
Mesa FTP Functional Specification

Version 6.0
October, 1980

XEROX
SYSTEMS DEVELOPMENT DEPARTMENT
3333 Coyote Hill Road / Palo Alto / California 94304

c Xerox Corporation 1979, 1980

Mesa FTP Functional Specification i

Table of Contents

Preface iv

1. Introduction 1

1.1 Purpose 1

1.2 Program structure 1

1.3 File naming conventions 1

1.4 Exception handling 2
FTPError

2. FTP 5

2.1 Program management primitives 5
FTPInitialize, FTPFinalize

3. FTP User 6

3.1 Program management primitives 6
FTPCreateUser, FTPDestroyUser

3.2 Connection management primitives 7
FTPOpenConnection, FTPRenewConnection, FTPCloseConnection

3.3 File access and specification primitives 8
FTPSetCredentials, FTPSetFilenameDefaults

3.4 File enumeration primitives 9
FTPEnumerateFiles

3.5 File transfer primitives 10
FTPStoreFile, FTPRetrieveFile

3.6 File manipulation primitives 12
FTPDeleteFile, FTPRenameFile

4. FTP Listener 13

4.1 Program management primitives 13
FTPCreateListener, FTPDestroyListener

4.2 Server monitoring 14

5. FTP Support Systems 16

5.1 File primitives 16
AltoFilePrimitives

5.2 Mail primitives 16
SysMailPrimitives, SomeMailPrimitives

5.3 Communication primitives 16
PupCommunicationPrimitives

References 18

Mesa FTP Functional Specification ii

Appendix A: Error Summary 20

A.1 Introduction 20

A.2 Errors 20

Appendix B: Dump Primitives 29

B.1 Introduction 29

B.2 Inventory primitives 29
FTPInventoryDumpFile

B.3 Construction primitives 30
FTPBeginDumpFile, FTPEndDumpFile

Appendix C: Mail Primitives 32

C.1 Introduction 32

C.2 Delivery primitives 32
FTPBeginDeliveryOfMessage, FTPSendRecipientOfMessage, FTPIdentifyNextRejectedRecipient,
FTPSendBlockOfMessage, FTPEndDeliveryOfMessage

C.3 Retrieval primitives 33
FTPBeginRetrievalOfMessages, FTPIdentifyNextMessage, FTPRetrieveBlockOfMessage,
FTPEndRetrievalOfMessages

Appendix D: Miscellaneous Primitives 36

D.1 Introduction 36

D.2 Infrequently used connection management primitives 36
FTPSetContactSocket, FTPEnableTrace, FTPDisableTrace

D.3 Infrequently used file transfer primitives 36
FTPTransferFile, FTPNoteFilenameUsed, FTPSetBufferSize

D.4 Other primitives 39
FTPCatchUnidentifiedErrors

Appendix E: Client File Primitives 40

E.1 Description of the option 40

E.2 Exercising the option 40

E.3 General characteristics 41

E.4 Program management primitives 42
CreateFileSystem, DestroyFileSystem

E.5 Filename manipulation primitives 42
DecomposeFilename, ComposeFilename

E.6 Access control primitives 43
InspectCredentials

E.7 File enumeration primitives 44
EnumerateFiles

E.8 File transfer primitives 45
OpenFile, ReadFile, WriteFile, CloseFile

E.9 File manipulation primitives 47
DeleteFile, RenameFile

E.10 Usage of file primitives by FTP 47

Mesa FTP Functional Specification iii

Appendix F: Client Mail Primitives 50

F.1 Description of the option 50

F.2 Exercising the option 50

F.3 General characteristics 51

F.4 Program management primitives 51
CreateMailSystem, DestroyMailSystem

F.5 Access control primitives 52
InspectCredentials

F.6 Mailbox identification primitives 53
LocateMailboxes

F.7 Mail delivery primitives 53
StageMessage, DeliverMessage, ForwardMessage

F.8 Mail retrieval primitives 55
RetrieveMessages

Appendix G: Client Communication Primitives 56

G.1 Description of the option 56

G.2 Exercising the option 56

G.3 General characteristics 57

G.4 Program management primitives 58
CreateCommunicationSystem, DestroyCommunicationSystem

G.5 Connection management primitives 59
OpenConnection, CloseConnection, ActivatePort, DeactivatePort

G.6 Data transmission primitives 61
SendBytes, SendByte, ProduceDiscontinuity, ForceOutput

G.7 Data receipt primitives 62
ReceiveBytes, ReceiveByte, ConsumeDiscontinuity

Appendix H: Sample Configuration and Program 64

H.1 Introduction 64

H.2 Sample configuration 64

H.3 Sample program 65

Appendix I: Production Configurations and File Locations 67

I.1 Introduction 67

I.2 Production configurations 67

Appendix J: Utilities 69

J.1 TimeExtraDefs 69
PackedTimeFromString

J.2 DirExtraDefs 69
EnumerateDirectoryMasked

Mesa FTP Functional Specification iv

Preface

This document details the procedural interface to Version 6.0 of the Mesa File Transfer Package

(FTP). FTP 6.0 provides a wide range of capabilities, only a subset of which are typically required

by any particular application. To use FTP for simple file transfer, for example, the programmer

need only consult the body of this document and Appendices H and I. Comments, bug reports,

suggestions for change or addition, and cries for help should be addressed to your support group.

Mesa FTP Functional Specification 1

1. Introduction

1.1. Purpose

The File Transfer Package (FTP) is one means of several for accessing and manipulating remote

files via the network. FTP provides primitives for storing, retrieving, deleting, renaming, and

enumerating remote files. FTP trades in whole files, in contrast to a page-level access package, for

example, which trades in smaller units (that is, pages of files), or CopyDisk, which trades in larger

ones (that is, an entire disk).

FTP provides an interface to Alto, Maxc, IFS, and Juniper file systems, and any others that

implement the long-standing File Transfer Protocol (FTP) described in [1].

In addition to providing file-related services, FTP provides primitives for delivering mail to and

retrieving mail from remote mailboxes. FTP is thus also a means for accessing mailboxes on Maxc

and any other host that implements the Mail Transfer Protocol (MTP) described in [2, 3].

1.2. Program Structure

Every FTP dialogue involves two parties, designated user and server, which are linked by a network

connection. In point of fact, file and mail operations are implemented by separate servers and hence a dialogue in

which operations of both types are carried out actually involves three parties: the local user, the remote file server, and

the remote mail server. The FTP implementation, however, disguises the distinction between the two servers and presents

to the client the illusion of a single server capable of handling both types of requests. At one end, a client

program initiates and controls the dialogue by calling procedures provided by a local FTP User. At

the other end, a passive FTP Server responds and replies to requests it receives from the distant

FTP User. Several Servers can coexist within a single host, and hence several independent file

transfers can proceed concurrently.

FTP Servers are created by one or more resident FTP Listeners in response to connection requests

from distant FTP Users. Each Server is spawned as a separate Mesa process and competes for

system resources with other local processes under the control of the scheduler. When the distant

FTP User terminates its dialogue with the local FTP Server, the Server destroys itself.

The remainder of this document describes the client’s interface to the FTP User and Listener; the

FTP Server has no real external interface. In the procedure descriptions presented throughout this

document, the terms local and remote distinguish the host containing the described procedure from

the distant host to which the first host is connected.

1.3. File Naming Conventions

FTP provides the client with two separate mechanisms for designating remote files: absolute

filenames, which must conform to the file naming conventions of the remote file system; and virtual

filenames, having a host-independent structure, which are mapped into absolute filenames by the

remote file system. The purpose of this two fold scheme is, on the one hand, to permit the exact

specification of remote filenames by human users familiar with remote file naming conventions and,

on the other, to permit the mechanical generation of filenames by clients ignorant of such

conventions.

Mesa FTP Functional Specification 2

Absolute filenames are STRINGs. Any internal structure an absolute filename might possess is

indicated by delimiters embedded in the STRING. Virtual filenames, on the other hand, have four

components--device, directory, name, and version--each of which is a STRING:

VirtualFilename: TYPE = POINTER TO VirtualFilenameObject;
VirtualFilenameObject: TYPE = RECORD [device, directory, name, version: STRING];

As part of its mapping operation, the remote file system combines these components to form a legal

absolute filename (using appropriate field delimiters where necessary). The Maxc file system maps the

device, directory, and version components of a virtual filename into the corresponding Tenex filename fields and maps

the name component into the name and extension fields. The Alto file system ignores the device and directory

components, maps the name component into the name and extension fields, and maps the version component into the

corresponding Alto filename field. IFS ignores the device component, maps the directory component into the directory

and subdirectory fields, and maps the name and version components into the corresponding IFS filename fields.

The client may use either or both of the file naming schemes outlined above, or a combination of

the two. Whenever the local FTP User communicates a remote filename to the remote FTP Server,

it sends both an absolute filename and a virtual filename. The absolute filename is that supplied by

the client as a parameter to the FTP User procedure which initiates the exchange. The virtual

filename is that supplied by the client in a previous call to the FTPSetFilenameDefaults
procedure described in Section 3.3. If all components of the virtual filename are NIL (for example,

if FTPSetFilenameDefaults is never called), the remote file is completely specified by the

absolute filename. If the absolute filename is NIL, the remote file is completely specified by the

virtual filename. If both the absolute and virtual filenames are non-NIL, the remote FTP Server has

the option of using the virtual filename to default unspecified fields in the absolute filename.

The term file group designator denotes a filename, either absolute or virtual or both, which names a

group of files, rather than a single file. File group designators often contain special characters that

indicate wild or unspecified portions of the filename. The Maxc file system recognizes as a legitimate value

for the device, directory, name, extension, and/or version field, the special character, asterisk (’*), denoting an arbitrary

field value. The Alto file system recognizes the two special characters, asterisk (’*), denoting zero or more arbitrary

characters, and pound sign (’#), denoting exactly one arbitrary character. IFS recognizes the special character, asterisk

(’*), denoting zero or more arbitrary characters.

1.4. Exception Handling

Exceptional conditions encountered by FTP are reported to the client by means of a single signal,

FTPError. In rare circumstances, the Mesa Runtime System may generate errors or signals that are neither handled

by FTP nor reissued as FTPErrors. This fact complicates the client implementation in theory but typically not in

practice. Although declared as a SIGNAL, FTPError is generally raised as an ERROR and so cannot

be resumed by the client. However, exceptional conditions reported to a server backstop are issued

as SIGNALs and can be resumed by the client, as described in Section 4.2. FTP restores itself to a

consistent state after every error (in response to the UNWIND signal). Therefore if the client’s

connection is timed out by the remote FTP Server, for example, the client can close and then

reopen the connection without first having to destroy and recreate the local FTP User. Warning: don’t

call FTP again from within a catch phrase.

Mesa FTP Functional Specification 3

FTPError has two parameters that pinpoint the exceptional condition encountered by FTP: an

enumerated type, ftpError, to be interpreted by the client; and a STRING, message, to be

interpreted by the human user. All error messages issued by FTP are centralized in a single FTPAccessories

module (see Appendix I). To avoid incurring the space overhead associated with such strings, the programmer can omit

this module from his configuration, causing FTP to supply a NIL whenever it would otherwise obtain a message from

FTPAccessories.

Exceptional conditions reported via FTPError include not only those explicitly detected by FTP

but also those that originate as signals within the local file, mail, or communication system.

Furthermore, many of the errors reported by a local FTP User are actually detected by the remote

FTP Server. In such cases, the User relays to the client the message supplied by the Server. If the

Server provides no message, the User supplies the appropriate message from FTPAccessories in its place. Regardless

of source, message STRINGs presented to the client may be assumed to remain intact only until

the signal is unwound.

The errors that FTP may report to the client are summarized below and are explained in detail in

Appendix A. The most prominent exceptional conditions which may be encounted by particular

procedures are also listed with the descriptions of those procedures throughout this document. The

errors classed below as protocol, internal, or unidentified errors theoretically can be generated by

nearly every procedure. Because they are so pervasive in principle and rare in practice, such errors

are excluded from the descriptions of the individual procedures to which they nevertheless apply:

FTPError: SIGNAL [ftpError: FtpError, message: STRING];

FtpError: TYPE = {

 -- communication errors

 noSuchHost, connectionTimedOut, connectionRejected, connectionClosed,
noRouteToNetwork, noNameLookupResponse,

 -- credential errors

 credentialsMissing, noSuchPrimaryUser, noSuchSecondaryUser,
incorrectPrimaryPassword, incorrectSecondaryPassword,
requestedAccessDenied,

 -- file errors

 illegalFilename, noSuchFile, fileAlreadyExists, fileBusy, noRoomForFile,
fileDataError,

 -- dump errors

 errorBlockInDumpFile, unrecognizedDumpFileBlock, dumpFileBlockTooLong,
dumpFileCheckSumInError,

 -- mail errors

 noValidRecipients, noSuchMailbox, noSuchForwardingHost, noSuchDmsName,

Mesa FTP Functional Specification 4

 -- client errors

 filePrimitivesNotSpecified, mailPrimitivesNotSpecified,
communicationPrimitivesNotSpecified, filesModuleNotLoaded,
mailModuleNotLoaded, noConnectionEstablished,
connectionAlreadyEstablished, connectionNotOpenedForFiles,
connectionNotOpenedForMail, illegalProcedureCallSequence,
fileGroupDesignatorUnexpected, filenameUnexpected,

 -- protocol errors

 protocolVersionMismatch, functionNotImplemented,
inputDiscontinuityUnexpected, outputDiscontinuityUnexpected,
illegalProtocolSequence, protocolParameterListMissing,
illegalProtocolParameterList, unrecognizedProtocolParameter,
missingProtocolParameter, duplicateProtocolParameter,
illegalBooleanParameter, illegalFileAttribute, illegalFileType,
unrecognizedProtocolErrorCode, noSuchRecipientNumber,
duplicateMailboxException, unrecognizedMailboxExceptionErrorCode,
missingMessageLength, messageLongerThanAdvertised,
messageShorterThanAdvertised,

 -- internal errors

 stringTooLong, queueInconsistent, unexpectedEndOfFile,

 -- unidentified errors

 unidentifiedTransientError, unidentifiedPermanentError, unidentifiedError};

CommunicationError: TYPE = FtpError[noSuchHost..noNameLookupResponse];
CredentialError: TYPE = FtpError[credentialsMissing..requestedAccessDenied];
FileError: TYPE = FtpError[illegalFilename..fileDataError];
DumpError: TYPE = FtpError[errorBlockInDumpFile..dumpFileCheckSumInError];
MailError: TYPE = FtpError[noValidRecipients..noSuchDmsName];
ClientError: TYPE = FtpError[filePrimitivesNotSpecified..filenameUnexpected];
ProtocolError: TYPE =

FtpError[protocolVersionMismatch..messageShorterThanAdvertised];
InternalError: TYPE = FtpError[stringTooLong..unexpectedEndOfFile];
UnidentifiedError: TYPE =

FtpError[unidentifiedTransientError..unidentifiedError];

Mesa FTP Functional Specification 5

2. FTP

2.1. Program Management Primitives

FTP provides two procedures for controlling its overall operation. The first, FTPInitialize,

initializes FTP for operation by preparing the necessary internal data structures. The client must

call this procedure before calling any other FTP procedures. Redundant calls simply increment a use

count:

FTPInitialize: PROCEDURE;

The second procedure, FTPFinalize, finalizes FTP’s operation by disposing of FTP’s internal data

structures after the client has destroyed any Users and Listener it created. The client must call no

other FTP procedures (except FTPInitialize) once this procedure has been invoked. Calls

corresponding to redundant calls to FTPInitialize simply decrement the use count:

FTPFinalize: PROCEDURE;

Mesa FTP Functional Specification 6

3. FTP User

3.1. Program Management Primitives

FTP provides two procedures for controlling local FTP Users, several of which can coexist within a

single host. The first procedure, FTPCreateUser, creates a new FTP User founded upon the

specified file and communication systems; the FTP User will access those systems solely by means

of the specified filePrimitives and communicationPrimitives, respectively. The procedure

returns a handle, ftpuser, to the newly created FTP User, which the client must retain and later

present to any of the other procedures described in this section it invokes. The ftpuser is a

pointer to a private record containing all of the state information the FTP User requires to function

properly:

FTPCreateUser: PROCEDURE [filePrimitives: FilePrimitives,
communicationPrimitives: CommunicationPrimitives] RETURNS [ftpuser:
FTPUser];

FilePrimitives: TYPE = POINTER TO FilePrimitivesObject;
FilePrimitivesObject: TYPE = RECORD [...];
CommunicationPrimitives: TYPE = POINTER TO CommunicationPrimitivesObject;
CommunicationPrimitivesObject: TYPE = RECORD [...];
FTPUser: TYPE = POINTER TO FTPUserObject;
FTPUserObject: PRIVATE TYPE = RECORD[...];

Exceptions: communicationPrimitivesNotSpecified.

The filePrimitives parameter supplied by the client is a pointer to a public record containing

descriptors for all of the procedures an FTP User requires to manipulate the local file system. An

implementation for the Alto file system is provided as part of FTP, as described in Section 5.1. The

client is also free to supply its own file primitives. The reader is referred to Appendix E for

detailed motivation for and instruction in the use of this option.

The communicationPrimitives parameter supplied by the client is a pointer to a public record

containing descriptors for all of the procedures an FTP User requires to manipulate the local

communication system. An implementation for the Pup communication system is provided as part

of FTP, as described in Section 5.3. The client is also free to supply its own communication

primitives. The reader is referred to Appendix G for detailed motivation for and instruction in the

use of this option.

Mesa FTP Functional Specification 7

The second procedure, FTPDestroyUser, destroys a previously created FTP User, reclaiming any

local resources allocated to it and, if necessary, closing its connection to the remote FTP Server

(which may involve a delay as control messages are exchanged via the network):

FTPDestroyUser: PROCEDURE [ftpuser: FTPUser];

FTPUser: TYPE = POINTER TO FTPUserObject;
FTPUserObject: PRIVATE TYPE = RECORD[...];

3.2. Connection Management Primitives

FTP provides three procedures for controlling communication with remote FTP Servers. The first,

FTPOpenConnection, establishes a connection to an FTP Server at the designated host for the

purpose of manipulating either remote files, mail, or filesAndMail. A single FTP User can

support only one open connection at a time. The FTP User makes contact with the appropriate server(s) based

upon the client’s stated purpose. Unless remoteInsignia is NIL, the procedure returns the insignia of

the remote FTP Server. An insignia is textual information (for example, the Server’s host name,

version number, and date of installation) which the client may wish to present to its human user.
File and mail servers supply separate insignias. If purpose is filesAndMail, FTP concatenates the two (separated by a

carriage return), unless the two insignias are identical, in which case it returns just one of them:

FTPOpenConnection: PROCEDURE [ftpuser: FTPUser, host: STRING, purpose:
Purpose, remoteInsignia: STRING];

Purpose: TYPE = {files, mail, filesAndMail};

Exceptions: noSuchHost, connectionTimedOut, connectionRejected, connectionClosed, noRouteToNetwork,

noNameLookupResponse, filePrimitivesNotSpecified, filesModuleNotLoaded, mailModuleNotLoaded,

connectionAlreadyEstablished.

The second procedure, FTPRenewConnection, prevents a previously established but long

inactive connection from being timed out and broken by the remote FTP Server. A Mesa FTP

Server, for example, will break its connection to a remote FTP User after three minutes of

inactivity. To preserve its connection, the client must punctuate such idle periods with calls to

FTPRenewConnection (which may be invoked at any time, except during a remote file

enumeration or dump file inventory, or during mail delivery or retrieval). Because file and mail operations are

implemented by different servers, the client’s connection to one can be timed out because of inactivity while its

connection to the other remains intact. To avoid such anomalies, the client must take care to exercise each connection

with the required frequency:

FTPRenewConnection: PROCEDURE [ftpuser: FTPUser];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, noConnectionEstablished,

illegalProcedureCallSequence.

Mesa FTP Functional Specification 8

The third procedure, FTPCloseConnection, breaks a previously established connection to a

remote FTP Server. Redundant calls are treated as no operations:

FTPCloseConnection: PROCEDURE [ftpuser: FTPUser];

The three connection management procedures described above block the client until the connection

to the remote FTP Server has been established, renewed, or broken, respectively (which may

involve a delay as control messages are exchanged via the network).

3.3. File Access and Specification Primitives

FTP provides two procedures for obtaining access to remote files and for assisting in the

formulation of remote filenames. The first, FTPSetCredentials, specifies the primary or

secondary credentials--user and password--that are implicitly to be employed in all

subsequent procedure calls that attempt to access a remote file or mailbox. The credentials (that is,

the contents of the STRINGs) are saved by FTPSetCredentials and transmitted to the remote

FTP Server for inspection only when access to the remote file system is actually attempted. Primary

credentials typically identify the user upon whose behalf the access is attempted (a la the Tenex

Login command) while secondary credentials, when necessary, usually identify another area of the

file system--in addition to the user’s own workspace--to which the user claims access (a la the Tenex

Connect command). By setting both user and password to NIL, the client effectively retracts any

previously specified credentials:

FTPSetCredentials: PROCEDURE [ftpuser: FTPUser, status: Status, user, password:
STRING];

Status: TYPE = {primary, secondary};

The second procedure, FTPSetFilenameDefaults, specifies the primary or secondary
virtualFilename that is implicitly to be employed (in combination with an explicitly specified

primary or secondary absolute filename) in all subsequent procedure calls that attempt to

manipulate a remote file. The reader is referred to Section 1.3 for a discussion of virtual filenames

and their use. The virtual filename (that is, the contents of the RECORD and STRINGs) is saved by

FTPSetFilenameDefaults and transmitted to the remote FTP Server for interpretation only

when access to the remote file system is actually attempted. In this context, the adjectives primary

and secondary refer to the first and second remote filenames in a procedure’s argument list. To

rename a file, for example, the client must, in general, specify two virtual filenames, one (primary)

specifying the file to be renamed, the other (secondary) its new name. By setting one or more

components of the virtualFilename to NIL, the client effectively declines to specify, or retracts

previously specified component value(s):

FTPSetFilenameDefaults: PROCEDURE [ftpuser: FTPUser, status: Status,
virtualFilename: VirtualFilename];

Status: TYPE = {primary, secondary};

Mesa FTP Functional Specification 9

VirtualFilename: TYPE = POINTER TO VirtualFilenameObject;
VirtualFilenameObject: TYPE = RECORD [device, directory, name, version: STRING];

3.4. File Enumeration Primitives

FTP provides one procedure, FTPEnumerateFiles, for enumerating the members of a remote file

group. For each file in the group whose file group designator, remoteFiles, is specified, the

procedure supplies to a client-provided procedure, processFile, the client’s processFileData,

the file’s absolute and virtual filenames, and a variety of other file information (FileInfo). The

information provided in FileInfo is only as reliable as the remote file server. Bravo and/or the Alto file

system are notoriously unreliable about file lengths (byteCount). The order in which filenames are presented

to the client is host-dependent; alphabetical order is typical. The reader is referred to Section 1.3 for a

discussion of virtual filenames and their use. Unknown or unspecified file information is rendered

as unknown, zero, or NIL, as appropriate:

FTPEnumerateFiles: PROCEDURE [ftpuser: FTPUser, remoteFiles: STRING, intent:
Intent,
processFile: PROCEDURE [UNSPECIFIED, STRING, VirtualFilename, FileInfo],
processFileData: UNSPECIFIED];

Intent: TYPE = {enumeration, retrieval, deletion, renaming, unspecified};
VirtualFilename: TYPE = POINTER TO VirtualFilenameObject;
VirtualFilenameObject: TYPE = RECORD [device, directory, name, version: STRING];
FileInfo: TYPE = POINTER TO FileInfoObject;
FileInfoObject: TYPE = RECORD [

fileType: FileType, byteSize: CARDINAL, byteCount: LONG CARDINAL,
creationDate, writeDate, readDate, author: STRING];

FileType: TYPE = {text, binary, unknown};

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, credentialsMissing,

noSuchPrimaryUser, noSuchSecondaryUser, incorrectPrimaryPassword, incorrectSecondaryPassword,

requestedAccessDenied, illegalFilename, noSuchFile, noRoomForFile, fileDataError,

noConnectionEstablished, connectionNotOpenedForFiles, illegalProcedureCallSequence.

The intent parameter supplied by the client declares the manner in which the client expects to

manipulate the files whose names are presented to it. This information enables the FTP User to

select intelligently from among several possible protocol strategies for effecting the enumeration.

Since most such strategies occupy the remote FTP Server until the enumeration is complete, FTP

prohibits processFile from calling local FTP User procedures, other than those implied by

intent, that communicate with the remote Server. The client may specify any of the following

intents:

1. An intent of enumeration declares that the client simply seeks the names of (and file

information for) the members of the designated file group (for presentation to a human user,

for example) and intends to manipulate the files in no other way during the course of the

enumeration. More specifically, the client declares (and FTP insures) that processFile will

make no calls to local FTP User procedures that communicate with the remote FTP Server.

Mesa FTP Functional Specification 10

2. An intent of retrieval declares that the client seeks to retrieve some or all (but possibly

none) of the designated files and to manipulate them in no other way during the course of the

enumeration. The client’s processFile procedure may retrieve the file whose name is

presented to it by supplying that name to the FTPRetrieveFile procedure described in

Section 3.5. More specifically, then, the client declares (and FTP insures) that processFile
will make no calls to local FTP User procedures (other than FTPRetrieveFile) that

communicate with the remote FTP Server.

3. An intent of deletion declares that the client seeks to delete some or all (but possibly

none) of the designated files and to manipulate them in no other way during the course of the

enumeration. The client’s processFile procedure may delete the file whose name is

presented to it by supplying that name to the FTPDeleteFile procedure described in Section

3.6. More specifically, then, the client declares (and FTP insures) that processFile will make

no calls to local FTP User procedures (other than FTPDeleteFile) that communicate with the

remote FTP Server.

4. An intent of renaming declares that the client seeks to rename some or all (but possibly

none) of the designated files and to manipulate them in no other way during the course of the

enumeration. The client’s processFile procedure may rename the file whose name is

presented to it by supplying that name to the FTPRenameFile procedure described in

Section 3.6. More specifically, then, the client declares (and FTP insures) that processFile
will make no calls to local FTP User procedures (other than FTPRenameFile) that

communicate with the remote FTP Server. In point of fact, renaming is currently a synonym for

unspecified (described below), and all filenames are spooled onto a local scratch file before any are presented to the

client.

5. An intent of unspecified declares that the client seeks unconstrained access to the

designated files. The client’s processFile procedure may retrieve, delete, or rename the file

whose name is presented to it (or any other file, for that matter) by calling the appropriate

FTP User procedure. More specifically, processFile may make calls to any local FTP User

procedures it chooses, since FTP will have spooled all of the filenames onto a local scratch file

(which FTP promptly deletes once it has served its purpose) before any are presented to the

client.

3.5. File Transfer Primitives

FTP provides two procedures for transferring files between the local and remote file systems. The

first, FTPStoreFile, stores in the remote file system a copy of the localFile the name of which

and fileType--text or binary--are specified, creating a new remoteFile with the indicated name

and returning its size in bytes, byteCount. The fileType parameter supplied by the client is used

by the remote FTP Server in determining how to store the file in its file system (for example, on

Maxc, text files are stored as 7-bit bytes, binary files as 8-bit bytes). The client may report the file’s

type as unknown, in which case the local FTP User will attempt to determine it. The reader is

referred to the discussion of the OpenFile procedure in Appendix E for a description of the

algorithm used in making this determination:

Mesa FTP Functional Specification 11

FTPStoreFile: PROCEDURE [ftpuser: FTPUser, localFile, remoteFile: STRING, fileType:
FileType] RETURNS [byteCount: LONG CARDINAL];

FileType: TYPE = {text, binary, unknown};

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, credentialsMissing,

noSuchPrimaryUser, noSuchSecondaryUser, incorrectPrimaryPassword, incorrectSecondaryPassword,

requestedAccessDenied, illegalFilename, noSuchFile, fileAlreadyExists, fileBusy, noRoomForFile,

fileDataError, noConnectionEstablished, connectionNotOpenedForFiles, illegalProcedureCallSequence,

filenameUnexpected.

Once the file has been stored, the client may invoke the FTPNoteFilenameUsed primitive

described in Appendix D to determine the fully qualified absolute and/or virtual filename used by

the remote FTP Server. The client can effect the remote storage of a whole group of local files by

using FTPStoreFile (to store a single file) in conjunction with the EnumerateFiles procedure

described in Appendix E (to enumerate the files to be stored). The FTPStoreFile procedure has

yet another use in connection with the construction of remote dump files, as described in Appendix

B.

The second procedure, FTPRetrieveFile, stores in the local file system a copy of the remoteFile
whose name and fileType--text or binary--are specified, creating a new localFile with the

indicated name and returning its size in bytes, byteCount. In rare cases, the fileType parameter

supplied by the client is used by the remote FTP Server to disambiguate between two like-named

files of different types. The client may (and often does) report the file’s type as unknown, in

which case the remote FTP Server must select a file without it:

FTPRetrieveFile: PROCEDURE [ftpuser: FTPUser, localFile, remoteFile: STRING,

fileType: FileType] RETURNS [byteCount: LONG CARDINAL];

FileType: TYPE = {text, binary, unknown};

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, credentialsMissing,

noSuchPrimaryUser, noSuchSecondaryUser, incorrectPrimaryPassword, incorrectSecondaryPassword,

requestedAccessDenied, illegalFilename, noSuchFile, fileBusy, noRoomForFile, fileDataError,

errorBlockInDumpFile, unrecognizedDumpFileBlock, dumpFileBlockTooLong, dumpFileCheckSumInError,

noConnectionEstablished, connectionNotOpenedForFiles, illegalProcedureCallSequence,

fileGroupDesignatorUnexpected, filenameUnexpected.

Once the file has been retrieved, the client may invoke the FTPNoteFilenameUsed primitive

described in Appendix D.3 to determine the fully qualified absolute and/or virtual filename used by

the remote FTP Server. The client can effect the local storage of a whole group of remote files by

using FTPRetrieveFile (to retrieve a single file) in conjunction with the FTPEnumerateFiles
procedure described in Section 3.4 (to enumerate the files to be retrieved). The FTPRetrieveFile
procedure has yet another use in connection with the loading of remote dump files, as described in

Appendix B.

Mesa FTP Functional Specification 12

3.6. File Manipulation Primitives

FTP provides two procedures for manipulating existing remote files. The first, FTPDeleteFile,

deletes the specified remoteFile, reclaiming the space it occupied on secondary storage:

FTPDeleteFile: PROCEDURE [ftpuser: FTPUser, remoteFile: STRING];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, credentialsMissing,

noSuchPrimaryUser, noSuchSecondaryUser, incorrectPrimaryPassword, incorrectSecondaryPassword,

requestedAccessDenied, illegalFilename, noSuchFile, fileBusy, fileDataError, noConnectionEstablished,

connectionNotOpenedForFiles, illegalProcedureCallSequence, fileGroupDesignatorUnexpected,

filenameUnexpected.

Once the file has been deleted, the client may invoke the FTPNoteFilenameUsed primitive

described in Appendix D to determine the fully qualified absolute and/or virtual filename used by

the remote FTP Server. The client can effect the deletion of a whole group of remote files by using

FTPDeleteFile (to delete a single file) in conjunction with the FTPEnumerateFiles procedure

described in Section 3.4 (to enumerate the files to be deleted).

The second procedure, FTPRenameFile, renames the remote file the current name for which is

specified by currentFile, assigning it the new remote name specified by newFile:

FTPRenameFile: PROCEDURE [ftpuser: FTPUser, currentFile, newFile: STRING];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, credentialsMissing,

noSuchPrimaryUser, noSuchSecondaryUser, incorrectPrimaryPassword, incorrectSecondaryPassword,

requestedAccessDenied, illegalFilename, noSuchFile, fileAlreadyExists, fileBusy, noRoomForFile,

fileDataError, noConnectionEstablished, connectionNotOpenedForFiles, illegalProcedureCallSequence,

filenameUnexpected.

The client can effect the renaming of a whole group of remote files by using FTPRenameFile (to

rename a single file) in conjunction with the FTPEnumerateFiles procedure described in Section

3.4 (to enumerate the files to be renamed).

Mesa FTP Functional Specification 13

4. FTP Listener

4.1. Program Management Primitives

FTP provides two procedures for controlling local FTP Listeners, several of which can coexist

within a single host. The first procedure, FTPCreateListener, creates a new FTP Listener for

the purpose of allowing remote manipulation of either local files, mail, or filesAndMail. The

FTP Listener monitors the appropriate well-known socket(s) based upon the client’s stated purpose. The newly

created FTP Listener and any FTP Servers it creates are founded upon the specified file, mail, and

communication systems and will access those systems solely by means of the specified

filePrimitives, mailPrimitives, and communicationPrimitives, respectively. A Server is

destroyed when the User breaks its connection to it or after four minutes of inactivity. The

procedure returns a handle, ftplistener, to the newly created FTP Listener, which the client must

retain and later present to the FTPDestroyListener procedure described below. The

ftplistener is a pointer to a private record containing all of the state information the FTP Listener

requires to function properly:

FTPCreateListener: PROCEDURE [purpose: Purpose, filePrimitives: FilePrimitives,
mailPrimitives: MailPrimitives, communicationPrimitives:
CommunicationPrimitives,

backstopServer: POINTER TO BackstopServer,
backstopServerData: UNSPECIFIED,
filter: PROCEDURE [STRING, Purpose] _ RejectNothing]
RETURNS [ftplistener: FTPListener];

RejectNothing: PROCEDURE [STRING, Purpose];
RejectThisConnection: ERROR [error: STRING];

Purpose: TYPE = {files, mail, filesAndMail};
FilePrimitives: TYPE = POINTER TO FilePrimitivesObject;
FilePrimitivesObject: TYPE = RECORD [...];
MailPrimitives: TYPE = POINTER TO MailPrimitivesObject;
MailPrimitivesObject: TYPE = RECORD [...];
CommunicationPrimitives: TYPE = POINTER TO CommunicationPrimitivesObject;
CommunicationPrimitivesObject: TYPE = RECORD [...];
BackstopServer: TYPE = PROCEDURE [backstopServerData: UNSPECIFIED, purpose:

SingularPurpose, originOfRequest, localInsignia: STRING, server: PROCEDURE];
SingularPurpose: TYPE = Purpose[files..mail];
FTPListener: TYPE = POINTER TO FTPListenerObject;
FTPListenerObject: PRIVATE TYPE = RECORD[...];

Exceptions: filePrimitivesNotSpecified, mailPrimitivesNotSpecified, communicationPrimitivesNotSpecified,

filesModuleNotLoaded, mailModuleNotLoaded.

The filePrimitives parameter supplied by the client is a pointer to a public record containing

descriptors for all of the procedures an FTP User requires to manipulate the local file system. An

implementation for the Alto file system is provided as part of FTP, as described in Section 5.1. The

client is also free to supply its own file primitives. The reader is referred to Appendix E for

Mesa FTP Functional Specification 14

detailed motivation for and instruction in the use of this option.

The mailPrimitives parameter supplied by the client is a pointer to a public record containing

descriptors for all of the procedures an FTP Server requires to manipulate the local mail system. A

primitive set for a simple-minded mail system based upon the file primitives specified by the client

are provided as part of the FTP implementation, as described in Section 5.2. The client is also free

to supply its own mail primitives. The reader is referred to Appendix F for detailed motivation for

and instruction in the use of this option.

The communicationPrimitives parameter supplied by the client is a pointer to a public record

containing descriptors for all of the procedures an FTP User requires to manipulate the local

communication system. An implementation for the Pup communication system is provided as part

of FTP, as described in Section 5.3. The client is also free to supply its own communication

primitives. The reader is referred to Appendix G for detailed motivation for and instruction in the

use of this option.

The backstopServer and backstopServerData parameters optionally supplied (rather then

set to NIL) enable the client to monitor the creation, execution, and destruction of FTP Servers.

The reader is referred to Section 4.2 for detailed motivation for and instruction in the use of this

option.

An optional filter procedure may be used to reject undesired connections. This is useful to keep a

server from crashing because it runs out of resources. (The default doesn’t reject anything.) To

reject a connection, filter should raise the ERROR RejectThisConnection. The text will be be

returned to the machine attempting to establish the connection. If a connection is rejected,

backstopServer is never called. If filter returns the connection will be accepted.

The second procedure, FTPDestroyListener, destroys a previously created FTP Listener, either

destroying any of its Servers that remain in existence or waiting for them to terminate normally, as

directed by abortServers, and reclaiming any local resources allocated to it. Destroying an FTP

Server requires closing its connection to the remote FTP User (which may involve a delay as control

messages are exchanged via the network):

FTPDestroyListener: PROCEDURE [ftplistener: FTPListener, abortServers:
BOOLEAN];

FTPListener: TYPE = POINTER TO FTPListenerObject;
FTPListenerObject: PRIVATE TYPE = RECORD[...];

4.2. Server Monitoring

At least in principle, an FTP Listener is a process that creates local FTP Servers in response to

connection requests from remote FTP Users. Each FTP Server is also a process. When a remote

FTP User terminates its dialogue with a local FTP Server, the latter destroys itself. In the absence

of more specific instructions from the client, this background activity continues, unattended and

unobserved, until the client orders its termination via a call to FTPDestroyListener.

Mesa FTP Functional Specification 15

If it wishes, however, the client can monitor or, to a limited extent, influence the activity of local

FTP Servers by supplying to FTPCreateListener a server backstop procedure to sit directly above

each FTP Server in its thread of control. By means of such a procedure, a client can, for example:

1. dictate the handling of exceptional conditions encountered by an FTP Server.

2. control access to the local file or mail system on a per-host or per-network basis.

3. maintain a log of Listener/Server activity.

The client’s server backstop is called upon to oversee the execution of each new FTP Server. As

parameters, it receives the backstopServerData supplied by the client in its call to

FTPCreateListener; the purpose--either files or mail (never filesAndMail)--for which the

new FTP Server is being created; the remote host, originOfRequest, on which the requesting

FTP User resides; the localInsignia of the FTP Server, which the remote FTP User will return to

its client via FTPOpenConnection; and a procedure, server, that represents the top-most level

of the FTP Server itself:

BackstopServer: TYPE = PROCEDURE [backstopServerData: UNSPECIFIED, purpose:
SingularPurpose, originOfRequest, localInsignia: STRING, server: PROCEDURE];

The server backstop is called immediately prior to the birth of each new FTP Server. It should

initiate the server by calling it. Before doing so, it may modify or replace the localInsignia to

be returned to the remote client. The insignia is textual information (for example, the Server’s host

name, version number, and date of installation) which the remote client may wish to present to its

human user.

The server backstop sits immediately atop the server throughout its lifetime and, therefore, by

means of an appropriate catchphrase, can note and/or influence the processing of each FTPError
encountered by the server. If the backstop RESUMEs such a SIGNAL, the server will abort the

transaction that provoked the error, report the error to the remote FTP User, and await the

initiation of another transaction. Before resuming the signal, the backstop may override (by

modification) the message that will otherwise be reported to the remote FTP User. If the backstop

CONTINUEs the signal and returns to its caller, the server will terminate the remote FTP User’s

session, the connection will be closed, and the local FTP Server destroyed.

When the session is voluntarily terminated by the remote FTP User, the server will return to the

server backstop. At that point, the backstop should return to its caller, and the local FTP Server

will be destroyed.

The default server backstop provided by FTP simply catches and dispatches FTPErrors. It

CONTINUEs the first CommunicationError or ProtocolError. Unless the catching of

unidentified errors has been disabled via FTPCatchUnidentifiedErrors, it also CONTINUEs the

first UnidentifiedError. All other errors it RESUMEs.

Notice that the interfaces do not provide any convient way for the client provided file system to

interact with a particular instance of a server. For example, it is difficult for discover the address of

the remote client so that it may be included in an error message. One possible solution to this

Mesa FTP Functional Specification 16

problem is to provide a backstop procedure, and call it via the SIGNALing mechanisim. This

requires catching of unidentified errors to be disabled.

Mesa FTP Functional Specification 17

5. FTP Support Systems

5.1. File Primitives

FTP provides a procedure for obtaining a file primitive set of the sort required by

FTPCreateUser and FTPCreateListener. AltoFilePrimitives, returns a pointer to a public

record containing descriptors for all of the procedures that an FTP User or Server requires to

manipulate the standard Alto file system. It, along with the file primitive set to which it provides

access, is implemented as a separate module(s), which must be bound together as described in

Appendix I:

AltoFilePrimitives: PROCEDURE RETURNS [filePrimitives: FilePrimitives];

FilePrimitives: TYPE = POINTER TO FilePrimitivesObject;
FilePrimitivesObject: TYPE = RECORD [...];

Alternatively, the client can provide its own local file system interface by constructing the record of

procedure descriptors it supplies to FTPCreateUser and/or FTPCreateListener. The reader is

referred to Appendix E for detailed motivation for and instruction in the use of this option.

5.2. Mail Primitives

FTP provides one procedure, SysMailPrimitives (alias SomeMailPrimitives), for obtaining

mail primitive sets of the sort required by FTPCreateListener. SysMailPrimitives returns a

pointer to a public record containing descriptors for all of the procedures that an FTP Server

requires to manipulate a simple-minded mail system implemented by means of the file primitives

supplied by the client:

SysMailPrimitives, SomeMailPrimitives: PROCEDURE RETURNS [mailPrimitives:
MailPrimitives];

MailPrimitives: TYPE = POINTER TO MailPrimitivesObject;
MailPrimitivesObject: TYPE = RECORD [...];

Alternatively, the client can provide its own local mail system interface by constructing the record of

procedure descriptors it supplies to FTPCreateListener. The reader is referred to Appendix F

for detailed motivation for and instruction in the use of this option.

5.3. Communication Primitives

FTP provides a procedure for obtaining a communication primitive set of the sort required by

FTPCreateUser and FTPCreateListener. PupCommunicationPrimitives, returns a

pointer to a public record containing descriptors for all of the procedures that an FTP User,

Listener, or Server requires to manipulate the standard Pup communication system:

PupCommunicationPrimitives: PROCEDURE RETURNS [communicationPrimitives:
CommunicationPrimitives];

Mesa FTP Functional Specification 18

CommunicationPrimitives: TYPE = POINTER TO CommunicationPrimitivesObject;
CommunicationPrimitivesObject: TYPE = RECORD [...];

Alternatively, the client can provide its own local communication system interface by constructing

the record of procedure descriptors it supplies to FTPCreateUser and/or FTPCreateListener.

The reader is referred to Appendix G for detailed motivation for and instruction in the use of this

option.

Mesa FTP Functional Specification 19

References

1. John Shoch, "A File Transfer Protocol Using the BSP -- 4th edition," 15 July 1978,

[Maxc1]<Pup>FtpSpec.press and FtpFigs.press

2. Ed Taft, "Pup Mail Transfer Protocol (Edition 6)," 11 February 1979,

[Maxc1]<Pup>MailTransfer.press

3. Dave Crocker, John Vittal, Ken Pogran, and Austin Henderson, "Standard for the Format of

ARPA Network Text Messages," 21 November 1977.

Mesa FTP Functional Specification 20

Appendix A: Error Summary

A.1. Introduction

Exceptional conditions encountered by FTP are reported to the client by means of a single signal,

FTPError. FTPError has two parameters that pinpoint the error: an enumerated type, ftpError,

to be interpreted by the client; and a STRING, message, to be interpreted by the human user.

Listed alphabetically below are the values that ftpError can assume, along with descriptions of the

causes of these errors and, where appropriate, their possible remedies.

A.2. Errors

communicationPrimitivesNotSpecified

A client error signalled by FTPCreateUser or FTPCreateListener. The

communicationPrimitives parameter supplied to one of these procedures is NIL. Provided the

corresponding program module has been bound into the client’s configuration (see Appendix I), an

acceptable value for this parameter is the one returned by the FTP procedure

PupCommunicationPrimitives.

connectionAlreadyEstablished

A client error signalled by FTPOpenConnection. The specified ftpuser already supports an

open connection. A local FTP User can simultaneously support at most one connection to a remote

FTP Server. The client should either close the existing connection via FTPCloseConnection or

create another FTP User via FTPCreateUser.

connectionClosed

A communication error signalled by many primitives. The connection to the remote FTP Server (or

User) has been closed. It was either deliberately closed by the Server (User), or it was closed by

the Server’s (User’s) communication system when the Server (User) crashed. The client should clear

the local FTP User of the connection-closed condition via FTPCloseConnection, and then try to

reestablish communication with (a new FTP Server at) the remote host by recalling

FTPOpenConnection. A typical FTP Server will break off communication with a remote FTP

User that allows its connection to the Server to remain idle for more than a few minutes. The

client should, therefore, either punctuate such idle periods with calls to FTPRenewConnection
or be prepared to reestablish the connection whenever it discovers it closed.

connectionNotOpenedForFiles

A client error signalled by most file primitives. A file operation has been attempted using a

connection that was opened for mail operations only. The client should close the existing

connection via FTPCloseConnection and reopen it via a call to FTPOpenConnection with

purpose specified as either files or filesAndMail.

connectionNotOpenedForMail

Mesa FTP Functional Specification 21

A client error signalled by most mail primitives. A mail operation has been attempted using a

connection that was opened for file operations only. The client should close the existing connection

via FTPCloseConnection and reopen it via a call to FTPOpenConnection with purpose
specified as either mail or filesAndMail.

connectionRejected

A communication error signalled by FTPOpenConnection. Either no FTP Listener is resident in

the remote host, or that Listener is rejecting requests for new connections for lack of resources. At

a later time, the client should reattempt connection via FTPOpenConnection.

connectionTimedOut

A communication error signalled by many primitives. Either the remote FTP Server (or User) has

crashed, or its communication hardware has broken and effectively cut it off from the local FTP

User (Server). The client should clear the local FTP User of the connection-timed-out condition via

FTPCloseConnection, and at a later time try to reestablish communication with (a new FTP

Server at) the remote host by recalling FTPOpenConnection.

credentialsMissing

A credentials-related client or user error signalled by many primitives. Before it can carry out the

requested operation, the remote FTP Server requires the local user’s credentials. The client should

supply them via FTPSetCredentials and then reattempt the operation.

dumpFileBlockTooLong

A dump file format error signalled by FTPInventoryDumpFile or FTPRetrieveFile. One or

more of the blocks within the dump file is declared by its header to contain more than 256 bytes of

data. The program that created the dump file is in error, and the dump file cannot be read by

FTP.

dumpFileCheckSumInError

A dump file format error signalled by FTPInventoryDumpFile or FTPRetrieveFile. One or

more of the blocks within the dump file contains in its header a checksum that is inconsistent with

the data in the block. The contents of the file have been altered as a result of faulty storage or

transmission, and the dump file cannot be read by FTP.

duplicateMailboxException

A File Transfer Protocol (FTP) violation signalled by FTPIdentifyNextRejectedRecipient.
The remote FTP Server transmitted to the local FTP User, two or more mailbox exceptions for a

single recipient. This occurrence should be reported to your support group; it represents a bug in

the remote FTP implementation.

Mesa FTP Functional Specification 22

duplicateProtocolParameter

A File Transfer Protocol (FTP) violation signalled by many primitives. The remote FTP Server

transmitted to the local FTP User, two or more instances of a single parameter type in a single

parameter list. This occurrence should be reported to your support group; it represents a bug in

the remote FTP implementation.

errorBlockInDumpFile

A dump file error signalled by FTPInventoryDumpFile or FTPRetrieveFile. The program

that (partially) created the dump file failed to complete it successfully. The fact that an error

occurred while writing the file is explicitly and permanently recorded within it, and the dump file

cannot be read by FTP.

fileAlreadyExists

A file error reported by FTPStoreFile. A remote file with the specified name already exists

within the remote file system and cannot be overwritten. The client should either first delete the

existing file via FTPDeleteFile and then reattempt the store operation via FTPStoreFile, or

select another name or version for the remoteFile.

fileBusy

A file error reported by several primitives. Because the specified remote file is currently being

manipulated by another (either local or remote) client, the file operation requested by the local

client cannot now be carried out. The client should reattempt the operation at another time.

fileDataError

A file error reported by several primitives. A permanent error was encountered by the remote (or

local) file system while reading or writing the remote (local) file. The client may wish to reattempt

the operation, although the file may well be permanently damaged.

fileGroupDesignatorUnexpected

A client error signalled by FTPRetrievelFile or FTPDeleteFile. The specified remoteFile
designates a group of remote files, rather than a single remote file. To retrieve or delete all files in

the group, the client should enumerate the files via FTPEnumerateFiles and retrieve or delete

each file in turn via FTPRetrieveFile or FTPDeleteFile.

filenameUnexpected

A client error signalled by FTPRetrieveFile, FTPDeleteFile, or FTPRenameFile. A file

enumeration operation is in progress, and the specified remoteFile is not that most recently

identified to the client by FTPEnumerateFiles. During the course of an enumeration, the client

may manipulate the remote file system in no way other than that implied by

FTPEnumerateFiles’ intent parameter. Specifying an intent of unspecified grants the client

unconstrained access to the remote file system.

Mesa FTP Functional Specification 23

filePrimitivesNotSpecified

A client error signalled by FTPCreateUser or FTPCreateListener. The filePrimitives
parameter supplied to one of these procedures is NIL.

filesModuleNotLoaded

A client error signalled by FTPOpenConnection or FTPCreateListener. The client specified

a purpose of files or filesAndMail, yet the FTPUserFiles or FTPServerFiles module is

absent from the client’s configuration. The client should either obtain a more appropriate standard

configuration or, if none is currently provided, request one from his support group.

functionNotImplemented

A File Transfer Protocol (FTP) violation signalled by many primitives. The remote FTP Server

failed to recognize a valid operation code sent to it by the local FTP User. This occurrence should

be reported to your support group; it represents a bug or omission in the remote FTP

implementation.

illegalBooleanParameter

A File Transfer Protocol (FTP) violation signalled by several primitives. The remote FTP Server

transmitted to the local FTP User, a boolean parameter whose value was neither TRUE nor FALSE.

This occurrence should be reported to your support group; it represents a bug in the remote FTP

implementation.

illegalFileAttribute

A File Transfer Protocol (FTP) violation signalled by several primitives. The remote FTP Server

reported that it received an illegal file attribute parameter from the local FTP User. This

occurrence should be reported to your support group; it represents a bug in the local FTP

implementation.

illegalFilename

A file error signalled by many primitives. The specified local or remote filename violates the syntax

conventions of the local or remote file system. The client should correct the filename and reattempt

the operation.

illegalFileType

A File Transfer Protocol (FTP) violation signalled by several primitives. The remote FTP Server

(or User) transmitted to the local FTP User (or Server) a file type parameter the value of which was

neither TEXT nor BINARY. This occurrence should be reported to your support group; it represents

a bug in the remote FTP implementation.

illegalProcedureCallSequence

A client error signalled by several primitives. A composite operation (for example, the creation of a

dump file) involving the successive invocation of several FTP primitives is in progress. The

requested operation cannot be carried out until that composite operation is completed.

Mesa FTP Functional Specification 24

illegalProtocolParameterList

A File Transfer Protocol (FTP) violation signalled by many primitives. The remote FTP Server (or

User) transmitted an ill-formed parameter list to the local FTP User (or Server). This occurrence

should be reported to your support group; it represents a bug in the remote FTP implementation.

illegalProtocolSequence

A File Transfer Protocol (FTP) violation signalled by many primitives. The remote FTP Server (or

User) transmitted to the local FTP User (or Server) a command or reply that was out of place in

the protocol sequence. This occurrence should be reported to your support group; it represents a

bug in the remote FTP implementation.

incorrectPrimaryPassword

A credentials-related client or user error signalled by many primitives. The primary password
supplied to the remote FTP Server via FTPSetCredentials is incorrect. The client should supply

a valid user name and its associated password via FTPSetCredentials and then reattempt the

operation.

incorrectSecondaryPassword

A credentials-related client or user error signalled by many primitives. The secondary password
supplied to the remote FTP Server via FTPSetCredentials is incorrect. The client should supply

a valid user name and its associated password via FTPSetCredentials and then reattempt the

operation.

inputDiscontinuityUnexpected

A File Transfer Protocol (FTP) violation signalled by many primitives. The remote FTP Server (or

User) transmitted a truncated command to the local FTP User (or Server). This occurrence should

be reported to your support group; it represents a bug in the remote FTP implementation.

mailModuleNotLoaded

A client error signalled by FTPCreateListener. The client specified a purpose of mail or

filesAndMail, yet the FTPUserMail or FTPServerMail module is absent from the client’s

configuration. The client should either obtain a more appropriate standard configuration or, if none

is currently provided, request one from his support group.

mailPrimitivesNotSpecified

A client error signalled by FTPCreateListener. The mailPrimitives parameter supplied to this

procedure is NIL. Provided the corresponding program module has been bound into the client’s

configuration (see Appendix I), acceptable values for this parameter include those returned by the

FTP procedures SysMailPrimitives and SomeMailPrimitives.

Mesa FTP Functional Specification 25

messageLongerThanAdvertised

A File Transfer Protocol (FTP) violation signalled by FTPRetrieveBlockOfMessage,

FTPIdentifyNextMessage, or FTPEndRetrievalOfMessages. The remote FTP Server

transmitted to the local FTP User a message that was longer than indicated by the byte count that

preceded the message. This occurrence should be reported to your support group; it represents a

bug in the remote FTP implementation.

messageShorterThanAdvertised

A File Transfer Protocol (FTP) violation signalled by FTPRetrieveBlockOfMessage,

FTPIdentifyNextMessage, or FTPEndRetrievalOfMessages. The remote FTP Server

transmitted to the local FTP User a message that was shorter than indicated by the byte count that

preceded the message. This occurrence should be reported to your support group; it represents a

bug in the remote FTP implementation.

missingMessageLength

A File Transfer Protocol (FTP) violation signalled by FTPIdentifyNextMessage or

FTPEndRetrievalOfMessages. The remote FTP Server failed to transmit to the local FTP

User the length of the message that was to follow. This occurrence should be reported to your

support group; it represents a bug in the remote FTP implementation.

missingProtocolParameter

A File Transfer Protocol (FTP) violation signalled by many primitives. The remote FTP User (or

Server) failed to transmit a required parameter to the local FTP Server (or User). This occurrence

should be reported to your support group; it represents a bug in the remote FTP implementation.

noConnectionEstablished

A client error signalled by many primitives. The client has attempted to manipulate remote files or

mail without first having opened a connection to a remote FTP Server. The client should open a

connection via FTPOpenConnection and then reattempt the operation.

noNameLookupResponse

A communication error signalled by FTPOpenConnection. The specified host name cannot be

decoded because all of the name lookup servers on all of the directly connected networks (normally

just one Ethernet) are broken or are inaccessible. The client should reattempt connection via

FTPOpenConnection at a later time.

noRoomForFile

A file error reported by FTPStoreFile. The specified remote file cannot be written because the

remote disk allocation has been (or would be) exceeded. The client should delete one or more

unwanted files via FTPDeleteFile and then reattempt the store operation via FTPStoreFile.

Mesa FTP Functional Specification 26

noRouteToNetwork

A communication error signalled by many primitives. The internetwork has been partitioned in

such a way that the remote host is (no longer) accessible. The client should clear the no-route-to-

network condition via FTPCloseConnection and reattempt connection via

FTPOpenConnection at a later time.

noSuchFile

A file error signalled by many primitives. The specified local or remote file does not exist. The

client should respecify the local or remote filename and reattempt the operation.

noSuchHost

A communication error signalled by FTPOpenConnection. The specified host name is

unrecognized by the local name lookup server. The client should respecify the host name and

reattempt the operation via FTPOpenConnection.

noSuchMailbox

A mail error signalled by FTPBeginRetrievalOfMessages. The specified mailboxName is

unrecognized by the remote FTP Server. The client should respecify the mailbox name and

reattempt the operation via FTPBeginRetrievalOfMessages.

noSuchPrimaryUser

A credentials-related client or user error signalled by many primitives. The primary user name

supplied to the remote FTP Server via FTPSetCredentials is unrecognized by the Server (that is,

the name is invalid). The client should supply a valid user name and its associated password via

FTPSetCredentials and then reattempt the operation.

noSuchRecipientNumber

A File Transfer Protocol (FTP) violation signalled by FTPIdentifyNextRejectedRecipient.
The remote FTP Server transmitted to the local FTP User, a mailbox exception, the identifying

number of which was out of range. This occurrence should be reported to your support group; it

represents a bug in the remote FTP implementation.

noSuchSecondaryUser

A credentials-related client or user error signalled by many primitives. The secondary user name

supplied to the remote FTP Server via FTPSetCredentials is unrecognized by the Server (that is,

the name is invalid). The client should supply a valid user name and its associated password via

FTPSetCredentials and then reattempt the operation.

noValidRecipients

A mail error reported by FTPIdentifyNextRejectedRecipient. None of the recipients was

accepted by the remote FTP Server; all were rejected. The client should clear the error condition

via FTPEndDeliveryOfMessage, correct the distribution list, and reattempt the mail delivery

operation via FTPBeginDeliveryOfMessage.

Mesa FTP Functional Specification 27

outputDiscontinuityUnexpected

A File Transfer Protocol (FTP) violation signalled by many primitives. The local FTP User (or

Server) transmitted a truncated command to the remote FTP Server (or User). This occurrence

should be reported to your support group; it represents a bug in the local FTP implementation.

protocolParameterListMissing

A File Transfer Protocol (FTP) violation signalled by many primitives. The remote FTP User (or

Server) failed to transmit the required parameter list to the local FTP Server (or User). This

occurrence should be reported to your support group; it represents a bug in the remote FTP

implementation.

protocolVersionMismatch

A File Transfer Protocol (FTP) problem signalled by FTPOpenConnection or

FTPRenewConnection. The local FTP User and remote FTP Server disagree on the version

(that is, vintage) of the Protocol to be used. This occurrence should be reported to your support

group; it represents an incompatibility between the local and remote FTP implementations.

queueInconsistent

An error internal to the local FTP implementation signalled by several primitives. One of the

queues maintained by FTP (for example, the queue of FTP Servers created by a particular FTP

Listener) is not valid. This occurrence should be reported to your support group; it represents a

bug in the local FTP implementation.

requestedAccessDenied

A credentials error signalled by many primitives. The access privileges associated with the

previously specified primary or secondary credentials are insufficient to allow the remote FTP

Server to carry out the requested operation. The client may wish to supply the name and password

of a more privileged user via FTPSetCredentials and then reattempt the operation.

stringTooLong

An error internal to the local FTP implementation signalled by many primitives. An attempt has

been made to write more characters into a Mesa STRING than are permitted by its maximum length.

This occurrence should be reported to your support group; it may represent a bug in the local FTP

implementation.

unexpectedEndOfFile

An error internal to the local FTP implementation signalled by several primitives. An attempt has

been made to read more characters from a system or scratch file (for example, that used to buffer

the results of a file enumeration) than were previously written into that file. This occurrence should

be reported to your support group; it represents a bug in the local FTP implementation.

unidentifiedError

Mesa FTP Functional Specification 28

An unidentified error signalled by many primitives. The requested operation was aborted due to an

unidentified error. It is unknown whether the error is likely to recur. The client may wish,

therefore, to treat the error as a transient one and reattempt the operation.

unidentifiedPermanentError

An unidentified error signalled by many primitives. The requested operation was aborted due to an

unidentified error that is believed likely to recur if the operation is reattempted.

unidentifiedTransientError

An unidentified error signalled by many primitives. The requested operation was aborted due to an

unidentified error that is believed unlikely to recur. The client may wish, therefore, to reattempt

the operation.

unrecognizedDumpFileBlock

A dump file format error signalled by FTPInventoryDumpFile or FTPRetrieveFile. One or

more of the blocks within the dump file is of unknown type. The program that created the dump

file is in error, and the dump file cannot be read by FTP.

unrecognizedMailboxExceptionErrorCode

A File Transfer Protocol (FTP) violation signalled by FTPIdentifyNextRejectedRecipient.
The remote FTP Server transmitted an unrecognized mailbox exception error code to the local FTP

User. This occurrence should be reported to your support group; it represents a bug in the remote

FTP implementation or an incompatibility between the local and remote implementations.

unrecognizedProtocolErrorCode

A File Transfer Protocol (FTP) violation signalled by many primitives. The remote FTP Server (or

User) transmitted an unrecognized error code to the local FTP User (or Server). This occurrence

should be reported to your support group; it represents a bug in the remote FTP implementation or

an incompatibility between the local and remote implementations.

unrecognizedProtocolParameter

A File Transfer Protocol (FTP) violation signalled by many primitives. The remote FTP User (or

Server) transmitted an unrecognized parameter to the local FTP Server (or User). This occurrence

should be reported to your support group; it represents a bug in the remote FTP implementation or

an incompatibility between the local and remote implementations.

Mesa FTP Functional Specification 29

Appendix B: Dump Primitives

B.1. Introduction

Besides its more general file-manipulation primitives, FTP supplies a family of procedures for

composing and decomposing remote dump files, as described below. A dump file is a single

physical file that contains one or more logical files.

B.2. Inventory Primitives

FTP provides one procedure, FTPInventoryDumpFile, for enumerating the members of a remote

dump file. For each logical file in the physical file whose name, remoteDumpFile, is specified,

the procedure supplies to a client-provided procedure, processFile, the client’s

processFileData and the logical file’s (absolute) filename. The order in which filenames are

presented to the client is that in which the corresponding files were written into the dump file:

FTPInventoryDumpFile: PROCEDURE [ftpuser: FTPUser, remoteDumpFile: STRING,
intent: DumpFileIntent,
processFile: PROCEDURE [UNSPECIFIED, STRING, FileInfo],
processFileData: UNSPECIFIED];

DumpFileIntent: TYPE = Intent[enumeration..retrieval];
Intent: TYPE = {enumeration, retrieval, deletion, renaming, unspecified};
FileInfo: TYPE = POINTER TO FileInfoObject;
FileInfoObject: TYPE = RECORD [

fileType: FileType, byteSize: CARDINAL, byteCount: LONG CARDINAL,
creationDate, writeDate, readDate, author: STRING];

FileType: TYPE = {text, binary, unknown};

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, credentialsMissing,

noSuchPrimaryUser, noSuchSecondaryUser, incorrectPrimaryPassword, incorrectSecondaryPassword,

requestedAccessDenied, illegalFilename, noSuchFile, fileBusy, fileDataError, errorBlockInDumpFile,

unrecognizedDumpFileBlock, dumpFileBlockTooLong, dumpFileCheckSumInError, noConnectionEstablished,

connectionNotOpenedForFiles, illegalProcedureCallSequence, fileGroupDesignatorUnexpected.

Notice that the TYPE of processFile is the same as that required by FTPEnumerateFiles.

However, when processFile is called, the only interesting portion of the FileInfo is the

creationDate.

The intent parameter supplied by the client declares the manner in which the client expects to

manipulate the files the names of which are presented to it. This information enables the FTP User

to intelligently select from among several possible protocol strategies for effecting the inventory.

Since most such strategies occupy the remote FTP Server until the inventory is complete, FTP

prohibits processFile from calling local FTP User procedures, other than those implied by

intent, that communicate with the remote Server. The client may specify any of the following

intents:

Mesa FTP Functional Specification 30

1. An intent of enumeration declares that the client seeks the names of the members of the

designated dump file (for presentation to a human user, for example) and intends to

manipulate the files in no other way during the course of the enumeration. More

specifically, the client declares (and FTP insures) that processFile will make no calls to

local FTP User procedures that communicate with the remote FTP Server.

2. An intent of retrieval declares that the client seeks to retrieve some or all (but possibly

none) of the member files and to manipulate them in no other way during the course of the

enumeration. The client’s processFile procedure may retrieve the member file the name

of which is presented to it by supplying that name to the FTPRetrieveFile procedure

described elsewhere. The byteCount returned by FTPRetrieveFile will reflect only the (original) contents

of the member file; it will not reflect the additional bytes of formatting information contained in the dump file,

which are stripped away by FTP. More specifically, then, the client declares (and FTP insures)

that processFile will make no calls to local FTP User procedures (other than

FTPRetrieveFile) that communicate with the remote FTP Server.

Once the dump file has been inventoried, the client may invoke the FTPNoteFilenameUsed
primitive described in Appendix D to determine the fully qualified absolute and/or virtual filename

used by the remote FTP Server.

B.3. Construction Primitives

FTP provides two procedures for constructing remote dump files. The first, FTPBeginDumpFile,

initializes (to empty) a new remoteDumpFile and prepares it to receive member files via the

FTPStoreFile procedure described in Section 3.5. In the presence of an open dump file,

FTPStoreFile’s invocation is interpreted as a request to add the specified localFile to the open

dump file as a new member. FTPStoreFile’s remoteFile parameter is interpreted as the name

by which the file is to be known within the remote dump file. The byteCount returned by FTPStoreFile will

reflect only the (original) contents of the member file; it will not reflect the additional bytes of formatting information

contained in the dump file, which are supplied by FTP. Since the construction of a remote dump file

occupies the remote FTP Server until the process is complete, FTP prohibits the client from calling

local FTP User procedures (other than FTPStoreFile) that communicate with the remote FTP

Server until the dump file is complete (that is, until the FTPEndDumpFile procedure described

below has been invoked):

FTPBeginDumpFile: PROCEDURE [ftpuser: FTPUser, remoteDumpFile: STRING];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, credentialsMissing,

noSuchPrimaryUser, noSuchSecondaryUser, incorrectPrimaryPassword, incorrectSecondaryPassword,

requestedAccessDenied, illegalFilename, fileAlreadyExists, fileBusy, noRoomForFile, fileDataError,

noConnectionEstablished, connectionNotOpenedForFiles, illegalProcedureCallSequence.

The second procedure, FTPEndDumpFile, finalizes a newly created remote dump file after all

member files have been added to it. Only by calling this procedure can the client leave the dump

file construction mode entered via successful invocation of FTPBeginDumpFile:

Mesa FTP Functional Specification 31

FTPEndDumpFile: PROCEDURE [ftpuser: FTPUser];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, noRoomForFile, fileDataError,

noConnectionEstablished, connectionNotOpenedForFiles, illegalProcedureCallSequence.

Mesa FTP Functional Specification 32

Appendix C: Mail Primitives

C.1. Introduction

Besides its file-related primitives, FTP supplies a family of procedures for delivering mail to and

retrieving mail from remote mailboxes, as described below.

C.2. Delivery Primitives

FTP provides five procedures for delivering mail directly to remote mailboxes and/or for

forwarding it to its ultimate destination via a third party. The first procedure,

FTPBeginDeliveryOfMessage, initiates the delivery and/or forwarding of a single message to

one or more remote recipients. Successful invocation of this first mail delivery procedure conditions

the local FTP User to accept calls to the other four. Since the mail delivery process occupies the

remote FTP Server until delivery is complete, FTP prohibits the client from calling other local FTP

User procedures that communicate with the remote Server until FTPEndDeliveryOfMessage
procedure described below has been invoked:

FTPBeginDeliveryOfMessage: PROCEDURE [ftpuser: FTPUser];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, noConnectionEstablished,

connectionNotOpenedForMail, illegalProcedureCallSequence.

The second procedure, FTPSendRecipientOfMessage, identifies one of the message’s

recipients. After FTPBeginDeliveryOfMessage has been invoked, this procedure is called

repetitively until all of the recipients of the message have been specified. mailboxHostName and

dmsName are leftover from Mesa 4 and some old ideas about how to forward mail. They will be

deleted from the interface when FTP is converted to Mesa 6.

FTPSendRecipientOfMessage: PROCEDURE [ftpuser: FTPUser, mailboxName:
STRING,
mailboxHostName: STRING _ NIL, dmsName: STRING _ NIL];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, noConnectionEstablished,

connectionNotOpenedForMail, illegalProcedureCallSequence.

The third procedure, FTPIdentifyNextRejectedRecipient, reports to the client the rejection by

the remote FTP Server of one of the intended recipients of the message. Delivery of the message

succeeds or fails for each of its intended recipients independently. The procedure returns the

number, recipientNumber, of the rejected recipient (the numbering starting at one) and two

additional results that pinpoint the reason for the rejection: an enumerated type, recipientError,

to be interpreted by the client; and a STRING, errorMessage (supplied by the client and filled in

by the procedure), to be interpreted by the human user. The recipient errors reported by a local FTP User

are actually detected by the remote FTP Server, and hence the User normally relays to the client the message supplied

by the Server. If the Server provides no message, the User supplies an appropriate message in its place. All error

messages issued by FTP are centralized in a single FTPAccessories module (see Appendix I). To avoid incurring the

space overhead associated with these strings, some configurations omit this module, causing FTP to supply a zero-length

string whenever it would otherwise obtain an errorMessage from FTPAccessories. Once, after

FTPSendRecipientOfMessage has been invoked repetitively to specify the recipients of the

Mesa FTP Functional Specification 33

message, and, once again, after the text of the message has been specified (as described later),

FTPIdentifyNextRejectedRecipient must be called repetitively until a recipientNumber of

zero is returned, indicating the end of the list. Most recipient errors (for example,

noSuchMailbox) are detected and reported in the first round of calls to this procedure, but others

(for example, unspecifiedTransientError) may not occur until the remote FTP Server actually

attempts to append the message to the recipient’s mailbox:

FTPIdentifyNextRejectedRecipient: PROCEDURE [ftpuser: FTPUser, errorMessage:
STRING] RETURNS [recipientNumber: CARDINAL, recipientError: RecipientError];

RecipientError: TYPE = {noSuchMailbox, noForwardingProvided,
unspecifiedTransientError, unspecifiedPermanentError, unspecifiedError};

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, noValidRecipients,

noConnectionEstablished, connectionNotOpenedForMail, illegalProcedureCallSequence.

Old Exceptions: noSuchForwardingHost, noSuchDmsName.

The fourth procedure, FTPSendBlockOfMessage, specifies a portion of the text of the message

and is called repetitively after the recipients of the message have been specified and the first round

of recipient rejections accepted, as described above. Successive calls specify the location in the

client’s address space, source, and the length in bytes, byteCount, of successive blocks of text.

The text of the message must include a message header conforming to the Arpanet standard

detailed in [3]. Throughout the message, end of line is indicated via a carriage return (CR):

FTPSendBlockOfMessage: PROCEDURE [ftpuser: FTPUser, source: POINTER,
byteCount: CARDINAL];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, noConnectionEstablished,

connectionNotOpenedForMail, illegalProcedureCallSequence.

The fifth procedure, FTPEndDeliveryOfMessage, finalizes the delivery process. Only by calling

this procedure can the client leave the mail delivery mode entered via successful invocation of

FTPBeginDeliveryOfMessage:

FTPEndDeliveryOfMessage: PROCEDURE [ftpuser: FTPUser];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, noConnectionEstablished,

connectionNotOpenedForMail, illegalProcedureCallSequence.

C.3. Retrieval Primitives

FTP provides four procedures for retrieving the contents of (and then resetting to empty) a remote

mailbox. The first, FTPBeginRetrievalOfMessages, initiates retrieval of the contents of the

remote mailbox the host-specific name of whish is specified by mailboxName. To obtain access

to the mailbox, the client must first have supplied the necessary credentials (if any) by calling the

FTPSetCredentials procedure described elsewhere. Successful invocation of this first mail

retrieval procedure conditions the local FTP User to accept calls to the other three. Since the mail

retrieval process occupies the remote FTP Server until it is complete, FTP prohibits the client from

Mesa FTP Functional Specification 34

calling other local FTP User procedures that communicate with the remote Server until the retrieval

is complete (that is, until the FTPEndRetrievalOfMessages procedure described below has

been invoked):

FTPBeginRetrievalOfMessages: PROCEDURE [ftpuser: FTPUser, mailboxName:
STRING];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, credentialsMissing,

noSuchPrimaryUser, noSuchSecondaryUser, incorrectPrimaryPassword, incorrectSecondaryPassword,

requestedAccessDenied, noSuchMailbox, noConnectionEstablished, connectionNotOpenedForMail,

illegalProcedureCallSequence.

The second procedure, FTPIdentifyNextMessage, retrieves information about one of the

messages in the mailbox identified in a previous call to FTPBeginRetrievalOfMessages.

FTPIdentifyNextMessage is called repetitively until a byteCount of zero (signalling no more

messages) is returned. Successive calls return information about successive messages stored in the

mailbox. The client may elect to leave some or all of the contents of the mailbox unretrieved, in which case whatever

remains will be sent by the remote FTP Server but will be discarded by the local FTP User in the final call to the

FTPEndRetrievalOfMessages procedure described later. The information returned by the procedure is

deposited in a record, messageInfo, supplied by the client, and includes the size of the messsage

in bytes, byteCount; the date and time, deliveryDate, at which the message was deposited in

the mailbox (the required STRING being supplied by the client); and whether or not the message has

been opened (that is, examined) or deleted while in the mailbox (Maxc mailboxes, for example,

can be manipulated directly via the Tenex MSG subsystem):

FTPIdentifyNextMessage: PROCEDURE [ftpuser: FTPUser, messageInfo:
MessageInfo];

MessageInfo: TYPE = POINTER TO MessageInfoObject;
MessageInfoObject: TYPE = RECORD [byteCount: LONG CARDINAL, deliveryDate:

STRING, opened, deleted: BOOLEAN];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, noConnectionEstablished,

connectionNotOpenedForMail, illegalProcedureCallSequence.

The third procedure, FTPRetrieveBlockOfMessage, retrieves a portion of the text of the

message identified in a previous call to FTPIdentifyNextMessage.

FTPRetrieveBlockOfMessage is called repetitively until an actualByteCount of zero

(signalling no more blocks) is returned. Successive calls return successive blocks of the message.
The client may elect to leave some or all of the text of the message unretrieved, in which case whatever remains will be

sent by the remote FTP Server but will be discarded by the local FTP User in the next call to FTPIdentifyNextMessage.

Note that the client can anticipate the end of a message on the basis of the byte count returned by

FTPIdentifyNextMessage. The text returned by the procedure is deposited in the buffer whose

location in the client’s address space, destination, and whose length in words, maxWordCount,
are specified by the client. The procedure returns the length in bytes, actualByteCount, of the

block of text actually retrieved (which may be shorter than the block requested). The text of the

message includes a message header conforming to the Arpanet standard detailed in [3]. Throughout

the message, end of line is indicated via a carriage return (CR):

Mesa FTP Functional Specification 35

FTPRetrieveBlockOfMessage: PROCEDURE [ftpuser: FTPUser, destination: POINTER,
maxWordCount: CARDINAL] RETURNS [actualByteCount: CARDINAL];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, noConnectionEstablished,

connectionNotOpenedForMail, illegalProcedureCallSequence.

The fourth procedure, FTPEndRetrievalOfMessages, terminates the retrieval operation and

resets the mailbox to empty. FTPBeginRetrievalOfMessages and

FTPEndRetrievalOfMessages are implemented in such a way that no new messages are lost

during the retrieval process, and the contents of the mailbox are discarded only when

FTPEndRetrievalOfMessages is invoked. Only by calling this procedure can the client leave

the mail retrieval mode entered via successful invocation of FTPBeginRetrievalOfMessages:

FTPEndRetrievalOfMessages: PROCEDURE [ftpuser: FTPUser];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, noConnectionEstablished,

connectionNotOpenedForMail, illegalProcedureCallSequence.

Mesa FTP Functional Specification 36

Appendix D: Miscellaneous Primitives

D.1. Introduction

In addition to the primitives described in the body of this document and the preceding appendices,

FTP supplies a number of less frequently used procedures, as described below.

D.2. Infrequently Used Connection Management Primitives

FTP provides three procedures for controlling communication with remote FTP Servers in a

debugging context. The first, FTPSetContactSocket, specifies the remote socket at which, in

subsequent calls to FTPOpenConnection, the local FTP User should expect to contact remote

FTP Listeners for the purpose of manipulating either remote files, mail, or filesAndMail.
Recall that file- and mail-related transactions are supported by distinct FTP Servers created by distinct FTP Listeners

monitoring distinct well-known sockets. This procedure permits use of experimental FTP Listeners, which

are often assigned to non standard (that is, not-so-well-known) sockets during their checkout phase.

A socket number of zero resets the affected socket(s) to its(their) standard, default values (that is, 3

for files and 7 for mail):

FTPSetContactSocket: PROCEDURE [ftpuser: FTPUser, socket: LONG CARDINAL,
purpose: Purpose];

Purpose: TYPE = {files, mail, filesAndMail};

The second procedure, FTPEnableTrace, causes a textual representation of all subsequent

interactions between the local FTP User and the remote FTP Server to be presented to the client in

zero or more calls to a writeString procedure (for example, IODefs.WriteString) it supplies.

Successive STRINGs represent successive segments of the character stream describing the dialogue;

STRING boundaries are insignificant. Redundant calls to FTPEnableTrace are treated as no

operations. Be advised that passwords may appear in the trace:

FTPEnableTrace: PROCEDURE [ftpuser: FTPUser, writeString: PROCEDURE [STRING]];

The third procedure, FTPDisableTrace, prevents the textual representation of User/Server

interaction from being reported to the client, and disassociates from the FTP User the writeString
procedure supplied by the client in a previous call to FTPEnableTrace. Redundant calls to

FTPDisableTrace are treated as no operations:

FTPDisableTrace: PROCEDURE [ftpuser: FTPUser];

D.3. Infrequently Used File Transfer Primitives

FTP provides three procedures that supplement the primary file transfer procedures described

elsewhere. The first, FTPTransferFile, retrieves from the remote file system addressed by

srcFtpuser and stores (under the name dstFile) in the remote file system addressed by

dstFtpuser a copy of the remote file the name of which is specified by srcFile and the type of

which is specified by fileType--text or binary. It also returns the size in bytes, byteCount, of

the transferred file. In rare cases, the fileType parameter supplied by the client is used by the

Mesa FTP Functional Specification 37

source FTP Server to disambiguate between two like-named files of different types. The client may

(and often does) report the file’s type as unknown, in which case the remote FTP Server must

select a file without it. In any case, the destination FTP Server uses the file type reported by the

source FTP Server in determining how to store the file in its file system (for example, on Maxc, text

files are stored as 7-bit bytes, binary files as 8-bit bytes) Even though data are double buffered as they move

from source to destination host, because of input and output interference on the Ether, throughput is currently very low

compared to that achieved by using FTPRetrieveFile and FTPStoreFile:

FTPTransferFile: PROCEDURE [srcFtpuser: FTPUser, srcFile: STRING, dstFtpuser:
FTPUser, dstFile: STRING, fileType: FileType,
transferFile: POINTER TO TransferFile,
transferFileData: UNSPECIFIED] RETURNS [byteCount: LONG CARDINAL];

FileType: TYPE = {text, binary, unknown};
TransferFile: TYPE = PROCEDURE [transferFileData: UNSPECIFIED,

receiveBlock: PROCEDURE [UNSPECIFIED, POINTER, CARDINAL] RETURNS [CARDINAL],
receiveBlockData: UNSPECIFIED,
sendBlock: PROCEDURE [UNSPECIFIED, POINTER, CARDINAL],
sendBlockData: UNSPECIFIED];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, credentialsMissing,

noSuchPrimaryUser, noSuchSecondaryUser, incorrectPrimaryPassword, incorrectSecondaryPassword,

requestedAccessDenied, illegalFilename, noSuchFile, fileAlreadyExists, fileBusy, noRoomForFile,

fileDataError, errorBlockInDumpFile, unrecognizedDumpFileBlock, dumpFileBlockTooLong,

dumpFileCheckSumInError, noConnectionEstablished, connectionNotOpenedForFiles,

illegalProcedureCallSequence, fileGroupDesignatorUnexpected, filenameUnexpected.

Rather than use the local file system as a way station between the remote source and destination file

systems, FTPTransferFile immediately outputs to the destination FTP Server each successive

segment of the file it inputs from the source FTP Server. The task of transferring the contents of

the file from source to destination is normally performed by an FTP-provided procedure of type

TransferFile. The client can examine and/or modify the contents of the file as it passes from

source to destination by supplying its own implementation of this procedure. The client exercises

this option by specifying a transferFile procedure and arbitrary transferFileData, to be passed

by FTP as an argument to that procedure. If transferFile is NIL, FTP supplies its own

implementation, which simply double-buffers the contents of the file as it passes it unexamined and

unchanged to the destination.

The client’s transferFile procedure consumes successive segments of the file in turn using an

FTP-provided procedure, receiveBlock. The client supplies receiveBlock with the

receiveBlockData supplied by FTP and the location and length in words of a buffer into which

the next segment is to be placed. In response, receiveBlock returns the segment left-adjusted in

the buffer, along with its length in bytes. ReceiveBlock eventually signals end of file by

returning a byte count of zero.

The client’s transferFile procedure produces successive segments of the file in turn, using a

second FTP-provided procedure, sendBlock. The client supplies sendBlock with the

sendBlockData supplied by FTP and the location and length in bytes of the next segment.

Mesa FTP Functional Specification 38

TransferFile eventually signals end of file by calling sendBlock a final time with a byte count

of zero.

The input and output functions performed by receiveBlock and sendBlock, respectively, are

completely independent. The client’s transferFile procedure may consume and produce the

incoming and outgoing streams in any manner it sees fits. Its only responsibilities are to provoke

(eventually) an end-of-file indication from receiveBlock and signal an end-of-file indication to

sendBlock.

Once the file has been transferred, the client may invoke the FTPNoteFilenameUsed primitive

described below to determine the fully qualified absolute and/or virtual filenames used by the

remote source and destination FTP Servers. The client can effect the transfer of a whole group of

remote files by using FTPTransferFile (to transfer a single file) in conjunction with the

FTPEnumerateFiles described in Section 3.4 or FTPInventoryDumpFile procedure described

in Appendix B.2 (to enumerate or inventory the source files to be transferred). FTPTransferFile
can also be used to construct remote dump files, as described in Appendix B.

The second procedure, FTPNoteFilenameUsed, returns the fully qualified absolute and/or

virtual filename used by the remote FTP Server in the immediately preceding FTPStoreFile,

FTPRetrieveFile, FTPDeleteFile, FTPInventoryDumpFile, or FTPTransferFile operation.

For example, if the client had defaulted the version number in the remote filename it supplied to

FTPStoreFile, and if the remote FTP Server, therefore, had created a new version of an already

existing file, FTPNoteFilenameUsed could be employed by the client to determine the version

number assigned by the Server. Any manipulation of the FTP User between execution of the target

store, retrieve, delete, inventory, or transfer operation and invocation of FTPNoteFilenameUsed
may invalidate the information the primitive returns. If absoluteFilename is specified (that is,

non-NIL), the primitive returns a fully-qualified absolute filename in the STRING supplied by the

client. If virtualFilename is specified (that is, non-NIL), the primitive returns a fully qualified

virtual filename in the STRINGs supplied by the client. The reader is referred to Section 1.3 in this

document for a discussion of virtual filenames and their use:

FTPNoteFilenameUsed: PROCEDURE [ftpuser: FTPUser, absoluteFilename: STRING,
virtualFilename: VirtualFilename];

VirtualFilename: TYPE = POINTER TO VirtualFilenameObject;
VirtualFilenameObject: TYPE = RECORD [device, directory, name, version: STRING];

The third procedure, FTPSetBufferSize, alters the size of the buffers that local FTP Users and

Servers use to transfer data between the file and communication systems. The default value is four.
Since it is the ReadFile and WriteFile file primitives described in Appendix E that actually make use of this parameter, if

the client supplies its own implementation of either or both primitives, FTPSetBufferSize will have no effect upon the

corresponding file operation(s). The procedure accepts as its only parameter the size, pages, of the

buffers in 256-word pages. The new buffer size takes effect with the next file transfer:

FTPSetBufferSize: PROCEDURE [pages: CARDINAL];

Mesa FTP Functional Specification 39

D.4. Other Primitives

FTP provides one procedure, FTPCatchUnidentifiedErrors, for specifying whether FTP should

catch, and report as an unidentifiedError via FTPError, signals raised unexpectedly by the Mesa

System (for example, StringBoundsFault). The procedure accepts as its only parameter the new

switch setting, which takes effect at once. The default value is TRUE (that is, catch such errors):

FTPCatchUnidentifiedErrors: PROCEDURE [setting: BOOLEAN];

Mesa FTP Functional Specification 40

Appendix E: Client File Primitives

E.1. Description of the Option

An FTP User or Server manipulates its local file system by means of a family of procedures called

file primitives. This family includes, for example, procedures for enumerating the members of a

local file group, for reading and writing the contents of local files, and for deleting and renaming

local files. The FTP implementation includes an implementation manipulating the standard Alto

file system.

Rather than the file system interface offered by FTP, the client may, if it wishes, provide its own

file primitives to a particular FTP User or Listener. By so doing, a client can use FTP, for example

to:

1. interface to another local file system (for example, Juniper).

2. interface to a pseudo file system (for example, a printer).

3. produce or consume files on the fly (that is, files that never exist on secondary storage).

4. transform filenames (for example, convert abstract filenames to concrete ones).

5. control access to particular functions on a per-user or per-host basis.

6. maintain a log of file system activity.

The client can also implement certain file primitives while relying on FTP for others, or use the

FTP implementations as building blocks for its own implementations. For example, a client could

log file access attempts by supplying an implementation of the OpenFile procedure (described in

Section E.8) that records the event and then calls FTP’s OpenFile procedure to actually open the

file.

E.2. Exercising the Option

The client exercises the option described above by means of the filePrimitives parameter required

by both the FTPCreateUser and FTPCreateListener procedures. This parameter is a POINTER

to a RECORD containing the PROCEDUREs by which the newly created FTP User, or any FTP

Servers created by the newly created FTP Listener, are to access the local file system. The client

may supply its own version of this record, rather than rely upon the standard version offered by

FTP. In constructing the record and/or implementing the procedures it contains, the client may

draw upon any of the file primitives it finds in the FTP-provided record. Since FTP will not copy

the record presented to it, the client must preserve it intact until FTPDestroyUser or

FTPDestroyListener is called:

FilePrimitives: TYPE = POINTER TO FilePrimitivesObject;
FilePrimitivesObject: TYPE = RECORD [

 -- program management primitives
 CreateFileSystem: PROCEDURE [bufferSize: CARDINAL] RETURNS [fileSystem:

FileSystem],
 DestroyFileSystem: PROCEDURE [fileSystem: FileSystem],

Mesa FTP Functional Specification 41

 -- filename manipulation primitives
 DecomposeFilename,
 ComposeFilename: PROCEDURE [fileSystem: FileSystem, absoluteFilename:

STRING, virtualFilename: VirtualFilename],

 -- access control primitives
 InspectCredentials: PROCEDURE [fileSystem: FileSystem, status: Status, user,

password: STRING],

 -- file enumeration primitives
 EnumerateFiles: PROCEDURE [fileSystem: FileSystem, files: STRING, intent:

EnumerateFilesIntent,
processFile: PROCEDURE [UNSPECIFIED, STRING, FileInfo],
processFileData: UNSPECIFIED],

 -- file transfer primitives
 OpenFile: PROCEDURE [fileSystem: FileSystem, file: STRING, mode: Mode,

fileTypePlease: BOOLEAN, info: FileInfo] RETURNS [fileHandle: FileHandle,
fileType: FileType],

 ReadFile: PROCEDURE [fileSystem: FileSystem, fileHandle: FileHandle,
sendBlock: PROCEDURE [UNSPECIFIED, POINTER, CARDINAL],
sendBlockData: UNSPECIFIED],

 WriteFile: PROCEDURE [fileSystem: FileSystem, fileHandle: FileHandle,
receiveBlock: PROCEDURE [UNSPECIFIED, POINTER, CARDINAL] RETURNS [CARDINAL],
receiveBlockData: UNSPECIFIED],

 CloseFile: PROCEDURE [fileSystem: FileSystem, fileHandle: FileHandle, aborted:
BOOLEAN],

 -- file manipulation primitives
 DeleteFile: PROCEDURE [fileSystem: FileSystem, file: STRING],
 RenameFile: PROCEDURE [fileSystem: FileSystem, currentFile, newFile: STRING]];

FileSystem: TYPE = POINTER TO FileSystemObject;
FileSystemObject: TYPE = RECORD [dummy: UNSPECIFIED];
VirtualFilename: TYPE = POINTER TO VirtualFilenameObject;
VirtualFilenameObject: TYPE = RECORD [device, directory, name, version: STRING];
Status: TYPE = {primary, secondary};
EnumerateFilesIntent: TYPE = Intent[enumeration..deletion];
Intent: TYPE = {enumeration, retrieval, deletion, renaming, unspecified};
FileInfo: TYPE = POINTER TO FileInfoObject;
FileInfoObject: TYPE = RECORD [

fileType: FileType, byteSize: CARDINAL, byteCount: LONG CARDINAL,
creationDate, writeDate, readDate, author: STRING];

FileType: TYPE = {text, binary, unknown};
Mode: TYPE = {read, write, append, writeThenRead, readThenWrite};
FileHandle: TYPE = POINTER TO FileHandleObject;
FileHandleObject: TYPE = RECORD [dummy: UNSPECIFIED];

E.3. General Characteristics

The file primitives employed by FTP and suppliable by the client are described below. Statements

that apply to all valid implementations of a primitive (that is, the FTP implementation for the Alto

and any a client might supply) are rendered in the standard font. Statements that apply only to the

implementation supplied by FTP are rendered in a smaller font. Except where stated to the contrary,

filenames supplied as arguments to file primitives are absolute filenames and have thus already been

processed by the ComposeFilename primitive described in Section E.5.

Mesa FTP Functional Specification 42

In accordance with standard Mesa exception handling conventions, file primitives report errors by

signalling. FTP catches any signal that reaches it and aborts the current transaction (with the help

of the remote FTP User or Server, as necessary). Wherever possible, client file primitives should

use the standard FTP signal, FTPError (described in Section 1.4), to report errors. Doing so

enables the FTP User or Server to communicate the error to the remote FTP Server or User in a

meaningful way. The description of each procedure below includes a list of the FtpError values

that seem, to the author, most appropriate for that primitive. Requests by file primitive

implementors for new FtpError values will be gladly entertained.

E.4. Program Management Primitives

FTP or its client provides two procedures for creating and destroying instances of the local file

system. The first, CreateFileSystem, used by both FTP User and Server, creates a new instance

of the local file system and specifies the size in pages, bufferSize, of the buffers to be used by its

ReadFile and WriteFile primitives (see Section E.8). The procedure returns a handle,

fileSystem, to the newly created file system instance, which the caller must retain and later

present to any of the other file primitives it invokes. The fileSystem is a pointer to a private

record containing all of the state information the file system instance requires to function properly.

The Alto implementation of this procedure simply records the buffer size:

CreateFileSystem: PROCEDURE [bufferSize: CARDINAL] RETURNS [fileSystem:
FileSystem];

FileSystem: TYPE = POINTER TO FileSystemObject;
FileSystemObject: TYPE = RECORD[dummy: UNSPECIFIED];

The second procedure, DestroyFileSystem, used by both FTP User and Server, destroys a

previously created instance of the local file system, reclaiming any local resources allocated to it.

Before invoking this procedure, the caller must close all open files. The Alto implementation of this

procedure is essentially a no operations:

DestroyFileSystem: PROCEDURE [fileSystem: FileSystem];

FileSystem: TYPE = POINTER TO FileSystemObject;
FileSystemObject: TYPE = RECORD[dummy: UNSPECIFIED];

E.5. Filename Manipulation Primitives

FTP or its client provides two procedures that serve to encapsulate FTP’s knowledge of local file

naming conventions. The first, DecomposeFilename, used by both FTP User and Server,

constructs a virtualFilename from an absoluteFilename, verifying the syntax of the absolute

filename as a side effect. The caller provides the STRINGs into which the components of the virtual

filename are to be placed. Components that are without meaning to the local file system are

rendered as zero-length (rather than NIL) STRINGs. The Alto implementation of this procedure sets the length

of the device and directory components to zero, since these components are without meaning to the Alto file system;

returns the name component always; and returns a version component if an exclamation point in the absolute filename

signals its presence:

Mesa FTP Functional Specification 43

DecomposeFilename: PROCEDURE [fileSystem: FileSystem, absoluteFilename:
STRING, virtualFilename: VirtualFilename];

VirtualFilename: TYPE = POINTER TO VirtualFilenameObject;
VirtualFilenameObject: TYPE = RECORD [device, directory, name, version: STRING];

Exceptions: illegalFilename.

The second procedure, ComposeFilename, used by both FTP User and Server, constructs a fully

qualified absoluteFilename from a virtualFilename and an unqualified or partially specified

absoluteFilename (which is overwritten in the process). If the virtual filename is unspecified

(that is, if all of its components are of zero length), the absolute filename to be returned by the

procedure is completely specified by the absolute filename supplied to it. If the absolute filename

supplied to the procedure is unspecified (that is, if it is of zero length), the absolute filename to be

returned is completely specified by the virtual filename. If both absolute and virtual filenames are

specified, the procedure optionally uses the virtual filename to default unspecified fields in the

absolute filename. An implementation of this procedure could, for example, construct the fully qualified absolute

filename "<Mesa>FTP>FTPDefs.Mesa" from a virtual filename the directory component of which is "Mesa" and an

absolute filename the value of which is "FTP>FTPDefs.Mesa". Components of the virtual filename that are

present but without meaning to the local file system should be ignored. The Alto implementation of this

procedure ignores the device and directory components, since they are without meaning to the Alto file system, but uses

the name and version components to default components that may be missing from the absolute filename. Having

applied the available defaults, it then insists upon a name component and accepts a version component if it is present:

ComposeFilename: PROCEDURE [fileSystem: FileSystem, absoluteFilename: STRING,
virtualFilename: VirtualFilename];

VirtualFilename: TYPE = POINTER TO VirtualFilenameObject;
VirtualFilenameObject: TYPE = RECORD [device, directory, name, version: STRING];

Exceptions: illegalFilename.

E.6. Access Control Primitives

FTP or its client provides one procedure, InspectCredentials, for inspecting credentials

presented by the remote client. Used only by FTP Server, this procedure verifies and records the

primary or secondary credentials--user and password--with which the next file system access

will be implicitly attempted. The procedure verifies the user’s existence and the password’s

correctness and records the fact that they were (correctly) supplied; the file primitive through which

access to a particular file is subsequently attempted then determines whether those credentials entitle

the remote FTP User to manipulate the file in the manner requested (for example, the DeleteFile
primitive described in Section E.9 verifies that the client has delete access to the target file before

honoring the delete request). Primary credentials typically identify the user upon whose behalf the

access is attempted (a la the Tenex Login command) while secondary credentials, when necessary,

usually identify another area of the file system--in addition to the user’s own workspace--to which

the user claims access (a la the Tenex Connect command). Primary and secondary credentials (if

any) are presented for inspection immediately before the call to the file primitive--

EnumerateFiles, OpenFile, DeleteFile, or RenameFile--which attempts the access, and

Mesa FTP Functional Specification 44

implicitly are discarded by the file system instance immediately after that operation. The Alto

implementation of this procedure is a no operation:

InspectCredentials: PROCEDURE [fileSystem: FileSystem, status: Status, user,
password: STRING];

Status: TYPE = {primary, secondary};

Exceptions: noSuchPrimaryUser, noSuchSecondaryUser, incorrectPrimaryPassword,

incorrectSecondaryPassword.

E.7. File Enumeration Primitives

FTP or its client provides one procedure, EnumerateFiles, for enumerating the members of a

local file group. For each file in the group whose file group designator, files, is specified, the

procedure, used by both FTP User and Server, supplies to a caller-provided procedure,

processFile, the caller’s processFileData, the absolute filename of the file, and a variety of

other file information (FileInfo). The order in which filenames are presented to the caller is file-

system-dependent, but alphabetical order is typical. Unknown or unspecified file information is

rendered as unknown, zero, or NIL, as appropriate. The Alto implementation of this procedure recognizes in

the file group designator the two special characters, asterisk (’*), denoting zero or more arbitrary characters, and pound

sign (’#), denoting exactly one arbitrary character. The procedure returns to its caller all those files in the local file

system that satisfy this mask. The files are presented in the order determined by DirectoryDefs.EnumerateDirectory and

no use is made of the intent parameter:

EnumerateFiles: PROCEDURE [fileSystem: FileSystem, files: STRING, intent:
EnumerateFilesIntent,
processFile: PROCEDURE [UNSPECIFIED, STRING, FileInfo],
processFileData: UNSPECIFIED];

EnumerateFilesIntent: TYPE = Intent[enumeration..deletion];
Intent: TYPE = {enumeration, retrieval, deletion, renaming, unspecified};
FileInfo: TYPE = POINTER TO FileInfoObject;
FileInfoObject: TYPE = RECORD [

fileType: FileType, byteSize: CARDINAL, byteCount: LONG CARDINAL,
creationDate, writeDate, readDate, author: STRING];

FileType: TYPE = {text, binary, unknown};

Exceptions: credentialsMissing, requestedAccessDenied, illegalFilename, noSuchFile, fileDataError.

The intent parameter supplied by the caller declares the manner in which the caller expects to

manipulate the files whose names are presented to it. This information enables the file system, for

example, to determine the version(s) of a file it should present to the caller (for instance, the

procedure might return the most recent versions of files being retrieved and the oldest versions of

files being deleted). The caller may specify any of the following intents:

1. An intent of enumeration declares that the caller simply seeks the names of (and file

information for) the members of the designated file group (for presentation to a human

user, for example) and intends to manipulate the files in no other way during the course of

the enumeration.

Mesa FTP Functional Specification 45

2. An intent of retrieval declares that the caller seeks to retrieve some or all (but possibly

none) of the designated files and to manipulate them in no other way during the course of

the enumeration. The caller’s processFile procedure may retrieve the file whose name is

presented to it by opening that file for read via OpenFile, obtaining the contents of the

file via ReadFile, and then closing the file via CloseFile (see Section E.8).

3. An intent of deletion declares that the caller seeks to delete some or all (but possibly

none) of the designated files and to manipulate them in no other way during the course of

the enumeration. The client’s processFile procedure may delete the file whose name is

presented to it by supplying that name to the DeleteFile procedure described in Section

E.9.

E.8. File Transfer Primitives

FTP or its client provides four procedures for transferring files to and from the local file system.

The client must supply its own version of all or none of these procedures, since they interact with one

another by means of the file handle returned by the first. The first procedure, OpenFile, used by

both FTP User and Server, verifies either the existence of an old file (if mode is read, append,

or readThenWrite) or the availability of space for a new one (if mode is write or

writeThenRead), establishes the remote client’s access to that file (in conjunction with the

InspectCredentials procedure described in Section E.6), prepares the file to be read or written,

and returns a handle, fileHandle, to the newly opened file. If fileTypePlease is TRUE (in which

case mode will be read), the procedure also returns the fileType--text or binary--of the file

being opened. If mode is write, and info is not NIL, and info.creationDate is not NIL, then

info.creationDate contains the creation date and time of the file which should be saved as the

creation date and time of the local file so that various automatic updating heuristics will operate

correctly. If mode is read or readThenWrite, and info is not NIL, and info.creationDate is

not NIL, then the creation date and time of the local file should be appended to

info.creationDate so that it can be passed to the remote file system where it will be saved as the

creation date and time of the new file. The Alto implementation of this procedure attaches a byte stream to the

file and returns its handle. If the file’s type is requested, it scans the file until it encounters a byte with the high-order

bit set to one (in which case the file is classified as binary) or reaches the end of the file (in which case the file is

classified as text):

Mesa FTP Functional Specification 46

OpenFile: PROCEDURE [fileSystem: FileSystem, file: STRING, mode: Mode,
fileTypePlease: BOOLEAN, info: FileInfo] RETURNS [fileHandle: FileHandle,
fileType: FileType];

Mode: TYPE = {read, write, append, writeThenRead, readThenWrite};
FileHandle: TYPE = POINTER TO FileHandleObject;
FileHandleObject: TYPE = RECORD[dummy: UNSPECIFIED];
FileType: TYPE = {text, binary, unknown};

Exceptions: credentialsMissing, requestedAccessDenied, illegalFilename, noSuchFile, fileAlreadyExists, fileBusy,

noRoomForFile, fileDataError.

The mode writeThenRead enables calls to both WriteFile and ReadFile, in that order; the

mode readThenWrite enables calls to the same procedures in the other order. If mode is write
or writeThenRead and the length of the file STRING is zero, the procedure opens a scratch file

and return its name in the STRING. The reader is referred to Section E.10 for information about the

manner in which this and other file primitives are used by FTP.

The second procedure, ReadFile, used by both FTP User and Server, presents to its caller the

contents of the file (previously opened for read) the handle of which is specified by fileHandle.

The procedure supplies to a caller-provided procedure, sendBlock, the sendBlockData supplied

by ReadFile’s caller and the location and length in bytes of successive segments of the file. After

the entire file has been output in this manner, ReadFile signals end of file by calling sendBlock
a final time with a byte count of zero. The Alto implementation of this procedure simply allocates a buffer,

reads successive blocks of the file from the disk stream into the buffer and presents them to sendBlock, and then releases

the buffer:

ReadFile: PROCEDURE [fileSystem: FileSystem, fileHandle: FileHandle,
sendBlock: PROCEDURE [UNSPECIFIED, POINTER, CARDINAL],
sendBlockData: UNSPECIFIED];

FileHandle: TYPE = POINTER TO FileHandleObject;
FileHandleObject: TYPE = RECORD[dummy: UNSPECIFIED];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, fileDataError.

The third procedure, WriteFile, used by both FTP User and Server, accepts from its caller the

contents of the file (previously opened for write) the handle of which is specified by fileHandle.

The procedure supplies in zero or more calls to a caller-provided procedure, receiveBlock, the

receiveBlockData supplied by WriteFile’s caller and the location and length in words of a

buffer into which the next segment of the file is to be placed. In response, receiveBlock returns

the segment left-adjusted in the buffer, along with its length in bytes. ReceiveBlock eventually

signals end of file by returning a byte count of zero. The Alto implementation of this procedure simply

allocates a buffer, reads successive blocks of the file into the buffer and appends them to the disk stream, and then

releases the buffer:

WriteFile: PROCEDURE [fileSystem: FileSystem, fileHandle: FileHandle,
receiveBlock: PROCEDURE [UNSPECIFIED, POINTER, CARDINAL] RETURNS [CARDINAL],
receiveBlockData: UNSPECIFIED];

Mesa FTP Functional Specification 47

FileHandle: TYPE = POINTER TO FileHandleObject;
FileHandleObject: TYPE = RECORD[dummy: UNSPECIFIED];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, noRoomForFile, fileDataError.

The fourth procedure, CloseFile, used by both FTP User and Server, closes the previously opened

file the handle of which is specified by fileHandle. If the caller’s attempt to read or write the file

(via ReadFile or WriteFile) had to be aborted for some reason, the caller so indicates. If the

file whose transfer was aborted was opened for write, writeThenRead, or readThenWrite, the

procedure discards (that is, deletes) the partial file. The Alto implementation of this procedure simply destroys

the disk stream and then deletes the file if the transfer was aborted and the stream was being written:

CloseFile: PROCEDURE [fileSystem: FileSystem, fileHandle: FileHandle, aborted:
BOOLEAN];

FileHandle: TYPE = POINTER TO FileHandleObject;
FileHandleObject: TYPE = RECORD[dummy: UNSPECIFIED];

Exceptions: noRoomForFile, fileDataError.

E.9. File Manipulation Primitives

FTP or its client provides two procedures for manipulating existing local files. The first,

DeleteFile, used only by FTP Server, deletes the specified local file, reclaiming the space it

occupied on secondary storage. The Alto implementation of this procedure simply deletes the file:

DeleteFile: PROCEDURE [fileSystem: FileSystem, file: STRING];

Exceptions: credentialsMissing, requestedAccessDenied, illegalFilename, noSuchFile, fileBusy, fileDataError.

The second procedure, RenameFile, used only by FTP Server, renames the local file the current

name for which is specified by currentFile, assigning it the new name, newFile. The Alto

implementation of this procedure creates a new file (with the appropriate name), copys the contents of the file to it, and

then deletes the original file:

RenameFile: PROCEDURE [fileSystem: FileSystem, currentFile, newFile: STRING];

Exceptions: credentialsMissing, requestedAccessDenied, illegalFilename, noSuchFile, fileAlreadyExists, fileBusy,
noRoomForFile, fileDataError.

E.10. Usage of File Primitives by FTP

In principle, the programmer who elects to implement his own file primitives should provide FTP

with a complete and coherent set which meets the above specifications. In practice, however, only a

subset of the primitives may actually be required in any particular application (for example, an FTP

File Listener). In such cases, the required implementation effort can be reduced by knowledge of

which primitives FTP uses to implement its various features.

What follows, therefore, is an exhaustive specification of the use currently made by FTP of the file

primitives supplied by the client. The programmer may wish to exploit this information and

implement only those primitives required by his particular configuration and application. Doing so,

Mesa FTP Functional Specification 48

however, obliges him to keep careful tabs on the corresponding usage data for subsequent FTP

releases, the file primitive usage for which may change or expand.

The twelve file primitives are currently used as follows:

CreateFileSystem

1. invoked by FTPOpenConnection unless purpose is mail.
2. invoked as part of the initialization of each new FTP File (but not Mail) Server.
3. invoked by the FTP-provided CreateMailSystem mail primitive (see Appendix F).

DestroyFileSystem

1. invoked by FTPCloseConnection unless FTPOpenConnection’s purpose was mail.
2. invoked as part of the finalization of each retiring FTP File (but not Mail) Server.
3. invoked by the FTP-provided DestroyMailSystem mail primitive (see Appendix F).

DecomposeFilename

1. invoked by FTP File Servers asked to enumerate, store, retrieve, or delete files.
2. invoked by the Alto FTP-provided ComposeFilename primitive.

ComposeFilename

1. invoked by FTP File Servers asked to enumerate, store, retrieve, delete, or rename files.

InspectCredentials

1. invoked by FTP File Servers asked to enumerate, store, retrieve, delete, or rename files.

EnumerateFiles

1. invoked by FTP File Servers asked to enumerate, retrieve, or delete files.

OpenFile

1. invoked by FTPEnumerateFiles if intent is renaming or unspecified to open a scratch
file for filenames writeThenRead.

2. invoked by FTPStoreFile to open the source file read.
3. invoked by FTPRetrieveFile to open the destination file write.
4. invoked by FTP File Servers to open the destination file for a store write.
5. invoked by FTP File Servers to open the source file for a retrieve read.
6. invoked by the Alto FTP-provided RenameFile primitive to open the current file read and to

open the new file write.
7. invoked by the FTP-provided CreateMailSystem mail primitive (see Appendix F) to open

its mailbox directory file (that is, FTPSysMail-Directory.Bravo) read and to open a scratch file
for incoming messages writeThenRead.

8. invoked by the FTP-provided RetrieveMessages mail primitive (see Appendix F) to open
the mailbox file (named in FTPSysMail-Directory.Bravo) readThenWrite.

9. invoked by the FTP-provided DeliverMessage mail primitive (see Appendix F) to open the
mailbox file (named in FTPSysMail-Directory.Bravo) append.

ReadFile

1. invoked by FTPEnumerateFiles if intent is renaming or unspecified to read a scratch
file for filenames.

2. invoked by FTPStoreFile to read the source file.
3. invoked by FTP File Servers to read the source file for a retrieve.
4. invoked by the Alto FTP-provided RenameFile primitive to read the current file.
5. invoked by the FTP-provided LocateMailboxes mail primitive (see Appendix F) to read its

mailbox directory file (that is, FTPSysMail-Directory.Bravo).

Mesa FTP Functional Specification 49

6. invoked by the FTP-provided RetrieveMessages mail primitive (see Appendix F) to read
the mailbox file (named in FTPSysMail-Directory.Bravo).

7. invoked by the FTP-provided DeliverMessage mail primitive (see Appendix F) to read the
scratch file for incoming messages.

WriteFile

1. invoked by FTPEnumerateFiles if intent is renaming or unspecified to write a scratch
file for filenames.

2. invoked by FTPRetrieveFile to write the destination file.
3. invoked by FTP File Servers to write the destination file for a store.
4. invoked by the Alto FTP-provided RenameFile primitive to write the new file.
5. invoked by the FTP-provided StageMessage mail primitive (see Appendix F) to write a

scratch file for incoming messages.
6. invoked by the FTP-provided DeliverMessage mail primitive (see Appendix F) to write (that

is, append to) the mailbox file (named in FTPSysMail-Directory.Bravo).

CloseFile

1. invoked by FTPEnumerateFiles if intent is renaming or unspecified to close a scratch
file for filenames.

2. invoked by FTPStoreFile to close the source file.
3. invoked by FTPRetrieveFile to close the destination file.
4. invoked by FTP File Servers to close the destination file for a store.
5. invoked by FTP File Servers to close the source file for a retrieve.
6. invoked by the Alto FTP-provided RenameFile primitive to close the current file and to close

the new file.
7. invoked by the FTP-provided DestroyMailSystem mail primitive (see Appendix F) to close

its mailbox directory file (that is, FTPSysMail-Directory.Bravo) and to close a scratch file for
incoming messages.

8. invoked by the FTP-provided RetrieveMessages mail primitive (see Appendix F) to close
the mailbox file (named in FTPSysMail-Directory.Bravo).

9. invoked by the FTP-provided DeliverMessage mail primitive (see Appendix F) to close the
mailbox file (named in FTPSysMail-Directory.Bravo).

DeleteFile

1. invoked by FTP File Servers when asked to delete a file.

2. invoked by the Alto FTP-provided RenameFile primitive to delete the current file.

RenameFile

1. invoked by FTP File Servers when asked to rename a file.

Mesa FTP Functional Specification 50

Appendix F: Client Mail Primitives

F.1. Description of the Option

An FTP Server manipulates its local mail system by means of a family of procedures called mail

primitives. This family includes, for example, procedures for appending a message to one or more

local mailboxes, for emptying a local mailbox of its contents, and for forwarding a message to one

or more remote mailboxes. The FTP implementation includes one set of primitives, which

implements a simple-minded mail system in terms of the file primitives described in Appendix E.

Rather than use the mail system interfaces offered by FTP, the client may, if it wishes, provide its

own mail primitives to a particular FTP Listener. By so doing, a client can use FTP, for example

to:

1. interface to another local mail system.

2. interface to a pseudo mail system (for example, a printer).

3. transform mailbox names (for example, convert abstract mailbox names to concrete ones).

4. control access to particular functions on a per-user or per-host basis.

5. maintain a log of mail system activity.

The client can also implement certain mail primitives while relying on FTP for others, or use the

FTP implementations as building blocks for its own implementations. For example, a client could

log mail deliveries by supplying an implementation of the DeliverMessage procedure (described

in Section F.7) that records the event and then calls FTP’s DeliverMessage procedure to actually

deliver the message.

F.2. Exercising the Option

The client exercises the option described above by means of the mailPrimitives parameter

required by the FTPCreateListener procedure. This parameter is a POINTER to a RECORD

containing the PROCEDUREs by which any FTP Servers created by the newly created FTP Listener

are to access the local mail system. The client may supply its own version of this record rather than

rely upon the standard version offered by FTP. In constructing the record and/or implementing

the procedures it contains, the client may draw upon any of the mail primitives it finds in the FTP-

provided record. Since FTP will not copy the record presented to it, the client must preserve it

intact until FTPDestroyListener is called:

MailPrimitives: TYPE = POINTER TO MailPrimitivesObject;
MailPrimitivesObject: TYPE = RECORD [

 -- program management primitives
 CreateMailSystem: PROCEDURE [filePrimitives: FilePrimitives, bufferSize:

CARDINAL] RETURNS [mailSystem: MailSystem, forwardingProvided: BOOLEAN],
 DestroyMailSystem: PROCEDURE [mailSystem: MailSystem],

 -- access control primitives
 InspectCredentials: PROCEDURE [mailSystem: MailSystem, status: Status, user,

password: STRING],

Mesa FTP Functional Specification 51

 -- identification primitives
 LocateMailboxes: PROCEDURE [mailSystem: MailSystem, localMailboxList:

Mailbox],

 -- delivery primitives
 StageMessage: PROCEDURE [mailSystem: MailSystem,

receiveBlock: PROCEDURE [UNSPECIFIED, POINTER, CARDINAL] RETURNS [CARDINAL],
receiveBlockData: UNSPECIFIED],

 DeliverMessage: PROCEDURE [mailSystem: MailSystem, localMailboxList:
Mailbox],

 ForwardMessage: PROCEDURE [mailSystem: MailSystem, remoteMailboxList:
Mailbox],

 -- retrieval primitives
 RetrieveMessages: PROCEDURE [mailSystem: MailSystem, localMailbox: Mailbox,

processMessage: PROCEDURE [MessageInfo],
sendBlock: PROCEDURE [UNSPECIFIED, POINTER, CARDINAL],
sendBlockData: UNSPECIFIED]];

FilePrimitives: TYPE = POINTER TO FilePrimitivesObject;
FilePrimitivesObject: TYPE = RECORD [...];
MailSystem: TYPE = POINTER TO MailSystemObject;
MailSystemObject: TYPE = RECORD [dummy: UNSPECIFIED];
Status: TYPE = {primary, secondary};
Mailbox: TYPE = POINTER TO MailboxObject;
MailboxObject: TYPE = RECORD [

number: CARDINAL, mailbox, location: STRING, located, delivered: BOOLEAN,
nextMailbox: Mailbox];

MessageInfo: TYPE = POINTER TO MessageInfoObject;
MessageInfoObject: TYPE = RECORD [

byteCount: LONG CARDINAL, deliveryDate: STRING, opened, deleted: BOOLEAN];

F.3. General Characteristics

The mail primitives employed by FTP and suppliable by the client are described below. Statements

that apply to all valid implementations of a primitive (that is, FTP’s implementation and any a

client might supply) are rendered in the standard font. Statements that apply only to the standard

implementation supplied by FTP are rendered in a smaller font.

In accordance with standard Mesa exception handling conventions, mail primitives report errors by

signalling. FTP catches any signal that reaches it and aborts the current transaction (with the help

of the remote FTP User, as necessary). Wherever possible, client mail primitives should use the

standard FTP signal, FTPError (described in Section 1.4), to report errors. Doing so enables the

FTP Server to communicate the error to the remote FTP User in a meaningful way. The

description of each procedure below includes a list of the FtpError values that seem, to the author,

most appropriate for that primitive. Requests by mail primitive implementors for new FtpError
values will be gladly entertained.

F.4. Program Management Primitives

FTP or its client provides two procedures for creating and destroying instances of the local mail

system. The first, CreateMailSystem, creates a new instance of the local mail system founded

upon the specified file system; the mail system will use only the file system whose filePrimitives

Mesa FTP Functional Specification 52

and bufferSize (passed to CreateFileSystem) are specified. The procedure returns a handle,

mailSystem, to the newly created mail system instance, which the caller must retain and later

present to any of the other mail primitives it invokes, along with an indication,

forwardingProvided, of whether the mail system implements the ForwardMessage primitive

described in Section F.7. The mailSystem is a pointer to a private record containing all of the

state information the mail system instance requires to function properly. The FTP implementation of this

procedure records the specified file primitives, creates an instance of the corresponding file system, opens for read the

mailbox directory file named FTPSysMail-Directory.Bravo (which is assumed to contain zero or more lines of the form:

mailboxname@filename), opens for writeThenRead a scratch file in which incoming messages will be staged for delivery,

and then returns with forwardingProvided set to FALSE:

CreateMailSystem: PROCEDURE [filePrimitives: FilePrimitives, bufferSize:
CARDINAL] RETURNS [mailSystem: MailSystem, forwardingProvided: BOOLEAN];

FilePrimitives: TYPE = POINTER TO FilePrimitivesObject;
FilePrimitivesObject: TYPE = RECORD [...];
MailSystem: TYPE = POINTER TO MailSystemObject;
MailSystemObject: TYPE = RECORD [dummy: UNSPECIFIED];

Exceptions: credentialsMissing, requestedAccessDenied, illegalFilename, noSuchFile, fileAlreadyExists, fileBusy,

noRoomForFile, fileDataError, filePrimitivesNotSpecified.

The second procedure, DestroyMailSystem, destroys a previously created instance of the local

mail system, reclaiming any local resources allocated to it. The FTP implementation of this procedure closes

the staging and directory files and then destroys the previously created file system instance:

DestroyMailSystem: PROCEDURE [mailSystem: MailSystem];

MailSystem: TYPE = POINTER TO MailSystemObject;
MailSystemObject: TYPE = RECORD [dummy: UNSPECIFIED];

Exceptions: noRoomForFile, fileDataError.

F.5. Access Control Primitives

FTP or its client provides one procedure, InspectCredentials, for inspecting credentials

presented by the remote client. This procedure verifies and records the primary or secondary
credentials--user and password--with which the next mail system access will be implicitly

attempted. It is customary to require credentials when an attempt is made to empty (that is, read) a

mailbox, but not when an attempt is made to deliver a message (that is, append) to a mailbox. The

procedure verifies the existence of the user and the correctness of the password’s and records the

fact that they were (correctly) supplied; the mail primitive through which access to a particular

mailbox is subsequently attempted then determines whether those credentials entitle the remote FTP

User to manipulate the mailbox in the manner requested (for example, the RetrieveMessages
primitive described in Section F.8 verifies that the client has read access to the target mailbox

before honoring the retrieve request). Primary credentials typically identify the user upon whose

behalf the access is attempted (a la the Tenex Login command) while secondary credentials, when

necessary, usually identify another area of the mail system--in addition to the mailbox of the user--

to which the user claims access (a la the Tenex Connect command). (The distinction between

primary and secondary credentials is really more germane to file systems than to mail systems.)

Mesa FTP Functional Specification 53

Primary and secondary credentials (if any) are presented for inspection immediately before the call to

the mail primitive--DeliverMessage, ForwardMessage, or RetrieveMessages--which

attempts the access, and implicitly are discarded by the file system instance immediately after that

operation. The FTP implementation of this procedure is a no operation:

InspectCredentials: PROCEDURE [mailSystem: MailSystem, status: Status, user,
password: STRING];

Status: TYPE = {primary, secondary};

Exceptions: noSuchPrimaryUser, noSuchSecondaryUser, incorrectPrimaryPassword,

incorrectSecondaryPassword.

F.6. Mailbox Identification Primitives

FTP or its client provides one procedure, LocateMailboxes, for verifying the existence of (and

optionally locating) one or more local mailboxes. The procedure receives among its parameters a

linked list, localMailboxList, of one or more mailbox objects. The value NIL in the

nextMailbox field signals the end of the list. For every mailbox object whose located field is

FALSE, the procedure sets located to TRUE if the mailbox named by the object exists. In

addition, it optionally records in the object’s location field, information (for example, a filename)

that might assist a subsequently called primitive deliver mail to or empty the mailbox. If it makes

use of the location field at all (FTP initializes it to NIL), the procedure must store in it a STRING

allocated from the heap, which FTP will return to the heap when the subsequent delivery or

retrieval operation is complete. The FTP implementation of this procedure searches the directory file for each

mailbox name and records the corresponding filename as the location of the mailbox’s:

LocateMailboxes: PROCEDURE [mailSystem: MailSystem, localMailboxList:
Mailbox];

Mailbox: TYPE = POINTER TO MailboxObject;
MailboxObject: TYPE = RECORD [

number: CARDINAL, mailbox, location: STRING, located, delivered: BOOLEAN,
nextMailbox: Mailbox];

F.7. Mail Delivery Primitives

FTP or its client provides three procedures for delivering messages to local and remote mailboxes.

The first procedure, StageMessage, accepts from the remote FTP User the text of a message that

subsequently is to be delivered to one or more local or remote mailboxes. The procedure supplies

in zero or more calls to a caller-provided procedure, receiveBlock, the receiveBlockData
supplied by StageMessage’s caller, and the location and length in words of a buffer into which

the next segment of the message is to be placed. In response, receiveBlock returns the segment

left-adjusted in the buffer, along with its length in bytes. ReceiveBlock eventually signals end of

message by returning a byte count of zero. The FTP implementation of this procedure writes the text of the

message onto the previously opened scratch file by means of the WriteFile file primitive:

Mesa FTP Functional Specification 54

StageMessage: PROCEDURE [mailSystem: MailSystem,
receiveBlock: PROCEDURE [UNSPECIFIED, POINTER, CARDINAL] RETURNS [CARDINAL],
receiveBlockData: UNSPECIFIED];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, noRoomForFile, fileDataError.

The second procedure, DeliverMessage, appends a previously staged message to one or more

previously verified local mailboxes. The procedure receives among its parameters a linked list,

localMailboxList, of one or more mailbox objects. The value NIL in the nextMailbox field

signals the end of the list. For every mailbox object whose located field is TRUE and delivered
field is FALSE, the procedure attempts to deliver the message to the named mailbox and sets

delivered to TRUE if successful. The procedure uses the contents of the location field, as set by

LocateMailboxes, to help it deliver the mail. The FTP implementation of this procedure appends the

contents of the scratch file in which the message was staged to the file named by location, preceding it with a header

containing the current date and time and the length of the message:

DeliverMessage: PROCEDURE [mailSystem: MailSystem, localMailboxList: Mailbox];

Mailbox: TYPE = POINTER TO MailboxObject;
MailboxObject: TYPE = RECORD [

number: CARDINAL, mailbox, location,: STRING, located, delivered: BOOLEAN,
nextMailbox: Mailbox];

Exceptions: credentialsMissing, requestedAccessDenied, illegalFilename, noSuchFile, fileAlreadyExists, fileBusy,

noRoomForFile, fileDataError.

The third procedure, ForwardMessage, enqueues the previously staged message for delivery to

one or more remote mailboxes. The procedure receives among its parameters a linked list,

remoteMailboxList, of one or more mailbox objects. The value NIL in the nextMailbox field

signals the end of the list. For each mailbox object, the procedure attempts to enqueue the message

for later delivery to the named mailbox at the remote host the name of which is stored in the

location field, and sets located to TRUE if successful. The FTP implementation of this procedure, which

will never be called because CreateMailSystem returns with forwardingProvided set to FALSE, is a no operation:

ForwardMessage: PROCEDURE [mailSystem: MailSystem, remoteMailboxList:
Mailbox];

Mailbox: TYPE = POINTER TO MailboxObject;
MailboxObject: TYPE = RECORD [

number: CARDINAL, mailbox, location: STRING, located, delivered: BOOLEAN,
nextMailbox: Mailbox];

Mesa FTP Functional Specification 55

F.8. Mail Retrieval Primitives

FTP or its client provides one procedure, RetrieveMessages, for retrieving the contents of (and

then resetting to empty) a local mailbox. For each of the zero or more messages in the specified

localMailbox, the procedure first invokes the caller-supplied processMessage procedure with

information about the message: its size in bytes, byteCount; the date and time, deliveryDate,

at which the message was deposited in the local mailbox; and whether or not the message has been

opened (that is, examined) or deleted while in the mailbox (Maxc mailboxes, for example, can

be manipulated directly via the Tenex MSG subsystem). Following each invocation of

processMessage, RetrieveMessages supplies in zero or more calls to a second FTP-provided

procedure, sendBlock, the sendBlockData supplied by RetrieveMessages’ caller and the

location and length in bytes of successive segments of the message. After the entire message has

been output in this manner, RetrieveMessages signals end of message by calling sendBlock a

final time with a byte count of zero. After all messages have been returned, the procedure resets

the contents of the mailbox to empty. RetrieveMessages is implemented in such a way that no

new messages are lost during the retrieval process. The FTP implementation of this procedure retrieves each

message’s byteCount and deliveryDate from the message header and forces opened and deleted to FALSE:

RetrieveMessages: PROCEDURE [mailSystem: MailSystem, localMailbox: Mailbox,
processMessage: PROCEDURE [MessageInfo],
sendBlock: PROCEDURE [UNSPECIFIED, POINTER, CARDINAL],
sendBlockData: UNSPECIFIED];

Mailbox: TYPE = POINTER TO MailboxObject;
MailboxObject: TYPE = RECORD [

number: CARDINAL, mailbox, location: STRING, located, delivered: BOOLEAN,
nextMailbox: Mailbox];

MessageInfo: TYPE = POINTER TO MessageInfoObject;
MessageInfoObject: TYPE = RECORD [

byteCount: LONG CARDINAL, deliveryDate: STRING, opened, deleted: BOOLEAN];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork, credentialsMissing,

requestedAccessDenied, illegalFilename, noSuchFile, fileAlreadyExists, fileBusy, noRoomForFile,

fileDataError.

Mesa FTP Functional Specification 56

Appendix G: Client Communication Primitives

G.1. Description of the Option

An FTP User, Server, or Listener manipulates its local communication system by means of a family

of procedures called communication primitives. This family includes, for example, procedures for

opening and closing network connections, for activating and deactivating network ports (well-known

sockets), and for sending and receiving data. The FTP implementation includes a set of primitives

for manipulating the standard Pup communication system.

Rather than use the communication system offered by FTP, the client may, if it wishes, provide its

own communication primitives to a particular FTP User or Listener. By so doing, a client can use

FTP to, for example:

1. interface to another local communication system.

2. transform host names (for example, convert abstract host names to concrete ones).

3. control access to particular functions on a per-host basis.

4. maintain a log of communication system activity.

The client can also implement certain communication primitives while relying on FTP for others, or

use the FTP implementations as building blocks for its own implementations. For example, a client

could log incoming requests for connection by supplying an implementation of the ActivatePort
procedure (described in Section G.5) that calls FTP’s ActivatePort procedure to actually activate

the port.

G.2. Exercising the Option

The client exercises the option described above by means of the communicationPrimitives
parameter required by both the FTPCreateUser and FTPCreateListener procedures. This

parameter is a POINTER to a RECORD containing the PROCEDUREs by which the newly created FTP

User or Listener (and any Servers it may create) are to access the local communication system. The

client may supply its own version of this record, rather than rely upon either of the standard

versions offered by FTP. In constructing the record and/or implementing the procedures it

contains, the client may draw upon any of the communication primitives it finds in the FTP-

provided records. Since FTP will not copy the record presented to it, the client must preserve it

intact until FTPDestroyUser or FTPDestroyListener is called:

CommunicationPrimitives: TYPE = POINTER TO CommunicationPrimitivesObject;
CommunicationPrimitivesObject: TYPE = RECORD [

 -- program management primitives
 CreateCommunicationSystem: PROCEDURE RETURNS [communicationSystem:

CommunicationSystem],
 DestroyCommunicationSystem: PROCEDURE [communicationSystem:

CommunicationSystem],

Mesa FTP Functional Specification 57

 -- connection management primitives
 OpenConnection: PROCEDURE [communicationSystem: CommunicationSystem,

remoteHost: STRING, remoteSocket: LONG CARDINAL, receiveSeconds: CARDINAL]
RETURNS [connection: Connection],

 CloseConnection: PROCEDURE [communicationSystem: CommunicationSystem,
connection: Connection],

 ActivatePort: PROCEDURE [communicationSystem: CommunicationSystem,
localSocket: LONG CARDINAL,
serviceConnection: PROCEDURE [UNSPECIFIED, Connection, STRING],
serviceConnectionData: UNSPECIFIED, receiveSeconds: CARDINAL] RETURNS [port:
Port],

 DeactivatePort: PROCEDURE [communicationSystem: CommunicationSystem,
port: Port],

 -- data transmission and receipt primitives
 SendBytes: PROCEDURE [communicationSystem: CommunicationSystem,

connection: Connection, bytePointer: BytePointer],
 ReceiveBytes: PROCEDURE [communicationSystem: CommunicationSystem,

connection: Connection, bytePointer: BytePointer, settleForLess: BOOLEAN],
 SendByte: PROCEDURE [communicationSystem: CommunicationSystem,

connection: Connection, byte: Byte],
 ReceiveByte: PROCEDURE [communicationSystem: CommunicationSystem,

connection: Connection, settleForNone: BOOLEAN] RETURNS [byte: Byte,
settledForNone: BOOLEAN],

 ProduceDiscontinuity,
 ConsumeDiscontinuity,
 ForceOutput: PROCEDURE [communicationSystem: CommunicationSystem,

connection: Connection]];

CommunicationSystem: TYPE = POINTER TO CommunicationSystemObject;
CommunicationSystemObject: TYPE = RECORD [dummy: UNSPECIFIED];
Connection: TYPE = POINTER TO ConnectionObject;
ConnectionObject: TYPE = RECORD [dummy: UNSPECIFIED];
Port: TYPE = POINTER TO PortObject;
PortObject: TYPE = RECORD [dummy: UNSPECIFIED];
BytePointer: TYPE = POINTER TO BytePointerObject;
BytePointerObject: TYPE = RECORD [address: POINTER, offset: BOOLEAN, count:

CARDINAL];
Byte: TYPE = [0..377B];

G.3. General Characteristics

The communication primitives employed by FTP and suppliable by the client are described below.

Statements that apply to all valid implementations of a primitive (that is, one or both of FTP’s

implementations and any a client might supply) are rendered in the standard font. Statements which

apply only to one or both of the standard implementations supplied by FTP are rendered in a smaller font.

In accordance with standard Mesa exception handling conventions, communication primitives report

errors by signalling. FTP catches any signal that reaches it and aborts the current transaction (with

the help of the remote FTP User, Listener, or Server, as necessary). Wherever possible, client

communication primitives should use the standard FTP signal, FTPError (described in Section 1.4),

to report errors. Doing so enables the FTP User or Server to communicate the error to the remote

FTP Server or User in a meaningful way. The description of each procedure below includes a list

of the FtpError values that seem, to the author, most appropriate for that primitive. Requests by

communication primitive implementors for new FtpError values will be gladly entertained.

Mesa FTP Functional Specification 58

The communication system provides stream-like connections that are used by FTP to interconnect

FTP Users with FTP Servers. Over such connections flow streams of data partitioned into logical

records by discontinuities in the streams. The communication system provides primitives for

producing and consuming discontinuities, as well as for sending and receiving data. In general, data

transmitted by the client (that is, FTP) are buffered by the communication system until an amount

consistent with efficient use of the transmission medium has been accumulated. Before waiting for

a response from the remote FTP User or Server to previously transmitted data, therefore, FTP must

insure that it has actually been sent, by invoking the ForceOutput primitive, described in Section

G.6.

Some of the data transmission and receipt primitives require among their parameters a byte pointer

that defines the block of storage to be emptied or filled. A byte pointer is a POINTER to a RECORD

containing the address of a storage block, the offset from that address to the first byte of data,

and a count of the number of bytes to be read or written:

BytePointer: TYPE = POINTER TO BytePointerObject;
BytePointerObject: TYPE = RECORD [address: POINTER, offset: BOOLEAN, count:

CARDINAL];

If offset is FALSE, the first byte of data is the left most (that is, high order) byte of the addressed

word; if offset is TRUE, the first byte of data is the right most (that is, low order) byte of that

word. In practice, the vast majority of calls on the primitives requiring byte pointers will specify an offset of FALSE.

However, the generality of the communication protocols employed by FTP requires this same generality at the interface

to the communication system.

Each primitive that accepts a byte pointer among its arguments has the side effect of updating that

byte pointer to address the first byte of data beyond the last byte actually transmitted or received.

Since the SendBytes procedure described in Section G.6 always transmits the entire contents of

the storage block, it returns with the byte pointer updated to address the first byte beyond that

block. Since the ReceiveBytes primitive described in Section G.7 may receive less than the

requested number of bytes, it may return with the byte pointer updated to a place somewhere

within the specified storage block.

G.4. Program Management Primitives

FTP or its client provides two procedures for creating and destroying instances of the local

communication system. The first, CreateCommunicationSystem, used by both FTP User and

Listener, creates a new instance of the local communication system. The procedure returns a

handle, communicationSystem, to the newly created communication system instance, which the

caller must retain and later present to any of the other communication primitives it invokes. The

communicationSystem is a pointer to a private record containing all of the state information

the communication system instance requires to function properly. The Alto implementation of this

procedure turns on the Pup Package:

CreateCommunicationSystem: PROCEDURE RETURNS [communicationSystem:
CommunicationSystem];

Mesa FTP Functional Specification 59

CommunicationSystem: TYPE = POINTER TO CommunicationSystemObject;
CommunicationSystemObject: TYPE = RECORD [dummy: UNSPECIFIED];

The second procedure, DestroyCommunicationSystem, used by both FTP User and Listener,

destroys a previously created instance of the local communication system, reclaiming any local

resources allocated to it. Before invoking this procedure, the caller must close all open connections

and deactivate all active ports. The Alto implementation of this procedure destroys the Pup Package:

DestroyCommunicationSystem: PROCEDURE [communicationSystem:
CommunicationSystem];

CommunicationSystem: TYPE = POINTER TO CommunicationSystemObject;
CommunicationSystemObject: TYPE = RECORD [dummy: UNSPECIFIED];

G.5. Connection Management Primitives

FTP or its client provides four procedures for creating and destroying network connections. The

first, OpenConnection, used only by FTP User, establishes a connection to the specified

remoteHost and remoteSocket and returns a handle to it. The caller specifies the interval in

seconds, receiveSeconds, after which subsequently unfulfilled calls to the ReceiveBytes or

ReceiveByte procedure described in Section G.7 are to be timed out and aborted. The

distinguished value LAST[CARDINAL] requests the maximum allowed timeout interval, which may be

infinite. The Alto implementation of this procedure interprets remoteHost as either a host name or Ethernet address,

and creates a network stream to the specified socket at that host:

OpenConnection: PROCEDURE [communicationSystem: CommunicationSystem,
remoteHost: STRING, remoteSocket: LONG CARDINAL, receiveSeconds: CARDINAL]
RETURNS [connection: Connection];

Connection: TYPE = POINTER TO ConnectionObject;
ConnectionObject: TYPE = RECORD [dummy: UNSPECIFIED];

Exceptions: noSuchHost, connectionRejected, noRouteToNetwork, noNameLookupResponse.

The second procedure, CloseConnection, used only by FTP User, closes the previously opened

connection with the specified handle. The Alto implementation of this procedure simply deletes the network

stream:

Mesa FTP Functional Specification 60

CloseConnection: PROCEDURE [communicationSystem: CommunicationSystem,
connection: Connection];

Connection: TYPE = POINTER TO ConnectionObject;
ConnectionObject: TYPE = RECORD [dummy: UNSPECIFIED];

The third procedure, ActivatePort, used only by FTP Listener, causes the local host to become

responsive to incoming requests for connection to the specified localSocket, and returns a handle

to the newly established local communication port. The caller specifies the interval in seconds,

receiveSeconds, after which subsequently unfulfilled calls to the ReceiveBytes or

ReceiveByte procedure described in Section G.7 are to be timed out and aborted. The

distinguished value LAST[CARDINAL] requests the maximum allowed timeout interval, which may be

infinite. As long as the port is active, the communication system will automatically create a

connection for each incoming request, and invoke the caller-supplied serviceConnection
procedure to service that connection. This procedure receives as arguments the

serviceConnectionData supplied to ActivatePort, a handle for the newly established

connection, and the host name (possibly expressed as a network address, depending upon the

implementation) of the host that initiated the connection request. When serviceConnection
returns, its caller (within the communication system) will close the connection. The Alto implementation

of this procedure simply creates a Pup listener for the indicated socket:

ActivatePort: PROCEDURE [communicationSystem: CommunicationSystem,
localSocket: LONG CARDINAL,
serviceConnection: PROCEDURE [UNSPECIFIED, Connection, STRING],
serviceConnectionData: UNSPECIFIED, receiveSeconds: CARDINAL] RETURNS [port:
Port];

Connection: TYPE = POINTER TO ConnectionObject;
ConnectionObject: TYPE = RECORD [dummy: UNSPECIFIED];
Port: TYPE = POINTER TO PortObject;
PortObject: TYPE = RECORD [dummy: UNSPECIFIED];

The fourth procedure, DeactivatePort, used only by FTP Listener, deactivates the previously

activated port with the specified handle. Existing connections remain unaffected and will continue

to be serviced by the client, but no new incoming requests for connection to the affected socket will

be honored The Alto implementation of this procedure sets a flag, pokes the listening process, and waits for it to

destroy itself:

DeactivatePort: PROCEDURE [communicationSystem: CommunicationSystem, port:
Port];

Port: TYPE = POINTER TO PortObject;
PortObject: TYPE = RECORD [dummy: UNSPECIFIED];

Mesa FTP Functional Specification 61

G.6. Data Transmission Primitives

FTP or its client provides four procedures for transmitting data via a previously opened connection.

The first, SendBytes, used by both FTP User and Server, enqueues for transmission via the

specified connection, the contents of the block of storage denoted by the specified bytePointer.

As a side effect, the procedure updates the byte pointer to address the first byte beyond the storage

block. The procedure returns after the caller’s storage block has been emptied but, in general,

before the data has actually been transmitted to the remote host. Data are transmitted only when

an amount consistent with efficient use of the transmission medium has been accumulated by the

communication system, or when the ForceOutput procedure described below is invoked,

whichever occurs first. The Alto implementation of this procedure simply outputs the block of data on the network

stream and advances the byte pointer:

SendBytes: PROCEDURE [communicationSystem: CommunicationSystem,
connection: Connection, bytePointer: BytePointer];

Connection: TYPE = POINTER TO ConnectionObject;
ConnectionObject: TYPE = RECORD [dummy: UNSPECIFIED];
BytePointer: TYPE = POINTER TO BytePointerObject;
BytePointerObject: TYPE = RECORD [address: POINTER, offset: BOOLEAN, count:

CARDINAL];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork.

The second procedure, SendByte, used by both FTP User and Server, enqueues for transmission

via the specified connection, the indicated byte of data. In general, the procedure returns before

the data has actually been transmitted to the remote host. Data are transmitted only when an

amount consistent with efficient use of the transmission medium has been accumulated by the

communication system, or when the ForceOutput procedure described below is invoked,

whichever occurs first. The Alto implementations of this procedure simply outputs the byte of data on the network

stream, unless it is the first byte following a discontinuity, in which case it transmits the byte in the form of a change in

subsequence type:

SendByte: PROCEDURE [communicationSystem: CommunicationSystem,
connection: Connection, byte: Byte];

Connection: TYPE = POINTER TO ConnectionObject;
ConnectionObject: TYPE = RECORD [dummy: UNSPECIFIED];
Byte: TYPE = [0..377B];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork.

The third procedure, ProduceDiscontinuity, used by both FTP User and Server, creates a

discontinuity in the stream being transmitted via the specified connection, at a point immediately

following the last byte of data sent. Multiple calls upon this procedure without intervening data are

treated as no operations. The Alto implementation of this procedure simply makes note of the requested

discontinuity so that the next byte of data sent via SendByte will be transmitted in the form of a change in subsequence

type:

Mesa FTP Functional Specification 62

ProduceDiscontinuity: PROCEDURE [communicationSystem:
CommunicationSystem, connection: Connection];

Connection: TYPE = POINTER TO ConnectionObject;
ConnectionObject: TYPE = RECORD [dummy: UNSPECIFIED];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork.

The fourth procedure, ForceOutput, used by both FTP User and Server, causes all data

previously sent via the specified connection actually to be transmitted to the remote host. In the

absence of calls upon this procedure, data are transmitted only when an amount consistent with

efficient use of the transmission medium has been accumulated by the communication system.

Multiple calls upon this procedure without intervening data are treated as no operations. The Alto

implementation of this procedure simply invokes the network stream’s SendNow primitive:

ForceOutput: PROCEDURE [communicationSystem: CommunicationSystem,
connection: Connection];

Connection: TYPE = POINTER TO ConnectionObject;
ConnectionObject: TYPE = RECORD [dummy: UNSPECIFIED];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork.

G.7. Data Receipt Primitives

FTP or its client provides three procedures for receiving data transmitted via a previously opened

connection. The first, ReceiveBytes, used by both FTP User and Server, accepts from the

specified connection, some or all of the data required to fill the block of storage denoted by the

specified bytePointer. If settleForLess is FALSE, the procedure completely fills the block of

storage, blocking the client as long as is required to obtain the requested amount of data. If

settleForLess is TRUE, the procedure returns whatever data the communication system may have

already received, up to the capacity of the storage block, blocking the client if necessary to obtain at

least one byte of data. Regardless of the value of settleForLess, a discontinuity in the input

stream will terminate the receive operation at that point. As a side effect, the procedure updates

the byte pointer to address the byte just beyond the last byte read, thereby informing the client of

the quantity of data actually returned by the procedure. The Alto implementation of this procedure simply

invoke the network stream’s GetBlock procedure, terminating on end of physical record (if settleForLess is TRUE) or a

change in subsequence type:

ReceiveBytes: PROCEDURE [communicationSystem: CommunicationSystem,
connection: Connection, bytePointer: BytePointer, settleForLess: BOOLEAN];

Connection: TYPE = POINTER TO ConnectionObject;
ConnectionObject: TYPE = RECORD [dummy: UNSPECIFIED];
BytePointer: TYPE = POINTER TO BytePointerObject;
BytePointerObject: TYPE = RECORD [address: POINTER, offset: BOOLEAN, count:

CARDINAL];

Mesa FTP Functional Specification 63

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork.

The second procedure, ReceiveByte, used by both FTP User and Server, returns to the caller the

next byte of data transmited via the specified connection. A discontinuity in the input stream

either aborts the procedure, if settleForNone if FALSE, or causes the procedure to return empty-

handed, if settleForNone is TRUE. In either case, the procedure returns an indication of whether

it settledForNone. The Alto implementation of this procedure simply invoke the network stream’s GetByte

procedure, noting and acting upon a change in subsequence type:

ReceiveByte: PROCEDURE [communicationSystem: CommunicationSystem,
connection: Connection, settleForNone: BOOLEAN] RETURNS [byte: Byte,
settledForNone: BOOLEAN];

Connection: TYPE = POINTER TO ConnectionObject;
ConnectionObject: TYPE = RECORD [dummy: UNSPECIFIED];
Byte: TYPE = [0..377B];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork.

The third procedure, ConsumeDiscontinuity, used by both FTP User and Server, consumes any

discontinuity that might exist at the current point in the input stream being received via the

specified connection. Unnecessary calls upon this procedure are treated as no operations. The

Alto implementation of this procedure simply clears the discontinuity-pending condition, if it exists:

ConsumeDiscontinuity: PROCEDURE [communicationSystem:
CommunicationSystem, connection: Connection];

Connection: TYPE = POINTER TO ConnectionObject;
ConnectionObject: TYPE = RECORD [dummy: UNSPECIFIED];

Exceptions: connectionTimedOut, connectionClosed, noRouteToNetwork.

Mesa FTP Functional Specification 64

Appendix H: Sample Configuration and Program

H.1. Introduction

The sample configuration and stand-alone program presented below, which store a single file on a

remote file system, illustrate FTP’s use on the Alto. The reader is referred to Appendix I for the

location of the necessary object files.

H.2. Sample Configuration

The programmer must include in his configuration: FTP; file, mail, and communication primitives,

as appropriate; and (on the Alto) the Pup Package. In the sample configuration below, just the

FTP User code is included, since the sample program creates no FTP Listener:

FTPCSample: CONFIGURATION
 -- import list
 IMPORTS DiskKDDefs, FrameDefs, ImageDefs, IODefs, ProcessDefs,
 SegmentDefs, StreamDefs, StringDefs, SystemDefs, TimeDefs
 -- control module
 CONTROL FTPSample
 = BEGIN

-- sample program
 FTPSample;

-- ftp
 FTPUser;

-- communication
 TinyPup;

 END. -- of FTPCSample

Mesa FTP Functional Specification 65

H.3. Sample Program

The sample program first initializes FTP; creates an FTP User using the file and communication

primitives supplied by FTP; extracts the login user name and password from the Alto operating

system and uses them as its credentials; opens a connection to IRIS; stores a copy of the local file,

FTPCSample.Bcd, in the remote file system; closes the connection to IRIS; destroys the FTP

User; and finalizes FTP:

DIRECTORY

 FTPDefs: FROM "FTPDefs" USING [
 FTPCloseConnection, FTPCreateUser, FTPDestroyUser, FTPError, FTPFinalize,
 FTPInitialize, FTPOpenConnection, FTPSetCredentials, FTPStoreFile, FTPUser,
 PupCommunicationPrimitives, AltoFilePrimitives],
 ImageDefs: FROM "ImageDefs" USING [StopMesa],
 IODefs: FROM "IODefs" USING [WriteLine],
 OsStaticDefs: FROM "OsStaticDefs" USING [OsStatics],
 StringDefs: FROM "StringDefs" USING [BcplToMesaString];

FTPSample: PROGRAM

 -- import list
 IMPORTS FTPDefs, ImageDefs, IODefs, StringDefs
 = BEGIN OPEN FTPDefs, ImageDefs, IODefs, OsStaticDefs, StringDefs;

-- variables
ftpInitialized: BOOLEAN _ FALSE;
ftpuser, copy: FTPUser _ NIL;
user: STRING _ [40];
password: STRING _ [40];

-- intercept errors
BEGIN ENABLE

 BEGIN

 FTPError =>
 BEGIN

 IF message # NIL THEN WriteLine[message];
 CONTINUE;
 END;
 UNWIND =>
 BEGIN

 IF ftpuser # NIL THEN FTPDestroyUser[ftpuser];
 IF ftpInitialized THEN FTPFinalize[];
 END;
 END;

-- initialize ftp
FTPInitialize[]; ftpInitialized _ TRUE;

Mesa FTP Functional Specification 66

-- create ftp user
ftpuser _ FTPCreateUser[AltoFilePrimitives[], PupCommunicationPrimitives[]];

-- set credentials to login user and password
BcplToMesaString[OsStatics^.UserName, user];
BcplToMesaString[OsStatics^.UserPassword, password];
FTPSetCredentials[ftpuser, primary, user, password];

-- open connection, store self, and close connection
FTPOpenConnection[ftpuser, "Iris"L, files, NIL];
[] _ FTPStoreFile[ftpuser, "FTPCSample.BCD"L, "FTPCSample.BCD"L, binary];
FTPCloseConnection[ftpuser];

-- destroy ftp user
copy _ ftpuser; ftpuser _ NIL; FTPDestroyUser[ftpuser];

-- finalize ftp
ftpInitialized _ FALSE; FTPFinalize[];
END; -- enable

-- return to exec
StopMesa[];

END. -- of FTPSample

Mesa FTP Functional Specification 67

Appendix I: Production Configurations and File Locations

I.1. Introduction

FTP is offered in a number of configurations, described below. In theory at least, it is possible to

build a configuration that includes only the desired facilities. Here is a summary of what the

various optional pieces do:

FTPAltoFile implements an interface to the Alto file system as described in Appendix E.

FTPPupComCool and FTPPupComHot implement the Pup version of the communication

interface described in Appendix G. They require either TinyPup or FatPup to be included

in your configuration.

FTPUserStore implements FTPStoreFile, as described in Section 3.5.

FTPUserRetrieve implements FTPRetrieveFile, as described in Section 3.5.

FTPUserDump implements the Dump Primitives described in Appendix B. If it is ommitted,

DumpBlock (from FTPUserStore) and/or LoadBlock (from FTPUserRetrieve) will

need dummy implementations to satisfy the Binder.

FTPUserFiles implements most of the other user file primitives (FTPEnumerateFiles,

FTPDeleteFile, FTPRenameFile, and FTPSetFilenameDefaults) described in

Section 3.

FTPUserXfer implements FTPTransferFile, as described in Appendix D.3.

FTPUserMailIn implements the mail retrieval primitives described in Appendix C.3.

FTPUserMailOut implements the mail delivery primitives described in Appendix C.2.

FTPAccessories translates error codes into text. If the text is not needed, it may be omitted

if dummy routines are provided.

FTPTrace implements the trace facilities described in Appendix D, Section D.2. It may be

omitted if dummy routines are provided to satisfy the Binder.

FTPSysMail plus a local file system interface of the client’s choosing is used to implement a

mail server as described in Appendix F.

Dummy* implement the various routines needed to glue FTP together and/or to satisfy the

Binder.

I.2. Production Configurations

Mesa FTP Functional Specification 68

The client can determine FTP’s version number by means of the following constants defined in

FTPDefs:

ftpMajorVersion: Byte = 6;
ftpMinorVersion: Byte = 1;

Byte: TYPE = [0..377B];

FTP 6.0 is written in Mesa 6.0 and FTP proper imports Process, String, and Storage. The

FTP-provided file, mail and, communication interfaces import additional components of Mesa,

and/or Pup.

The following production FTP configurations presently exist; others will be created as need for

them is expressed by the user community:

FTPUser: FTP User file primitives (that is, the primitives of Sections 2 and 3 and of

Appendices B and D). In calls to FTPOpenConnection, purpose must be files.

FTPServers: FTP Listener file and mail primitives only (that is, the primitives of Sections 2

and 4, and of Appendix D, Sections D.2 and D.4).

MTPUser: FTP User mail primitives only (that is, the primitives of Appendices C.2, C.3, and

D.4). In calls to FTPOpenConnection, purpose must be mail. This is a minimal

system primarily for use by Laurel. It does not contain FTPAccessories or the trace

facilities of Appendix D.2.

FTPMTPUser: This configuration contains all of the user facilities for files and/or mail.

FTPAll: This configuration contains all of the user and server facilities for files and/or mail.

PupAndFTP: This is simply TinyPup, EFTPSend, and FTPMTPUser all packaged into

one big lump to eliminate the complexities of including the correct packages.

Mesa FTP Functional Specification 69

Appendix J: Utilities

FTP needs a few routines that may be useful to other programs. They are packaged separately so

that they can be included in you configuration even if you do not need the appropiate parts of FTP.

J.1. TimeExtraDefs

TimeExtraDefs is exported by FTPUser, FTPMTPUser, and PupAndFTP. If one of them is

not needed, TimeExtras can be included directly.

If the argument is NIL or its contents cannot be parsed as a reasonable time, it returns 0. There are

probably many strings easily recognizable by a person that PackedTimeFromString won’t be

able to handle, but it doesn’t have any trouble with the output of the existing FTP programs (Maxc,

IFS, Alto BCPL, Juniper) and TimeDefs.AppendDayTime.

PackedTimeFromString: PROCEDURE [STRING] RETURNS [TimeDefs.PackedTime];

J.2. DirExtraDefs

The server half of FTPAltoFile uses DirExtras to do * and # expansion. It is not exported by

any of the standard FTP configurations.

There is only one procedure in DirExtras: EnumerateDirectoryMasked. It scans the

directory, and presents to proc the matching files in directory order. The trailing "." on Alto file

names has already been removed when proc is called.

EnumerateDirectoryMasked: PROCEDURE [
 files: STRING,
 proc: PROCDURE [fp: POINTER TO FP, file: STRING] RETURNS [BOOLEAN]];

