| nter-Office Memorandum

To Mesa Users Date October 27, 1980
From Bruce Maasky, John Wick Location Palo Alto
Subject Mesa 6.0 Debugger Update Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>Debugger60.bravo (and .press)

This memo outlines changes made in the Mesa Debugger since the last release (Mesa 5.0, April 9,
1979); it isintended as a concise guide to conversion, not a detailed specification of the changes.
Complete documentation on the Mesa 6.0 Debugger can be found in the Mesa Debugger
Documentation.

User Interface

The Debugger’ s user interface incorporates changes made in Tgjo (the Tools Environment); the
window package Wisk has been converted to use Vista, the new window package. For more
compl ete documentation on the Tajo design, see the Tajo User’s Guide and the Tajo Functional
Soecification.

Typein
The assignment of some function keys and mouse buttons has changed. The menu button is now

YELLOW (formerly BLUE). FL4 isno longer the stuff key; use FR4 (Spare2), Keyset2, or ~S. The
following function keys are implemented (see the section on editing for an explanation of the

functions):

Function ADL Keyboard Microswitch Keyboard Keyset Control Key
Cut DEL DEL Keyset5 ~C
Past e LF LF Keysetl AF
Next FL3 (none) Keyset3 AN
Repl ace FL4 (none) Keyset4 "R
Swat FR1 Spare3 (none) (none)
St uf f FR4 Spare2 Keyset2 rS
Back Word BW Sparel (none) AW
Repl ace/ Next FR5 (none) (none) K

Typein isdirected to the Debugger if the cursor is not in any window. Source windows will accept
input until afileisloaded; they then direct typein to the Debugger (unlessthey are editable; see
below).

Copyright ¢ Xerox Corporation 1980

Mesa 6.0 Debugger Update

Slections

The selection scheme has changed. Clicking RED once selects a character, clicking twice selects a
word, threetimes aline, etc. The selection can be extended to the left or right with BLUE; a
character selection is extended by characters, aword selection by words, and so on. The current
selection is now video reversed.

Scrollbars

Scrollbars no longer occupy a dedicated part of the window, but instead come up on top of the left
edge. They are twice as wide as before, and you can "see through" them. To obtain a scroll bar,
move |eft just past the edge of the window, then move right slightly, back into the window.

Name Stripe

The name stripe and tiny windows now video reverse when the cursor is in the sections that
function as accelerators for the window manager menu commands (Move, Gr ow, Si ze, Top,
Bot t om and Zoom).

Menus

Except for the change from BLUE to YELLOW, the way menus are invoked has not changed.
However, some new menus and commands have been added.

Sandard Menus

In additionto Move, Gr ow, Si ze, Top, Bot t om and Zoom the standard window manager menu
now also includes the following command:

Deacti vate

This command deactivates the selected window; it will no longer appear on the screen and
the resources used by it will be freed. The window’s nameis added to a menu of
deactivated windows, which is available outside all windows. The window may be made
active again by selecting its menu item.

A new Text Ops menu is now supplied with the Debug. | og and source windows in addition to the
Window Manager menu. It containsFi nd, Posi tion,Split,Normalize |nsertion,
Nor nal i ze Sel ecti on, and W ap; the following commands are new:

Split

The Debugger’ s wisk window has been replaced by the more general Spl i t window
command. Feedback issimilar to that in Laurel: the split line can be picked up using RED
and moved vertically. The subwindow is destroyed by moving the split line off the top or
bottom of the (sub)window.

Normal i ze I nsertion

For windows containing an insert point (Debug. | og and editable source windows), this
command will position the text in the (sub)window so that the line containing the insert
point is at the top.

Mesa 6.0 Debugger Update

Nor mal i ze Sel ecti on

This command positions the text in the (sub)window so that the line containing the left
most position of the current selection is at the top.

Debugger Menu

A separate Debugger menu no longer exists; the Al t er Bi t map function has been deleted, Move
Boundar y has been superseded by Spl i t (seeabove), and St uf f |t isnow available only on the
keyboard.

Source Menus

In addition to the standard menus, the source window has two additional menus, Source Ops and

File Ops. The Source Ops menu contains the following commands, which are unchanged: Cr eat e,
Dest r oy, Set Br eak, Set Tr ace, and Cl ear Br eak; the last three commands are available only
if afile has been loaded into the window. The Source Ops menu contains the following new
command:

Attach

Causes the Debugger to ignore the creation date of the current source file when setting
breakpoints or positioning to a source line. This command is essentially a LOOPHOLE;
because the source-object correspondence may not be correct, it should be used with caution.
If, after using At t ach, the Debugger sets breakpoints in strange places, chances are that

the source file does not match the version of the object in the system you are debugging.

The File Ops menu includes the following new commands (plus Load, which functions as before):

Edi t

Enables editing of the currently loaded read only file (see below). Empty windows are
always editable, but because they have no backing store (until they are Saved or St or ed
on afile), the amount of information in the window should be kept small.

Save

Outputs the contents of the window to its current file; overwriting the file requires
confirmation. A backup "$" fileis created that is a copy of the unedited version. After the
Save command completes, access revertsto read only.

Store

Outputs the contents of the window to the file named by the current selection; if the file
already exists, overwriting it requires confirmation. After the St or e command compl etes,
access revertsto read only.

Reset
Discards al edits that have been made to the window (during this session) and resets access
toread only. If thefileisnot editable, the window is made empty.

The Edi t command is available only if afile has been associated with the window (by a previous
Load, St or e, or Save); St or e and Save apply only if the window has been edited.

Mesa 6.0 Debugger Update

Editing

The standard source window facilities now provide asimple cut and paste editor. Editingis
modeless and is accomplished by moving the insert point and typing the desired text. (Note that
unlike Bravo, the insert point isindependent of the location of the current selection.) Backspace
and backword functions (Bs and Bw) are always available. The following functions are provided:

ARED Moves the insert point (represented by a blinking caret) to the cursor
position.

DEL (Keyset5) ~"C Cut deletes the current selection and puts the deleted text in the
TrashBin (seeLF).

LF (Keysetl) ~F Paste inserts the TrashBin at the insert point (see DEL).

FL4 (Keyset4) "R Replace does a cut and moves the insert point to the place where the
text was deleted.

FR4 (Spare2) S Stuff inserts the current selection at the insert point.

Themessage Pl ease term nate editing of <filename> appearsintheDebug. | og if youtry
toKi | I orQuit from the Debugger while editing afile.

Caution: The editing facilities are designed not to alter the origina file until it is Saved or

St or ed, much like Bravo; the original contents are copied to afile with "$" appended to its name.
Thisis however, a new facility and should be used with caution. It isdesigned to support a
moderate number of localized changes to programs, not to replace your favorite document creation
system.

Debugger Commands

Changes in Debugger commands are relatively minor. The Debugger’ sinterpreter is more generally
available and more consistent with the language. Tracepoints have been re-implemented as a minor
extension of the standard breakpoint facilities.

Old Commands

Asci i/ Cctal Read

TheAscii andCct al Read commands no longer automatically increment the default value
produced by ESsc.

Br eak/ Trace Points

Break and trace points can no longer be set by typing a source line, and the Br eak Modul e and
Break Procedur e commandsand corresponding Tr ace and C ear commands have been
deleted; the menu commands must be used.

The distinction between trace and breakpoints has been removed. An optional command string can

now be attached to each breakpoint which will be executed when the breakpoint istaken. A

tracepoint then becomes a breakpoint with a standard default command string. LI st Br eaks lists
both break and tracepoints (Li st Tr aces hasbeendeleted). Cl ear Al Entries/Xits clears
both break and tracepoints.

Mesa 6.0 Debugger Update

Tracepoints automatically invoke the normal Di spl ay St ack command processor (with
subcommand p(ar anet ers), v(ariables), orr(esults) asappropriate). Theq(uit)
subcommand (not b(r eak)) exitsto the Debugger’s command level, where the normal Pr oceed
command continues execution of the client.

The method of specifying conditional break and tracepoints has changed; see the ATt ach
Condi ti on command in the next section.

When an exit break is set, the Debugger breaks on any return of the procedure by setting the actual
breakpoint on acommon return instruction. The Debugger has no way of telling which return was
taken if there is more than one. When asked to display the source line when at an exit break, the
Debugger now shows the declaration line of the procedure instead of the last return statement.
Case On/ O f

The Debugger no longer ignores case, and the case commands have been deleted; identifiers must be
typed with their correct capitalization.

Control DEL

Typing ~DEL will now abort the display of long arrays and strings, as well as most searches. This
key combination no longer has to be held down to be recognized.

COr emap

This command now prints more information about some data segments; the (system-assigned) types
currently recognized are heap, system, frame, table, bitmap, stream buffer, and Pup buffer.
Unrecognized types (assigned by the user) are displayed asdat a(t) ; an unknown typeis displayed
asdata(?).

Di spl ay Process [process|

The subcommand space (SP) can how be used to invoke the interpreter.

Di spl ay Stack

The new subcommand "g" displays the global variables of the module containing the current
procedure. A space (SP) invokesthe interpreter. If the source window is loaded with the
s(our ce) subcommand, the window will remember the appropriate context for setting
breakpoints.

Interpret Call

Thel nterpret Call command has been deleted; the Debugger’ sinterpreter should be used.
There are no longer any restrictions on when the interpreter may be called.

ReSet Context [confirni

This command now requires two keystrokes, to avoid conflict with the ReMot e debuggee
command (not yet implemented on the Alto).

STart [address] [Confirni

This command now requires confirmation.

Mesa 6.0 Debugger Update

New Commands

AScii Display [address, count]

Interprets addr ess as POINTER TO PACKED ARRAY OF CHARACTER and displays count characters (each
character separately, not as a string).

ATt ach Condi tion [number, condition]

This command replaces old style conditional breaks; it changes a normal breakpoint into a
conditional one. Arguments are a breakpoint number and a condition, which is evaluated in the
context of the breakpoint. The breakpoint number is displayed when the break/tracepoint is set,
and may also be obtained usingthe LI st Br eaks command.

ATt ach Keystrokes [number, command]

Arbitrary command strings can now be attached to break and tracepoints; they are executed by the
Debugger when the breakpoint is taken. Arguments are a breakpoint number and a command
string terminated with acr. A CR can be embedded in the command string by quoting it with ~v.
ATt ach Loadst at e [filename]

Like ATt ach | mage, except that the initial rather than the current loadstate of the image fileis
used; this command is for wizards only.

Break All Entries/Xits [module

Thisnew command isthesameasTrace Al l Entries/ Xits, except that breakpoints are set.

CLear Break [number]

This command clears breakpoints by number. Typing CR in place of a number will clear the
current breakpoint, i.e., the one that transferred control into the Debugger.

CLear Condition [number]

This command changes a conditional breakpoint into anormal one. Typing CR in place of a
number behavesasin CLear Break.

CLear Keystrokes [number]

This command clears any command string associated with the breakpoint. Typing CR in place of a
number behavesasin CLear Br eak.

LQOgi n [user, password]

This command sets the default user name and password for the debugging session. The new user
name and password are not written into the client’ s core image or onto the disk.

ReMot e Debugee [host]

This command is not implemented on the Alto.

Trace Stack

This command is used when the Debugger breaks and enters the debugger nub ("/ / " mode); it
dumps the Debugger’s call stack in octal to thelog. Change requests reporting Debugger problems
that result in an uncaught signal or other problem should be accompanied by aDebug. | og which
includes the output of this command.

Mesa 6.0 Debugger Update

Interpreter

Theinterpreter provides support for all of the new language features introduced in Mesa 6. Al
commands requiring numeric input now invoke the interpreter automaticaly (e.g., Cct al Read:
@, n: SIZE[r]).

Grammar

A summary of the revised grammar is attached. The constructs ABS, ERROR, LONG, LOOPHOLE, MAX,
MIN, NIL, POINTER TO, PROC, PROCEDURE, SIGNAL, WORD, and open and half open intervals have been
added to the interpreter’ s grammar; type REAL has been added for output only. Type expressions
following % must be enclosed in parentheses. The interpreter syntax Expression? has replaced

thel nt er pret Expressi on command; it prints the value of the expression in several formats
including octal and decimal.

Target Typing

Theinterpreter now does a much better job of target typing. Asaresult, arguments to procedure
calls and right hand sides of assignments are type checked. In addition, assignments to enumerated
types now work correctly.

Theinterpreter also does a better job of determining signed/unsigned representation. For example,
any octal number is assumed to be unsigned.

Symbol Lookup

Even if amodule has compressed symbols, the debugger will first look for thefile

nodul enane. bcd to seeif it isthe original compiler output for that module (by checking the
version stamp). If so, it will use those symbols. Thus, thereisno needto At t ach Synbol s if the
proper fileison the disk. It makes sense to use compressed symbols for large systems and to also
have present the complete symbol files for the specific modules undergoing detailed debugging.

Output Conventions

In display stack mode, variables declared in nested blocks are now shown indented according to
their nesting level.

A "?" inavariable display now uniformly meansthat thevalueisout of range; *. . . "indicates
that there are additiona fields present which cannot be displayed due to lack of symbol table
information.

When the debugger refers to a program module, it usualy gives the address of its global frame, e.g.,
"G nnnnnB". If the module has not been started, the debugger now printsa"~" after the B. If a
modul e has not been started, the user should not modify the global variables of that module, nor
should they be displayed, as they are uninitialized.

New Error M essages

Thewarning Eval stack not enpty! will beprinted if the debugger is entered via either an
interrupt or a breakpoint with variables still on the evaluation stack; this indicates that the current
value of some variables may not be in main memory, where the interpreter normally looks.
Exceptionsto this are at entry and exit breaks; the debugger has enough information to decode the

Mesa 6.0 Debugger Update 8

argument records that are on the stack in this case (if the appropriate symbol tables are available).

Before the debugger permits any breakpoints to be set using the source window, the creation date in

the sourcefile is checked against the corresponding date recorded by the compiler in the BCb. The

message Can’t use <module> of <time> i nstead of version created <time>will resultif
the versions do not match (but see the At t ach source menu command above).

Themessage Reset ti ng synbol tabl e! isdisplayed when the interpreter’s scratch symbol table
overflows; the command is retried automatically. The Debugger’s performance decreases somewhat
until the symbol table isreinitialized.

If aprogram is compiled with cross-jumping, the debugger will print the warning Cr oss j unped!
before displaying the source.

Installation
Fonts

The Debugger now requires a strike font named MesaFont . stri ke or SysFont . stri ke;a
version of GachalO isavailable on <Mesa>MesaFont . stri ke. Additiona strike fonts are stored
on[Maxc] <Al t oFont s>. (Strike fonts which include kerning are not supported.)

Switches

Installing the debugger with the/ b switch will video reverse the display (i.e., white characterson a
black background).

Memory Bank Management

When running on machines with more than 64K of memory, the client system supplies space to the
Debugger for its bitmap (unless al but one bank has been disabled; see below); the client can
disable this option by using the / k switch or by calling a system procedure before the Debugger is
first invoked (see the Mesa 6.0 System Update).

It isalso possible for the Debugger to be installed with more than one bank of memory available

for code swapping; thisis done by reducing the amount of memory available to the client using the
RunMesa bank switches or the Alto Executive MesaBanks. ~ command (in Executive version 11 or
later).

MesaBanks. ~

This command establishes the default memory allocation available to client programs.
Arguments can be in two forms: a sixteen bit octal mask (followed by an optional / b
switch) indicating the available banks; aonein bit position n of the mask (counting from
the left) indicates that bank nisavailable. Form two isaseries of decimal bank numbers
each followed by the/ x switch; each bank mentioned is excluded from use by the client.
Note that arequest to exclude bank zero will beignored. If no argument is present, the
command will display the current value of the bank mask.

The MesaBanks. ~ command establishes the available memory for each . i mage or . bcd
program invoked directly by the Alto Executive. The default may be overridden by
explicitly using RunMesa to invoke the program and optionally specifying bank switches on
its command line, before the . i mage file name. The bank switches have the same format
asthe argumentsto MesaBanks. ~ (except that the/ b switchisrequired in the case of a

Mesa 6.0 Debugger Update

bitmask). In the absense of any bank switches, RunMesa always assumes that all banks are
available to the client.

Using these facilities, it is possible to set up the defaults so that the Debugger has extra banks of
memory at the expense of the client program. For example, on athree bank Alto, the following
commands might be used to set the default and then install the Debugger:

MesaBanks. ~ 2/ x
RunMesa. run 1/ x XDebug. i mage

Under this arrangement, the client would use banks zero and one, and the Debugger would use
banks zero and two (because bank zero is swapped onto Swat ee, it can be used by both).
Actually, because the client (by default) is also alocating space for the Debugger’ s display bitmap,
the client actually has only one-and-one-half banks, and the Debugger has two-and-one-half; this
can be changed by running the client with the / k switch, resulting in two banks available to each.

Note that the MesaBanks. ~ command affects all Mesa programs invoked by the Alto Executive,
including the Compiler and Binder. So the above example would run the Compiler in only two
banks, not three; this can be changed by saying RunMesa Conpi | er onthe command line, which,
because there are no bank switches specified, defaults to all banks available (not really necessary in
this case, since the Compiler runs almost as well in two banks asin three). On the next new

session, the Debugger is smart enough to notice that the Compiler (or whoever) has smashed what it
thought was in bank two. (It isalso smart enough not to use any memory that the client owns, so
that the 1/ x switch on the command line above is actually unnecessary.)

Since there are alot of options here, some "standard" examples of client and Debugger
configurations might be helpful:

Two Banks: Normally, do nothing; client and Debugger will each have one-and-one-half
banks. For small clients and better Debugger performance, use RunMesa 1/ x

Mesa. i mage Cient. bcd, whichwill give the client one bank and the Debugger two.
(If you wereto use MesaBanks. ~ 1/ x inthis case, the Compiler would also be restricted
to one bank).

Three Banks. Asin the three bank example above.

Four Banks: Use MesaBanks. ~ 3/ x to give the client and the Debugger two-and-one-half
banks each and the Compiler three; use MesaBanks. ~ 2/ x 3/xandCd ient/kto
increase the Debugger’ s alocation to three banks and restrict the client to two. Obviously,
this can be adjusted based on the size of the client and the desired performance of the
Debugger.

Extended Features

Nearly all of Alto/Tajo isnow included in the Debugger (Librarian support and communications
arenot). Accordingly, thereislittle (if any) distinction between UserProcs and Tools, and Fetch
(the FileTool plus communications) which runsin the Debugger is the same as the FileTool
provided by Alto/Tajo. A copy of section 10 of the Tajo User’s Guide describing the FileTool is
attached to this memo.

Distribution:
Mesa Users
Mesa Group
SDSupport

Debugger Summary

Version 6.0

ASci i
Read [address, count]
Di spl ay [address, count]
ATt ach
Image [filename]
Condi ti on [number, condition]
Keyst r okes [number, command]
Loadst at e [filename]
Synbol s [globalframe, filename]
Br eak
Al l
Ent ri es [module/frame]
Xi t s [module/frame]
Entry [procedure]
Xit [procedure]
CLear
Al l
Breaks [confirni
Ent ri es [module/frame]
Traces [confirni
Xi t' s [module/frame]
Br eak [number]
Condi ti on [number]
Entry
Br eak [procedure]
Tr ace [procedur €]
Keyst r okes [number]
Xit
Br eak [procedure]
Trace [procedure]
COremap[confirm
CUrrent cont ext
Di spl ay
Br eak [number]
Configuration
Eval - st ack
Frame [address] (g,j,!,n,p,q,r,s,V)
Gl obal FraneTabl e
Modul e [moduleg]

Di spl ay
Process [process] (I,n,p,q,r,s)
Queue [identifier] (1, n,p,q,r,s)
ReadylList (I,n,p,q,r,Ss)
Stack (g,j,!,n,p,q,r,s,Vv)
Fi nd vari abl e [identifier]
Kill session[confirni
List
Breaks [confirni
Configurations[confirni
Processes [confirni
LOgon [user, password]
Oct al
Cl ear break [globalframe, bytepc]
Read [address, number]
Set br eak [globalframe, bytepc]
Write[address, value
Proceed[confirni
Quit [confirm
ReSet cont ext [confirni
ReMot e debuggee [host] [confi rnj
SEt
Confi gurati on [config]
Modul e cont ext [module/frame]
Oct al cont ext [address|
Process cont ext [process|
Root confi gurati on [config]
STart [address] [confirm
Trace
Al l
Ent ri es [module/frame]
Xi t s [module/frame]
Entry [procedure]
St ack
Xit [procedure]
Userscreen[confirni
Worry
of f [confirni
on[confirm
"Debug [confirni

StatementList

Debugger Interpreter Grammar
Version 6.0

Statement | StatementList; | StatementList; Statement

Statement LeftSide Interval | LeftSide _ Expression |
MEMORY Interval | Expression | Expression ?

LeftSide identifier | (Expression) | LeftSide Qualifier |
identifier $ identifier | number $ identifier |
MEMORY [Expression] | LOOPHOLE [Expression] |
LOOPHOLE [Expression , TypeExpression]

Qualifier A | . identifier | [ExpressionList]

Interval [Bounds] |[Bounds) | (Bounds] | (Bounds) |
[Expression ! Expression]

Bounds Expression .. Expression

Expression Sum

Sum Product | Sum AddOp Product

AddOp + |

Product Factor | Product MultOp Factor

MultOp *| /| mMoD

Factor Primary | Primary

Primary Literal | LeftSide | @ LeftSide | BuiltinCall |
Primary % | Primary % (TypeExpression)

Literal number | character | string

BuiltinCall NIL | NIL [TypeExpression] | PrefixOp [ExpressionList] |
TypeOp [TypeExpression]

PrefixOp ABS | BASE | LENGTH | LONG | MAX | MIN

ExpressionList ::= empty | Expression | ExpressionList, Expression

TypeOp ;I= SIZE

TypeExpression ::= identifier | Typeldentifier | TypeConstructor

Typeldentifier :’= BOOLEAN | INTEGER | CARDINAL | WORD | REAL | CHARACTER |
STRING | UNSPECIFIED | PROC | PROCEDURE | SIGNAL | ERROR |
identifier identifier | identifier Typeldentifier |
identifier . identifier | identifier $ identifier

TypeConstructor ::= LONG TypeExpression | @ TypeExpression |

POINTER TO TypeExpression

Wisk Summary

Version 6.0
WHAT WISK MOUSE BUTTONS DO:
Scroll Bar Text Area
RED Scroll Up Select
YELLOW Thumb Menu
BLUE Scroll Down Extend

NAME STRIPE/SMALL WINDOW COMMANDS:

Left Middle Right
RED Top/Bottom Zoom Top/Bottom
YELLOW Grow (corner) Grow (edge) Grow (corner)
BLUE Move Size Move

STANDARD WINDOW MENU COMMANDS:

Move Size Bottom Grow Top Zoom Deactivate

STANDARD TEXT OPS MENU COMMANDS:

Find [selection] Normalize Insertion Split
Position [selection] Normalize Selection Wrap

SOURCE WINDOW SOURCE OPS MENU COMMANDS:

Create Set Break [selection] Clear Break [selection]
Destroy Set Trace [selection] Attach

SOURCE WINDOW FILE OPS MENU COMMANDS:

Load [selection] Store [selection] Reset
Edit Save

Y

B

Zoom

Size

Tajo User’sGuide 52

10.0 File Tool

The File Tool provides ameans of dealing with local aswell as remote file systems from within the
Development Environment.

10.1 The User lllusion

The File Tool employs the standard features of the Development Environment. See section 3 for
further details.

10.2 Tool Appearance

Below isanillustration of a File Tool with the List Options window (explained below) visible.

Directory: &4lphaTools:Tools

Dest.'n: [Pages= 1826
User: Karlton Pagsworg; kst Update
Connect ; Pazsword; Yerify

Retrieve! Local-List! Remote-List ! Copy! List-Options!
Store! Local-Delete! Remote-Delete! Cloze!

{1

Tgor SO0 Morth IFS 1,26 1,27, File Server of September 2, 1988; 2 users out of 7
Femote 1ist of * bodlh
dlphaToolsxTools

Access bod!l 4 BE2OE Z21-0ct-58

ChatTool bed!3 17862 21-0Oct-58

ClockTool bhod! 4 8372 15-0Oct-5/

FileTool bhod! 7 12860 21-0ct-58

PrafileTonl , bodl 4 14164 16-0Oct-56

SJampleTool , bed! & 11416 16-Oct-3W

SimpleTool bod!2 46575 16-0Oct-58

TT%Test bodlil 4186 22-Jul-8r

Total of & files

Author]y !
Read Ahort |

10.3 Par ameter Subwindow

The upper form subwindow contains parameters that can be set by the user; they will be used by
the next File Tool command.

Tajo User’sGuide

Host: the name of the host to be used for remote file operations. |f a connection is aready open,
any editing of thisfield causesit to be closed; if atransfer isin progress, the connection
will not be closed until it is complete.

Directory: the default remote directory. If empty, the valuein the User: field is used.

Source: alist of files (separated by spaces or returns) to be operated on. If the first character of a
filenameis"@", then thefileistaken to be an indirect file and its contents are used as a
list of files. Indirect files may nest.

Dest'n: file name for the destination of atransfer. If thisfield isleft blank, the file nameisthe
same as the source.

Pages= number of free pages |eft on the disk. Thisitem isread only.

User:, Password: the primary directory and the associated password. Thisfield isinitialized from
the value of the user’slast Alto Operating System login. Editing of thisfield islocal to the
File Tool and does not affect the user’ slogin in the Alto Operating System.

Update only store or retrieve thefile if the source is newer than the destination (comparing
creation dates). The default isfalse.

Connect:, Password: the secondary directory and the associated password.

Verify reguest confirmation for each file operation. The default isfalse.

10.4 Command Subwindow

File Tool commands are available in the second form subwindow. Some of the commands are
accomplished by a background process. Those commands clear the Command subwindow so that a
second operation cannot be invoked while one is under way. The Copy! command operates only
on thelocal disk. It does not take alist of filesto operate upon. Close! closes aremote connection
(if thereis one).

It isimportant to remember that the commands are postfix; e.g., fill inthe Host: and Source: fields
before invoking the Retrieve! command. The following commands are available:

Retrieve! transfersthe file specified in Source: from the remote file system to the local disk. The
file name must conform to the file-naming conventions on the remote host. Y ou may
designate multiple files by the use of * expansion only to the extent that the remote server
supportsit. If thelocal fileisaready in use, the transfer will not be made and the message " <filename>:
can't be modified" will be displayed in both the message window and the log window. See warning in Section
10.6

Local-List! listsall files on the local disk corresponding to the namein Source:. This command
will expand *s and #s.

Remote-List! listsall files on the remote file system corresponding to the namein Sour ce: . This
must conform to the file naming conventions of the remote host. Y ou may designate
multiple files by the use of * expansion only to the extent that the remote server supportsit
(currently Maxc and | FS do, but differently).

Copy! makesa copy of alocal file onthelocal disk. Only asingle file may be copied and *s and
#s are not allowed.

53

Tajo User’sGuide

List-Options! createsaList Optionswindow if one does not aready exist.

Store! transfers the file specified in Source: from the local disk to the remote Host . Alto file
name conventions apply to the locd file.

Local-Delete! deletesthe files specified in Source: from the local disk. If thelocal fileis aready in use,
the delete will be skipped and the message "<filename>: can’t be modified" will be displayed in both the
message window and the log window. See warning in Section 10.6

Remote-Delete! deletesthefile specified in Source: from the remote file system. Y ou may
designate multiple files by the use of * expansion only to the extent that the remote server
supportsit.

Close! closesthe currently open FTP connection.

If Verify is TRUE, then for each file that might be acted upon, the following commands are
displayed

Confirm! do the operation.
Deny! abort the operation.

Stop! abort the operation and terminate the command. Thiswill close the connection with the server if a
retrieve is being aborted.

10.5 List Options window

The List Options window is created by the List-Options! command. The properties that will be
displayed, in addition to the file name, by a Local-List! or Remote-List! are governed by the
booleansin thiswindow. After changing the options, use Apply! to effect those changes. The
Abort! command will restore the options which existed before the List-Options! command was
selected. Choosing either of the commands in the List Options window will cause that window to
be removed.

If the Type attribute is requested for a Local-List! and the type is unknown, it will be listed as such
to prevent the time it would take to read the file and determine the type.

10.6 Exceptions

The actual transfer takes place in a background process, so the user is free to issue other commands
or even change the values in the parameter subwindow without affecting the command currently
executing. Changing a parameter while the File Tool is waiting for Confirm! will not affect the
name of the destination file; you should skip the transfer (by using Deny!) and reissue the
command with the desired parameter correctly set.

Warning: Do not attempt to use afilewhileit is being retrieved. Thisincludesissuing commands
to the Debugger that cause it to try to reference the file. For example, Display Stack may cause
the Debugger to reference symbols contained in the file being retrieved.

Warning: If you are using the File Tool in the Debugger, be careful not to change any files out
from under the program you are debugging; the file tool makes no provisions for checking if the
fileisin usein the client world when you modify alocal file.

| nter-Office Memorandum

To Mesa Users Date October 27, 1980
From Bruce Malasky Location Palo Alto
Subject Debugger: Extended Features Organization SDD/SS/Mesa

XEROX

Filed on: [Iris]<Mesa>Doc>XDF.bravo (and .press) D RA FT

This memo discusses Debugger User Procedures (UserProcs) and contains a sample Printer, a special
type of UserProc.

The Debugger is now the functional equivalent of the Alto/Tajo environment (with the exception of
Librarian support and communications). As aresult, there are no longer any differences between
the FileTool and ChatTool that run in Alto/Tgjo and the versions that run in the Alto/Mesa
Debugger.

L oading User Procedures

To install the Debugger from the command line with some UserProcs, type:
XDebug Your Procl[/|] YourProc2[/I]

to the Alto Executive. To load filesin an installed debugger, simply enter the Debugger nub; then
do a>Newfilename, followed by >St art globalframe. More information on the mechanism for
loading programs into the Debugger can be found in the Mesa User’ s Handbook and the Mesa
Debugger Documentation.

Hintsfor Writing User Procedures

The Debugger gives you added help in gaining access to the information it already knows about
your program. The Debugger’ s configuration exports al of the Debugger’s and Tgjo' s interfaces;
see XDebug. confi g for details. A user program can access any of the Debugger’s public
procedures simply by importing the definitions modules of the procedures that you want to use.
When writing your own debugging routines, look carefully at some of the utility routines that the
Debugger already provides (e.g., Name, Frame, ShortREAD, etc.). In particular,
DebugUsefulDefs contains most of the interesting procedures you might want. The interface
DOutput contains utility procedures for displaying information in the Debug. | og (alalODefs).
Y ou should also look at the <Mesali b> and <Al phaHacks> directories for UserProcs that other
Mesa users have already written and debugged.

Warning: The Mesa Group makes no guarantees about the stability of these interfaces between
releases. Use at your own risk!

Copyright ¢ Xerox Corporation 1980

Debugger: Extended Features

Printers

The Debugger is capable of calling a user supplied procedure to print variables of specific types.
To do this, aprogram must first register any type it will display by calling

AddPrinter: PROC [type: STRING, proc: PROC [DebugOps.Foo]]

from the interface Dump. The Debugger’ sinterpreter evaluatestype at the beginning of each
session and remembers the target type of the result. Unfortunately, type is not asimple type
expression, but rather a statement evaluated by the interpreter; the type is extracted from the resuilt.
Any additional information such as the address of a variable used when evaluating the statement isignored.

Later, whenever the Debugger encounters a variable of that type, it will call proc to display it. If,
for agiven printer, calling proc or evaluating type ever causes an UNWIND, the printer is never
called again. The parameter to proc is defined as follows:

Foo: TYPE = POINTER TO Fob;

Fob: TYPE = RECORD |
there: BOOLEAN,

addr: BitAddress,
words: CARDINAL,
bits: [0..WordLength),

Ik

BitAddress: TYPE = RECORD [
base: LONG POINTER,
offset: [0..WordLength],

L

If there isTRUE, the BitAddress isalocation in the user coreimage. For large structures,
LongREAD and LongCopyREAD from DebugUsefulDefs should be used to access the data;
for small structures the procedure GetValue in the interface DI (it takes aFoo asits argument)
copies the information into the Debugger’ s core image and updates the addr. The Debugger owns
the storage for Foos and the values copied into them from the user’s core image; they are freed by
the Debugger between commands.

A good technique for debugging the string used in the call to AddPrinter isto actually try it out
using the interpreter. All REALS could be intercepted by supplying the following STRING to
AddPrinter:

0%(REAL)
The following STRING is used by the sample printer attached at the end of this memo.
LOOPHOLE[1400B, StackFormat$Stack]”

The constant 1400B is simply alocation that is aways mapped; AddPrinter’s evaluation of the STRING does not
actually use that location.

Once StackPrinter isinstantiated in the Debugger, PrintStack is called whenever the Debugger
wants to display a StackObject. Since PrintStack understands the format of StackObjects, it

can show the complete contents of a stack, something the Debugger is unable to do because of the
zero length array.

Debugger: Extended Features

-- StackFormat. nesa
-- Last Edited: Keith, October 21, 1980 10:30 PM

St ackFormat: DEFI NI TI ONS =
BEQ N

Stack: TYPE = PO NTER TO St ackObj ect;

St ackObj ect: TYPE = RECORD |
top: CARDI NAL _ 0,
max: CARDI NAL _ O,
over fl owed: BOOLEAN _ FALSE,
stack: ARRAY [0..0) OF CARDI NAL];

END.

-- StackPrinter.nesa
-- Last Edited: Keith, October 21, 1980 10: 38 PM

DI RECTORY
DebugOps USI NG [Foo, LongREAD],
DI USI NG [Get Val ue],
DQut put USING [Char, Line, Cctal, Text],
Dunp USING [AddPrinter],
StackFormat USI NG [StackEntry, StackObject];

StackPrinter: PROGRAM | MPORTS DebugQOps, DI, DQutput, Dunp =
BEG N

PrintRecord: PRCC [l p, |ps: LONG PO NTER TO St ackFor mat . St ackObj ect]
{
| pSt ack: LONG PO NTER TO CARDI NAL _ LOOPHOLE[@ ps. st ack] ;
IF I p.top = 0 THEN DQut put. Text["enpty "L]
ELSE
FOR i: CARDI NAL DECREASING IN [O0..|p.top) DO
DQut put . Cct al [DebugOps. LongREAD[| pStack + i]]; DQutput.Char[’];
ENDL OOP;
| F | p.overfl owed THEN DQut put. Text["(overflow) "L];
IF Ip.max = | p.top THEN DQutput. Text["(full!)"L];
DQut put. Line[" "L]};

PrintStack: PROC [f: DebugOps. Foo] = {
g: LONG PO NTER _ f. addr. base;
Dl . GetValue[f]; PrintRecord[f.addr.base, g]};

Dunp. AddPri nter|[
type: "LOOPHOLE[1400B, StackFornmat $Stack]”", proc: PrintStack];

END.

