0 Change Summary

Mesa Ftp Functional Specification. Ft p. pr ess

Integrated Mesa Environment. ConmandCentral . press (inUtiliti es60. press)
Performance Mesaurement Tool. Per f or ranceTool . press

Control Transfer Counting Tool. Xf er Count er . pr ess

Debugger: Extended Features. XDF. pr ess (in Debugger 60. pr ess)

Because the language changes are upward compatible with Mesa 5.0, a new version of the Mesa
Language Manual will not be issued with this release; consult the Compiler Update and the Binder
Update for information on additions to Mesa and C/Mesa.

Highlights
The primary emphasis in this release has been on the following areas:

A number of significant new language features are included: extended defaults, floating point
support, machine dependent records and enumerated types, dynamic storage allocation, sequences,
and exported types. Less major revisions and extensions have been made in the following areas:
syntactic and semantic glitches, keyword array constructors, packed array representation, successor
and predecessor operations, the DIRECTORY statement, implicitly imported interfaces, type TEXT, loop
control variables, extended NiL, the REJECT statement, and the ABORTED signal. The language
changes are compatible with Mesa 5.0, and will not affect existing source code (there are some minor
exceptions; see below). In addition, the Compiler’s user interface and command line syntax have
changed substantially. See the Compiler Update and Appendix A of the Mesa User’ s Handbook for
details.

A Mesa source formatter is available with thisrelease. It establishes a standard representation for
source text, and will produce both plain and formatted . br avo and . pr ess files. Complete
documentation can be found in Appendix B of the Mesa User’ s Handbook.

The Binder has been updated to agree with the Compiler’s treatment of the DIRECTORY statement
and its user interface and command line syntax. In addition, it now supports multiple control
modulesin asingle configuration. See the Binder Update and Appendix C of the Mesa User’s
Handbook for details.

Support for extended memory beyond 64K, formerly provided by XMesa, is now part of the
standard system. The BasicMesa configuration has been abandoned in favor of facilities which
dynamically delete non-essential components of the system. Support for subdirectories, fast
directory scanning, floating point, Pup checksums, and 3K RAMS have been added. (Appendix G of
the Mesa User’ s Handbook details extensions made to RunMesa.) Other than memory allocation
facilities, changes to the System and Pup and Ftp interfaces are minor; see the updates for details.

The Debugger has a new user interface, a new interpreter, and a simple cut and paste editor. The
Debugger’ s command language is essentially unchanged, but several extensions in window
operations and source window facilities have been added. A description of the new FileTool is
attached to the Debugger Update.

Several new commands have been added to the Lister, and the IncludeChecker has been extensively
modified to support large configurations more efficiently. A new package, CommandCentral, is
available for use with the Debugger; it serves as a small executive for controlling the editing,
compilation, binding, and debugging of applications software. This package greatly speeds up the
edit compile bind debug cycle when small changes are involved. Documentation is attached to

the Utilities Update.

Mesa 6.0 Change Summary

A new mode has been added to the Control Transfer Counting Tool which allows modules to be
assigned to groups and information to be collected on cross group as well as cross module transfers.
The performance measurement tools are documented separately as described in the first section of
this memo.

Operational Changes

This section summarizes important operational differences which you must know in order to use
Mesa 6.0; do not begin to convert to Mesa 6.0 until you have read it. More complete information is
contained in the update memos listed in the first section of this document.

General

On large programs, performance of the Mesa 6.0 Compiler and Debugger on 64K Altosis
considerably worse than in Mesa 5.0; an extended memory machine with a minimum of 128K is
recommended.

Alto Operating System version 18 and Executive version 11 or later are required to run Mesa 6.0.

The new file creation date standard is now supported. The compiler inserts the creation date of the
sourcefileintothe. becd (as does the Binder), and the Debugger checks that the source and object
file versions match. The IncludeChecker also makes use of these dates. Therefore, you must use an
editor and a file server that support the file date standard. If you use dump files, be sure you have
the latest version of Ftp.

L anguage

With two exceptions, Mesa 5.0 source files are compatible with Mesa 6.0. In file namesin the
DIRECTORY statement, names inside angle brackets are no longer ignored; they are treated as
subdirectories of the Alto file system (use of this feature is not recommended). The following new
reserved words have been added: FREE, PRED, PROC, REJECT, SEQUENCE, SUCC, UNCOUNTED, and
ZONE.

Compiler

The order of evaluating the items in constructors (including argument lists) and the operands of
infix operators (except AND and OR) has been changed, particularly in cases involving embedded
procedure cals; it is no longer always left to right. In particular, expressions of the form word _
get[s]*256+get[s] are suspect, and probably incorrect.

Except during initialization, constructors for records containing MONITORLOCKS, CONDITIONS, and
PORTS are not allowed (to prevent unintentionally overwriting these fields with their default values).
Such records must be assigned to field by field.

For element sizes of four bits or less, the internal representation of packed arrays has changed.
Thisisapotential problem in reading files containing packed arrays created by earlier versions of
Mesa

The Compiler no longer supports interactive command input; it reads commands only from the
command line, and does not use the keyboard or display (limited feedback is viathe cursor). The
command language has been extended and switch processing has changed. The/ ¢ switch has been
deleted; global switches must now be specified with anull file name, e.g. Conpil e /p Defs I npl.

Mesa 6.0 Change Summary

Switches are restricted to asingle letter. Do not use complete switch names such as/ pause (each
letter will be interpreted as a separate switch). Until you understand the full syntax of the
command language, it is best to group al global switches at the beginning of the command line
following asingle slash.

Thelog isnow written on Conpi | er. | og, not Mesa. t ypescri pt ; separate. err | og filesare
still produced. The error log (if any) is deleted if the compilation is successful; conversely, if the
compilation fails, the . bcd (if any) isdeleted.

The implementation of floating point has changed considerably; the |EEE standard format is now
used, and the compiler generates calls directly to user-supplied microcode (thiswill produce
undefined results if the proper microcode is not loaded). Callsto software floating point asin Mesa
5.0 can be generated with the/ - f switch. Do not use type REAL without first consulting with the
supplier of your floating point package.

Because of bug fixes, previously acceptable programs may no longer compile.

Binder

The Binder isnow available only asa. bcd file; you must have Mesa. i nage torunit. Likethe
Compiler, the Binder takes commands only from the command line and does not use the keyboard
or display; it writesitslog fileon Bi nder . | og.

The meaning of switches used to copy code and symbols has changed substantially; read the Binder
Update if you use these options. Compressed symbols have been compressed still further to include
only procedure and signal names (without parameters or results); this substantially reduces the size
of these. synbol files.

Because of bug fixes, previously acceptable configurations may no longer bind.

System

Mesa 6.0 is compatible with XMesa 5.0 microcode version 39 (but some new features are not
available with the old microcode; e.g., extended memory BITBLT).

Features previously implemented by BasicMesa and XMesa are now a standard part of
Mesa. i mage. Makelmage isno longer a part of the standard system; ImageMaker must be
loaded or bound with the client configuration if it is needed.

The standard system now supports only command line input; the MesaExec can be loaded to
provide interactive input. The command line switch/ b can be used to convert the standard system
toabasicone. The/ k switch will disable the alocation of space for the Debugger’ s bitmap on
extended memory machines (see below).

The default maximum numbers of processes (75) and modules (384) have been increased. A
version of the System called SmallMesa allows 33 processes and 256 modules.

Interface changes are described in the System Update.

Mesa 6.0 Change Summary

Debugger

The Debugger has aso been enhanced to take advantage of extended memory. If you have more
than two banks (128K) of memory, see the installation section of the Debugger Update for an
explanation of the options available; otherwise, the standard defaults will "do the right thing".

The Debugger now requires a strike font named SysFont . st ri ke or MesaFont . stri ke;a
version of GachalO isavailable on <Mesa>MesaFont . stri ke. Additiona fonts are available on
[Maxc] <Al t oFont s>. (Strike fontsthat include kerning are not supported.)

The selection scheme and the assignment of function keys and mouse buttons has changed.
Clicking RED once selects a character, clicking twice selects aword, three times aline, etc.; the
selection can be extended to the left or right with BLUE. The menu button is now YELLOW
(formerly BLUE). FL4 isno longer the stuff key; use FR4 (Spare2) Or Keyset2.

Scrollbars no longer occupy a dedicated part of the window, but instead come up on top of the left
edge. To obtain ascroll bar, move left just past the edge of the window, then move right dlightly,
back into the window.

New source window menu commands have been added, and they have been factored into severa
menus. The Debugger’s wisk window has been replaced by amore general Spl i t menu
command. Therearenow also Nor nal i ze | nsertionandNormalize Sel ecti on commands.

Theinterpreter can now beused wheninDi spl ay St ack and Di spl ay Process subcommand
mode. Several commands now invoke the interpreter automatically (e.g., Oct al Read: @, n:
S| ZE[R]). Theinterpreter does procedure calls (thel nt er pret Cal I command has been
deleted).

The constructs ABS, ERROR, LONG, LOOPHOLE, MAX, MIN, NIL, POINTER TO, PROC, PROCEDURE, SIGNAL,
WORD, and open and half open intervals have been added to the interpreter’ s grammar. Type

expressions following % must be enclosed in parentheses. The interpreter syntax Expression?
replacesthe |l nt er pret Expressi on command.

Each breakpoint is now assigned a unique number used for displaying and clearing it. There are
new commands for attaching conditions to break and tracepoints. Break/Tracepoints can no longer
be set by typing asource line, and the Br eak Mbdul e and Br eak Procedur e commands and
corresponding Tr ace and Cl ear commands have been deleted; the menu commands must be
used. Cl ear Al Entries/ Xits clearshboth break and tracepoints.

Tracepoints now automatically invoke the normal Di spl ay St ack command processor (with
subcommand p(ar anmet ers) ,v(ari abl es),orr (esul t s)asappropriate). Theq(uit)
subcommand (not b(r eak)) exitsto the Debugger’s command level; it no longer continues
execution of the client.

If the source window is loaded with the s(our ce) subcommand of Di spl ay St ack, thewindow
will remember the appropriate context for setting breakpoints. For an exit break, thes(our ce)
subcommand now displays the declaration line of the procedure.

The Debugger no longer ignores case, and the case commands have been deleted; identifiers must be
typed with their correct capitalization.

Mesa 6.0 Change Summary

Distribution:
Mesa Users
Mesa Group
SDSupport

| nter-Office Memorandum

To Mesa Users Date October 27, 1980
From Ed Satterthwaite Location Palo Alto
Subject Mesa 6.0 Compiler Update Organization PARC/CSL

XEROX

Filed on: [Iris]<Mesa>Doc>Compiler60c.bravo, Compiler60d.bravo, and Compiler60.press

This memo describes changes to the Mesa language and compiler that have been made since the
release of Mesa 5.0 (April 9, 1979).

Definitions of syntactic phrase classes used but not defined in this document come from the Mesa
Language Manual, Version 5.0, Appendix F.

Compatibility

Because of changes in symbol table and BCD formats, you must recompile all existing Mesa
programs after obtaining recompiled versions of the interfaces and packages that they depend upon.

L anguage Changes

Our goal for language compatibility has been to accept any valid Mesa 5 source program asavalid
Mesa 6 source program. We are aware of the following incompatibilities:

There are some new reserved words, as follows:
FREE PRED PROC REJECT SEQUENCE SUCC UNCOUNTED ZONE

Some of the quoted file names that appear in DIRECTORY clauses have different
interpretations. Text inside angle bracketsis no longer ignored; it is treated as the name of a
local subdirectory (but we do not recommend using local subdirectories for Mesa programs at
the present time).

The orders of evaluating the itemsin constructors (including argument lists) and the operands
of infix operators (except AND and OR) have changed somewhat. In particular, programs that
assumed a left-to-right order of procedure callsin these contexts (e.g., Divide[Pop[], Pop[]]) are
unlikely to work correctly.

The assignment operation is no longer available for updating objects containing MONITORLOCK
or CONDITION values; updating of such objects must be done component-by-component.

The granularity of packed arrays has changed. If the components of a packed array can be
stored in four or less hits, the storage structures defined by the declaration of that array will
differ between Mesa5 and Mesa 6. Thisisapotentia problem in reading files created by
earlier versions of Mesa. Also, the DESCRIPTOR operator cannot be applied to packed arrays
occupying less than aword.

Copyright ¢ Xerox Corporation 1980

Mesa 6.0 Compiler Update

If you have been using type REAL, check with the supplier of your floating point package to
determine the effect of Mesa 6 changesin that area.

Bug Fixes

A large number of Mesa 5 bugs have been fixed. The most notable of these involve
expansion of inline procedures that are defined in DEFINITIONS modules,
expansion of inline procedures when an argument is itself an expanded inline,
proper retention of the tag of a variant record within an arm of a discriminating selection,
proper identification of object files that have been renamed.

Because of certain bug fixes, the compiler may reject previously acceptable programs or may issue
new warning messages.

Asusual, the list of compiler-related change requests closed by Mesa 6.0 will appear separately as
part of the Software Release Description.

L anguage Rationalization

Mesa 6 attempts to remove certain minor anomalies and to add some obvious generalizations to the
existing language.

Syntactic Glitches Removed

List Punctuation: For most lists that are explicitly bracketed by symbols other than [and], the
allowable forms are described by the following meta-BNF:

list ;= empty | item | item separator list

In other words, the list may be empty or may be a sequence of items separated by, and optionally
terminated by, a separator. This rule now applies to the following constructs:

form separator notes

VariantList ,
CatchSeries ; ANY must come |ast
ChoiceSeries ;
ExitSeries ;
StatementSeries ;
StmtChoiceSeries ;
ChoicelList ,
ExprChoiceList ,

When the bracketing symbols are [and] or when the length of alist is significant, atrailing
separator is not allowed unlessit is semantically meaningful (asin constructors and extractors), but
empty listsare allowed. This change affects the following syntactic entities:

UsingClause: Theform USING [] isnhow permitted (e.g., to emphasize that an interfaceis
only being exported).

VariantFieldList: Inthe declaration of avariant record, theform [] (empty brackets) may
be used instead of NULL (and is recommended).

Mesa 6.0 Compiler Update

FieldList: Theform [] is permitted in the declaration of a ParameterList or
ReturnsClause (it is equivalent to omitting the list or clause).

Directory: Theform DIRECTORY ; may be used in place of an empty directory.

ImportsList (ExportsList): The form IMPORTS (EXPORTS) may be used when the
corresponding list is empty.

The last two items reflect the view that DIRECTORY, IMPORTS and EXPORTS introduce formal parameter lists,
even though their punctuation omits[and].

Declarationsin Loop Bodies. A declaration series can now appear between Do and ENDLOOP (after
the OPEN and ENABLE clauses, if any); no additional bracketing is required. Itsscopeislimited to
the DeclarationSeries and StatementSeries in the loop body.

A Bit Less Verbiage
PROC: PROC isaccepted as a short form of PROCEDURE.

Satement Brackets. The bracket pair { } can be used any place the bracket pair BEGIN END can
be used (but not conversely).

Semantic Glitches Removed

LONG Arithmetic: Compile-time evaluation of expressions with constant operands now works for 32-
bit quantities just as it does for 16-bit quantities.

Dereferencing with OPEN: A pointer expression following oPEN or wiTH will be dereferenced an
arbitrary number of times (not just once) to obtain an expression designating a record.

Renaming with OPEN: An OPEN clause may give an alternative local name to an interface that it
opens (formerly, only to arecord).

Nested Extractors. An Extractlitem may itself be an Extractor. This allows extraction from records
embedded within records. In particular, this form is useful in situations where a single-component record is not

automatically converted to its single component, e.g., extraction from arecord that is the only component of areturn
record.

Extractor Expressions: An assignment with an Extractor asits left side may be used asan
expression. This allows, among other things, multiple extraction. The value of such an assignment
isthe value of itsright side.

Interface Aliases: An interface module may have multiple identifiers (preceding ": DEFINITIONS").
In the DIRECTORY clause of another module, you can reference that interface using any one of the
identifiers. A type obtained from such an interface is equivalent to the same type obtained through
anaming path that uses any other identifier of the interface.

Mesa 6.0 Compiler Update

New L anguage Features

Extended Defaults

Y ou can associate adefault initial value with atype (not just with afield of arecord). If atypeis
constructed from other types using one of Mesa' s type operators (e.g., RECORD), the default value
for that type is determined by the default values of the component types and by rules associated
with each operator. When you declare a named type, you have the option of explicitly specifying a
default for that type.

With this extension, you will find that uses of defaults in Mesa generaly fall into two classes.
Default values for fields of records make the corresponding constructors more concise and more
convenient to use. On the other hand, the usual reason for associating a default initial value with a
type isto ensure that storage allocated for that type is well-formed, i.e., that any variable of such a
type always has ameaningful value. There is some interaction between these uses; the default value
of arecord typeis partly determined by any default values specified for itsfields, and arecord field
may inherit its default value from the type of that field. The details appear below.

Therules for inheritance of defaults are designed to provide the following property (currently not
quite preserved by sequence or variant record types): if atype T has been given anon-NULL default
value, any type derived from T will have adefined and non-NULL default value for any embedded
component of type T. Because of the potential cascading effect implied by this, you should
carefully consider the relative costs and benefits of specifying a default, especially one that does not
include NULL as an alternative.

Defaults are ignored in determining equiva ence and conformance of types. Thusit is possible to
have two compatible types with different default initializations.

Specification of Default Initialization

None of the built-in types (INTEGER, CARDINAL, BOOLEAN, CHARACTER, STRING and REAL) has a
default initial value.

The following rules determine the default initial value of atype designated by an expression
involving atype operator:

The default initial value for atype constructed using RECORD (or ARRAY) is defined field-by-
field (or element-by-element). For each field (dlement), it isthe default value for that field if
thereis one; otherwise, it isthe default initial value for the type of that field (element) or is
undefined if there is no such default.

The default initial value for any port type, constructed using PORT, iS NIL (see below).
Types constructed using other operators have no implied default initialization.
The default initial value of atype designated by a declared type identifier T depends upon the form
of the declaration of T, asfollows:
T: TYPE = TypeExpr;
T receives al the attributes of TypeExpr including any default.
T: TYPE = TypeExpr _ €
T receives al the attributes of TypeExpr except that its default initial valueise.

Mesa 6.0 Compiler Update

Examples
Flag: TYPE = BOOLEAN _ FALSE;
Recl: TYPE = RECORD [f: Flag]; -- default valueis[f: FALSE]
Rec2: TYPE = RECORD [f: Flag] _[1; -- ditto (the field defauilts)
Rec3: TYPE = RECORD [f: Flag] _ [TRUE]; -- explicit default
Rec4: TYPE = Rec3; -- default valueis[f: TRUE]
Rec5: TYPE = Rec3 _[f: FALSE]; -- default valueis[f: FALSE]

Any DefaultSpecification is acceptable in atype declaration (see Mesa Language Manual, Version
5.0, page 37). A declaration giving atype T aNULL default cannot, however, equate T to atype
with a default that does not include NULL. A default appearing in atype definition within a
DEFINITIONS module must be either NULL or an expression with a compile-time constant value.

Default values associated with types are used
toinitialize local variables of procedures and programs, in the absence of explicit initialization,

toinitialize variables that are dynamically allocated using NEw, in the absence of explicit
initialization (see below),

to construct records (except argument and result records), in the absence of an explicit value
for afield in the constructor and of a default value for that field in the record declaration,

to construct arrays, in the absence of an explicit value for an element (see below).

Defaultsin Argument and Result Records

Y ou may specify default values for the fields of argument and result records. Such default values
must be constructed from constants or variables that are declared outside of the procedure type
definition. In particular, you cannot use a value of another field of the same record or, in the case
of aresult record, avaue from the associated argument record to define such a defaullt.

Y ou may omit afield in the constructor of an argument or result record only if the definition of
that record specifies an explicit default value for the field; default initial values associated with the
types of such fields are not inherited (for example, this protects you from assigning avaueto a
return variable and then forgetting to mention it in aRETURN statement, causing the default for its
type to bereturned). On the other hand, protection against ill-formed storage is inherited; you may
not void or elide afield unless the type of that field allows aNULL initialization.

Any defaults that you specify in the declaration of aresult record serve two purposes. Since the
fields of such arecord can be used aslocal variables within the procedure body, a default
specification affects the initialization of those variables; in addition, it allows abbreviation in the
constructors of the corresponding return records. The precise rules are the following:

Upon entry to a procedure, each field of the result record is initialized with the default value
specified for that field, if any; otherwise, with the default initial value for the type of that
field, if thereis one; otherwise, itsinitial value is undefined.

If arRETURN isfollowed by an explicit constructor, the default specifications appearing in the
declaration of the result record control the values of any omitted or elided fields, even if other
assignments have been made to the result variables within the procedure body. If the RETURN
stands by itself, without such a constructor, or if the RETURN isimplicit, the return record is
constructed using the current values of the result variables.

Mesa 6.0 Compiler Update

Examples
T: TYPE = INTEGER _ 1;
Procl: PROC [i: INTEGER _0, j: TI;

Proc2: PROC RETURNS [m: T, n: INTEGER _ 2] ={
-- minitidizedto 1 (from T), nto 2

Procl[j: 3]; -- Procl]i:0, j:3];

Procl[i: 3]; --illega (j doesnot default to 1)

m_4; n_5;

... RETURN; -- returns [4, 5]

... RETURN [m, n]; -- also returns [4, 5]

... RETURN [m]; -- returns [4, 2]

... RETURN [NULL, nJ; -- illegal (declaration of T disallows voiding of m)
... RETURN [, n]; -- ditto (m does not default to 1 or 4)
... RETURN [6, 7]; -- returns [6, 7]

) -- implicitly returns[4, 5]

Defaults and Variant Records

Y ou may specify adefault for the entire variant part in the declaration of avariant record type. In
the absence of such a specification, the default value of that part, including the tag, is undefined
with respect to the undiscriminated record type.

The default initial value of a discriminated variant record type has a tag value corresponding to the
discriminating adjective, and defaults for the other fields of the variant part are those implied by the
fields selected by that tag. In particular, the declaration or allocation of avariable with discriminated record type

sets the tag correctly.

Example

VRec: TYPE = RECORD |
common: INTEGER __ O,
variant: SELECT tag: * FROM
red =>[r1: BOOLEAN _ FALSE],
green =>[gl: INTEGER _ Q]
ENDCASE _ red[TRUE] | NULL];

V: VRec; -- initial value is [common: O, variant: red[r1: TRUE]]

v1: VRec _ [common: 10]; -- initial valueis[common: 10, variant: red[r1: TRUE]]

v2: VRec _[variant: NULL]; -- tag and variant part are undefined, v2.common = 0

v3: VReC _ NULL; -- illegal (declaration of common does not allow NULL)

rv: red VRec; -- initial valueis [common: O, variant: red[r1: FALSE]]

gv: green VRec; -- initial valueis[common: O, variant: green[gl: 0]]
Defaulted Array Elements

Elements in an array constructor may be voided or elided. Omission of elementsis permitted in a
keyword constructor (see below) but not in a positional constructor. The empty constructor ([]) isa
keyword constructor with all items omitted. An elided or omitted element receives the default value
for the type of the components of the array (if any); the value of avoided element is undefined.

ALL abbreviates a positional constructor of the appropriate length; thus ALL[] elides all elements
(defaulting if possible) and ALL[NULL] voids all positions.

Mesa 6.0 Compiler Update

Keyword Array Constructors

Y ou can use keyword array constructors when the index type of the array is an enumeration or
subrange thereof. The acceptable keywords are the constants appearing in the enumeration. In the
case of a subrange, the endpoints must be defined by expressions involving only those constants, the
operators FIRST, LAST, Succ and PRED, and identifiers equated by declaration to such expressions.
If the component type of the array has a defined default value (including NULL), keyword items can
be omitted; the corresponding el ements receive the default value.

Packed Arrays

If you specify the PACKED attribute for an array type, the granularity of packingis 1, 2, 4, 8 or 16n
bits and is determined by the component type of the array (formerly just 8 or 16n bits).

The value of the construct sIze[T, n] isthe size, in words, of the storage required by a packed array
of nitemsof type T. (SIzg[T] continues to yield the number of words occupied by a single item of

typeT.)

Example

Bit: TYPE = BOOLEAN _ FALSE;

BitSet: TYPE = PACKED ARRAY Color OF Bit;

AllBits: BitSet = ALL[TRUE];

threeBits. BitSet _ [yellow: TRUE, red: TRUE, blue: TRUE];

Successor and Predecessor Operations

The operators succ and PRED operate upon values of any ordered type except REAL. For numeric
and character types, succ[x] and PRED[X] are equivalent to x+1 and x 1 respectively. For
enumerated types, the values are the successor and predecessor of x in the enumeration; a bounds
fault occursif there is no such element and you requested bounds checking.

Directories

Y ou can now override the association established by the DIRECTORY clause between the names of
included modules and the names of the files containing those modules. Any file namesimplied by
convention can be omitted entirely; they will be computed from the interface identifiers.

Syntax

IncludeList = Includeltem
| IncludeList , Includeltem

Includeltem = identifier UsingClause
| identifier : FROM FileName UsingClause
| identifier : TYPE UsingClause
| identifier : TYPE identifier UsingClause

UsingClause = empty | USING [IdList] | USING []

The (initial) identifier in an Includeltem names amodule. If you specify the name of the file
containing that module when you invoke the compiler (as a keyword parameter with keyword
identifier, see below), that nameis used, even if a FileName appearsin the Includeltem.
Otherwise, if such a FileName appears, it isused. If you supply neither a compile-time argument
nor aFileName, thenamei denti fi er. bcd isused.

Mesa 6.0 Compiler Update

One approach to describing systems built from collections of Mesa modules views the DIRECTORY
clause as the declaration of (compile-time) formal parameters of type TYPE. Mesa 6 providesthe
final two forms of Includeltem primarily for compatibility with thisview. The identifier preceding
the colon names the formal parameter; it is also used to derive afile name as described above. The
identifier following TYPE constrains the set of acceptable actual parameters; it must match the
ModuleName used in the definition of the module that you intend to include (see the Mesa
Language Manual, Version 5.0, Section 7.2).

Y ou can use the final form to change the name by which one module is known within another,
notably to avoid duplicate namesin aDIRECTORY clause. For example, you might need to reference
two different versions or parameterizations of an interface Defs within a single program. The
Includeltems

LongDefs: TYPE Defs,
ShortDefs: TYPE Defs

declare LongDefs and ShortDefs as identifiers within that program of possibly different modules,
each with the Moduleld Defs. AsIncludeltems, the forms

identifier

identifier: TYPE
each abbreviate

identifer: TYPE identifier

and the name in the DIRECTORY must be identical to the Moduleld if you use one of these forms.

Implicitly Imported I nterfaces

Animplicitly imported interface is one from which imported values are required for binding the

free variables of another, explicitly imported interface. For example, interface D1 might import

interface D2 to gain access to a procedure or exported variable supplied by the latter. D2 isthen
implicitly imported by any program module M that imports D1 (see the Mesa Language Manual,
Version 5.0, Section 7.4.4).

In Mesa 6, the free variables of D2 that are used by D1 are bound to the principal instance of D2 in
M. Animportisaprincipal instanceif it isthe only instance of that interface imported by a
module or if it isunnamed. Furthermore, if M imports no instances of D2, a principal instance will
be created automatically. If module M has no other reason to mention D2, D2 then need not
appear in either the DIRECTORY or the IMPORTS list of M. Explicitly importing a principal instance
of D2 in such asituation is not an error, and you must do so if

you plan to use positional notation to specify the imports of M in a C/Mesa configuration
description, since the positions of automatically created interface instances are not defined, or

you already import more than one instance of D2, each of which is named.

In aC/Mesa configuration, principal instances of interfaces are not supplied automatically; you must import them
explicitly if they cross (sub)configuration boundaries.

Mesa 6.0 Compiler Update

Real Numbers

Mesa 6 has adopted the proposed | EEE standard for floating-point arithmetic (see, e.g., Coonen, An
implementation guide to a proposed standard for floating-point arithmetic, Computer, January 1980,
pp. 68-79). In support of this, the language provides floating-point literals and the compiler
performs alimited number of operations upon floating-point constants.

Syntax
primary = ... | realLiteral
realLiteral = unscaledReal
| unscaledReal scaleFactor
| wholeNumber scaleFactor
unscaledReal = wholeNumber fraction
| fraction
fraction = . wholeNumber
scaleFactor u= E optSign wholeNumber | e optSign wholeNumber
optSign = empty | + |
wholeNumber = digit | wholeNumber digit

An unscaledReal hasits usual interpretation as a decimal number. The scaleFactor, if present,
indicates the power of 10 by which the unscaledReal or wholeNumber isto be multiplied to
obtain the value of theliteral.

Mesa 6 represents REAL numbers by 32 bit approximations as defined in the IEEE standard. The
rounding mode used to convert literalsis "round-to-nearest.” A literal that overflowstheinterna
representation is an error; one that underflows is replaced by its so-called "denormalized”
approximation. In Mesa 6, the value of the unscaledReal in aliteral must be avalid LONG
INTEGER When the decimal point is deleted.

No spaces are allowed within arealLiteral. Note that such aliteral can begin, but not end, with a
decimal point. Thustheinterpretation of [0...1) is unambiguous (but perhaps surprising; use [0 .. .1)
or [0.0..0.1) instead).

Operations

The compiler performs the following operations involving floating-point constants:

Unary negation (with 0=0)
ABS
Fixed-to-Float (in "round-to-nearest” mode).

Other operations are deferred until runtime, even if all their operands are constant, so that the
programmer can control the treatment of rounding and exceptions (see the proposed standard).

Unless you specify the compilation option -f (see below), the compiler generates instructions for floating-point
operations that require hardware or microcode support. 1f you arein doubt about the state of your machine or
its microcode, see alocal floating-point expert.

Mesa 6.0 Compiler Update 10

M achine Dependent Enumer ations

Sometimes a programmer can enumerate the values of some type but requires control of the
encoding of each value or of the number of bits used to represent the type (usualy for future
expansion). Mesa 6 provides machine-dependent enumerations for such applications.

Syntax
EnumerationTC = MachineDependent { ElementList }
MachineDependent n= empty | MACHINE DEPENDENT
ElementList = Element | ElementList, Element
Element = identifier
| identifier (Expression)
| (Expression)
Examples

Satus: TYPE = MACHINE DEPENDENT { off(0), ready(1), busy(2), finished(4), broken(7)}

Color: TYPE = MACHINE DEPENDENT {red, blue, green, (255)} -- reserve 8 bits

Each Expression in an EnumerationTC must denote a compile-time constant, the value of whichis
an unsigned integer.

In an enumerated type with the MACHINE DEPENDENT attribute, the values used to represent the
enumeration constants are assigned according to the following rules. |f aparenthesized expression
follows the element identifier, the value of that expression is used; otherwise, the representation of
an element is one greater than the representation of the preceding element. If you specify only a
representation, the corresponding element (normally a place holder) is anonymous. If the
representation of the initial element is not given, the value zero is used.

Y ou cannot explicitly specify the representation of any element unless the attribute MACHINE
DEPENDENT appears in the type constructor. Two element identifiers cannot be represented by the
same value (either given explicitly or determined implicitly as described above). The ordering of
elements determined by position in the ElementList must agree with the ordering determined by
the (unsigned) arithmetic ordering of the representations.

Joarse Enumerations

A machine-dependent enumerated type is sparse if there are gaps within the set of values used to
represent the constants of that type or if the smallest such valueis not zero. Mesa 6 takes the
following position on gaps: they are filled by valid but anonymous elements of the enumerated
type. These elements can be generated only by the operators FIRST, succ and PRED (or by the
iteration forms that implicitly use these operators).

If you use a sparse enumerated type as the index type of an array, the array itself will have
components for all elements of the enumeration, including the anonymous ones. The latter

are awkward to access (except through ALL) and may cause problemsin constructors,
comparison operations, etc., aswell as wasted space. (For example, ARRAY Color OF INTEGER
would occupy 256 words.)

Mesa 6.0 Compiler Update

Machine Dependent Records

M achine-dependent records are provided for situations in which the exact position of each field is
important. In Mesa 6, you can explicitly specify word- and bit-positionsin the declaration of the
record type. Thisform provides better documentation and usually is easier to use than the
previous, purely positional form. Y ou should useit in preference to the old form, which remains
for compatiblity.

Syntax
VariantFieldList u= CommonPart Fieldld : Access VariantPart
| VariantPart
| NamedFieldList
| UnnamedFieldList
I empty
CommonPart i= NamedFieldList , | empty
NamedFieldList = NamedField | NamedFieldList , NamedField
NamedField = FieldldList :
Access TypeSpecification DefaultOption
FieldldList = Fieldld | FieldldList, Fieldld
Fieldld = identifier | identifier (FieldPosition)
Tag = Fieldld | ...
FieldPosition = Expression : Expression .. Expression
Expression
Examples

InterruptWord: TYPE = MACHINE DEPENDENT RECORD |
channel (0: 8..10): [0..nChannels), -- nChannels<=8
device (0: 0..7): DeviceNumber,
stopCode (0: 11..15): MACHINE DEPENDENT { finishedOK(0), error Sop(1), power Off(3)},
command (1: 0..31): Channel Command];

Node: TYPE = MACHINE DEPENDENT RECORD |

type (0: 0..15): Typelndex,

rator (1: 0..13): OpName,

rands (1: 14..47): seLeCT valence (1: 14..15): * FROM
nonary => [],
unary => [left (1: 16..31): POINTER TO Node],
binary => [left (1: 16..31), right (1: 32..47): POINTER TO Node]
ENDCASE]

Anidentifier with an explicitly specified FieldPosition can occur only in the declaration of afield
of arecord defined to have the MACHINE DEPENDENT attribute. If the position of any field of a
record is specified, the positions of all must be. Each Expression in a FieldPosition must denote a
compile-time constant, the value of which is an unsigned integer.

The first expression appearing in a FieldPosition specifies the (zero-origin) record-relative index of
the word containing the start of the field; the second and third specify the indices (zero-origin) of
the first and last bits of the field with respect to that word. The second and third expressions may
specify abit offset greater than the word size if the word offset is adjusted accordingly. Similarly,
the difference between the second and third expressions may exceed the word size. If the bit

11

Mesa 6.0 Compiler Update

positions are not specified, a specification of 0..n*WordSze-1 is assumed, where n is the minimum
number of words required by the type of the field.

Each field must be at least wide enough to store any value of the corresponding type. Vauesare
stored right-justified within the fields. The current implementation of Mesaimposes the following
additional restrictions on the sizes and aignment of fields:

A field smaller than aword (16 bits) cannot cross aword boundary.

Any field occupying aword or more must begin at bit zero of aword and have asizethat is
amultiple of theword size.

A variant part may begin at any bit position (as determined by its tag field).

If the sizes of all variants of arecord type are less then aword, those sizes must be equal;
otherwise, the size of each variant of the type must be a multiple of the word length.

In the definition of a machine-dependent record type, explicitly specified field positions must not
overlap. For avariant record type, this requirement appliesto the variant part (including the tag)
considered in conjunction with the fields of the common part; the tag and fields particular to each
variant must lie entirely within the variant part.

The order of fieldsin arecord type declaration need not agree with the order of those fieldsin the
representation of the record; however, no gaps are permitted. For variant records, the fields of at
least one variant (including the tag field) must fill the position specified for the variant part.

Dynamic Storage Allocation

In Mesa 6, you can use specia constructs to describe the dynamic allocation and deallocation of
variables. You are still responsible for managing the storage and guarding against dangling
pointers; the new features handle certain routine aspects of allocation and deallocation (such as
computing sizes), provide proper default initialization of newly allocated variables, and reduce the
total number of LOOPHOLES required to deal with an allocator.

Zones

Allocation and deall ocation are done with respect to zones. A zone need not be associated with any
specific storage areg; it isjust an object characterized by procedures for allocation and deallocation
as described below. The storage managed by azonein Mesa 6 is said to be uncounted. In such
zones, object management is the responsibility of the programmer, who must explicitly program the
deallocation.

To use an uncounted zone, you must provide the procedures that manage the zone and implement
the required set of operations. Many users will be able to import a suitable implementation from a
standard package; the details of writing such packages are discussed below.

A zone object hasavalue and atype. You will normally obtain azone value by calling a
procedure exported by some package implementing zones. Typically, such a procedure constructs a
zone (and perhaps an initial storage pool) according to user-supplied parameters.

The type of azone value must belong to a new class of types, called zone types. Mesa 6 provides
two such types, UNCOUNTED zONE and MDSZone. Transactions with objects having these types are
generaly in terms of LONG POINTER and POINTER values respectively (see below).

Mesa 6.0 Compiler Update

Syntactically, UNCOUNTED ZONE is atype constructor. MDSZone is a predeclared identifier; you may think of it asa
synonym for MDSRELATIVE UNCOUNTED ZONE (which you currently cannot write directly).

Y ou may declare variables having zone types (for which fixed initialization is recommended). Zone
types may also be used to construct other types. In particular, you may choose to deal with pointers to zones;
the NEW and FREE constructs described below provide automatic dereferencing.

Allocating Sorage
The operator NEW allocates new storage of a specified type, initializes it appropriately, and returns a

pointer to that storage. The NEW operation is considered an attribute of a zone, which must be
specified explicitly.

Syntax
Primary n=
| Variable . NEw [TypeSpecification Initialization OptCatch]
| (Expression) . NEW [TypeSpecification Initialization OptCatch]
Initialization = empty | _ InitExpr | = InitExpr
OptCatch = empty | ! CatchSeries

The value of the Variable or Expression identifies the zone to be used, either directly or after an
arbitrary number of dereferencing operations. The TypeSpecification determines the type of the
alocated object. If an InitExpr is provided, it must conform to the specified type and its value is
used to initialize the new object; otherwise, the default value associated with that type (if any) is
used. Only signalsraised or propagated by the allocation procedure activate a CatchSeries
attached to NEw.

The value of the Primary is a pointer to the newly allocated object. The type of that pointer
depends upon the type of the zone and the form of the Initialization. If the argument of NEwW is
sometype T, the type of theresult is

LONG POINTER TO T, if the type of the zone is equivalent to UNCOUNTED ZONE

POINTER TO T, if the type of the zone is equivaent to MDSZone.
If you specify fixed (=) initialization, the result is aread-only pointer with type LONG POINTER TO
READONLY T or POINTER TO READONLY T respectively.

The InitExpr cannot be the specia form for string body initialization ([Expression]). You can,
however, allocate string bodies with dynamically computed sizes by using a new form of
TypeSpecification (see below). If you do so, the Initialization must be empty.

Releasing Sorage

Uncounted zones have FREE operations. When applied to an object, this operation releases the
storage allocated for that object.

Syntax

Statement =
| Variable . FREE [Expression OptCatch]
| (Expression) . FREE [Expression OptCatch]

The zone used in a FREE operation is determined as described for NEW; it should be the zone from
which the variable was originally allocated. The argument of FREE is the address of a pointer to the
variable to be deall ocated; FREE sets the pointer to NIL and deall ocates the storage for the variable.

Mesa 6.0 Compiler Update

Only signals raised or propagated by the deallocation procedure activate a CatchSeries on a FREE.
Implementing Uncounted Zones

This section describes the assumptions currently made by the compiler about the user-supplied
implementations of uncounted zones. These assumptions are compatible with the style of "object-
oriented" programming that has proven successful in a number of applications. Y ou need to read
this section only if you are designing the interface between a storage management package and the
zone features of the language.

An uncounted zone dealing with LONG POINTER valuesis represented by atwo word value, which
the compiler assumes to be along pointer compatible with the following skeletal structure:

UncountedZoneRep: TYPE = LONG POINTER TO MACHINE DEPENDENT RECORD |
procs (0:0..31): LONG POINTER TO MACHINE DEPENDENT RECORD |
alloc (0): PROC [zone: UncountedZoneRep, size: CARDINAL] RETURNS [LONG POINTER],
dealloc (1): PROC [zone: UncountedZoneRep, object: LONG POINTER]
-- possibly followed by other fields--],
data (2:0..31): LONG POINTER -- optional, see below
-- possibly followed by other fields--];

If zisan uncounted zone, the code generated for p _ zZNEW[T] isequivalent to
p _ Z*.procst.allocz size[T]]

and the code generated by z.FREE[@p] is equivalent to
{temp: LONG POINTER _p; p _ NIL; Z*.procs™.dealloc[z, temp]} .

Within this framework, you may design a representation of zone objects appropriate for your
storage manager. In general, you should create an instance of afinger (the record with fields procs
and data) for each instance of azone. The record designated by the procs pointer can be shared by
all zones with the same implementation. The data pointer normally designates a particular zone
and/or the state information characterizing that zone. Note that the compiler makes no assumptions
about the designated object and does not generate any code referencing the data field. The extra
level of indirection provided by that field is not obligatory; you may replace it with state
information contained directly in the finger (but following the procs field).

The compiler assumes a similar (but single word) representation for an MDSZone value; the
skeletal structureisasfollows:

MDSZoneRep: TYPE = POINTER TO MACHINE DEPENDENT RECORD [
procs (0:0..15): POINTER TO MACHINE DEPENDENT RECORD [
alloc (0): PROC [zone: MDSZoneRep, size: CARDINAL] RETURNS [POINTER],
dealloc (1): PROC [zone: MDSZoneRep, object: POINTER]
-- possibly followed by other fields--],
data (1:0..15): POINTER -- optional
-- possibly followed by other fields--];

14

Mesa 6.0 Compiler Update 15

Sequences

A sequence in Mesais an indexable collection of objects, all of which have the sametype. In this
respect, a sequence resembles an array; however, you need not specify the length of the sequence
when itstypeis declared, only when an instance of that typeis created. Mesa 6 provides sequence-
containing types for applicationsin which the size of adynamically created array cannot be
computed statically. Note, however, that only a subset of a more genera design for sequences has
been implemented. The contexts in which sequence types may appear are somewhat restricted, as
are the avail able operations on them. We believe that the subset provides enough functionality to
accomodate most uses of sequences, but you will encounter a number of annoying and sometimes
inconvenient restrictions that you must take note of in your Mesa 6 programming.

One can view a sequence type as a union of some number of array types, just as the variant part of
avariant record type can be viewed as a union of some (enumerated) collection of record types.
Mesa adopts this view, particularly with respect to the declaration of sequence-containing types, with
the following consequences:

A sequence type can be used only to declare afield of arecord. At most one such field may
appear within arecord, and it must occur last.

A sequence-containing object has atag field that specifies the length of that particular object
and thus the set of valid indices for its elements.

To access the elements of a sequence, you use ordinary indexing operations; no discrimination is
requi red. Inthissense, al sequences are overlaid, but simple bounds checking is sufficient to validate each access.

Uses of sequence-containing variables must follow a more restrictive discipline than is currently
enforced for variant records. The (maximum) length of a sequence is fixed when the object
containing that sequence is created, and it cannot subsequently be changed. In addition, Mesa 6
imposes the following restrictions on the uses of sequences:

Y ou cannot embed a sequence-containing record within another data structure. Y ou must
allocate such records dynamically and reference them through pointers. (The NEw operation
has been extended to make allocation convenient.)

Y ou cannot derive a new type from a sequence-containing type by fixing the (maximum)
length; i.e., there is no analog of adiscriminated variant record type.

There are no constructors for sequence-valued components of records, nor are such
components initialized automatically.

The following sections describe sequences in more detail.
Defining Sequence Types

Y ou may use sequence types only to declare fields of records. A record may have at most one such
field, and that field must be declared as the final component of the record:
Syntax

VariantPart = ...
PackingOption SEQUENCE SeqTag OF TypeSpecification

Mesa 6.0 Compiler Update 16

SeqTag = identifier : Access BoundsType
COMPUTED BoundsType

BoundsType = IndexType

TypeSpecification ::=

| Typeldentifier [Expression]

The TypeSpecification in VariantPart establishes the type of the sequence elements. The
BoundsType appearing in the SeqTag determines the type of the indices used to select from those
elements. It isasothetype of atag value that is associated with each particular sequence object to
encode the length of that object. For any such object, al valid indices are smaller than the value of
thetag. If Tisthe BoundsType, the sequencetypeis effectively aunion of array types with the
index types

T[FIRST[T] .. FIRST[T]), T[FIRST[T] .. SUCC[FIRST[T]]), ... T[FIRST[T] .. LAST[T])

and a sequence with tag value v has index type T[FIRST[T]..v). Note that the smallest interval in this
union isempty.

If you use thefirst form of SeqTag, the value of thetag is stored with the sequence and is
available for subscript checking. In the form using cOMPUTED, no such valueis stored, and no
bounds checking is possible.

Examples:

StackRep: TYPE = RECORD [
top: INTEGER _ 1,
item: SEQUENCE size: [0..LAST[INTEGER]] OF T]

Number: TYPE = RECORD [
sign: {plus, minus},
magnitude: SELECT kind: * FROM
short => [val: [0..1000)],
long => [val: LONG CARDINAL],
extended => [val: SEQUENCE length: CARDINAL OF CARDINAL]
ENDCASE]

WordSeq: TYPE = RECORD [SEQUENCE COMPUTED CARDINAL OF Word]
The fina exampleillustrates the recommended method for imposing an indexable structure on raw storage.

If Sisatype containing a sequence field, and n is an expression with atype conforming to
CARDINAL, both Sand 9n] are TypeSpecifications. They denote different types, however, and the
valid uses of those types are different, as described below.

MACHINE DEPENDENT Sequences

Y ou may declare afield with a sequence type within a MACHINE DEPENDENT record. Such afield
must come last, both in the declaration and in the layout of the record, and the total length of a
record with a zero-component sequence part must be a multiple of the word length. If you
explicitly specify bit positions, the size of the sequence field also must describe a zero-length
sequence; i.e., it must account for just the space occupied by the tag field (if any).

Mesa 6.0 Compiler Update

Examples:

Node: TYPE = MACHINE DEPENDENT RECORD [
info (0: 0..7): CHARACTER,
sons (0: 8..15): SEQUENCE nSons (0: 8..15): [0..256) OF POINTER TO Node]

CharSeq: TYPE = MACHINE DEPENDENT RECORD |
length (0): CARDINAL,
char (1): PACKED SEQUENCE COMPUTED CARDINAL OF CHARACTER]

Allocating Sequences

If Sdesignates arecord type with afinal component that is a sequence, §n] is atype specification
describing arecord with a sequence part containing exactly n elements. The expression n must have
atype conforming to CARDINAL. Itsvalue need not be a compile-time constant; however, you can
use specifications of this form only to allocate sequence-containing objects (as arguments of NEW) or
to inquire about the size of such objects (as arguments of sizg). In particular, you cannot use gn]

to define or construct a new type or to declare avariable.

The value of the expression size[§n]] has type CARDINAL and is the number of words required to
store an object of type Shaving h componentsin its sequence part.

The value of the expression zNEw[Sn]] has type POINTER TO S(Or LONG POINTER TO S, depending
upon the type of the zone Z). The effect of its evaluation is to allocate Size[§n]] words of storage
from the zone z and to initialize that storage as follows:

Any fieldsin the common part of the record receive their default values.
The sequence tag field receives the value SUCCT[FIRST[T]], where T is the type of that field.

The elements of the sequence part have undefined values.

To supply initial values for the fields in the common part, you may use a constructor for type Sin
the call of NEw. There are currently no constructors for sequence parts, however, and you must
void the corresponding field. Inany case, you must explicitly program any required initialization of
the elements of the sequence part. In Mesa 6, thisistrue even if the element type has non-NULL
default value.

Examples:
ps: POINTER TO StackRep _ zNEw[StackRep[100]]; --stop=1
pn: POINTER TO Node _ z.NEw[Node[degree[c]] _ [info: ¢, sons: NULL]]

pxn: POINTER TO extended Number _ zNEw[extended Number[2*K]]

Note that n specifies the maximum number of elementsin the sequence part and must conform to
CARDINAL no matter what BoundsType T, appearsin the SeqTag. The value assigned to the tag

fieldis SUCCn[FIRST[Ti]]. A bounds fault occursif thisis not avalid value of type T, i.e,, if n>
cardinality(T;), and you have requested bounds checking.

If FIRST[T;] =0, SUCCn[FIRST[Ti]] isjust n, i.e,, theinterpretation of the tag is most intuitiveif T; is
azero-origin subrange. Usually you will specify aBoundsType (e.g., CARDINAL) with arange that
comfortably exceeds the maximum expected sequence length. If, however, some maximum length
N isimportant to you, you should consider using [0..N] as the BoundsType; then the value of the
tag field in a sequence of length n (n < N) isjust n and the valid indices are in the interval [0..n).

17

Mesa 6.0 Compiler Update 18

Operations on Sequences

Y ou can use a sequence-containing type Sonly as the argument of the type constructor POINTER TO.
Note that the type of ZNEW[FN]] iSPOINTER TO S(not POINTER TO gn]). If the type of an object
is S the operations defined upon that object are

ordinary access to fieldsin the common part
readonly accessto the tag field (if not COMPUTED)
indexing of the sequencefield

constructing a descriptor for the components of the sequence field (if not COMPUTED).

There are no other operations upon either type Sor the sequence type embedded within S, In
particular, you cannot assign or compare sequences or sequence-containing records (except by
explicitly programming operations on the components).

Indexing: Y ou may use indexing to select elements of the sequence-containing field of arecord by
using ordinary subscript notation, e.g., s.seq[i]. Thetype of the indexing expression i must conform
to the BoundsType appearing in the declaration of the sequence field and must be less than the
value of the tag, as described above. The result designates a variable with the type of the sequence
elements. A bounds fault occursif theindex is out of range, the sequenceis not COMPUTED, and
you have requested bounds checking.

By convention, the indexing operation upon sequences extends to records containing sequence-
valued fields. Thusyou need not supply the field name in the indexing operation. Note too that
both indexing and field selection provide automatic dereferencing.

Examples:

pst.item[pstop] psitem[pstop] pspstop] -- al equivalent
Descriptors: You may apply the DESCRIPTOR operator to the sequence field of arecord; theresult is
adescriptor for the elements of that field. The resulting value has a descriptor type with index and
component types and PACKED attribute equal to the corresponding attributes of the sequence type.

By extension, DESCRIPTOR may be applied to a sequence-containing record to obtain a descriptor for
the sequence part. The DESCRIPTOR operator does not automatically dereference its argument.

Y ou cannot use the single-argument form of the DESCRIPTOR operator if the sequence is COMPUTED.
The multiple-argument form remains available for constructing such descriptor values explicitly (and
without type checking).

In any new programming, you should consider the following style recommendation: use sequence-containing types for
allocation of arrays with dynamically computed size; use array descriptor types only for parameter passing.

Examples:

DESCRIPTOR[pn] DESCRIPTOR[pn.sons] -- equivalent
String Bodiesand TEXT
The type SringBody provided by previous versions of Mesaillustrates the intended properties and

uses of sequences. For compatibility reasons, it has not been redefined as a sequence; the
declarations of the types STRING and StringBody remain as follows:

Mesa 6.0 Compiler Update

STRING: TYPE = POINTER TO SringBody;

StringBody: TYPE = MACHINE DEPENDENT RECORD [
length (0): CARDINAL _0,
maxlength (1): --READONLY-- CARDINAL,
text (2): PACKED ARRAY [0..0) OF CHARACTER]

The operations upon sequence-containing types have, however, been extended to SringBody so that
its operational behavior issimilar. In these extensions, the common part of the record consists of
the field length, maxlength serves as the tag, and text is the collection of indexable components
(packed characters). Thus zNEW[SringBody[n]] creates a SringBody with maxiength = n and
returns a STRING; if sisaSTRING, g[i] is an indexing operation upon the text of s, DESCRIPTOR[SY]
creates a DESCRIPTOR FOR PACKED ARRAY OF CHARACTER, €fC.

There are two anomalies arising from the actual declaration of StringBody: s.text[i] never uses bounds checking,
and DESCRIPTOR([s.text] produces a descriptor for an array of length 0. Use §[i] and DESCRIPTOR([s"] instead.

Type TEXT

The type TEXT, which describes a structure similar to a SringBody as a true sequence, is predeclared
in Mesa 6. Its components length and maxLength are declared to have atype compatible with
either signed or unsigned numbers (but with only half the range of INTEGER or CARDINAL).

TEXT: TYPE = MACHINE DEPENDENT RECORD [
length (0): [0..LAST[INTEGER]] _ O,
text (1): PACKED SEQUENCE maxLength (1): [0..LAST[INTEGER]] OF CHARACTER]

Exported Types

An exported type is atype designated by an identifier that is declared in an interface and
subsequently bound to some concrete type supplied by a module exporting that interface. Thisis
analogous to the current treatment of procedures in interfaces, where the implementations of
procedures (i.e., the procedure bodies) do not appear in the interface but are defined separately.
The advantages are twofold:

Theinternal structure of the type is guaranteed to be invisible to clients of the interface.

There are no compilation dependencies between the definition of the concrete type and the
interface module. The definition of that type can be changed and/or recompiled at any time
(perhaps subject to a size constraint; see below) without requiring recompilation of either the
interface or any client of the interface.

The uses of an exported type are the same as those of any other type, e.g, to construct other types.
The value provided by the interface is constant but has no accessible internal structure. In Mesa 6,
there are two other important differences between exported procedures and exported types.

Thefirst isarestriction necessary to ensure type safety across module boundaries. Different
exporters of an interface can supply different implementations of any particular procedure in that
interface. In Mesa 6, thisis not true for exported types; all exporters of aparticular type within a
configuration must supply the same concrete type, which is called the standard implementation of
that exported type. Because of this restriction, clients can safely interassign values with exported
type T, no matter how obtained. In addition, any exporter of T may convert avalue of type T to a
value of the concrete type it uses to represent T and conversely.

The second differenceisthat it is not necessary to import an interface to access an exported type
defined within it or to distinguish among values of such atype coming from different imported

19

Mesa 6.0 Compiler Update 20

instances. Thisis another consequence of the fact that, in Mesa 6, all interfaces must reference the
standard implementation of the exported type.

Interface Modules

An exported type is declared in an interface (DEFINITIONS) module using one of the following two
forms:

T: TYPE;
T: TYPE [Expression];

Thefirst of these introduces atype T, no properties of which are known in the interface or to any
client of the interface. In particular, the size of T is not known; thisis adequate (and desirable) if
theinterface and clients deal only with values of type POINTER TO T.

The second form specifies the size of the values used in the representation of the type. The value
of Expression, which must denote a compile-time constant with an unsigned integer value, gives
this sizein units of machine words. Supplying the size of an exported type is a shorthand for
exporting a set of fundamental operations (creation, _, =, and #) upon that type. In Mesa 6, the
eventual concrete type must supply the standard implementations of these operations, which are
defined asfollows:

creation allocate the specified number of words, with no initialization
copy an uninterpreted bit string
= # compare uninterpreted bit strings

Note that a type with non-NULL default value does not have the standard creation operation. Such types cannot be
exported with known size. Y ou should therefore consider writing your interfaces in terms of POINTER TO T, where T
is acompletely opaque exported type and not subject to these restrictions.

Client Modules

A client has no knowledge of the type T beyond those properties specified in the interface. If the
sizeis not specified there, no operations on T are permitted. If the sizeis available from the
interface, size[T] islegal; aso declaration of variables (including record fields and array
components) and the operations _, =, # are defined for type T.

I mplementation Modules

An implementor exports atype T to some interface Defs by declaring the type with the required
identifier, the PuBLIC attribute, and avalue that is the concrete type; e.g., in

T: PUBLICTYPE = S

Sspecifiesthe concrete type. If the size of T appearsin the interface, the definition of Tin the
exporter must specify atype with that size and with the standard fundamental operations (the
compiler checksthis).

Within an exporter, Defs.T and T conform freely and are assignment compatible. Otherwise, Defs.T
is treated opaquely there and is not equivalent to T (except for the purpose of checking exports).

Y ou should therefore attempt to write an exporting module entirely in terms of concrete types.
Consider the following example:

Mesa 6.0 Compiler Update

Interface Module (Defs):

T: TYPE;

H: TYPE = POINTERTO T;

R: TYPE = RECORD [f: H, ...];
Procl: proC [h: HI;

Proc2: PROC [r: POINTER TO R];

Exporting Module:

T: PUBLIC TYPE = RECORD [V: ...];

P: TYPE = POINTERTO T;

Procl: puBLIC PROC [h: P] ={... h.v...};

Proc2: PUBLIC PROC [r: POINTER TO Defs.R] = {
g P=rf
I AV

If the type of h were Defs.H in the implementation of Procl, the reference to h.v would beillegal.
By defining atype such as P and using it within the exporter instead of H, you can avoid most such
problems. (Notethat Procl is still exported with the proper type.) This strategy of creating
concrete types in one-to-one correspondence to interface typesinvolving T fails for record types
such as R (because of the uniqueness rule for record constructors). In this example, you must use
Defs.R to define the type of r in the implementation of Proc2, but areferencetor.f.visillega. In
such cases, a LOOPHOLE-free implementation may require redundant assignments, such as the one to
g. Alternatively, you should consider making the record type another exported type, and defining
its concrete type within the exporter a so.

Binding

For each interface containing some exported type T, al exporters of that interface must provide
equivalent concrete types for T (the binder and loader check this). In Mesa 6, the concrete types
must in fact be identical; if two modules export T, they must obtain the same concrete definition of
T, e.g., from another shared interface module (typically, a private one).

Control Variables

Y ou can now declare the control variable of aloop as part of the FOR clause attached to that loop.
Such an identifier cannot be accessed outside the loop and cannot be updated except by the FOR
clausein which it is declared.

Syntax
Iteration n= FOR identifier Direction IN LoopRange
| FOR identifier : TypeExpression Direction IN LoopRange
Assignation n= FOR identifier _ Expression , Expression

| FOR identifier : TypeExpression _ Expression , Expression

The forms of Iteration and Assignation with ": TypeExpression" declare a new control variable.
That variable cannot be explicitly updated (except by the FOR clauseitself). Itsscopeisthe entire
LoopStmt introduced by the Iteration or Assignation including any LoopExitsClause. Note,

however, that the value of a control variable used in an Iteration is undefined in the FinishedEXxit.

21

Mesa 6.0 Compiler Update

Extended NIL

In Mesa 6, null values are available for all address-containing types. An address-containing typeis
one constructed using POINTER, DESCRIPTOR, PROCEDURE, PROGRAM, SIGNAL, ERROR, PROCESS,
PORT, ZONE Or aLONG or subrange form of one of the preceding. The built-in type STRING is
address-containing. A relative pointer or relative descriptor type is not considered to be address-containing in Mesa
6.
Null values are denoted as follows:
If T designates any address-containing type, NIL[T] denotes the corresponding null value.
Whenever T isimplied by context, NIL abbreviates NIL[T].
If Tisnot implied by context, NIL means NIL[POINTER TO UNSPECIFIED] and thus continues to
match any POINTER Or LONG POINTER type.

A fault will occur if you attempt to dereference anull value and have requested NiL checking; a
fault will occur unconditionally if you attempt to transfer control through a null value.

Reject Statement

Within a catch phrase, you can use the statement REJECT to explicitly reject asignd, i.e., to
terminate execution of that catch phrase and propagate the signal to the enclosing one. (Note that
each catch phraseis currently terminated by an implicit REJECT.)

Process Extensions

Aborting a process now raises the predeclared signal ABORTED. The predeclared types
MONITORLOCK and CONDITION are now defined with default initialization. The only client-visible
field istimeout in CONDITION; its default initial value is 100 ticks.

Restrictions on Assignment

The assignment operations defined upon certain types have been restricted so that variables of those
types can beinitialized (either explicitly or by default) when they are created but cannot
subsequently be updated. A variableis considered to be created at its point of declaration or, for
dynamically allocated objects, by the corresponding NEW operation.
In Mesa 6, the following types have restricted assignment operations:

MONITORLOCK

CONDITION

any type constructed using PORT

any type constructed using SEQUENCE

any type constructed using ARRAY in which the component type has a restricted assignment
operation.

any type constructed using RECORD in which one of the field types has a restricted assignment
operation.

Note that the restrictions upon assignment for a type do not impose restrictions upon assignment to
component types. Thus selective updating of fields of a variable may be possible even when the

22

Mesa 6.0 Compiler Update 23

entire variable cannot be updated; e.g., the timeout field of a CONDITION variable can be updated by
ordinary assignment. Also, you may apply the operator @ to obtain the address of the entire
variable in such a situation.

Operational Changes

User Interface

The standard Mesa 6 Compiler reads commands only from the executive's command lineg; it no
longer supports interactive input. During compilation, the display and keyboard are disabled. The
cursor provides alimited amount of feedback; it moves down the screen to indicate progress
through a sequence of commands and to the right as errors are detected. At the end of
compilation, the message "Type Key" is displayed in aflashing cursor if there are errors and you
have requested the compiler to pause. Typing Shi ft - Swat aborts the Executive's current
command sequence; Ct r | - Swat invokes the Mesa Debugger; any other character causes normal
exit from the compiler.

A summary of compilation commands is written on the file Conpi | er . | og (formerly,
Mesa. typescri pt).

Command Line Arguments

The Mesa 6 Compiler allows you to control the association between modules and file names at the
time you invoke the compiler. The compiler accepts a series of commands, each of which hasthe
form

outputFile _ inputFile[id;: file, ..., id: file]/swtches
Only i nput Fi | e ismandatory; it names the file containing the source text of the module to be
compiled, and its default extension is. nmesa. Any warning or error messages are written on the
fileout put Root . err | og, where out put Root isthe string obtained by deleting any extension
fromout put Fi | e, if given, otherwise fromi nput Fi | e. If there are no errors or warnings, any
existing error log with the same name is deleted at the end of the compilation.

If alist of keyword arguments appears between brackets, each item establishes a correspondence
between the namei d; of an included module, asit appearsin the DIRECTORY of the source
program, and afilewith namef i | e;; the default extension for such file namesis. bcd. (If the
name of an included module is not mentioned on the command line, its file name is computed
from information in the DIRECTORY statement; see above).

Theoptional swi t ches are asequence of zero or more letters. Each letter isinterpreted asa
separate switch designator, and each may optionally be preceded by - or ~ to invert the sense of
the switch.

If out put Fi | e (and _) are omitted, the object code and symbol tables are written on the file

i nput Root . bcd, wherei nput Root isi nput Fi | e with any extension deleted. Otherwise code
and symbols are written on out put Fi | e, for which adefault extension of . bcd issupplied. [If

the compiler detects any errors, the output file is not written and any existing file with the same
nameis deleted.

The compiler accepts a sequence of one or more commands from the executive’ s command line
(through the file Com cm). Commands are separated by semicolons, but you may omit a semicolon

Mesa 6.0 Compiler Update 24

between any two successive identifiers (file names or switches), or between a] and an identifier (but
not between an identifier and a/). Note that any required semicolon in an Alto Executive
command must be quoted.

Y ou can set global switches by acommand with an empty file name. Intheform/ swi t ches,
each letter designates a different switch. Unless acommand to change the global switch settings
comes first in the sequence of commands, you must separate it from the preceding command by an
explicit semicolon. Note that the form switch/c is no longer available for setting global switches.

Switches

The following compilation options have been added:
Switch Option Controlled
f implementation of floating-point operations
I treatment of long pointers
y warning on runtime calls

If thef switch isset, the compiler generates byte code instructions for floating-point operations
(these require microcode support); otherwise, it generates calls through the system dispatch vector
(SD) to software routines implementing such operations. If thea and | switches are both set, the
compiler generates code using an variant of the Alto Mesa instruction set that implements long
pointer accesses to a virtual memory larger than 64K (code generated using the | switch cannot be
executed on an Alto, even if long pointers are not used). If you specify - a, thel switchisignored.
They switch indicates that a warning message should be issued whenever the compiler generates
code to invoke a runtime procedure (including some "instructions" which are actually implemented
in software).

The default settings for these switchesaref ,-1 and - y.

Distribution:
Mesa Users
Mesa Group
SD Support

| nter-Office Memorandum

To Mesa Users Date October 27, 1980
From Brian Lewis, Ed Satterthwaite Location Palo Alto
Subject Mesa 6.0 Binder Update Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>Binder60.bravo (and .press)

This memo describes changes to the C/Mesa language and the Binder that have been made since
the release of Mesa 5.0 (April 9, 1979).

Definitions of syntactic phrase classes used but not defined in this document come from the Mesa
Language Manual, Version 5.0, Section 7.7.

Compatibility
Because of changesin BcD formats, you must rebind all your existing Mesa configurations after
obtaining recompiled versions of their components. There is one potential incompatibility:

Some of the quoted file names that appear in DIRECTORY clauses have different
interpretations. Text inside angle bracketsis no longer ignored; it is treated as the name of a
local subdirectory (but we do not recommend using local subdirectories for Mesa programs at
the present time).

A number of bugs have been fixed. Asusual, thelist of Binder-related change requests closed by
Mesa 6.0 will appear separately as part of the Software Rel ease Description. The most notable
involve

correctly checking the types of interfaces when positional notation is used,
proper treatment of named imports or exports of a configuration,
proper identification of object files that have been renamed.
Because of bug fixes, the Binder may reject previously acceptable configuration descriptions or may

issue new warning messages. A number of error or warning messages now use symbolic names
whenever the corresponding symbol tables are available.

Copyright ¢ Xerox Corporation 1980

Mesa 6.0 Binder Update

New L anguage Features

Bracket Symbols

The bracket pair { } can be used in place of BEGIN END.
Syntax

CBody BEGIN CStatementSeries END

{ CStatementSeries }

Multiple Control Modules

Y ou can now specify an ordered list of control modules for any configuration.
Syntax

ControlClause

CONTROL IdList
empty

IdList i= identifier | IdList, identifier

When a (sub)configuration is started, either explicitly or as the result of a start trap (see the Mesa
Language Manual, Version 5.0, Section 7.8.4), each of the modules named in the ControlClause is
started in order.

Note that, if there are calls from a control module to one of its successorsin thelist, the order of
starting will not necessarily follow the order of the ControlClause. In starting a configuration, any
control modules that have already been started are skipped.

Operational Changes

The Binder isnow available only asa. bcd file; you must have Mesa. i mage torunit. When
compressing symbols, SymbolCompressor.bcd must be loaded first; see the description of the /x switch below.

User Interface

The Binder now reads commands only from the Alto Executive’'s command line; it no longer
supports interactive input. At the start of the first binding, the message "Bind" is displayed in the
cursor. If there are any warnings, "Warning" is displayed, and if there are errors "Errors" is shown.
At the end of binding, the message "Type Key" is displayed in aflashing cursor if there are errors
and you have requested the Binder to pause. Typing Shi ft - Swat aborts the executive’s current
command sequence; Ct r | - Swat invokes the Mesa Debugger; any other character causes normal
exit from the Binder.

A summary of binder commands iswritten on thefile Bi nder . | og (formerly
Mesa. typescri pt).

Mesa 6.0 Binder Update

Commands

The Mesa 6.0 Binder alows you to control the names and contents of various output files when you
invoke it; it accepts a series of commands, each of which usually has one of the following forms:

i nput Fi | e/ switches
outputFile _ inputFile/swtches

[key,: file;, ... key :file] _ inputFile/swtches

(It isaso possible to control the association between included modules and configurations and their
file names; thisis described below.) Inthelast form, key isone of bcd, code, or synbol s.

Thestringi nput Fi | e names the file containing the source text of the configuration description,
and its default extension is. confi g.

Thereisaprincipal output file, the name of which is determined as follows:

If you use the first command form, itisi nput Root . bcd, wherei nput Root isthe string
obtained by deleting any extension fromi nput Fi | e.

If you use the second form, itisout put Fi | e, with default extension . bcd.

If you use the third form and key, isbcd, itisf i | e;, with default extension . bed;
otherwise, it is obtained as described for the first form.

If the Binder detects any errors, the principal output file is not written, and any existing file with
the same name is deleted.

Y ou may also request that the code and/or symbols of the constituent modules be copied to an
output file, asfollows:

Y ou request copying of code by specifying the/ ¢ switch or by using the third command form
with keyword code. Codeis copied to the principal output file unless you use the third form
and key; iscode, in which case the code is copied to afile named f i | e;, with default
extension . code.

Y ou request copying of symbols by specifying the/ s or / x switch or by using the third
command form with keyword synbol s. Symbols are copied to the file

i nput Root . synbol s unlessyou use the third form and key, issynbol s, in which case
they are copied to afilenamed f i | e, with default extension . synbol s. Compressed
symbols are copied if the/ x switch is specified.

Any warning or error messages are written on the file out put Root . err | og, where out put Root
isthe string obtained by deleting any extension from the name of the principal output file. If there
are no errors or warnings, any existing error log with the same name is deleted at the end of the

bind.

When more than one Binder command is given on the command line, the commands must be
separated by semicolons. However, you may omit a semicolon between any two successive
identifiers (file names or switches), or between a] and an identifier (but not between an identifier
and a/). Notethat any required semicolon in an Alto Executive command must be quoted.

Mesa 6.0 Binder Update

Switches

The optional swi t ches are a sequence of zero or more letters. Each letter isinterpreted asa
separate switch designator, and each may optionally be preceded by - or ~ to invert the sense of
the switch.

The Binder recognizes the switches:

/¢ - copy code

/'s - copy symbols

/ x - copy compressed symbols

/ p - pause dafter binding if there are errors or warnings

/r -runthespecified . i mage or. run file

/g - (hasno effect; retained for compatibility with Mesa 5)

The Mesa 5 Binder switch / o (output file) is no longer available.
In earlier versions of the Binder, copying symbolswas an error if not al of the symbol fileswere
available at bind time. The Binder now copies all symbolsthat it can find, leaves the symbol table

references for the other modulesin the origina (unavailable) files, and issues awarning.

The switches/ ¢ and/ s areinterpreted differently in Mesa 6 than they werein Mesa 5. The
following table outlines these changes.

Mesa 6 Mesa 5 meaning
filelc filelc codeto file.bcd
filelcs filelc filels codetofilebcd,

symbolsto file.symbols
[symbols: file.bcd] _ file/lc filelcs code and symbolsto file.bcd

Notethat f i | e/ cs has quite adifferent meaning in Mesa 6 than before. Also, the common Mesa
5 command sequencefil e/ c file/swillbindfil etwicein Mesa6, thefirst time copying only
code and the second time only symboals.

Compressed symbols are copied with the / x switch. In this mode, only the following symbols are
included: all procedures, and the signals declared at the top level of modules. Symbols for their
parameters and results are not copied. This option allows limited but often adegquate debugging,
and substantially reduces the size of the symbolsfile (typically by more than 50%). To copy
compressed symbols, Symbol Conpr essor . bcd must be loaded ahead of the Binder. Thus

>Mesa. i nage Synbol Conpressor. bcd Bi nder. bcd MySyst ent x
will create MySyst em bcd and MySyst em synbol s (compressed).

Globa switches are set by a command with an empty file name. Intheform/ swi t ches, each
letter designates a different switch. The switchesto copy code (/ ¢), to copy symbols (/ s), and to
compress symbols (/ X) may now be given as global switches, and hence apply to al source files
thereafter. Unless a command to change the global switch settings comes first in the sequence of
commands, it must be separated from the preceding command by an explicit semicolon.

Mesa 6.0 Binder Update

Associating File Nameswith Modules and Configurations

The Binder now lets you control the association between file names and modules or
subconfigurations when you call it. Thisis done by specifying alist of component identifier-file
name pairs inside brackets after the input file name. For example, the command

MySyst enf Test: UnpackedTest]
will bind MySyst em conf i g using the previously bound configuration Test that is stored on the

file UnpackedTest . bcd. A command that includes one of these optional component-file name
listswill have one of the forms:

inputFile[id;: file, ... id;: file]/switches
outputFile _ inputFile[id;: file, ... id;: file]/switches
[key,;: file;, ... key file] _inputFile[id;: file,

id: file]]/swtches
The module or configuration named by i d; in the configuration description will be read from the

filefil e . bcd isthe default extension.

Distribution:
Mesa Users
Mesa Group
SD Support

| nter-Office Memorandum

To Mesa Users Date October 27, 1980
From John Wick Location Palo Alto
Subject Mesa 6.0 System Update Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>System60.bravo (and .press)

This memo outlines changes made in the Mesa system interfaces since the last release (Mesa 5.0,
April 9, 1979). A number of internal changes made in the system and the microcode are also
discussed.

This memo isintended as a quick guide to conversion, not a detailed specification of the changes.
Names in square brackets refer to sections of the Mesa System Documentation or to other publicly
available reference documents (e.g., the Alto Operating System Reference Manual).

External Interfaces

Major changes include integrated support for Alto extended memory and elimination of BasicMesa.
The System also now exports versions of the following Development Software interfaces: Ascili,
Format, Inline, Process, Runtime, Storage, String, System, and Time. (Note that
implementation of these interfaces may not be complete.) Other changes are relatively minor.

AllocDefs

Private types and operations have been removed. Allocinfo, MakeDataSegment, and
MakeSwappedIn are now defined in SegmentDefs, and temporarily duplicated here for
compatibility. [Segment Package]

AltoDefs
MaxVMPage has been increased to support up to a million words of memory; MaxMDSPage
and PagesPerMDS have been added. [Segment Package]

AltoDisplay

MaxBitsPerLine has been changed to 608 (it was 606). Cursor, CursorBits, and
CursorHandle define the location and format of the cursor. Coordinate, CursorXY, and
MouseXY define the location and format of the cursor and mouse coordinates. [Display Package]

AltoFileDefs

Support for the DiskShape and PartitionName properties of the directory’s leader page has
been added. The definition of afile serial number (SN) has been changed to isolate the flag bits
(directory, random, and nolog) into a separate structure (SNBits). [Alto Operating System
Reference Manual]

Copyright ¢ Xerox Corporation 1980

Mesa 6.0 System Update

AltoHardware

This new interface defines most structures of the Alto hardware, including the processor, display,
keyboard, mouse, keyset, printer interface, disk, and Ethernet. [Alto Hardware Manual]

AsCii

This new interface defines the Ascii control character codes; for compatibility, these continue to be
defined in IODefs. [Streaml O Package]

BasicMesa

Thefacilities of BasicMesa have been replaced by procedures in the standard system and a
command line switch (/ b) which can be used to destroy the display and keyboard packages (see
DisplayDefs and StreamDefs). Makelmage isno longer a standard part of Mesa. i nage,
and must be loaded separately. [Section 3]

BitBltDefs

The extended memory option now supports use of the normal and alternate bank registers, whose
values are supplied in the unused word of the BBTable (this option is not supported under XMesa
5.0 microcode (version 39)). AlignhedBBTable (and BBTableSpace) can be used to properly
align BITBLT argument records. [Alto Hardware Manual]

CharlO

This new interface provides many of the functions of IODefs, but each operation takes a
StreamDefs.StreamHandle asitsfirst parameter, allowing formatted input and output to any
standard stream. [Stream| O Package]

DirectoryDefs

This interface has been changed slightly to speed up directory searches (by about a factor of 3). In
addition, support for subdirectories was added (see Alto Operating System Reference Manual). The
following items have changed (note that aNIL DiskHandle does not imply the system directory):

EnumerateEntries: PROCEDURE [
dir: DiskHandle,
proc: PROCEDURE [CARDINAL, StreamScan.Handle, DEptr] RETURNS [BOOLEAN],
inspectFree: POINTER TO READONLY BOOLEAN,
lengthFilter: CARDINAL _ 0] RETURNS [index: CARDINAL];

The procedure proc is called for each directory entry; free entries are passed only if
inspectFree” isTRUE. If thelengthFilter isnon-zero, only entries with afilename length equal
tolengthFilter characters will be passed to proc.

The following procedure inserts an entry into the directory; unlike Lookup, it does not create a
file. If thefileaready exists, TRUE isreturned (and fp” is undisturbed).

Insert: PROCEDURE [
dir: DiskHandle, fp: POINTER TO AltoFileDefs.FP, name: STRING]
RETURNS [old: BOOLEAN];

ParseFileName replaces ExpandFileName; it strips the leading directory information from
name, putstheresult in filename (appending a period if necessary), and returns a stream (with
access dirAccess) open on the directory in which the file should be looked up.

ParseFileName: PROCEDURE [
name, filename: STRING, dirAccess: SegmentDefs.AccessOptions]
RETURNS [StreamDefs.DiskHandle];

Mesa 6.0 System Update

The following procedures set and return the directory used for looking up files which do not specify
adirectory name (initialy setto" <SysDir.").

SetWorkingDir: PROCEDURE [dir: SegmentDefs.FileHandle];

GetWorkingDir: PROCEDURE RETURNS [dir: SegmentDefs.FileHandle];
Finally, the signal BadDirectory no longer takes a string parameter. [Dir ectory Package, Alto
Operating System Reference Manual]
DisplayDefs
DestroyDisplay can be used to delete the display package; it turns off the display, deallocates the
bitmap, destroys the font, and UNNEws all the display modules. [Display Package]
DoubleDefs
Thisinterface is no longer implemented or supported, since LONG data types are now a standard
part of the language and runtime support.
FrameDefs
Validate(Global)Frame and Invalid(Global)Frame now take (return) UNSPECIFIED. The
procedure

LoadConfig: PROCEDURE [name: STRING] RETURNS [PROGRAM];
loads a configuration without starting it and returns its control module or control module list (or NIL

if there isno control modul€e). Note that thiswill not handle configurations whose control modules
take parameters. [M odules)

FSPDefs

Theerror ZoneTooLarge isnow raised by Make(New)Zone and AddTo(New)Zone when an
attempt is made to make a zone of more than 32K words. [Storage M anagement]
ImageDefs

Makelmage takes an optional second parameter (merge: BOOLEAN _ TRUE);
MakeUnMergedImage has been temporarily retained for compatibility. The ImageMaker
package is no longer a part of the standard system; it must be loaded or bound with the client
configuration. [Image Files]

InlineDefs

The LongCOPY operation for use with long pointersis now implemented by the extended
memory microcode. Thetypes BytePair and BcplLongNumber have been added; the
procedures MesaToBcplLongNumber and BcplToMesaLongNumber implement conversion
between Mesa and BcpL long numbers. [Miscellaneous]

|ODefs

The procedure WriteSub String has been added. [Stream| O Package]

MiscDefs
The ByteBIt procedure has been added. [Miscellaneous]

Mesa 6.0 System Update

MiscOps

ReleaseDebuggerBitmap can be used to free the storage normally allocated (on extended
memory machines) for the Debugger’ s bitmap. [Section 3]

OsSaticDefs

The type of ClockSecond has been changed to use InlineDefs.BcplLongNumber. [Alto
Operating System Reference Manual]

ProcessDefs

Aborted has been redefined to be equal to the predeclared error ABORTED. A Pause procedure
has been added which delays execution of its caller by the specified number of ticks. Detach and
GetCurrent now take (return) a PROCESS instead of an UNSPECIFIED. [Processes and Monitor s

SegmentDefs

The majority of changesin SegmentDefs are due to the incorporation of XMesa and extended
memory support into the standard system. Clients of XMesa should see the XMesa update
document.

The definition of SegmentObjects has changed to allow for atwelve bit page number. The
read bitin FileSegmentObjects has been deleted (read access is always assumed) and
MaxSegLocks has been reduced to fifteen (MaxSegLocks and MaxFileLocks replace
MaxLocks).

A type field has been added to DataSegmentObjects with predefined values UnknownDS,
FrameDS, TableDS, HeapDS, SystemDS, BitmapDS, StreamBufferDS, and
PupBufferDS. Thesetypesareinterpreted by the Debugger’s Cor enap command.

For clients of low level memory alocation, the definition of Allocinfo has changed and the
constants HardUp, HardDown, EasyUp, and EasyDown have been defined. The procedures
MakeDataSegment and MakeSwappedIn have been moved here from AllocDefs.

The access options ReadWrite, WriteAppend and ReadWriteAppend have been added.
NewFile and InsertFile now default the access and version parameters.

The following two procedures have been added to provide accessto file times:

GetFileTimes: PROCEDURE [file: FileHandle]
RETURNS [read, write, create: TimeDefs.PackedTime];

SetFileTimes: PROCEDURE [
file: FileHandle,
read, write, create: TimeDefs.PackedTime _ TimeDefs.DefaultTime];

GetFileTimes does not modify any of thefile'stimes. In SetFileTimes, if any of thetimesare
defaulted, the current timeis used. [Segment Package]

SreamDefs

DestroyKeyHandler can be used to delete the standard keyboard handler; it destroys the
keyboard process and UNNEWS all the keyboard modules. [K eyboard]

The type StreamPosition, defined asaL.ONG CARDINAL, can be used in place of a
StreamIndex. The operations GetPosition, SetPosition, and ModifyPosition are similar to
the corresponding index operations; IndexToPosition and PositionTolndex perform
conversions between positions and indicies. The access options ReadWrite, WriteAppend, and
ReadWriteAppend have been added, as has the signal FileNameError. [Disk Streams]

Mesa 6.0 System Update

StreamScan

This new interface allows overlapped disk input when reading from a stream. It isatrangliteration
of the same code from the Alto Operating System (version 17). The following are defined in
StreamScan.mesa:

Descriptor: TYPE = RECORD |[
da: AltoFileDefs.vDA,
pageNumber: CARDINAL,
numChars: CARDINAL,

-- private fields];

Handle: TYPE = POINTER TO READONLY Descriptor;

Init: PROCEDURE [
stream: StreamDefs.StreamHandle, bufTable: POINTER, nBufs: CARDINAL]
RETURNS [Handle];

GetBuffer: PuBLIC PROCEDURE [ssd: Handle] RETURNS [POINTER];
Finish: PROCEDURE [ssd: Handle];

Init sets up a scan stream from a disk stream. |n addition to the stream, the client supplies a vector
of pointersto 256 word areas useable as disk buffers (bufTable). The number of buffers supplied
isnBufs. At least one buffer must be supplied (the normal stream buffer is also used). Each call
to GetBuffer will return a pointer to the next sequential page of the file and returns the previous
buffer page to the buffer pool (first call returns data page O; file page 1). The public fields of the
Handle are correct for the page returned by the most recent call to GetBuffer. GetBuffer
returns NIL when there are no more pagesto beread. A call to Finish terminatesthe scan. No
other stream operations should be performed between Init and Finish. [Disk Streams Package]

SringDefs

CompareStrings lexically compares two strings and returns -1, 0, or 1 if the first is less than,
equal to, or greater than the second; an optional parameter may be supplied to ignore case
differences. All proceduresin thisinterface now handle NIL string parameters. [String Package]

SystemDefs

CopyString allocates storage from the system heap and copiesits argument into it, optionally
making the new string longer. ExpandString performes a similar function, allocating a new string
(and freeing the old one) if necessary. Even and Quad can be used to align pointers on double
and quad word boundaries. [Storage M anagement]

TimeDefs

The type HardwareTime has been replaced by InlineDefs.BcplLongNumber. Default values
have been added to UnpackDT, PackDT, and AppendDayTime. ReadClock returnsthe
current value of the Alto’s realtime clock (part of which can be found at |ocation
RealTimeClock). [Time Package]

TrapDefs

StackError no longer takes a parameter; UnboundProcedure now takes an UNSPECIFIED. The
following signals have been added (not all of which can be generated by Alto/Mesa):
ZeroDivisor, DivideCheck, Unimplementedinst, WakeupError, PageFault, Write-
ProtectFault, and HardwareError. [Traps)|

Mesa 6.0 System Update

XMesa Extended Memory Support

Functions formerly provided by XMesa are now integrated with the standard system. A 3K RAM or
Mesa microcode in ROM1 is required to support the extended memory option. [Segment Package]

Internal I nterfaces

The following changes are internal to the implementation and do not affect public interfaces; they
may affect performance and/or space requirements, however. Note that Mesa 6.0 continues to
support version 39 of the XMesa microcode available with Mesa 5.0; obviously, certain new features
listed below are not available if your RoM contains the old microcode (e.g., Long BitBIt).

3K RAM Support

Mesa now supports the Alto 3K RAM option (available only on extended memory machines).

Debugger Bitmap

If the extended memory option is present, the system allocates part of the client’s memory for use
by the debugger for its display bitmap; thisimproves the debugger’ s response times considerably.
The debugger bitmap may be deallocated by the procedure MiscOps.ReleaseDebuggerBitmap
or the command line switch / k (in the former case, the call must be made before the debugger is
first entered).

Long Copy, Long BitBIt

These opcodes now include support for extended memory.

Misc Opcodes

Misc opcodes (except for RCLK) now provide ageneral escape to user microcode in the RAM if
Mesais running on a 2K rRom or 3K RAM machine; they produce undefined results otherwise.
Alphabytes for the currently implemented misc functions are defined in MiscAlpha.

Overflow Microcode

RunM esa has been upgraded to include microcode support for Pup checksums, |EEE floating point,
and HBIt (used by Griffin). This microcode isloaded with the XMesa overflow microcode on Altos
with the 2K rRom (with version 41 microcode) or 3K RAM option. Users who have been loading
microcode for these functions need no longer do so. This change affects Alto l1sonly.

Range Checking

The bounds check instruction (BNDCK) is now implemented correctly.

Distribution:
Mesa Users
Mesa Group
SDSupport

| nter-Office Memorandum

To Mesa Users Date October 27, 1980
From Jim Sandman, John Wick Location Palo Alto
Subject Mesa 6.0 XMesa Update Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>XMesa60.bravo (and .press)

This memo describes the changes in Mesa 6.0 runtime support which incorporate the facilities of
XMesa 5.0 into the standard system.

Overview of Extended Memory Support

Mesa now uses the extended memory of Alto || XMs as additional swapping space for code. This
means that code and data need not co-exist in the MDS, the primary 64K of memory. Mesatakes
advantage of any available extra space automatically; standard Alto programs do not need to be
modified to run. Support is provided for up to one million words of memory in blocks of 64K
words.

Because Mesa uses extended memory for code segments, it includes a page-level storage allocator
for the additional banks. Client programs may request storage in the additional banks by using
extensions of the standard proceduresin SegmentDefs. Mesa provides primitive mechanisms to
read and write words in extended memory and to copy blocks of data between banks of memory,
but gives no other assistance in accessing information in the extended memory. In particular,
arbitrary use of LONG POINTERS is not supported on the Alto.

Public Interfaces

Unless otherwise stated, all of the facilitiesin this section are defined in SegmentDefs.

Configuration Information

The Mesa runtime system has an internal data structure that contains information about the
hardware configuration of the machine on which it isrunning. Clients may obtain a copy of this
data structure by calling GetMemoryConfig and should normally test for the existence of
extended memory by examining the useXM field. The extant banks of memory are indicated by
MemoryConfig.banks, which isabit mask (e.g., MemoryConfig.banks=140000B implies
that banks zero and one exist). Note that this bit mask has been expanded to allow for up to
sixteen banks; constants used to test against it must be changed.

Copyright ¢ Xerox Corporation 1979, 1980

Mesa 6.0 XM esa Update

BankIndex: Type = [0..17B];
ControlStoreType: TYPE = {Ram0, RamandRom, Ram3k, unknown};
MachineType: TYPE = {unknownO, Altol, Altoll, AltolIXM, .. .};

MemoryConfig: TYPE = MACHINE DEPENDENT RECORD [
reserved: [0..37B],

AltoType: MachineType,

xmMicroCode: BOOLEAN,

useXM: BOOLEAN,

mdsBank: Bankindex,

controlStore: ControlStoreType,

banks: [0..177777B],

mesaMicrocodeVersion: [0..177777B]];

memConfig: PUBILC READONLY MemoryConfig;

GetMemoryConfig: PROCEDURE RETURNS [MemoryConfig] = INLINE
BEGIN RETURN[memConfig] END;

The field memConfig.useXM istrueif and only if the following conditions hold:

1) themachineisan Alto Il with XM modifications (AltoType = AltolIXM),

2) the Alto has more than one memory bank installed (banks ~= 100000B),

3) theAltohasa3K RAM, or it has a second ROM containing an appropriate version of
the XMesa microcode.

The microcode version field tells only the microcode version, not the Mesa release number. (For
example, for Mesa 6.0, mesaMicrocodeVersion is41; Mesa5.0 version 39 microcodeis aso
supported, although not all features are available.)

Extended Memory Management
The facilities described in this section can be used regardless of the state of useXM.

Segments in extended memory are created with the usual primitivesin SegmentDefs. However,
additional "default" parameter values for those procedures that expect a VM base page humber
have been provided. DefaultMDSBase requests allocation anywhere in the MDS.
DefaultXMBase requests all ocation anywhere in the extended memory banks but not in the
MDS. DefaultBase0, DefaultBasel, DefaultBase2 and DefaultBase3 request alocation
in particular banks. DefaultANYBase requests alocation anywhere in the extended memory
banks or the MDS. DefaultBase isequivalent to DefaultANYBase if the segment is a code
segment, otherwise, it is equivalent to DefaultMDSBase.

The following procedures convert between segment handles and long pointers, and work for
segments anywhere in the 20-bit address space.

LongVMtoSegment: PROCEDURE [a: LONG POINTER] RETURNS [SegmentHandle];

Mesa 6.0 XM esa Update

LongSegmentAddress: PROCEDURE [seg: SegmentHandle] RETURNS [LONG POINTER];

LongVMtoDataSegment: PROCEDURE [a: LONG POINTER] RETURNS
[DataSegmentHandle];

LongDataSegmentAddress: PROCEDURE [seg: DataSegmentHandle]
RETURNS [LONG POINTER];

LongVMtoFileSegment: PROCEDURE [a: LONG POINTER] RETURNS
[FileSegmentHandle];

LongFileSegmentAddress: PROCEDURE [seg: FileSegmentHandle]
RETURNS [LONG POINTER];

The following definitions have been added to AltoDefs; they define parameters of the extended
memory system.

MaxVMPage: CARDINAL = 7777B,;
MaxMDSPage: CARDINAL = 377B;
PagesPerMDS: CARDINAL = MaxMDSPage+1,;

The following procedures convert between page numbers and long pointers, and are anal ogous to
AddressFromPage and PageFromAddress.

LongAddressFromPage: PROCEDURE [page: AltoDefs.PageNumber]
RETURNS [Ip: LONG POINTER];

PageFromLongAddress: PROCEDURE [Ip: LONG POINTER]
RETURNS [page: AltoDefs.PageNumber];

The following procedures check the validity of long pointers and page numbers and raise the
indicated errors.

ValidateVMPage: PROCEDURE [page: UNSPECIFIED];

InvalidVMPage: ERROR [page: UNSPECIFIED];

ValidateLongPointer: PROCEDURE [@: LONG UNSPECIFIED];
InvalidLongPointer: ERROR [Ip: LONG UNSPECIFIED];
Thesignal ImmovableSegmentinXM israised when Makelmage (or CheckPoint) discoversa

segment in the extended memory banks that cannot be swapped out. (See the section on
restrictions, below, for more information about image files).

Long Pointer Support
The facilities described in this section should be used only when useXM (see above) is TRUE.

XCOPY isno longer implemented; clients should use InlineDefs.LongCOPY. It may only be
called when memConfig.xmMicrocode is TRUE.

Mesa 6.0 XM esa Update

LongCOPY: PROCEDURE [from: LONG POINTER, Nwords: CARDINAL, t0: LONG POINTER];

LongCOPY makes no attempt to validate the long pointers; if they exceed 20 bits or reference
non-existent memory, LongCOPY will produce unpredictable results.

XBitBIt is no longer implemented; the following extension is not supported by XMesa 5.0 ROMs.
The normal AltollXM sourcealt and destalt fields of the BitBIt record (BitBltDefs.BBTable)
should be used (do not use the long pointer options). In addition, if the unused word in the
BBTable is nonzero, the microcode sets the emulator bank register to that value for the duration
of the BitBlIt. In effect, BitBIt can only be used to move data within a single bank or between the
MDS (bank zero) and some other bank.

Restrictions, Limitations, and " Features"

Images and Checkpoints. Makelmage cannot preserve the contents of extended memory in the
image fileit constructs. If Makelmage isinvoked when useXM is TRUE, it will swap out all
unlocked file segments in extended memory. (It will also move any locked code segments to the
MDS.) If any segments then remain in extended memory, Makelmage will refuse to build the
image file. Analogous comments apply to CheckPoint.

Bank Registers. Mesaassumesit has exclusive control of the emulator bank register on AltolIXMs.
Client programs must not attempt to alter the bank register, but rather must use the public
interfaces for moving data to and from extended memory (see LongCOPY and BitBlt, above).

Segment Alignment. Segments may not cross bank boundaries. The first page of each non-MDS
bank is reserved for interna alocation tables.

Swapper Algorithms. The swapper loads a segment into extended memory by first swapping it into
primary memory, then copying it to extended memory and releasing the MDS memory space.
Thus, if the MDS is so full that the requested segment cannot be swapped in, InsufficientVM will
be raised, even though sufficient space for the segment may exist in other banks. (Analogous
comments apply when swapping out segments that must be written to disk.)

Distribution:
Mesa Users
Mesa Group
SDSupport

| nter-Office Memorandum

To Mesa Users Date October 27, 1980
From Bruce Maasky, John Wick Location Palo Alto
Subject Mesa 6.0 Debugger Update Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>Debugger60.bravo (and .press)

This memo outlines changes made in the Mesa Debugger since the last release (Mesa 5.0, April 9,
1979); it isintended as a concise guide to conversion, not a detailed specification of the changes.
Complete documentation on the Mesa 6.0 Debugger can be found in the Mesa Debugger
Documentation.

User Interface

The Debugger’ s user interface incorporates changes made in Tgjo (the Tools Environment); the
window package Wisk has been converted to use Vista, the new window package. For more
compl ete documentation on the Tajo design, see the Tajo User’s Guide and the Tajo Functional
Soecification.

Typein
The assignment of some function keys and mouse buttons has changed. The menu button is now

YELLOW (formerly BLUE). FL4 isno longer the stuff key; use FR4 (Spare2), Keyset2, or ~S. The
following function keys are implemented (see the section on editing for an explanation of the

functions):

Function ADL Keyboard Microswitch Keyboard Keyset Control Key
Cut DEL DEL Keyset5 ~C
Past e LF LF Keysetl AF
Next FL3 (none) Keyset3 AN
Repl ace FL4 (none) Keyset4 "R
Swat FR1 Spare3 (none) (none)
St uf f FR4 Spare2 Keyset2 rS
Back Word BW Sparel (none) AW
Repl ace/ Next FR5 (none) (none) K

Typein isdirected to the Debugger if the cursor is not in any window. Source windows will accept
input until afileisloaded; they then direct typein to the Debugger (unlessthey are editable; see
below).

Copyright ¢ Xerox Corporation 1980

Mesa 6.0 Debugger Update

Slections

The selection scheme has changed. Clicking RED once selects a character, clicking twice selects a
word, threetimes aline, etc. The selection can be extended to the left or right with BLUE; a
character selection is extended by characters, aword selection by words, and so on. The current
selection is now video reversed.

Scrollbars

Scrollbars no longer occupy a dedicated part of the window, but instead come up on top of the left
edge. They are twice as wide as before, and you can "see through" them. To obtain a scroll bar,
move |eft just past the edge of the window, then move right slightly, back into the window.

Name Stripe

The name stripe and tiny windows now video reverse when the cursor is in the sections that
function as accelerators for the window manager menu commands (Move, Gr ow, Si ze, Top,
Bot t om and Zoom).

Menus

Except for the change from BLUE to YELLOW, the way menus are invoked has not changed.
However, some new menus and commands have been added.

Sandard Menus

In additionto Move, Gr ow, Si ze, Top, Bot t om and Zoom the standard window manager menu
now also includes the following command:

Deacti vate

This command deactivates the selected window; it will no longer appear on the screen and
the resources used by it will be freed. The window’s nameis added to a menu of
deactivated windows, which is available outside all windows. The window may be made
active again by selecting its menu item.

A new Text Ops menu is now supplied with the Debug. | og and source windows in addition to the
Window Manager menu. It containsFi nd, Posi tion,Split,Normalize |nsertion,
Nor nal i ze Sel ecti on, and W ap; the following commands are new:

Split

The Debugger’ s wisk window has been replaced by the more general Spl i t window
command. Feedback issimilar to that in Laurel: the split line can be picked up using RED
and moved vertically. The subwindow is destroyed by moving the split line off the top or
bottom of the (sub)window.

Normal i ze I nsertion

For windows containing an insert point (Debug. | og and editable source windows), this
command will position the text in the (sub)window so that the line containing the insert
point is at the top.

Mesa 6.0 Debugger Update

Nor mal i ze Sel ecti on

This command positions the text in the (sub)window so that the line containing the left
most position of the current selection is at the top.

Debugger Menu

A separate Debugger menu no longer exists; the Al t er Bi t map function has been deleted, Move
Boundar y has been superseded by Spl i t (seeabove), and St uf f |t isnow available only on the
keyboard.

Source Menus

In addition to the standard menus, the source window has two additional menus, Source Ops and

File Ops. The Source Ops menu contains the following commands, which are unchanged: Cr eat e,
Dest r oy, Set Br eak, Set Tr ace, and Cl ear Br eak; the last three commands are available only
if afile has been loaded into the window. The Source Ops menu contains the following new
command:

Attach

Causes the Debugger to ignore the creation date of the current source file when setting
breakpoints or positioning to a source line. This command is essentially a LOOPHOLE;
because the source-object correspondence may not be correct, it should be used with caution.
If, after using At t ach, the Debugger sets breakpoints in strange places, chances are that

the source file does not match the version of the object in the system you are debugging.

The File Ops menu includes the following new commands (plus Load, which functions as before):

Edi t

Enables editing of the currently loaded read only file (see below). Empty windows are
always editable, but because they have no backing store (until they are Saved or St or ed
on afile), the amount of information in the window should be kept small.

Save

Outputs the contents of the window to its current file; overwriting the file requires
confirmation. A backup "$" fileis created that is a copy of the unedited version. After the
Save command completes, access revertsto read only.

Store

Outputs the contents of the window to the file named by the current selection; if the file
already exists, overwriting it requires confirmation. After the St or e command compl etes,
access revertsto read only.

Reset
Discards al edits that have been made to the window (during this session) and resets access
toread only. If thefileisnot editable, the window is made empty.

The Edi t command is available only if afile has been associated with the window (by a previous
Load, St or e, or Save); St or e and Save apply only if the window has been edited.

Mesa 6.0 Debugger Update

Editing

The standard source window facilities now provide asimple cut and paste editor. Editingis
modeless and is accomplished by moving the insert point and typing the desired text. (Note that
unlike Bravo, the insert point isindependent of the location of the current selection.) Backspace
and backword functions (Bs and Bw) are always available. The following functions are provided:

ARED Moves the insert point (represented by a blinking caret) to the cursor
position.

DEL (Keyset5) ~"C Cut deletes the current selection and puts the deleted text in the
TrashBin (seeLF).

LF (Keysetl) ~F Paste inserts the TrashBin at the insert point (see DEL).

FL4 (Keyset4) "R Replace does a cut and moves the insert point to the place where the
text was deleted.

FR4 (Spare2) S Stuff inserts the current selection at the insert point.

Themessage Pl ease term nate editing of <filename> appearsintheDebug. | og if youtry
toKi | I orQuit from the Debugger while editing afile.

Caution: The editing facilities are designed not to alter the origina file until it is Saved or

St or ed, much like Bravo; the original contents are copied to afile with "$" appended to its name.
Thisis however, a new facility and should be used with caution. It isdesigned to support a
moderate number of localized changes to programs, not to replace your favorite document creation
system.

Debugger Commands

Changes in Debugger commands are relatively minor. The Debugger’ sinterpreter is more generally
available and more consistent with the language. Tracepoints have been re-implemented as a minor
extension of the standard breakpoint facilities.

Old Commands

Asci i/ Cctal Read

TheAscii andCct al Read commands no longer automatically increment the default value
produced by ESsc.

Br eak/ Trace Points

Break and trace points can no longer be set by typing a source line, and the Br eak Modul e and
Break Procedur e commandsand corresponding Tr ace and C ear commands have been
deleted; the menu commands must be used.

The distinction between trace and breakpoints has been removed. An optional command string can

now be attached to each breakpoint which will be executed when the breakpoint istaken. A

tracepoint then becomes a breakpoint with a standard default command string. LI st Br eaks lists
both break and tracepoints (Li st Tr aces hasbeendeleted). Cl ear Al Entries/Xits clears
both break and tracepoints.

Mesa 6.0 Debugger Update

Tracepoints automatically invoke the normal Di spl ay St ack command processor (with
subcommand p(ar anet ers), v(ariables), orr(esults) asappropriate). Theq(uit)
subcommand (not b(r eak)) exitsto the Debugger’s command level, where the normal Pr oceed
command continues execution of the client.

The method of specifying conditional break and tracepoints has changed; see the ATt ach
Condi ti on command in the next section.

When an exit break is set, the Debugger breaks on any return of the procedure by setting the actual
breakpoint on acommon return instruction. The Debugger has no way of telling which return was
taken if there is more than one. When asked to display the source line when at an exit break, the
Debugger now shows the declaration line of the procedure instead of the last return statement.
Case On/ O f

The Debugger no longer ignores case, and the case commands have been deleted; identifiers must be
typed with their correct capitalization.

Control DEL

Typing ~DEL will now abort the display of long arrays and strings, as well as most searches. This
key combination no longer has to be held down to be recognized.

COr emap

This command now prints more information about some data segments; the (system-assigned) types
currently recognized are heap, system, frame, table, bitmap, stream buffer, and Pup buffer.
Unrecognized types (assigned by the user) are displayed asdat a(t) ; an unknown typeis displayed
asdata(?).

Di spl ay Process [process|

The subcommand space (SP) can how be used to invoke the interpreter.

Di spl ay Stack

The new subcommand "g" displays the global variables of the module containing the current
procedure. A space (SP) invokesthe interpreter. If the source window is loaded with the
s(our ce) subcommand, the window will remember the appropriate context for setting
breakpoints.

Interpret Call

Thel nterpret Call command has been deleted; the Debugger’ sinterpreter should be used.
There are no longer any restrictions on when the interpreter may be called.

ReSet Context [confirni

This command now requires two keystrokes, to avoid conflict with the ReMot e debuggee
command (not yet implemented on the Alto).

STart [address] [Confirni

This command now requires confirmation.

Mesa 6.0 Debugger Update

New Commands

AScii Display [address, count]

Interprets addr ess as POINTER TO PACKED ARRAY OF CHARACTER and displays count characters (each
character separately, not as a string).

ATt ach Condi tion [number, condition]

This command replaces old style conditional breaks; it changes a normal breakpoint into a
conditional one. Arguments are a breakpoint number and a condition, which is evaluated in the
context of the breakpoint. The breakpoint number is displayed when the break/tracepoint is set,
and may also be obtained usingthe LI st Br eaks command.

ATt ach Keystrokes [number, command]

Arbitrary command strings can now be attached to break and tracepoints; they are executed by the
Debugger when the breakpoint is taken. Arguments are a breakpoint number and a command
string terminated with acr. A CR can be embedded in the command string by quoting it with ~v.
ATt ach Loadst at e [filename]

Like ATt ach | mage, except that the initial rather than the current loadstate of the image fileis
used; this command is for wizards only.

Break All Entries/Xits [module

Thisnew command isthesameasTrace Al l Entries/ Xits, except that breakpoints are set.

CLear Break [number]

This command clears breakpoints by number. Typing CR in place of a number will clear the
current breakpoint, i.e., the one that transferred control into the Debugger.

CLear Condition [number]

This command changes a conditional breakpoint into anormal one. Typing CR in place of a
number behavesasin CLear Break.

CLear Keystrokes [number]

This command clears any command string associated with the breakpoint. Typing CR in place of a
number behavesasin CLear Br eak.

LQOgi n [user, password]

This command sets the default user name and password for the debugging session. The new user
name and password are not written into the client’ s core image or onto the disk.

ReMot e Debugee [host]

This command is not implemented on the Alto.

Trace Stack

This command is used when the Debugger breaks and enters the debugger nub ("/ / " mode); it
dumps the Debugger’s call stack in octal to thelog. Change requests reporting Debugger problems
that result in an uncaught signal or other problem should be accompanied by aDebug. | og which
includes the output of this command.

Mesa 6.0 Debugger Update

Interpreter

Theinterpreter provides support for all of the new language features introduced in Mesa 6. Al
commands requiring numeric input now invoke the interpreter automaticaly (e.g., Cct al Read:
@, n: SIZE[r]).

Grammar

A summary of the revised grammar is attached. The constructs ABS, ERROR, LONG, LOOPHOLE, MAX,
MIN, NIL, POINTER TO, PROC, PROCEDURE, SIGNAL, WORD, and open and half open intervals have been
added to the interpreter’ s grammar; type REAL has been added for output only. Type expressions
following % must be enclosed in parentheses. The interpreter syntax Expression? has replaced

thel nt er pret Expressi on command; it prints the value of the expression in several formats
including octal and decimal.

Target Typing

Theinterpreter now does a much better job of target typing. Asaresult, arguments to procedure
calls and right hand sides of assignments are type checked. In addition, assignments to enumerated
types now work correctly.

Theinterpreter also does a better job of determining signed/unsigned representation. For example,
any octal number is assumed to be unsigned.

Symbol Lookup

Even if amodule has compressed symbols, the debugger will first look for thefile

nodul enane. bcd to seeif it isthe original compiler output for that module (by checking the
version stamp). If so, it will use those symbols. Thus, thereisno needto At t ach Synbol s if the
proper fileison the disk. It makes sense to use compressed symbols for large systems and to also
have present the complete symbol files for the specific modules undergoing detailed debugging.

Output Conventions

In display stack mode, variables declared in nested blocks are now shown indented according to
their nesting level.

A "?" inavariable display now uniformly meansthat thevalueisout of range; *. . . "indicates
that there are additiona fields present which cannot be displayed due to lack of symbol table
information.

When the debugger refers to a program module, it usualy gives the address of its global frame, e.g.,
"G nnnnnB". If the module has not been started, the debugger now printsa"~" after the B. If a
modul e has not been started, the user should not modify the global variables of that module, nor
should they be displayed, as they are uninitialized.

New Error M essages

Thewarning Eval stack not enpty! will beprinted if the debugger is entered via either an
interrupt or a breakpoint with variables still on the evaluation stack; this indicates that the current
value of some variables may not be in main memory, where the interpreter normally looks.
Exceptionsto this are at entry and exit breaks; the debugger has enough information to decode the

Mesa 6.0 Debugger Update 8

argument records that are on the stack in this case (if the appropriate symbol tables are available).

Before the debugger permits any breakpoints to be set using the source window, the creation date in

the sourcefile is checked against the corresponding date recorded by the compiler in the BCb. The

message Can’t use <module> of <time> i nstead of version created <time>will resultif
the versions do not match (but see the At t ach source menu command above).

Themessage Reset ti ng synbol tabl e! isdisplayed when the interpreter’s scratch symbol table
overflows; the command is retried automatically. The Debugger’s performance decreases somewhat
until the symbol table isreinitialized.

If aprogram is compiled with cross-jumping, the debugger will print the warning Cr oss j unped!
before displaying the source.

Installation
Fonts

The Debugger now requires a strike font named MesaFont . stri ke or SysFont . stri ke;a
version of GachalO isavailable on <Mesa>MesaFont . stri ke. Additiona strike fonts are stored
on[Maxc] <Al t oFont s>. (Strike fonts which include kerning are not supported.)

Switches

Installing the debugger with the/ b switch will video reverse the display (i.e., white characterson a
black background).

Memory Bank Management

When running on machines with more than 64K of memory, the client system supplies space to the
Debugger for its bitmap (unless al but one bank has been disabled; see below); the client can
disable this option by using the / k switch or by calling a system procedure before the Debugger is
first invoked (see the Mesa 6.0 System Update).

It isalso possible for the Debugger to be installed with more than one bank of memory available

for code swapping; thisis done by reducing the amount of memory available to the client using the
RunMesa bank switches or the Alto Executive MesaBanks. ~ command (in Executive version 11 or
later).

MesaBanks. ~

This command establishes the default memory allocation available to client programs.
Arguments can be in two forms: a sixteen bit octal mask (followed by an optional / b
switch) indicating the available banks; aonein bit position n of the mask (counting from
the left) indicates that bank nisavailable. Form two isaseries of decimal bank numbers
each followed by the/ x switch; each bank mentioned is excluded from use by the client.
Note that arequest to exclude bank zero will beignored. If no argument is present, the
command will display the current value of the bank mask.

The MesaBanks. ~ command establishes the available memory for each . i mage or . bcd
program invoked directly by the Alto Executive. The default may be overridden by
explicitly using RunMesa to invoke the program and optionally specifying bank switches on
its command line, before the . i mage file name. The bank switches have the same format
asthe argumentsto MesaBanks. ~ (except that the/ b switchisrequired in the case of a

Mesa 6.0 Debugger Update

bitmask). In the absense of any bank switches, RunMesa always assumes that all banks are
available to the client.

Using these facilities, it is possible to set up the defaults so that the Debugger has extra banks of
memory at the expense of the client program. For example, on athree bank Alto, the following
commands might be used to set the default and then install the Debugger:

MesaBanks. ~ 2/ x
RunMesa. run 1/ x XDebug. i mage

Under this arrangement, the client would use banks zero and one, and the Debugger would use
banks zero and two (because bank zero is swapped onto Swat ee, it can be used by both).
Actually, because the client (by default) is also alocating space for the Debugger’ s display bitmap,
the client actually has only one-and-one-half banks, and the Debugger has two-and-one-half; this
can be changed by running the client with the / k switch, resulting in two banks available to each.

Note that the MesaBanks. ~ command affects all Mesa programs invoked by the Alto Executive,
including the Compiler and Binder. So the above example would run the Compiler in only two
banks, not three; this can be changed by saying RunMesa Conpi | er onthe command line, which,
because there are no bank switches specified, defaults to all banks available (not really necessary in
this case, since the Compiler runs almost as well in two banks asin three). On the next new

session, the Debugger is smart enough to notice that the Compiler (or whoever) has smashed what it
thought was in bank two. (It isalso smart enough not to use any memory that the client owns, so
that the 1/ x switch on the command line above is actually unnecessary.)

Since there are alot of options here, some "standard" examples of client and Debugger
configurations might be helpful:

Two Banks: Normally, do nothing; client and Debugger will each have one-and-one-half
banks. For small clients and better Debugger performance, use RunMesa 1/ x

Mesa. i mage Cient. bcd, whichwill give the client one bank and the Debugger two.
(If you wereto use MesaBanks. ~ 1/ x inthis case, the Compiler would also be restricted
to one bank).

Three Banks. Asin the three bank example above.

Four Banks: Use MesaBanks. ~ 3/ x to give the client and the Debugger two-and-one-half
banks each and the Compiler three; use MesaBanks. ~ 2/ x 3/xandCd ient/kto
increase the Debugger’ s alocation to three banks and restrict the client to two. Obviously,
this can be adjusted based on the size of the client and the desired performance of the
Debugger.

Extended Features

Nearly all of Alto/Tajo isnow included in the Debugger (Librarian support and communications
arenot). Accordingly, thereislittle (if any) distinction between UserProcs and Tools, and Fetch
(the FileTool plus communications) which runsin the Debugger is the same as the FileTool
provided by Alto/Tajo. A copy of section 10 of the Tajo User’s Guide describing the FileTool is
attached to this memo.

Distribution:
Mesa Users
Mesa Group
SDSupport

Debugger Summary

Version 6.0

ASci i
Read [address, count]
Di spl ay [address, count]
ATt ach
Image [filename]
Condi ti on [number, condition]
Keyst r okes [number, command]
Loadst at e [filename]
Synbol s [globalframe, filename]
Br eak
Al l
Ent ri es [module/frame]
Xi t s [module/frame]
Entry [procedure]
Xit [procedure]
CLear
Al l
Breaks [confirni
Ent ri es [module/frame]
Traces [confirni
Xi t' s [module/frame]
Br eak [number]
Condi ti on [number]
Entry
Br eak [procedure]
Tr ace [procedur €]
Keyst r okes [number]
Xit
Br eak [procedure]
Trace [procedure]
COremap[confirm
CUrrent cont ext
Di spl ay
Br eak [number]
Configuration
Eval - st ack
Frame [address] (g,j,!,n,p,q,r,s,V)
Gl obal FraneTabl e
Modul e [moduleg]

Di spl ay
Process [process] (I,n,p,q,r,s)
Queue [identifier] (1, n,p,q,r,s)
ReadylList (I,n,p,q,r,Ss)
Stack (g,j,!,n,p,q,r,s,Vv)
Fi nd vari abl e [identifier]
Kill session[confirni
List
Breaks [confirni
Configurations[confirni
Processes [confirni
LOgon [user, password]
Oct al
Cl ear break [globalframe, bytepc]
Read [address, number]
Set br eak [globalframe, bytepc]
Write[address, value
Proceed[confirni
Quit [confirm
ReSet cont ext [confirni
ReMot e debuggee [host] [confi rnj
SEt
Confi gurati on [config]
Modul e cont ext [module/frame]
Oct al cont ext [address|
Process cont ext [process|
Root confi gurati on [config]
STart [address] [confirm
Trace
Al l
Ent ri es [module/frame]
Xi t s [module/frame]
Entry [procedure]
St ack
Xit [procedure]
Userscreen[confirni
Worry
of f [confirni
on[confirm
"Debug [confirni

StatementList

Debugger Interpreter Grammar
Version 6.0

Statement | StatementList; | StatementList; Statement

Statement LeftSide Interval | LeftSide _ Expression |
MEMORY Interval | Expression | Expression ?

LeftSide identifier | (Expression) | LeftSide Qualifier |
identifier $ identifier | number $ identifier |
MEMORY [Expression] | LOOPHOLE [Expression] |
LOOPHOLE [Expression , TypeExpression]

Qualifier A | . identifier | [ExpressionList]

Interval [Bounds] |[Bounds) | (Bounds] | (Bounds) |
[Expression ! Expression]

Bounds Expression .. Expression

Expression Sum

Sum Product | Sum AddOp Product

AddOp + |

Product Factor | Product MultOp Factor

MultOp *| /| mMoD

Factor Primary | Primary

Primary Literal | LeftSide | @ LeftSide | BuiltinCall |
Primary % | Primary % (TypeExpression)

Literal number | character | string

BuiltinCall NIL | NIL [TypeExpression] | PrefixOp [ExpressionList] |
TypeOp [TypeExpression]

PrefixOp ABS | BASE | LENGTH | LONG | MAX | MIN

ExpressionList ::= empty | Expression | ExpressionList, Expression

TypeOp ;I= SIZE

TypeExpression ::= identifier | Typeldentifier | TypeConstructor

Typeldentifier :’= BOOLEAN | INTEGER | CARDINAL | WORD | REAL | CHARACTER |
STRING | UNSPECIFIED | PROC | PROCEDURE | SIGNAL | ERROR |
identifier identifier | identifier Typeldentifier |
identifier . identifier | identifier $ identifier

TypeConstructor ::= LONG TypeExpression | @ TypeExpression |

POINTER TO TypeExpression

Wisk Summary

Version 6.0
WHAT WISK MOUSE BUTTONS DO:
Scroll Bar Text Area
RED Scroll Up Select
YELLOW Thumb Menu
BLUE Scroll Down Extend

NAME STRIPE/SMALL WINDOW COMMANDS:

Left Middle Right
RED Top/Bottom Zoom Top/Bottom
YELLOW Grow (corner) Grow (edge) Grow (corner)
BLUE Move Size Move

STANDARD WINDOW MENU COMMANDS:

Move Size Bottom Grow Top Zoom Deactivate

STANDARD TEXT OPS MENU COMMANDS:

Find [selection] Normalize Insertion Split
Position [selection] Normalize Selection Wrap

SOURCE WINDOW SOURCE OPS MENU COMMANDS:

Create Set Break [selection] Clear Break [selection]
Destroy Set Trace [selection] Attach

SOURCE WINDOW FILE OPS MENU COMMANDS:

Load [selection] Store [selection] Reset
Edit Save

Y

B

Zoom

Size

Tajo User’sGuide 52

10.0 File Tool

The File Tool provides ameans of dealing with local aswell as remote file systems from within the
Development Environment.

10.1 The User lllusion

The File Tool employs the standard features of the Development Environment. See section 3 for
further details.

10.2 Tool Appearance

Below isanillustration of a File Tool with the List Options window (explained below) visible.

Directory: &4lphaTools:Tools

Dest.'n: [Pages= 1826
User: Karlton Pagsworg; kst Update
Connect ; Pazsword; Yerify

Retrieve! Local-List! Remote-List ! Copy! List-Options!
Store! Local-Delete! Remote-Delete! Cloze!

{1

Tgor SO0 Morth IFS 1,26 1,27, File Server of September 2, 1988; 2 users out of 7
Femote 1ist of * bodlh
dlphaToolsxTools

Access bod!l 4 BE2OE Z21-0ct-58

ChatTool bed!3 17862 21-0Oct-58

ClockTool bhod! 4 8372 15-0Oct-5/

FileTool bhod! 7 12860 21-0ct-58

PrafileTonl , bodl 4 14164 16-0Oct-56

SJampleTool , bed! & 11416 16-Oct-3W

SimpleTool bod!2 46575 16-0Oct-58

TT%Test bodlil 4186 22-Jul-8r

Total of & files

Author]y !
Read Ahort |

10.3 Par ameter Subwindow

The upper form subwindow contains parameters that can be set by the user; they will be used by
the next File Tool command.

Tajo User’sGuide

Host: the name of the host to be used for remote file operations. |f a connection is aready open,
any editing of thisfield causesit to be closed; if atransfer isin progress, the connection
will not be closed until it is complete.

Directory: the default remote directory. If empty, the valuein the User: field is used.

Source: alist of files (separated by spaces or returns) to be operated on. If the first character of a
filenameis"@", then thefileistaken to be an indirect file and its contents are used as a
list of files. Indirect files may nest.

Dest'n: file name for the destination of atransfer. If thisfield isleft blank, the file nameisthe
same as the source.

Pages= number of free pages |eft on the disk. Thisitem isread only.

User:, Password: the primary directory and the associated password. Thisfield isinitialized from
the value of the user’slast Alto Operating System login. Editing of thisfield islocal to the
File Tool and does not affect the user’ slogin in the Alto Operating System.

Update only store or retrieve thefile if the source is newer than the destination (comparing
creation dates). The default isfalse.

Connect:, Password: the secondary directory and the associated password.

Verify reguest confirmation for each file operation. The default isfalse.

10.4 Command Subwindow

File Tool commands are available in the second form subwindow. Some of the commands are
accomplished by a background process. Those commands clear the Command subwindow so that a
second operation cannot be invoked while one is under way. The Copy! command operates only
on thelocal disk. It does not take alist of filesto operate upon. Close! closes aremote connection
(if thereis one).

It isimportant to remember that the commands are postfix; e.g., fill inthe Host: and Source: fields
before invoking the Retrieve! command. The following commands are available:

Retrieve! transfersthe file specified in Source: from the remote file system to the local disk. The
file name must conform to the file-naming conventions on the remote host. Y ou may
designate multiple files by the use of * expansion only to the extent that the remote server
supportsit. If thelocal fileisaready in use, the transfer will not be made and the message " <filename>:
can't be modified" will be displayed in both the message window and the log window. See warning in Section
10.6

Local-List! listsall files on the local disk corresponding to the namein Source:. This command
will expand *s and #s.

Remote-List! listsall files on the remote file system corresponding to the namein Sour ce: . This
must conform to the file naming conventions of the remote host. Y ou may designate
multiple files by the use of * expansion only to the extent that the remote server supportsit
(currently Maxc and | FS do, but differently).

Copy! makesa copy of alocal file onthelocal disk. Only asingle file may be copied and *s and
#s are not allowed.

53

Tajo User’sGuide

List-Options! createsaList Optionswindow if one does not aready exist.

Store! transfers the file specified in Source: from the local disk to the remote Host . Alto file
name conventions apply to the locd file.

Local-Delete! deletesthe files specified in Source: from the local disk. If thelocal fileis aready in use,
the delete will be skipped and the message "<filename>: can’t be modified" will be displayed in both the
message window and the log window. See warning in Section 10.6

Remote-Delete! deletesthefile specified in Source: from the remote file system. Y ou may
designate multiple files by the use of * expansion only to the extent that the remote server
supportsit.

Close! closesthe currently open FTP connection.

If Verify is TRUE, then for each file that might be acted upon, the following commands are
displayed

Confirm! do the operation.
Deny! abort the operation.

Stop! abort the operation and terminate the command. Thiswill close the connection with the server if a
retrieve is being aborted.

10.5 List Options window

The List Options window is created by the List-Options! command. The properties that will be
displayed, in addition to the file name, by a Local-List! or Remote-List! are governed by the
booleansin thiswindow. After changing the options, use Apply! to effect those changes. The
Abort! command will restore the options which existed before the List-Options! command was
selected. Choosing either of the commands in the List Options window will cause that window to
be removed.

If the Type attribute is requested for a Local-List! and the type is unknown, it will be listed as such
to prevent the time it would take to read the file and determine the type.

10.6 Exceptions

The actual transfer takes place in a background process, so the user is free to issue other commands
or even change the values in the parameter subwindow without affecting the command currently
executing. Changing a parameter while the File Tool is waiting for Confirm! will not affect the
name of the destination file; you should skip the transfer (by using Deny!) and reissue the
command with the desired parameter correctly set.

Warning: Do not attempt to use afilewhileit is being retrieved. Thisincludesissuing commands
to the Debugger that cause it to try to reference the file. For example, Display Stack may cause
the Debugger to reference symbols contained in the file being retrieved.

Warning: If you are using the File Tool in the Debugger, be careful not to change any files out
from under the program you are debugging; the file tool makes no provisions for checking if the
fileisin usein the client world when you modify alocal file.

| nter-Office Memorandum

To Mesa Users Date October 27, 1980
From Bruce Malasky Location Palo Alto
Subject Debugger: Extended Features Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>XDF.bravo (and .press) D RA FT

This memo discusses Debugger User Procedures (UserProcs) and contains a sample Printer, a special
type of UserProc.

The Debugger is now the functional equivalent of the Alto/Tajo environment (with the exception of
Librarian support and communications). As aresult, there are no longer any differences between
the FileTool and ChatTool that run in Alto/Tgjo and the versions that run in the Alto/Mesa
Debugger.

L oading User Procedures

To install the Debugger from the command line with some UserProcs, type:
XDebug Your Procl[/|] YourProc2[/I]

to the Alto Executive. To load filesin an installed debugger, simply enter the Debugger nub; then
do a>Newfilename, followed by >St art globalframe. More information on the mechanism for
loading programs into the Debugger can be found in the Mesa User’ s Handbook and the Mesa
Debugger Documentation.

Hintsfor Writing User Procedures

The Debugger gives you added help in gaining access to the information it already knows about
your program. The Debugger’ s configuration exports al of the Debugger’s and Tgjo' s interfaces;
see XDebug. confi g for details. A user program can access any of the Debugger’s public
procedures simply by importing the definitions modules of the procedures that you want to use.
When writing your own debugging routines, look carefully at some of the utility routines that the
Debugger already provides (e.g., Name, Frame, ShortREAD, etc.). In particular,
DebugUsefulDefs contains most of the interesting procedures you might want. The interface
DOutput contains utility procedures for displaying information in the Debug. | og (alalODefs).
Y ou should also look at the <Mesali b> and <Al phaHacks> directories for UserProcs that other
Mesa users have already written and debugged.

Warning: The Mesa Group makes no guarantees about the stability of these interfaces between
releases. Use at your own risk!

Copyright ¢ Xerox Corporation 1980

Debugger: Extended Features

Printers

The Debugger is capable of calling a user supplied procedure to print variables of specific types.
To do this, aprogram must first register any type it will display by calling

AddPrinter: PROC [type: STRING, proc: PROC [DebugOps.Foo]]

from the interface Dump. The Debugger’ sinterpreter evaluatestype at the beginning of each
session and remembers the target type of the result. Unfortunately, type is not asimple type
expression, but rather a statement evaluated by the interpreter; the type is extracted from the resuilt.
Any additional information such as the address of a variable used when evaluating the statement isignored.

Later, whenever the Debugger encounters a variable of that type, it will call proc to display it. If,
for agiven printer, calling proc or evaluating type ever causes an UNWIND, the printer is never
called again. The parameter to proc is defined as follows:

Foo: TYPE = POINTER TO Fob;

Fob: TYPE = RECORD |
there: BOOLEAN,

addr: BitAddress,
words: CARDINAL,
bits: [0..WordLength),

Ik

BitAddress: TYPE = RECORD [
base: LONG POINTER,
offset: [0..WordLength],

L

If there isTRUE, the BitAddress isalocation in the user coreimage. For large structures,
LongREAD and LongCopyREAD from DebugUsefulDefs should be used to access the data;
for small structures the procedure GetValue in the interface DI (it takes aFoo asits argument)
copies the information into the Debugger’ s core image and updates the addr. The Debugger owns
the storage for Foos and the values copied into them from the user’s core image; they are freed by
the Debugger between commands.

A good technique for debugging the string used in the call to AddPrinter isto actually try it out
using the interpreter. All REALS could be intercepted by supplying the following STRING to
AddPrinter:

0%(REAL)
The following STRING is used by the sample printer attached at the end of this memo.
LOOPHOLE[1400B, StackFormat$Stack]”

The constant 1400B is simply alocation that is aways mapped; AddPrinter’s evaluation of the STRING does not
actually use that location.

Once StackPrinter isinstantiated in the Debugger, PrintStack is called whenever the Debugger
wants to display a StackObject. Since PrintStack understands the format of StackObjects, it

can show the complete contents of a stack, something the Debugger is unable to do because of the
zero length array.

Debugger: Extended Features

-- StackFormat. nesa
-- Last Edited: Keith, October 21, 1980 10:30 PM

St ackFormat: DEFI NI TI ONS =
BEQ N

Stack: TYPE = PO NTER TO St ackObj ect;

St ackObj ect: TYPE = RECORD |
top: CARDI NAL _ 0,
max: CARDI NAL _ O,
over fl owed: BOOLEAN _ FALSE,
stack: ARRAY [0..0) OF CARDI NAL];

END.

-- StackPrinter.nesa
-- Last Edited: Keith, October 21, 1980 10: 38 PM

DI RECTORY
DebugOps USI NG [Foo, LongREAD],
DI USI NG [Get Val ue],
DQut put USING [Char, Line, Cctal, Text],
Dunp USING [AddPrinter],
StackFormat USI NG [StackEntry, StackObject];

StackPrinter: PROGRAM | MPORTS DebugQOps, DI, DQutput, Dunp =
BEG N

PrintRecord: PRCC [l p, |ps: LONG PO NTER TO St ackFor mat . St ackObj ect]
{
| pSt ack: LONG PO NTER TO CARDI NAL _ LOOPHOLE[@ ps. st ack] ;
IF I p.top = 0 THEN DQut put. Text["enpty "L]
ELSE
FOR i: CARDI NAL DECREASING IN [O0..|p.top) DO
DQut put . Cct al [DebugOps. LongREAD[| pStack + i]]; DQutput.Char[’];
ENDL OOP;
| F | p.overfl owed THEN DQut put. Text["(overflow) "L];
IF Ip.max = | p.top THEN DQutput. Text["(full!)"L];
DQut put. Line[" "L]};

PrintStack: PROC [f: DebugOps. Foo] = {
g: LONG PO NTER _ f. addr. base;
Dl . GetValue[f]; PrintRecord[f.addr.base, g]};

Dunp. AddPri nter|[
type: "LOOPHOLE[1400B, StackFornmat $Stack]”", proc: PrintStack];

END.

| nter-Office Memorandum

To Mesa Users Date October 27, 1980
From Brian Lewis, Jim Sandman, Dick Sweet Location Palo Alto
Subject Mesa 6.0 Utilities Update Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>Utilities60.bravo (and .press)

This memo outlines the changes made in the utility packages since the last release (Mesa 5.0, April
9, 1979). More complete information can be found in the Mesa User’ s Handbook.

Major changes include some new commands in the Lister and an extensively reworked
IncludeChecker. In addition, there is aversion of the SignalLister that reads . bcd files.

Lister

The lister isnow available only asa. bcd file. The user interface has been changed slightly:
commands that take string parameters no longer need string quotes. The command scanner takes
all characters up to the next commaor right bracket as the parameter. Thus

Code[Li st er Routi nes] and Code[" Li st er Routi nes"]

are equivaent. The new commands (and "improved" old ones) are listed below. Note that several
of the new commands (and some of the old ones) are useful only for internal (Compiler) debugging.

Codel nConf i g[config, modul€]
Cct al Codel nConf i g[config, moduleg]

Config names a bound configuration; module is amodule within that configuration. A code
listing is produced for the module (see the Code and Cct al Code commands). Thisis of
particular interest for packaged configurations where the code has been rearranged among
segments and code packs.

Conpr essUsi ng] file]

The named file should contain alist of BCD file names. The using lists of the directory
statement are generated for each module in the list; they are then sorted to show for each
interface, and for each item in the interface, which modules reference that item. The same
caveat about implicitly included symbols applies as for the Usi ng command (see below).
The output iswrittentofi | e. ul .

Hexi fy[], Octify[]

The code lister normally prints addresses (and opcodes for "octal" listings) in base eight.
For microcode debugging, base sixteen is sometimes preferable. Hexi f y[] puts the code
lister into hexadecimal mode; Ccti fy[] revertsto octal mode.

Copyright ¢ Xerox Corporation 1980

Mesa 6.0 Utilities Update

| mpl enent or s filg]

The named file should contain alist of compiler output BCDs (interfaces and program
modules). This command creates afile, Fi | e. i m , showing for each interface exported by
any program in the list, where the various interface items are implemented. |If thelist also
includes the BCD for a particular interface, the interface items not implemented by any
program are also shown. In order to run this command, one needs not only the BCbsin the
list, but also the BcDs for the interfaces exported by the programs therein. Missing BCDS

are reported and the command attempts to forge on.

St anps| file]

File names a compiler or binder output BCD. This command generates afile, Fi | e. bl ,
that shows the version stamps of any modules bound in the file, and of all imports and
exports of the top level configuration in thefile.

UnboundExpor t s file]

File names a compiler or binder output BCD. This command examines all of the exported
interfaces and enumerates interface items in those interfaces that are not exported by this
module or configuration.

Usi ng| file]

Given a compiler output BCD, this command generates a directory statement with its
included identifier lists(onf i | e. ul). Sincethereis not enough information in the BCD to tell
which symbols were implicitly included, the USING clauses will contain a superset of those items actually
needed. The Mesa 6 Lister does a much better job of weeding out extraneous names in the
USING clauses.

Ver si on[filg]

File names a compiler or binder output BCD, or an IMAGE file. This command shows, on
Mesa. t ypescri pt, the object, source, and creator version stamps of thefile.

Xref ByCal | ee[filg], XrefByCall er] filg]

File names afile that contains alist of BCD file names. For each modulein thelist, a scan
is made of the code to find al procedure calls. The <caller, callee> pairs are then sorted by
either caler or callee. These commands produce outputonfil e. xl eandfil e. xl r,
respectively.

There are three kinds of procedure calls: local, external, and stack. The program can figure
out which procedure is being called for local and external calls. Stack function calls are
used for procedure variables (e.g., stream.get[...]) and for nested procedure calls. The
program ignores nested calls and indicates a callee of * for procedure variables.

Include Checker

The most significant differences between this version of the IncludeChecker and the one released
with Mesa 5.0 are the following:

1. It handles morefiles, and requires less processing time for large numbers of files.
2. It executes either from the command line or interactively.
3. It obtainsthe creation dates for source files from their leader page, rather than from

the first few lines of the source text (however, see the description of the new switch
/ t below).

Mesa 6.0 Utilities Update

There have been other minor changes to command syntax. The entire section of the Mesa User’s
Handbook on the IncludeChecker is included below.

The IncludeChecker is a program that examines a collection of Mesa source and BCDs for
consistency. It produces an output listing that gives a compilation order for the files, and for each
BCD, alist of al theBcDsthat it includes, and alist of the Bcbswhich includeit. Any
inconsistencies (which are described below) are flagged in this listing by an asterisk. Asan option,
the IncludeChecker will also generate a compilation command on Li ne. cmthat can be executed to
make the files consistent.

The IncludeChecker determines that an inconsistency exists among the input filesif either:

1. A BcD includes another BCD with aversion different from the one currently on the disk.
This might happen, for example, if the included Bcb had been recompiled.

2. A sourcefileis"newer" than the corresponding BcD. This could happen if the source had
been edited, or if the source had been retrieved from aremote file server. The
IncludeChecker compares the creation date of the source file against the creation date
recorded in the BCD of the source file from which the BCD was derived.

The IncludeChecker operatesin either command line or interactive mode. To useit in command
line mode, type to the Alto executive:

>l ncl udeChecker [outputfile][/switches] [fil enanel filenane2 ...
where

out put fi | e isthe name of the file written. If no extension or switchesare given, . | i st
isassumed. If no file name is specified, thefilel ncl udes. | i st isassumed.

filenanel filename2 . . . isthelist of file names specifying the source and . bcd
filesto be checked. It isnot necessary to give an extension, since the IncludeChecker will
look for any . mesa or . bed file with the specified name. If no input files are specified,
al . mesa and. bcd files on the disk are examined.

To use the IncludeChecker interactively just type:
>| ncl udeChecker

It will then prompt for the output file name and switches, and then alist of the files to check.

These are typed one at atime, and the list of file namesisterminated by aCR. Typing ? CRin

interactive mode displays a short summary of the IncludeChecker’ s parameters and use.

Each switch can be preceded by a- or ~ to turn it off. The switches are:

/o Print a compilation order in the output file (thisisthe default); - o suppresses this
listing.

/i Print both the includes and included by relationships in the output file (default).

/t Obtain the creation date of source files from their leader page (default); - t will

attempt to get the creation date from the first few lines of the source text.

Mesa 6.0 Utilities Update 4

/c Write a consistent compilation command in Li ne. cm(- ¢ isthe default). In
addition, list as comments any BCDs and source files not on the disk which are
needed to do the compilation.

/m Use multiple output files (- mis default). The compilation order iswritten on
source. out put fil e. Theincludesand included by relations are written onto
outputfile.includesandoutputfile.includedBy, respectively. This
switch is useful if the output would otherwise be too large to fit into Bravo.

/In Do not compile source files that do not currently have corresponding . bcds on the
disk (- n isdefault).

/I'p Place a/ p after every change of inclusion depth (see below) in the compilation
command (- p isdefault). Thiswill cause the Compiler to pauseif errors are
found while compiling that or any previous module.

/s Sameas/ c-i - 0. Thisisused when only a consistent compilation command is
needed.

The default switchesare/ oi t - c- m n- p-s.

Note: The IncludeChecker only checks for consistency of the files that you specify. Thus, thelist of
filesthat you give should include, for example, any important system files upon which your files are
dependent.

Y ou should also inspect the compilation command before executing it, since the IncludeChecker’s
idea of what should be recompiled may not be the same as yours.

If a source file but no BCD isfound on the disk, the IncludeChecker outputs awarning on the
display; in addition, it adds that file to the compilation command if / ¢ and/ - n arein effect. A
warning isaso displayed if aBcD isfound that was created by an obsolete version of the Compiler;
its source file is also added to the compilation command.

The IncludeChecker lists the file names of the compilation order and the consistent compilation
command by inclusion depth, with the files that are the most deeply included first. Within that
constraint, definitions modules are printed before program modules. In general, then, the "lowest
level" definitions modules appear first, while the "highest level" program modules appear last.

As an example of the IncludeChecker’ s use, the command line

>l ncl udeChecker 1C/c |1 ODefs | OPkg Lexi conDefs Lexicon
Lexi cond i ent

will produce a consistent compilation command in Li ne. cmand the output shown below on
IC list.

Conpil ati on Order (by inclusion depth):
Lexi conDefs streandefs stringdefs
| ODef s
ol dstringdefs systendefs tty wi ndowdefs
| OPkg Lexicon Lexicondient

| ODefs (4-May-80 16:20: 37 60#203#) (conpilation source: 14-Apr-80 17:37:16)

Mesa 6.0 Utilities Update

i ncl udes
streandef s
stringdefs

| OPkg (28-May-80 9:30: 01 60#203#) (conpilation source: 28-May-80 9:08:43)
(source on disk: [sane]) includes
| ODef s (4-May-80 16:20: 37 60#203%#)
ol dstringdefs
streandefs

tty
w ndowdef s

Lexi con (28-May-80 9: 30:29 60#203#) (conpilation source: 28-Apr-80
17:02: 20)
(source on disk: [sane]) includes
| ODefs (4-May-80 16:20: 37 60#203#)
Lexi conDefs (14-May-80 10:48: 49 60#205%)
ol dstringdefs
syst endef s

Lexi conC i ent (28-May-80 10:02:50 60#203#) (conpilation source: 28-My-80
10: 02: 14)
(source on disk: [sane]) includes
| ODefs (4-May-80 16:20: 37 60#203#)
Lexi conDefs (14-May-80 10:48: 49 60#205%)
ol dstringdefs

Lexi conDefs (14-May-80 10:48:49 60#205#) (conpil ation source: 18-Apr-79

19:19: 11)
(source on disk: [sane]) includes nothing

| ODefs is included by
| OPkg Lexi con
Lexi cond i ent
| OPkg i s included by nothing
Lexi con is included by nothing

Lexi conCient is included by nothing

Lexi conDefs is included by
Lexi con Lexi conC i ent

BcdSignals

BcdSignalsis an Alto/Mesa program which will produce asignal listing froma. bcd file; it works
much like the Alto/Mesa SignalLister for listing the signalsina. i mage file (see the Mesa User’s
Handbook). To produce the signal listing Foo. si gnal s from Foo. bcd, typeto the Alto
Executive:

Mesa 6.0 Utilities Update

>BcdSi gnal s [oct al Nunber/swi tch] Foo[/switches]

where

/n takesoct al Nunber to bethe globa frameindex of the first framein
thisecp. Thiswill normally be the first free global frame index in the
system into which the BcD will be loaded.

/ X takesoct al Nunber to be the StartPilot loadmap form of a global frame
index. Thisisthe number in brackets beside the module name in the
loadmap. It should be 200B times the octal number used with the /n
switch.

Ip lists the name, byte PC, and length of each procedurein Foo on
Foo. procs.

Is list the signals of Foo on Foo. si gnal s (default).

Asusual, a- or ~ can be used to invert the sense of the/ s switch.

Distribution:
Mesa Users
Mesa Group
SDSupport

| nter-Office Memorandum

To Mesa Users Date October 27, 1980
From Jim Sandman, John Wick Location Palo Alto
Subject Integrated Mesa Environment Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>CommandCentral.bravo (and .press)

This memo documents a small executive called Command Central; this Tool isintended to be
installed with the Debugger and can be used to invoke the Compiler, the Binder, and client
programs, all of which upon completion are directed to return to Command Central rather than to
the Alto Executive. Theideais that, while programming in Mesa, you enter Command Central’s
control only once, and you rarely have to leave it; thisis made possible by the editor that is now
included in the Debugger, as well as by the context switching facilities provided by Command
Central.

Installation

To include Command Central in the Debugger, type the following Alto Executive command when
installing, after retrieving <Mesa>Fet ch. bcd (which contains TinyPup, Stps, and the FileTool)
and <Mesa>Utilities>ConmandCentral . bcd. (If you have more than 64K of memory, be sure to
consult the Installation section of the Debugger documentation before proceeding.)

>XDebug Fetch/l CommandCentral /|
Whileit is possible to use Command Central without also installing the FileTool, including it will
help minimize the number of times you have to leave the Mesa environment. If you have enough
memory on your machine, you might consider installing other Tools with your Debugger as well

(e.g., ChatTool, SendMessageTool).

Note: Tools loaded viathe command line areinitially inactive (i.e., no window is showing); move
the cursor into the gray area outside all windows and use the menu found there to activate them.

Entering Command Central

When using Command Central, the Debugger becomes the executive from which all programs are
invoked. To first enter this environment, type

>Mesa/ d
to the Alto Executive. Y ou can now use the FileTool to retrieve the modules you wish to work on

and the Tools editor to modify them. When you have finished your changes, turn your attention to
the Command Central window.

Copyright ¢ Xerox Corporation 1980

Integrated Mesa Environment

Command Central Window
This window provides command lines for compiling, binding, and running your program, the

context switching commands, and an option sheet; it also supports the standard window operations
(scrolling, growing, etc.).

Bin! Fun! Go! Options!

Bind: CommandCentral/c
Run: Statistics Eobject,system@ t/c

Compiler: Compiler, image /3
Binder: Mesa,image Binder, bod
Runner: Mesa, image

The three fields contain command lines for the Compiler, the Binder, and the System; their
contents are written to Com ¢ mwhen the commands are invoked. (A special global switch /q is added so
that contral is returned to the Debugger rather than to the Alto Executive.)

The Conpi | e!, Bi nd! , and Run! commands invoke the appropriate programs using the command
lines constucted from the Conpi | e: , Bi nd: , and Run: fields, respectively. The Run! command
can beusedtoinvoke. bcd, . i mage, and. r un files (see below). The Go! command constructs a
combined command line using all non-null fields and executes the appropriate programs in order.
Note that the Debugger will complain if you issue any of these commands while afileis being

edited (since the edits might be lost as aresult of executing them).

The parameter fields also recognize command files preceeded by the traditional at-sign (e.g.,

@il e.cm;the Expand! command will expand al such referencesinto their contents and write
the result back into the window. Indirect references are also automatically expanded when any of
the other commands are invoked.

The Opt i ons! command produces the options window which allows you to specify the names of
the compiler, binder and system you are using. The names are parsed to allow default switches to
beincluded. The Appl y! command will save the new names and the Abor t ! command will
restore the names to their previous state (the default names are shown above). Both Appl y! and
Abor t ! will remove the options window.

If the Compiler or the Binder detect errors (and the pause switch isin effect), they will invoke the
Debugger with an appropriate message instead of pausing. Y ou can then load the appropriate error
log into awindow and step through it and your source file together. Because the file index of the
error isincluded in each message, the posi t i on menu command can be used to find the source of
the error quickly.

Integrated Mesa Environment

Invoking Other Programs

Any Mesa. bcd which expectsto beloaded into Mesa. i mage and obtains its commands from the
command line (Com cn) can be invoked by Command Central using the Run: field and the Run!
command. (Asabove, the global /q switch is added to the command line so that control will return to the Debugger.)
Some obvious programs which you might include on your disk are Access and Print.

You can also run arbitrary . i mage and . r un files using Command Central, but unless they have
made provision to return control to the Debugger, they will exit to the Alto Executive upon
completion. Usethe Mesa/ d command to reenter Command Central.

Limitations

If you usethe Conpi | e! , Bi nd! , Run! , or Go! commands when you arein the middle of a
debugging session (at a breakpoint or an uncaught signal, for example), the state of the client will
belost. In particular, normal termination processing of the client will not take place (e.g., open files
will be left dangling).

Distribution:
Mesa Users
Mesa Group
SDSupport

| nter-Office Memorandum

To Mesa Users Date October 27, 1980
From Hal Murray, Mark Sapsford Location Palo Alto
Subject Mesa 6.0 Pup and Ftp Update Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>PupFtp60.bravo (and .press)

This memo outlines changes made in the Mesa Pup and Ftp Packages since the University release
of December 20, 1979. Thisreleaseis essentially arecompilation of the Pup and Ftp packages
using Mesa 6.0. Asusual, anumber of bugs have also been fixed, and minor changes have been
made to the interfaces. More complete information is available in the functional specifications
stored on <Mesa>Doc> asPupPackage. pr ess and Ft pPackage. pr ess.

Pup Summary
Changes

The following changes were made to Stream. The procedure types GetProcedure,
PutProcedure, SetSSTProcedure, SendAttentionProcedure, and WaitAttention-
Procedure now take anew initial argument sh: Handle. In addition, SendAttention-
Procedure now takes a second argument byte: Byte (whichisignored), and
WaitAttentionProcedure now returns a Byte (which should beignored). Asaresult of these
type redefinitions, the inline procedures SendAttention and WaitAttention have different
calling sequences, and a new return value has been added to WaitAttention.

The following changes were made to PupDefs. PupRouterSendThis no longer returns a
SendReturnCode. SendReturnCode (aTYPE) has been deleted. If the buffer could not be
sent, it is discarded.

The argumentsto EnumeratePupAddresses are now named. The order of the two arguments
to PupAddressLookup has been reversed. The second argument to AppendPupAddress is
now aPupAddress, instead of aPOINTER TO PupAddress. Similarly, the argument to Print-
PupAddress isnow aPupAddress, instead of aPOINTER TO PupAddress. Thelocal:
PupSocketID argument to PupPktStreamCreate and PupByteStreamCreate has been
removed.

Additions

The procedures AppendHostName and AppendMyName have been added to PupDefs.
UseAltoChecksumMicrocode has been added to speed up processing if you are running on an
Alto with XMesain the RoM or an Alto with a 3K RAM. The overflow microcode loaded into the

RAM by RunMesa. r un includes the necessary additions. (Bewareif you load your own
microcode.)

Copyright ¢ Xerox Corporation 1980

Mesa 6.0 Pup and Ftp Update

Subtle Implementation Changes

GetPupAddress will nolonger return an address for adying net. EnumeratePupAddresses
will now pass the client supplied procedure addresses on dead or dying nets, but only after
processing all the addresses on nets that are reachable. (It used to skip addresses on unreachable
nets.)

The byte stream internal s have been reworked to eliminate several unpleasant delays while opening
and closing connections. It is now possible to open a connection, send a thousand words, and close
the connection in less than a second. (Since closing deletes three module instances, it will take
longer if there are many active global frames.) A byproduct of this cleanup is that SendNow will
send an empty aData packet to request an acknowledgment even if the previous SendBlock
happened to end on a convenient packet boundary.

When sending a packet whose destination is the local machine, the Ethernet driver puts a copy on
the input queue and acts as though it had sent the packet. It now also copies broadcast packets to
the input queue, so clients should check to be sure that their programs will not take undesired
actions if they hear their own broadcasts. Packets that are sent to the local machine are now aso
sent out over the wire; this allows PeekPup.run to be used when analyzing timing problems.

Bug Fixes

The following change requests are closed by thisrelease:

2848 GetMyName (actually net address) procedure

2906 Slow on Dorado

2998 Error stringsin NameConversion

3311 Pup ByteStream close

3341 Trivia bug in PupTypes

3708 PupNamelLookup+PupAddressLookup PupGlitch
4456 Recompile packages to fix long return record bug

4552 ByteStream timeout

5005 Delays when creating byte stream

5093 Namel ookup vs dying nets

5098 Change priority of interrupt routine in EthernetDriver(s)

Ftp Summary

The arguments to the (client supplied) procedure passed to FTPInventoryDumpFile have been
extended to allow proper processing of create dates. It is now compatable with the procedure
passed to FTPEnumerateFiles.

The following change requests are closed by thisrelease:

2906 Slow on Dorado

3584 FtpvsIFS 1.23

3626 Sending mail

3664 MTP user: require sender property on SendMessage

3900 UNWIND from FTPEnumerate/retrieve

3987 StringBoundsFault from TimeExtras.PacketTimeFromString
4335 FTPUtilities.TransferBytes

4352 FTPAItoFile.PreProcessFile doesablind ReleaseFile

4444 FTPInventorryDumpFile needs create date

4456 Recompile packages to fix long return record bug

Mesa 6.0 Pup and Ftp Update

4499 FTPTransferFile doesn’t pass through the creation date
4544 FTPRetrieve hangs on atimeout on a"no" mark

4763 Troublesif forget to call IdentifyNextRejectedRecipient
5152 TimeExtras.PacketTimeFromString zone screwup
5198 Config with server and user things

Distribution:
Mesa Users
Mesa Group
SDSupport

