
Mesa Debugger Documentation

Version 6.0

October 1980

The facilities documented here are the workings of an interactive Mesa debugger. It has been

designed to support source level debugging; it provides facilities that allow users to set breakpoints,

trace program execution, display the runtime state, and interpret Mesa statements.

XEROX
OFFICE PRODUCTS DIVISION
Systems Development Department
3333 Coyote Hill Road / Palo Alto / California 94304

c Xerox Corporation 1979, 1980

Table of Contents

Preface �v

1. Overview �1

2. User Interface �3

3. Input Conventions �9

4. Debugger commands 10

5. Debugger Interpreter 20

6. Output Conventions 23

7. Signal and Error Messages 26

Appendices

Debugger Summary 35

Debugger Interpreter Grammar 37

Wisk Summary 39

iii

Preface

October 1980

The facilities documented here are the workings of an interactive Mesa debugger. It has been
designed to support source level debugging; it provides facilities that allow users to set breakpoints,
trace program execution, display the runtime state, and interpret Mesa statements. Due to the
amount of space required to provide all of these capabilities, the Mesa debugger lives a core swap
away from the program being debugged.

This documentation is divided into seven parts. Section 1 is an overview, Section 2 describes the
user interface, Section 3 explains the debugger’s input conventions and contains a summary of the
command tree structure, Section 4 explains the semantics of each command, Section 5 explains the
debugger interpreter, Section 6 explains the debugger’s output conventions, and Section 7 explains
signal and error messages. The Mesa User’s Handbook contains further details on how to obtain,
install, and use the debugger.

The Mesa debugger is intended for use by experienced programmers already familiar with Mesa.
All comments on the form, correctness, and understandability of this document should be sent to
your support group. All of us involved in the development of Mesa welcome feedback and
suggestions on debugger development.

v

1

Section 1: Overview

The runtime and debugging facilities differ in their relationship to the user program. When you
invoke Mesa.image, it provides the code necessary for your program to communicate with the
debugger; it resides with the user program. An optional Mesa Executive serves the function of an
executive when the Mesa system is first started (see the Mesa System Documentation for further
details). The debugger, however, resides in a different core image which is loaded when called for;
it operates with a complete world-swap.

Installing the debugger

Before a client program can use the Mesa debugger, the debugger must be installed. This operation

saves the debugger’s core image. Typing XDebug to the Alto Executive automatically installs the
debugger. Other programs may be loaded into the debugger by including their names on the
command line. The Debugger now requires a strike font named MesaFont.strike or SysFont.strike. See the Mesa
User’s Handbook for further details.

Invoking the debugger

There are several ways of invoking the debugger. One method is to issue the Debug command to
the Mesa Executive; this brings you into the debugger, ready to execute a command. Invoking a
BCD from the Alto Executive with the /d switch causes Mesa.image to go to the debugger after
loading the BCD, but before starting it. See the Mesa User’s Handbook for complete information on various

debugging switches. If you wish to enter the debugger at any time (i.e., while your program is
running), ^SWAT interrupts your program. (If you really get in trouble Section 7 contains details on

bootloading the debugger.)

In the course of running your program, you may enter the debugger for several other reasons. Your
program may generate an uncaught signal, execute a breakpoint/tracepoint that has been placed in
your program, or encounter a fatal system error that forces your program to abort (Section 7
contains further details on the messages displayed when entering the debugger in these situations).

Talking to the debugger

The user interface to the debugger is controlled by a command processor that invokes a collection
of procedures for managing breakpoints, examining user data symbolically, and setting the context
in which user symbols are looked up.

When receiving commands, the debugger extends each input character to the maximal unique string
that it specifies. Whenever an invalid character is typed, a ? is displayed and you are returned to
command level. Typing a ? at any point during command selection prompts you with the
collection of valid characters (in upper case) and their associated maximal strings (in lower case) and
returns you to command level. Whenever a valid command is recognized, you are prompted for
parameters (Section 3 contains further details on the input conventions). Typing DEL at any point
during command selection or parameter collection returns you to the command processor; typing
^DEL at any point during command execution aborts the command.

When initialized, the debugger creates two windows: the Debug.log window which becomes a
record of the debugging session, and a source window which is loaded with the source file when

Overview2

breakpoints are set or the source location is requested. These windows may be manipulated by the
window manager which comes with your debugger (see Section 2 for further details).

Current context

Interpreting symbols (including displaying variables, setting breakpoints, and calling procedures)
occurs in the current context; it consists of the current frame and its corresponding module,
configuration, and process. The symbol lookup algorithm used by the debugger is as follows: it
searches the runtime stack of procedure frames in LIFO order by examining first the local frame of
each procedure (and then its associated global frame), following return links, until the root of the
process is encountered.

When you first enter the debugger, the context is set to the frame of whatever process is currently
running (i.e., to the Mesa Executive, if you enter via the Debug command; to your program, if it is
interrupted or at a breakpoint). There are commands which make it simple to change between
contexts (SEt Root configuration, SEt Module context), to display the current context
(CUrrent context), and to examine the current dynamic state (Display Stack).

Looking up symbols

Whenever the debugger needs symbols to display some information, it searches for the original
compiler-output BCD before looking for symbols where they were last copied by the binder. Types
used, but not declared, within a module are looked up using the same algorithm as in the compiler.
If the module containing the original declaration is unavailable, the debugger uses whatever
information has been copied into the symbol table of the module using that type.

Leaving the debugger

Once you are in the debugger, you may execute any number of commands that allow you to
examine (and change) the state of your program. When you are finished, you may decide either to
continue execution of your program (Proceed), terminate execution of your program (Quit), or
end the debugging session completely and return to the Alto Executive (Kill). Section 4 contains
further details on these commands.

3

Section 2: User Interface

The Mesa debugger uses the Tools Environment window/menu/selection package (Wisk). For
more complete documentation on the philosophy behind this interface, see the Tools Environment:
Guide for Tools Users and the Tajo Functional Specification. For more information on the window
package see the Vista Functional Specification.

Standard window configuration

The debugger is created with two windows: a debug window (Debug.log) and an empty source
file window. The same selection scheme, scrolling commands, and standard window commands
apply to both windows. See below for functions specific to each window. Note: these functions are
best understood by trying them as you read this document.

Typein

Typein goes to the window containing the cursor, regardless of whether that window is on top.
Typein is directed to the Debugger if the cursor is not in any window. Source windows will accept
input until a file is loaded; they then direct typein to the Debugger (unless they are editable; see
below). Type ahead of mouse clicks and keystrokes is permitted. The following function keys are
implemented (see the section on editing for an explanation of the functions):

Function ADL Keyboard Microswitch Keyboard Keyset Control Key

Cut DEL DEL Keyset5 ^C

Paste LF LF Keyset1 ^F

Next FL3 (none) Keyset3 ^N

Replace FL4 (none) Keyset4 ^R

Swat FR1 Spare3 (none) (none)
Stuff FR4 Spare2 Keyset2 ^S

Back Word BW Spare1 (none) ^W

Replace/Next FR5 (none) (none) ^K

Selections

There is only one selection at any time (not one per window). Clicking RED once selects a character,
clicking twice selects a word, three times a line, etc. The selection can be extended to the left or
right with BLUE; a character selection is extended by characters, a word selection by words, and so
on. The first and last characters of the selection are always extended by characters, regardless of the
current mode of selection. The current selection is video reversed.

Scrollbars

Scrollbars do not occupy a dedicated part of the window, but instead appear on top of the left
edge; you can "see through" them. To obtain a scroll bar, move left just past the edge of the
window, then move right slightly, back into the window. Scrolling commands are initiated by
moving into the scroll bar and clicking a mouse button; scrolling is activated when the mouse
button is released. Moving out of the scroll bar before releasing the button returns you to text
selection mode without repositioning the file. The thermometer in the scroll bar shows the current

User Interface4

position of the window in the file. The positioning commands are as follows:

scrolling up [RED button]
moves the line next to the cursor to the top of the window.

relative scrolling [YELLOW button]
moves to the position in the file corresponding to the relative position of the cursor in the
scroll bar (also called "thumbing").

scrolling down [BLUE button]
causes the line at the top of the window to be moved next to the cursor.

Menu commands

When the YELLOW mouse button is pressed in the text area of a window, an array of menus appears
and the cursor changes to a left arrow. Select a menu by pointing at its header (causing it to video
reverse) and releasing the mouse button (or alternatively, you may click RED over the title of the
desired menu while continuing to hold the YELLOW button down). Similarly, select a menu
command by pointing at it (causing it to video reverse) and releasing the mouse button. After
seeing the menu, if you do not wish to execute a menu command, move the cursor away from the
menu and release the YELLOW mouse button. Except where otherwise noted below, clicking the
RED mouse button over a menu command causes the command to be executed. Whenever a menu
command requires the user to click RED for confirmation, the user may click BLUE instead to abort
the command.

When Wisk is working on a command, the cursor is changed to an hourglass. When it is done with
the current task, the cursor returns to its normal shape. If for some reason it cannot complete the
current task, the display is blinked.

Standard Menus

The standard Window Manager menu commands are as follows:

Move

repositions the corner of the window closest to the cursor in any direction. Clicking RED

positions that corner of the window to the cursor location. Note that this command does
not change its actual size.

Grow

pulls a corner of the window in any direction, growing or shrinking the window along
either dimension (width or height). Clicking RED fixes the size of the window (subject to a
minimum size restriction).

Size

shrinks the window to a small box at the top of the display (or wherever you move it),
showing just the window name. This is a toggle command; alternate invocations restore
and shrink the window size. It is suggested you do this to windows not currently in use,
since this may free up much of the space associated with the window. Sizing the
Debug.log closes and truncates the file.

User Interface 5

Top

causes the window to be displayed on top of all other windows.

Bottom

causes the window to be displayed underneath all other windows.

Zoom

causes the window to grow to take up all of the available bitmap space. Alternate
invocations of this command restore and Zoom the window.

Deactivate

deactivates the selected window; it will no longer appear on the screen and in most cases it
will free the resources being used by that window. The window’s name is added to a menu
of deactivated windows; this menu is available outside all windows. The window may be
made active again by selecting its menu item.

A Text Ops menu is supplied with the Debug.log and source windows in addition to the window
manager menu. It contains the following commands:

Find

finds the next occurence of the current selection in this window. The search begins at the
first character visible in the window unless the current selection is in this window, in which
case the search begins at the end of the current selection. If the search is successful, the
text becomes the new selection; if it is not visible, it is scrolled to the top of the window;
otherwise, the selection remains the same and the display blinks.

Position

takes the current selection as a decimal character index and positions the file in the
subwindow where the menu was invoked.

Split

divides in two the subwindow where the menu was invoked. Feedback is similar to that in
Laurel: the split line can be picked up at the small box on the right using RED and moved
vertically. The subwindow is destroyed by moving the split line off the top or bottom of
the subwindow.

Normalize Insertion

scrolls a (sub)window containing an insert point (e.g., Debug.log and editable source
windows), so that the line containing the type-in point is at the top.

Normalize Selection

scrolls the (sub)window so that the line containing the leftmost position of the current
selection is at the top.

User Interface6

Wrap

The source window is created with line wrap-around turned off. Executing the Wrap
command reverses the current state.

Name Stripe / Tiny Windows

The name stripe and the top half of tiny windows function as accelerators for the window manager
menu commands (Move, Grow, Size, Top, Bottom, and Zoom); they both video reverse when the
cursor is in the sections that activate the window manager commands. These window operations
may be invoked by positioning the cursor in the left, middle, or right region of the name stripe and
clicking one of the mouse buttons; the top half of a tiny window works the same. The functions
are as described above with these two exceptions:

Top/Bottom: if the window is not on top, move it to the top; if it is already on top, move
it to the bottom.

Grow: does not apply to tiny windows.

The header commands are as follows:

Mouse Button Left Region Middle Region Right Region

RED Top/Bottom Zoom Top/Bottom

YELLOW Grow (corner) Grow (edge) Grow (corner)

BLUE Move Size Move

Debug window

The debug window is used for user/debugger communication (i.e., invoking commands, reporting
uncaught signals). There is a blinking vertical bar at the place that is currently expecting input.

Source windows

A source window is used to view a text file, edit a text file, and set breakpoints. The debugger is
initially created with one source window that it uses (i.e., for loading the source of the current
module on the Display Stack subcommands). However, you may create as many source
windows as you like. Note that Bravo formatting is ignored when displaying the file.

In addition to the standard menus, the source window has two additional menus. The Source Ops
menu contains the following commands:

Create

creates a new source window at the place selected by clicking RED.

Destroy

destroys this source window after you confirm by clicking RED. Note that windows
belonging to the debugger cannot be destroyed.

User Interface 7

Attach

tells the debugger to ignore the time stamp in the source file when setting breaks.
Timestamps are discussed in Section 4.

Set Break

uses the current selection to set a breakpoint (breakpoints are discussed in Section 4). If
you select the word "PROCEDURE" or "PROC", a breakpoint is set on the entry to the
procedure; if you select the word "RETURN", a breakpoint is set on the exit of the
procedure; otherwise a breakpoint is set at the closest statement enclosing the selection.
Note that if the module was compiled with cross jumping, breaks may be set in unpredictable places.

Confirmation is given by moving the selection to the place at which the breakpoint is
actually set. The window must contain the source file for a module in the current
configuration. If there are multiple instances of a module, the current context must match
the source file.

Set Trace

sets a tracepoint at a location specified as in Set Break above. Confirmation is given by
moving the selection to the place at which the tracepoint is actually set.

Clear Break

clears the breakpoint or tracepoint at the location specified as above.

The breakpoint commands and Attach are available in the Source Ops menu only if a file has
been loaded into the window.

The File Ops menu includes the following commands:

Load

loads a file into this source window, using the current selection as a filename (appending
".mesa" if no extension is specified).

Store

creates a file whose name is the current selection and stores the contents of the window in
it. If the file already exists, overwriting it requires confirmation. After the Store
command completes, the file is no longer editable.

Save

stores the contents of the window in its current file (this always requires confirmation). A
Bravo style "$" file is created that is a copy of the unedited version. After the Save
command completes, the file is no longer editable.

Edit

enables editing of the currently loaded read-only file (see below). Empty windows are
always editable, but because they have no backing store (until they are Stored or Saved
on a file), the amount of information in the window should be kept small.

User Interface8

Reset

discards all edits that have been made to the window (during this session). If the file was
editable, the file is no longer editable, otherwise the window is made empty.

Time

replaces the current selection with the current date and time.

The Edit command is available only if a file has been associated with the window (by a previous
Load, Store, Save, or if it is empty); Reset, Store, and Save apply only if the window has
been edited.

Editing

The standard source window facilities provide a simple cut and paste style editor. Editing is
modeless and is accomplished by simply moving the insert point and typing the desired text. (Note
that unlike Bravo, the insert point is independent of the location of the selection.) Backspace and
backword functions (BS and BW) are always available. The following functions are also provided:

^RED Moves the insert point to the cursor position.

DEL (Keyset5) ^C Cut deletes the current selection and puts the deleted text in the
TrashBin (see LF).

LF (Keyset1) ^F Paste inserts the TrashBin at the insert point (see DEL).

FL4 (Keyset4) ^R Replace does a cut and moves the insert point to the place where the
text was deleted.

FR4 (Spare2) ^S Stuff inserts the current selection at the insert point.

Caution: The editing facilities are designed not to alter the original file until it is Saved or
Stored, much like Bravo. This is, however, a new facility and should be used with caution; it is
intended to support a small number of localized changes, not program creation or massive changes.

9

Section 3: Input Conventions

The input conventions of the debugger’s command processor are summarized below, along with the
tree for the command syntax. The command processor prompt character is ">" for the debugger
and "/" for the debugger nub (actually, the character is repeated once for each nesting level of the
debugger). Whenever a valid command is recognized, the debugger prompts for the parameters
associated with that command (if any are required) according to the conventions described below.
Typing DEL terminates the command; ? gives a list of valid commands. When a command requires
a [confirm] (CR), the debugger enters wait-for-DEL mode if an invalid character is typed.

String input

Identifiers are sequences of characters beginning with an upper or lower case letter and terminating
with a space (SP) or a carriage return (CR); identifiers must be typed with their correct capitalization.
The debugger echoes a delimiting character of its own choice in order to minimize loss of
information from the display.

Numeric input

A numeric parameter is a sequence of characters terminated by SP or CR. If the parameter is not a
numeric constant it will be processed by the Debugger Interpreter (see Section 5); any expression
which evaluates to a number is legal (the target type must be (LONG) INTEGER, CARDINAL, or
UNSPECIFIED). The default radix is octal for addresses (and input to octal commands) and decimal
for everything else (unless otherwise specified in Section 4). The "D" or "d" suffix forces decimal
interpretation; "B" or "b" forces octal.

Default values

The debugger saves the last values used as parameters to all of the commands; these values may be
recalled by the escape key (ESC). The following parameters have default values which may be used
or inspected by typing ESC: octal read address, octal write address, ascii read address, root
configuration, configuration, module, procedure, condition, expression, process, address, and frame.
After the default parameter is displayed by the debugger, the standard input editing characters may
be used to modify it. Typing ESC to the command processor uses the last command as the default
command (i.e., you receive the prompt for the parameters, if any, for the previously executed
command).

Editing characters

The standard input editing characters accepted during input are: CONTROL-A, CONTROL-H, or BS to
delete a character, and CONTROL-W or BW to delete a word.

Command Tree

The command tree structure for the Mesa debugger appears as an appendix at the end of this
document. Capitalized letters are typed by the user (in either upper or lower case); the lower case
substrings are echoed by the command processor. Each command (and its parameters) is described
in Section 4.

10

Section 4: Debugger commands

The debugger provides facilities for managing breakpoints, examining user data symbolically, setting
the context in which the user symbols are looked up, and directing program control. It also
contains low-level utilities and a debugger nub used for debugging the debugger itself. The
semantics of the commands are summarized below. (Section 3 contains further details regarding
input conventions and Section 6 contains details of output conventions.)

Breakpoints

The break and trace commands apply to modules and procedures that are known within the current
context. All breakpoints and tracepoints may be conditional; an optional command string can also
be attached to each breakpoint/tracepoint which will be executed when the breakpoint/tracepoint is
taken. A tracepoint is a breakpoint with a standard default command string. Tracepoints automatically
invoke the normal Display Stack command processor (with subcommand p(arameters), v(ariables), or r(esults) as
appropriate).

The three valid formats of a condition are: variable relation variable, variable relation number, and
number. Conditions include relations in the set {<, >, =, #, <=, >=}. A number (multiple proceeds)
means execute the break number times before invoking the debugger. The variables are interpreted
expressions that are looked up in the context of the breakpoint. A variable may not be an
expression that is more than one word long, dereferences a pointer (beware of the implicit derefence
in record qualification), or indexes an array. See Attach Condition, below, for more
information.

You may set breakpoints at the following locations in your program: entry (to a procedure), exit
(from a procedure), and at the closest statement boundary preceding a specific text location within a
procedure or module body. The debugger can set entry breakpoints on any procedure called from within a
module. However, the fact that extra symbols are required to display the parameters or the breakpoint will not be
discovered until they are needed. Breakpoints cannot be set on nested procedures (except with Wisk)
unless the current context is the enclosing procedure. Note that breakpoints are set in all instances of a

module. Breaks on a specific text location can be set only with the breakpoint commands of the
Source Ops menu. When the source line of the breakpoint is displayed, the indicator <> appears
to the left of the source where the breakpoint has actually been set (e.g., IF foo THEN <> some
statement;). Before the debugger permits any breakpoints to be set using the source window, the
creation date in the source file is checked against the corresponding date recorded by the compiler
in the BCD. An incorrect version is reported with the message Can’t use <module> of <time>
instead of version created <time>. Since there is only one exit from a procedure, the debugger shows
the beginning of the procedure for exit breaks instead of indicating a potentially incorrect RETURN statement. Local
variables may be invisible if this RETURN has a PC that is not in the block with their declarations; use source breaks
on the RETURN statements instead of an exit break.

When a break or trace is encountered during execution, a (possibly nested) instance of the debugger
is created and control transfers to the command processor, from which you may access any of the
facilities described in this document. The debugger types the name of the procedure containing the
breakpoint, and the address and PC of the currently active frame. If the breakpoint has a condition
associated with it, the break is taken only if the condition is satisfied. Note that the multiple proceed
counter is reset after being satisfied; e.g. a condition of 5, will actually break on the fifth, tenth, fifteenth, ... times the
breakpoint is reached. To continue execution of your Mesa program, execute the Proceed command;
to stop execution of your program, execute the Quit command.

Debugger commands 11

If you compile a module with the cross jumping switch turned on, be warned that when setting
source breakpoints, the actual breakpoint may not end up where you expect (e.g., you may break in
the code of an ELSE clause when you really want the THEN clause if they share some common code).
The message Cross jumped! will appear before the source of a cross jumped module is displayed. Entry and exit
breakpoints are not affected by cross jumping.

The warning Eval stack not empty! will be printed if the debugger is entered via either an
interrupt or breakpoint with variables still on the evaluation stack; this indicates that the current
value of some variables may not be in main memory, where the interpreter normally looks.
Exceptions to this are entry and exit breaks; the debugger has enough information to decode the
argument records that are on the stack in this case (if the appropriate symbol tables are available).

ATtach Condition [number, condition]

changes a normal breakpoint into a conditional one. Arguments are a breakpoint number
and a condition, which is evaluated in the context of the breakpoint. The breakpoint
number is displayed when the break/tracepoint is set, and may also be obtained using the
LIst Breaks command.

ATtach Keystrokes [number, command]

adds an arbitrary command string to breakpoints/tracepoints; the characters from this string
are executed by the Debugger when the breakpoint/tracepoint is taken. Arguments are a
breakpoint number and a command string terminated with a CR. A CR can be embedded
in the command string by quoting it with ^V.

Break All Entries [module/frame]

sets a break on the entry point to each procedure in module or frame (cf. Break Entry).

Break All Xits [module/frame]

sets a break on the exit point of each procedure in module or frame (cf. Break Xit).

Break Entry [proc]

inserts a breakpoint at the first instruction in the procedure proc.

Break Xit [proc]

inserts a breakpoint at the last instruction of the procedure body for proc. This catches all
RETURN statements in the procedure.

CLear All Breaks [confirm]

removes all breakpoints/tracepoints.

CLear All Entries [module/frame]

removes all entry breakpoints/tracepoints in module or frame.

Debugger commands12

CLear All Xits [module/frame]

removes all exit breakpoints/tracepoints in module or frame.

CLear All Traces [confirm]

removes all breakpoints/tracepoints; it is equivalent to CLear All Breaks.

CLear Break [number]

removes a breakpoint by number. Typing CR in place of a number will clear the current
breakpoint, i.e., the one that got you into the Debugger.

CLear Condition [number]

changes a conditional breakpoint into a normal one. Typing CR in place of a number
behaves as in CLear Break.

CLear Keystrokes [number]

clears any command string associated with the breakpoint. Typing CR in place of a number
behaves as in CLear Break.

CLear Entry Break [proc]

converse of Break Entry.

CLear Entry Trace [proc]

converse of Trace Entry; it is equivalent to CLear Entry Break.

CLear Xit Break [proc]

converse of Break Xit.

CLear Xit Trace [proc]

converse of Trace Xit; it is equivalent to CLear Xit Break.

Display Break [number]

displays a breakpoint by number. Its type (entry, exit, source), the procedure and/or
module name in which it is found are displayed; for source breakpoints, the source text is
also displayed; any attached conditions or keystrokes is also shown. Typing CR in place of
a number behaves as in CLear Break.

List Breaks [confirm]

lists all breakpoints, displaying the same information as Display Break.

Debugger commands 13

Trace All Entries [module/frame]

sets a trace on the entry point to each procedure in module or frame (cf. Trace Entry).

Trace All Xits [module/frame]

sets a trace on the exit point of each procedure in module or frame (cf. Trace Xit).

Trace Entry [proc]

sets a trace on the entry of the procedure proc. When an entry tracepoint is encountered,
display stack mode is entered and the parameters are displayed. (cf. Break Entry)

Trace Xit [proc]

sets a trace on the exit of the procedure proc. When an exit tracepoint is encountered,
display stack mode is entered and the return values are displayed. (cf. Break Xit)

Display runtime state

The scope of variable lookup is limited to the current context (unless otherwise specified below to
be the current configuration). What this means is the following: if the current context is a local
frame, the debugger examines the local frame of each procedure in the call stack (and its associated
global frame) following return links until the root of the process is encountered; if the current
context is a module (global) context, just the global frame is searched. Global frames are searched
in the order: declarations, imports, directory. If the variable you wish to examine is not within the
current context, use the commands that change contexts.

AScii Read [address, n]

displays n (decimal) characters as a string starting at address (octal).

AScii Display [address, count]

interprets address as POINTER TO PACKED ARRAY OF CHARACTER and displays count
characters.

Display Configuration

displays the name of the current configuration followed by the module name, corresponding
global frame address, and instance name (if one exists) of each module in the current
configuration.

Display Frame [address]

displays the contents of a frame, where address is its octal address (useful if you have
several instances of the same module); display stack subcommand mode is entered.

Display GlobalFrameTable

displays the module name and corresponding global frame address, pc, codebase, and gfi of
all entries in the global frame table.

Debugger commands14

Display Module [module]

displays the contents of a global frame, where module is the name of a program in the
current configuration.

Display Process [process]

displays interesting things about a process. This command shows you the ProcessHandle
and the frame associated with process, and whether the process is waiting on a monitor or
condition variable (waiting ML or waiting CV). A * marks the current process. A
process can be on one and only one queue (associated with a condition, monitor, ReadyList, etc.). Then you
are prompted with a ">" and you enter process subcommand mode. A response of N
displays the next process; S displays the source text and loads and positions the sourcefile
in the source window; L just displays the source text; R displays the root frame of the
process; P displays the priority of the process; space enters the interpreter; -- delimits a
comment; and Q or DEL terminates the display and returns you to the command processor.
Note that either a variable of type PROCESS (returned as the result of a FORK) or an octal
ProcessHandle is acceptable as input to this command (process is an interpreted
expression).

Display Queue [id]

displays all the processes waiting on the queue associated with id. If id is simply an octal
number, you are asked whether it is a condition variable (i.e., Condition? [Y or N]).
For each process, you enter process subcommand mode. The semantics of the
subcommands remain the same as in Display Process, with the exception of N, which
in this case follows the link in the process. This command accepts either a condition
variable, a monitor lock, a monitored record, a monitored program, or an octal pointer.

Display ReadyList

displays all the processes waiting on the queue associated with the ReadyList, i.e., the list
of processes ready to run. For each process, you enter process subcommand mode; the
semantics of the subcommands are the same as in Display Queue.

Display Stack

displays the procedure call stack. At each frame, the corresponding procedure name and
frame address are displayed. You are prompted with a ">". A response of V displays all
the frame’s variables; G displays the global variables of the module containing the current
frame; P displays the input parameters; R displays the return values ((anon) appears
before those which are not named in the parameter lists); N moves to the next frame; J,
n(10) jumps down the stack n (decimal) levels (if n is greater than the number of levels it can

advance, the debugger tells you how far it was able to go); S displays the source text and loads and
positions the sourcefile in a source window (It also sets the context for setting breakpoints in that

window.); L just displays the source text; space enters the interpreter; -- delimits a comment;
and Q or DEL terminates the display and returns you to the command processor. When the
current context is a global frame, the Display Stack subcommands G, J, and, N are
disabled. When the debugger cannot find the symbol table for a frame on the call stack,
only the J, N, and Q subcommands are allowed. For a complete description of the output
format, see Section 6.

Debugger commands 15

Find variable [id]

displays the contents and module location of the variable named id, searching through only
the GlobalFrames of all the modules in the current configuration.

Current context

The current context is used to determine the domain for symbol lookup. There are commands
provided which make it simple to display the current context, to display all the configurations and
processes, to restore the starting context, and to change contexts.

CUrrent context

displays the name and corresponding global frame address (and instance name if one exists)
of the current module, the name of the current configuration, and the ProcessHandle for
the current process.

LIst Configurations [confirm]

lists the name and instance name (if one exists) of each configuration that is loaded,
beginning with the last configuration loaded. If you wish to see more information about a
particular configuration, use the Display Configuration command.

LIst Processes [confirm]

lists all processes by ProcessHandle and frame. If you wish to see more information
about a particular process, use the Display Process command.

ReSet context [confirm]

restores the context which this instance of the debugger had upon entering the session.

SEt Configuration [config]

sets the current configuration to be config, where config is nested within the root
configuration that is current. This command is useful for "jumping" further into the nested
block structure of a configuration.

SEt Module context [module/frame]

changes the context to the program module whose name is module (within the current
configuration). If there is more than one instance of module, the debugger lists the frame
address of each instance and does not change the context. Using a frame address has the
same effect as SEt Octal context..

SEt Octal context [address]

changes the current context to the frame whose address is address. This is useful when
there are several instances of the same module or in setting the current context to a specific
local frame.

Debugger commands16

SEt Process context [process]

sets the current process context to be process and sets the corresponding frame context to
be the frame associated with process. Upon entering the debugger, the process context is
set to the currently running process. Note that either a variable of type PROCESS (returned
as the result of a FORK) or an octal ProcessHandle is acceptable as input to this
command.

SEt Root configuration [config]

sets the current configuration to be config, where config is at the outermost level (of its
configuration). This command is sufficient for simple configurations of only one level. It is
also useful in getting you to the outermost level of nested configurations, from which you
may move "in" using SEt Configuration.

Program control

There are commands provided which allow you to determine the flow of control between the
debugger and your program.

Kill session [confirm]

ends your debugging session, cleans up the state as much as possible, and returns to the
Alto Executive. Use this command instead of SHIFT-SWAT or the boot button to leave the
debugger.

Proceed [confirm]

continues execution of the program (i.e., proceeds from a breakpoint, resumes from an
uncaught signal).

Quit [confirm]

returns control to the dynamically enclosing instance of the debugger (if there is one).
Executing a Quit has the effect of cutting the runtime stack back to the nearest enclosing
instance of the debugger. Quitting from the outermost level of the debugger returns you
to the Mesa Executive if it is loaded; otherwise it returns you to the Alto Executive.
Quitting from the Mesa Executive returns you to the Alto Executive.

STart [address] [Confirm]

starts execution of the module whose frame is address. If the module has already been
started, a RESTART will be done. Unlike the START statement in the Mesa language, no
parameters may be passed.

Userscreen [confirm]

swaps to the user world for a look at the screen. Control is returned to the debugger with
the SWAT key.

Debugger commands 17

Low-level facilities

There are additional commands provided which allow the user to examine (and modify) what is
going on in the underlying system.

ATtach Image [filename]

specifies the filename to use as an image file when the debugger has been bootloaded. It is
useful when the user core image has been clobbered. The default extension for filename is
".image".

ATtach Loadstate [filename]

like ATtach Image, except that the initial rather than the current loadstate of the image
file is used; this command is for wizards only.

ATtach Symbols [globalframe, filename]

attaches the globalframe to filename. This is useful for allowing you to bring in additional
symbols for debugging purposes not initially anticipated. The default extension for filename
is ".bcd". Only compiler output bcds for program modules can be attached; neither interfaces
nor symbols files may be attached. This command overrides version checking.

COremap [confirm]

prints the following information (in octal) about the segments currently in memory:
memory page number, memory address, file page number (if it is a file), number of pages,
state {busy, free, data, file}, serial number (if it is a file), class {code, other}, access
{Read, Write, Append}, lock. If the class is code, the module name is also given. The
types of data segments are also printed; the (system-assigned) types currently recognized are
heap, system, frame, table, bitmap, stream buffer, and Pup buffer. Unrecognized types
(assigned by the user) are displayed as data(t); the unknown type is displayed as
data(?). Holding down ^DEL terminates the printout.

Display Eval-stack

displays the contents of the Mesa evaluation stack (in octal), useful for low-level debugging
or for displaying the (un-named) return values of a procedure which has been broken at its
exit point. This command is most useful at octal breakpoints because the eval-stack is
empty between most statements.

LOgin [user, password]

sets the default user and password for the debugging session. The new user name and
password are not written into the client’s core image or onto the disk.

Octal Clear break [globalframe, bytepc]

converse of Octal Set break. (Note: these octal commands are low-level debugging aids
for system maintainers who must diagnose the higher-level debugging aids and system.)

Debugger commands18

Octal Read [address, n]

displays the n (decimal) locations starting at address.

Octal Set break [globalframe, bytepc]

sets a breakpoint at the byte offset bytepc in the code segment of the frame globalframe.

Octal Write [address, rhs]

stores rhs (octal) into the location address; the default for rhs is the current contents of
address.

ReMote debuggee [host] [confirm]

not implemented.

Worry on [confirm]

taking a breakpoint in worry mode brings you into the debugger with the user core image
undisturbed (i.e., no cleanup procedures are invoked, no frames are allocated, and memory
is left unchanged). All of the debugger commands are allowed, with the exception of
STart, Quit, and calling procedures with the interpreter.

Worry off [confirm]

turns off worry mode (this is the default state upon entering the debugger).

-- [comment]

inserts a comment into the debugger’s typescript file. Input is ignored after the dashes until
a carriage return (CR) is typed.

^Debug [confirm]

invokes the debugger nub which prompts with a "//". See Debugger nub for further details
about the capabilities of the nub.

Debugger nub

The nub is a part of the debugger that contains primitive facilities for debugging the debugger as
well as providing a minimal signal catcher and interrupt handler.

Typing ^D (to the command processor of the debugger) brings you into the nub with a "//"
prompt. The following limited set of commands are available in the nub: New, Read, Write,
Trace Stack, Proceed, Quit, and Start. The semantics of the New command are explained
below; the other commands have already been explained above (Read and Write are the same as
Octal Read and Octal Write).

Debugger commands 19

New [filename]

is just like the New command in the Mesa Executive.

Trace Stack

should be used if the Debugger breaks and enters the debugger nub ("//" mode); it dumps
the Debugger’s call stack in octal to the log. Change requests reporting Debugger problems
that result in an uncaught signal or other problem should be accompanied by a debug log
which includes the output of this command.

20

Section 5: Debugger Interpreter

The Mesa debugger contains an interpreter that handles a subset of the Mesa language; it is useful
for common operations such as assignments, dereferencing, procedure calls, indexing, field access,
addressing, displaying variables (also TYPEs), and simple type conversion. It is a powerful extension
to the debugger command language, as it allows you to more closely specify variables while
debugging, thus giving you more complete information with fewer keystrokes.

A specific subset of the Mesa language is acceptable to the interpreter (see below for details on the
grammar). Several specialized notations (abbreviations) have been introduced in the interpreter
grammar; these are valid only for debugging purposes and are not part of the Mesa language. The
interpreter operates much like the compiler; strict target typing is performed on assignments and
procedure calls.

Statement Syntax

Typing space (SP) to the command processor enables interpreting mode; the limited command
processors of Display Stack and Display Process also permit a space. At this point the
debugger is ready to interpret any expression that is valid in the (debugger) grammar.

Multiple statements are separated by semicolons; the last statement on a line should be followed by
a carriage return (CR). If the statement is a simple expression (not an assignment), the result is
displayed after evaluation.

For example, to perform an assignment and print the result in one command, you would type:

foo _ exp; foo.

Loopholes

A more concise LOOPHOLE notation has been introduced to make it easy to display arbitrary data in
any format. The character "%" may be used instead of LOOPHOLE[exp, type], with the
expression on the left of the %, and the type on the right. However, % is not a valid LeftSide;
all type expressions must be enclosed in parentheses.

The following expressions are equivalent to the interpreter:

foo % (short red Foo) and LOOPHOLE[foo, short red Foo]
(p % (LONG POINTER TO Object))^ and LOOPHOLE[p, LONG POINTER TO Object]^

The first pair will loophole the type of the variable foo to be a short red Foo and display its
value. The second pair will loophole p to be a LONG POINTER TO Object and dereference it.

A number may be loopholed into PROCEDURE, SIGNAL, or an ERROR. If it is valid, the debugger
will display the procedure (or signal’s) name, module and global frame. If a signal/error is the
same as the uncaught signal that trapped to the debugger, the debugger will also display the
parameters.

Debugger Interpreter 21

Subscripting

There are two types of interval notation acceptable to the interpreter; the closed, open, and half
open interval notation accepted by the compiler and a shorthand version that uses !. The notation
[a . . b] means start at index a and end at index b. The notation [a ! b] means start at index a
and end at index (a+b�1).

The following expressions all display the octal contents of memory locations 4 through 7:

MEMORY[4 . . 7]
MEMORY[4 . . 8)
MEMORY(3 . . 7]
MEMORY(3 . . 8)
MEMORY[4 ! 4]

Note that the interval notation is only valid for display purposes, and therefore is not allowed as a
LeftSide or inside other expressions.

Explicit Qualification

To improve the performance of the interpreter, the $ notation has been introduced to distinguish
between qualification in the current context and explicit qualification. The character $ indicates
that the name on the left is a module name, in which to look up the identifier or TYPE on the right.
If a module cannot be found, it uses the name as a file (usually a definitions file). A valid octal
frame address is also acceptable as the left argument of $.

For example, FSP$TheHeap means look in the module FSP to find the value of the variable
TheHeap. In dealing with variant records, be sure to specify the variant part of the record before
the record name itself (ie., foo % (short red FooDefs$Foo), not foo % (FooDefs$short red
Foo)).

Type Expressions

The notation "@type" may be used as shorthand to construct a POINTER TO type. This notation
is used for constructing types in LOOPHOLEs (ie., @foo will give you the type POINTER TO foo).
There is no shorthand to construct LONG POINTER TO type.

Radix conversion

The notation "expression?" will print the value of the expression in several formats, including
octal and decimal. Radix conversion between octal and decimal can be forced using the loophole
construct; for example, exp%(CARDINAL) will force octal output and exp%(INTEGER) will force
decimal.

Arithmetic

Target typing is applied to arithmetic expressions. In complex expressions atoms which change the
target type must occur first. For example:

(POINTER + offset)^ -- correct (offset + POINTER)^ -- error message
LONG[400B] * 400B -- 200000B 400B * LONG[400B] -- overflow

Debugger Interpreter22

Sample Expressions

Here are some sample expressions which combine several of the rules into useful combinations:

If you were interested in seeing which procedure is associated with the third keyword of the menu
belonging to a particular window called myWindow, you would type:

myWindow.menu.array[3].proc

which might produce the following output:

CreateWindow (PROCEDURE in WEWindows, G: 120134B).

The basic arithmetic operations are provided by the interpreter (with the same precedence rules as
followed by the Mesa compiler).

3+4 MOD 2 ; (3+4) MOD 2

would produce the following output:

3
1.

A typical sequence of expressions one might use to initialize a record containing a pointer to an
array of Foos and display some of them would be:

rec.array _ FSP$AllocateHeapNode[n*SIZE[FooDefs$Foo]];
InitArray[rec.array]; rec.array[first..last].

The following command would display rec in octal:

Octal Read: @rec, n: SIZE[Rec].

Grammar

A copy of the Debug Interpreter grammar is in an appendix at the end of this document.

23

Section 6: Output Conventions

A "?" in any variable display uniformly means that the value is out of range. Elipses (". . .")
indicate that there are additional fields present in a record which cannot be displayed due to lack of
symbol table information. This can happen either in OVERLAID records or because a defs file is not present on

the disk. In display stack mode, variables declared in nested blocks are now shown indented
according to their nesting level.

The debugger uses information about the types of variables to decide on an appropriate output
format. Listed below are the built-in types which the debugger distinguishes and the convention
used to display instances of each type.

ARRAY

displays all the elements of an array; e.g., a = (3)[[x: 0, y:0], [x: 1, y: 1], [x:
3, y:3]]. The parenthesized value to the right of the "=" is the length of the
array.Typing ^DEL will abort the display of long arrays.

ARRAY DESCRIPTOR

displays the descriptor followed by the contents of the array; e.g., a =
DESCRIPTOR[146013B^,3](3)[[x: 0, y:0], [x: 1, y: 1], [x: 3, y:3]]. For a

RELATIVE ARRAY DESCRIPTOR, the word RELATIVE is displayed first. Typing ^DEL will abort the
display of long array descriptors.

BOOLEAN

displays TRUE or FALSE. Since BOOLEAN is an enumerated type = {FALSE, TRUE}, values
outside this range are indicated by a ? (probably an uninitialized variable).

CHARACTER

displays a printing character (c) as ’c. A control character (X) other than BLANK, RUBOUT,
NUL, TAB, LF, FF, CR, or ESC is displayed as ^X. Values greater than 177B are displayed
in octal.

CONDITION

displays a record containing an UNSPECIFIED and a timeout; a CARDINAL.

ENUMERATED

displays the identifier constant used in the enumerated type declaration. For example, an
instance c of the type ChannelState: TYPE = {disconnected, busy, available} is
displayed as c=busy.

Output Conventions24

EXPORTED TYPES

displays the name of the type followed by an octal display of the contents if the length of
the type is known. For example, an instance of the type Handle: TYPE [2] is displayed as
Handle (2) 1 1234B.

INTEGER

always displays a decimal number. Uniformly, numeric output is decimal unless terminated
by "B" (octal).

LONG

numbers are displayed following the same conventions as short numbers, i.e., LONG

CARDINAL and LONG UNSPECIFIED are displayed in octal, LONG INTEGER in decimal.

MDSZone

displays a POINTER.

MONITORLOCK

displays a record containing an UNSPECIFIED.

POINTER

displays an octal number, terminated with an "^", i.e., p=107362B^. RELATIVE POINTERs
are decimal and are terminated with "^R", i.e., r=123^R.

PORT

displays two octal numbers, i.e., p = PORT [0, 172520B].

PROCEDURE, SIGNAL, ERROR

displays the name of the procedure (with its local frame) and the name of the program
module in which it resides (with its global frame), e.g., GetMyChar, L: 165064B (in
CollectParams, G: 166514B).

PROCESS

displays a ProcessHandle (pointer to a ProcessStateBlock), i.e., p = PROCESS
[2002B]. See the process section of the Mesa System Documentation for further details.

REAL

displays a floating point number, e.g., -1.45.

RECORD

displays a bracketed list of each field name and its value. For example, an instance v of
the record Vector: RECORD [x,y: INTEGER] is displayed as v=[x: 9, y: -1].

Output Conventions 25

SEQUENCE

displays as an array. For example, an instance s of the record Sequence: RECORD

[length: UnsignedInt, text: PACKED SEQUENCE maxLength: UnsignedInt OF

CHARACTER] is displayed as s=[length: 3, text: (3)[’a, ’b, ’c]].

STRING

displays the name of the string, followed by its current length, its maximum length, and the
string body, e.g., s=(3,10)"foo". If the string is NIL, s=NIL is displayed. Typing ^DEL

will abort the display of long strings.

Listed below is the convention used to display context information throughout the debugger.

ProcedureName, L: nnnnnB, PC: nnnB (in ModuleName, G: nnnnnB) --local frame

A local context is displayed as the procedure name with its local frame, followed by the
module name and its global frame.

ModuleName, G: nnnnnB --global frame

A global context is displayed as the module name and its global frame. If the global frame
is followed by *, i.e., nnnnnB*, it is a copy created by the NEW construct. If the global
frame has not yet started, it will be followed by a ~.

In response to an expression followed by a ?, the interpeter will show:

Octal = Hexadecimal = Unsigned Decimal = Signed Decimal =
Byte,,Byte = Octal Byte,,Octal Byte = CHAR,,CHAR =
Nibble:Nibble,,Nibble:Nibble

If any of the values are 0 or out of range, they will not be shown. For LONG values the interpreter
will show:

Octal = Hexadecimal = Decimal = OctalWord OctalWord =
Byte,,Byte Byte,,Byte

For example, in response to 61141B? the debugger displays

61141B = 6261X = 25185 = 98,,97 = 142B,,141B = ’b,,’a = 6:2,,6:1

and for 1234567B? it shows

1234567B = 53977X = 342391 = 34567B 5 = 57,,119 0,,5

26

Section 7: Signal and Error Messages

The following messages are generated by the debugger. Wherever possible, there is also an
explanation of what might have caused the problem and what you can do about it.

Breakpoints

All of these errors will cause Wisk to flash the screen. Trying to set an entry or exit break near the
same place may provide more information.

Can’t dereference or access array to test condition!

You have specified a condition that requires dereferencing or an array indexing to test; the
runtime is unable to evaluate conditions that complex.

too many conditional breaks!

You have tried to set more conditional breaks than the system allows.

invalid relation!

You have specified an illegal relation expression for a condition.

user break block not found!

You have tried to free a conditional breakpoint when the conditional breakpoint
information cannot be found (probably a core clobber).

variable is larger than a word!

You have tried to set a condition that uses a multiword value.

rhs on stack not allowed!

You have tried to set a condition where the right hand side of the relational expression is
on the stack. Only the left hand side can be on the eval stack. This can only happen on
entry and exit breakpoints

can’t break on port!

An attempt was made to set a breakpoint on an opcode on which it is not allowed;
specifically in the middle of a port transfer.

no exchangable code found!

The debugger has tried several consecutive instuctions, and has not found an opcode on
which a breakpoint is allowed. The code has probably been clobbered.

Signal and Error Messages 27

breakpoint not found!

You have swapped to the debugger when the breakpoint information (frame, pc, etc.)
cannot be found (check the code for your program).

no breaks have been set!

You did a LIst Breaks when there weren’t any.

symboltable missing!

The debugger is trying to manipulate a breakpoint for which there is no symboltable and it
is not prepared to handle the situation.

not allowed in INLINE!

You have tried to set a breakpoint in an INLINE procedure.

already set!

You have already set a breakpoint on the location.

does not return!

An attempt was made to set an exit breakpoint on a procedure in which the return
statement is not in the correct location (check the code for your program). This occurs
most often in procedures that end with ERROR or a loop which does not terminate; a code
clobber is also possible.

conditions not checked in Worry mode!

You have attached a condition while in worry mode. This is a warning only.

??

Unknown error.

Command execution

... aborted

Execution of the current command has been aborted (^DEL has been typed).

!Resetting symbol table

This warning is displayed before the debugger’s scratch symbol table overflows; the
command is retried automatically. The Debugger’s performance decreases somewhat until
the symbol table is refilled.

Signal and Error Messages28

!Number

An invalid number has been typed.

xxx not implemented!

Feature xxx is not implemented.

!Invalid Address [nnnnB]
!Write protected [nnnnB]
!Non-existant memory page [nnnnB]

An illegal memory location has been referenced.

! unknown file problem! Your directory probably needs scavenging.

Something is wrong with your directory.

!Command not allowed

Execution of the current command is not allowed since the state of the user core image
appears to be invalid.

Core image not healthy, can’t swap!

You may only Quit or terminate the session (Kill session) after the debugger has been
bootloaded.

!MDS exhausted [n]

The debugger has run out of memory.

Please terminate editing xxx.

The file xxx is still being edited and you tried to leave the debugger.

Disk full! Typescript reset to beginning.

The debugger resets the typescript to the beginning of Debug.log if you run out of disk
space. This is a warning message.

Displaying the stack

No previous frame!

The end of the call stack has been reached.

No symbol table for nnnnnnB

The symbol table file corresponding to the frame nnnnnnB is missing; any attempt to
symbolically reference variables in this module will fail. (In general, this message is a
warning.)

Signal and Error Messages 29

Can’t use <module> of <time> instead of version created <time>

This message is printed if the creation date in the source file on your disk is different than
the corresponding date recorded by the compiler in the BCD.

Cross jumped!

The BCD was compiled with the cross jumping switch turned on. The source line displayed
may not be what you expect.

Pc not in any procedure!

The debugger was unable to find a procedure or mainline code that matched the current pc.
This is probably due to a clobber.

Entering the debugger

*** Debugger Bootloaded! ***

Appears at the top of the DEBUG.LOG window after you have booted from the
MESADEBUGGER file (by typing Bootfrom MesaDebugger to the Alto Executive). This
gets you into the debugger and allows you to look at what was going on. Extra banks available

to the client must be unchanged. The debugger will run in only one bank after bootloading. You may not
proceed after bootloading the debugger.

*** Fatal System Error (Punt) ***

Appears when the system can no longer continue, often a result of running out of memory
or frame space. (Display Stack for several levels and look at the variables to try to
figure out what was going on. A Coremap may also help to explain the memory space
problem.)

*** Interrupt ***

Appears at the top of the DEBUG.LOG window after you have entered the debugger via
interrupt mode (^SWAT has been held down).

ResumeError!

You have attempted to continue execution from an ERROR. This may occur both in the
situation described below or as the result of a programming error. (The debugger does not
support resuming SIGNALs which return values.)

*** uncaught SIGNAL SoS (in MayDay)

The user program has raised a SIGNAL (ERROR) which no one dynamically nested above the
SIGNAL invocation was prepared to catch. The debugger prints the name of the SIGNAL,
lists its parameters (if any), creates a new instance of the debugger, and gives control to the
command processor. At this point you may, for example, display the stack to see who
raised the uncaught SIGNAL.

If the semantics of the situation permit, you may proceed execution at the point of the
SIGNAL’s invocation by issuing a Proceed command. Alternatively, you retire to the

Signal and Error Messages30

dynamically enclosing instance of the debugger by issuing a Quit command. If the SIGNAL

actually was an ERROR and you elect to Proceed, you get a ResumeError.

Note: if the debugger does not have access to the required symbol tables, the information
will be printed in octal. For standard Mesa software, listings which decode these numbers
are available (see the Mesa Users Handbook).

Eval stack not empty!

The warning is printed if the debugger is entered via either an interrupt or breakpoint with
variables still on the evaluation stack; this indicates that the current value of some variables
may not be in main memory, where the interpreter normally looks. Exceptions to this are
entry and exit breaks; the debugger has enough information to decode the argument
records that are on the stack in this case (if the appropriate symbol tables are available).

Interpreter

! x is an invalid character

The character x typed to the interpreter is illegal.

! Syntax error at [n]

There was a syntax error at location n in the expression given the interpreter.

! Parse error at [n]

There was a error at location n parsing the expression given the interpreter.

The following errors may have the offending identifier preceding the message:

can’t call an INLINE!

You tried to call an INLINE PROCEDURE.

can’t lengthen!

The interpreter needed to lengthen something while evaluating an expression that it
couldn’t in order to make two types conformable.

can’t make a constructor!

Use field by field assignments. You gave the interpreter an expression using [] that looks
like a constructor.

double word array index!

The index for an array must be a single word.

has an invalid address!

The expression to the right of the @ is not word aligned.

Signal and Error Messages 31

is an invalid number!

This is probably a type mismatch.

is an invalid pointer!

This is probably a type mismatch.

invalid subrange!

This is probably a type mismatch.

pointer fault!

You tried to dereference NIL.

is not a valid control link!

The procedure or signal in your expression has an illegal value.

is not a relative pointer!

In the expression base[rel], rel wasn’t a RELATIVE POINTER.

is not a type!

The identifier used in a type expression was not a type.

is not a unique field selector!

The field selector occurs more than once in the computed or overlaid variant.

is not a valid field selector!

The identifier given for a field selector is not in the record. This could be because you lack
the symbols for the record declaration on your disk.

overflow!

Overflow occured while doing arithmetic. Perhaps you need a LONG in the expression.

relations not implemented!

a = b is not allowed.

size mismatch!

You tried to assign or loophole two things of different sizes. Loopholing pointers is a
useful trick for records of different sizes.

too many arguments for stack!

You can only call procedures that take 5 or fewer words of arguments.

Signal and Error Messages32

has incorrect type!

Type mismatch.

unknown variant!

The interpreter found a garbage tag field.

Won’t dump that much memory!

You tried to print more than 64K with the MEMORY construct.

not permitted in worry mode!

You can’t call procedures in worry mode.

is the wrong base!

In the expression base[rel], the type of base is not what rel expects.

has the wrong number of arguments!

The arguments to a procedure call are wrong.

used incorrectly with []!

You probably tried to use [] as a type constuctor.

xxx$ is ambiguous; use frame $!

There is either more than one instance of xxx instantiated, or the code for xxx is packed
with another module.

Symbol Lookup

xyz not found!

The variable or file named xyz cannot be found.

!File: xyz

The file named xyz cannot be found.

nnnnnB not started!

The global frame nnnnnB has not yet been started. Any variables looked up will be
uninitialized.

xyz not bound!

The imported variable xyz is not exported by anyone.

Signal and Error Messages 33

!File: --compressed symbols--

The symbol file is compressed.

--- has incorrect version!

The symbol file has an incorrect version stamp.

!Tree for xx not in symbol table

A multiword constant in your code wasn’t copied into the symbol table. Look in the source
file to find the value.

Use Interface.importedVariable, not Interface$importedVariable

The debugger cannot find imported variables from an interface file (the "$" notation). The
"." notation will tell it to use the interface record (if found) available in the current context.

Validity checking

--- is not a valid frame!
--- is a clobbered frame!
--- not a frame!
--- has a NULL returnlink!
--- has a clobbered accesslink!
--- is an invalid ProcessHandle!
--- is an invalid image file!

The structure in question appears to be clobbered (invalid in some way).

Debugger Summary

Version 6.0

AScii
Read [address, count]
Display [address, count]

ATtach
Image [filename]
Condition [number, condition]
Keystrokes [number, command]
Loadstate [filename]
Symbols [globalframe, filename]

Break
All

Entries [module/frame]
Xits [module/frame]

Entry [procedure]
Xit [procedure]

CLear
All

Breaks [confirm]

Entries [module/frame]
Traces [confirm]

Xits [module/frame]
Break [number]
Condition [number]
Entry

Break [procedure]
Trace [procedure]

Keystrokes [number]
Xit
Break [procedure]
Trace [procedure]

COremap [confirm]

CUrrent context

Display
Break [number]
Configuration
Eval-stack
Frame [address] (g,j,l,n,p,q,r,s,v)

GlobalFrameTable
Module [module]

Display
Process [process] (l,n,p,q,r,s)

Queue [identifier] (l,n,p,q,r,s)

ReadyList (l,n,p,q,r,s)

Stack (g,j,l,n,p,q,r,s,v)

Find variable [identifier]
Kill session [confirm]

LIst
Breaks [confirm]

Configurations [confirm]

Processes [confirm]

LOgon [user, password]
Octal

Clear break [globalframe, bytepc]
Read [address, number]
Set break [globalframe, bytepc]
Write [address, value]

Proceed [confirm]

Quit [confirm]

ReSet context [confirm]

ReMote debuggee [host] [confirm]
SEt

Configuration [config]
Module context [module/frame]
Octal context [address]
Process context [process]
Root configuration [config]

STart [address] [confirm]

Trace
All

Entries [module/frame]
Xits [module/frame]

Entry [procedure]
Stack
Xit [procedure]

Userscreen [confirm]

Worry

off [confirm]

on [confirm]

^Debug [confirm]

Debugger Interpreter Grammar
Version 6.0

StatementList ::= Statement | StatementList; | StatementList; Statement

Statement ::= LeftSide Interval | LeftSide _ Expression |
MEMORY Interval | Expression | Expression ?

LeftSide ::= identifier | (Expression) | LeftSide Qualifier |
identifier $ identifier | number $ identifier |
MEMORY [Expression] | LOOPHOLE [Expression] |
LOOPHOLE [Expression , TypeExpression]

Qualifier ::= ^ | . identifier | [ExpressionList]

Interval ::= [Bounds] | [Bounds) | (Bounds] | (Bounds) |
[Expression ! Expression]

Bounds ::= Expression .. Expression

Expression ::= Sum

Sum ::= Product | Sum AddOp Product

AddOp ::= + | �

Product ::= Factor | Product MultOp Factor

MultOp ::= * | / | MOD

Factor ::= � Primary | Primary

Primary ::= Literal | LeftSide | @ LeftSide | BuiltinCall |
Primary % | Primary % (TypeExpression)

Literal ::= number | character | string

BuiltinCall ::= NIL | NIL [TypeExpression] | PrefixOp [ExpressionList] |
TypeOp [TypeExpression]

PrefixOp ::= ABS | BASE | LENGTH | LONG | MAX | MIN

ExpressionList ::= empty | Expression | ExpressionList, Expression

TypeOp ::= SIZE

TypeExpression ::= identifier | TypeIdentifier | TypeConstructor

TypeIdentifier ::= BOOLEAN | INTEGER | CARDINAL | WORD | REAL | CHARACTER |
STRING | UNSPECIFIED | PROC | PROCEDURE | SIGNAL | ERROR |
identifier identifier | identifier TypeIdentifier |
identifier . identifier | identifier $ identifier

TypeConstructor ::= LONG TypeExpression | @ TypeExpression |
POINTER TO TypeExpression

Wisk Summary

Version 6.0

WHAT WISK MOUSE BUTTONS DO:

Scroll Bar Text Area

RED Scroll Up Select
YELLOW Thumb Menu
BLUE Scroll Down Extend

NAME STRIPE/SMALL WINDOW COMMANDS:

Left Middle Right

RED Top/Bottom Zoom Top/Bottom
YELLOW Grow (corner) Grow (edge) Grow (corner)
BLUE Move Size Move

STANDARD WINDOW MENU COMMANDS:

Move Size Bottom Grow Top Zoom Deactivate

STANDARD TEXT OPS MENU COMMANDS:

Find [selection] Normalize Insertion Split
Position [selection] Normalize Selection Wrap

SOURCE WINDOW SOURCE OPS MENU COMMANDS:

Create Set Break [selection] Clear Break [selection]

Destroy Set Trace [selection] Attach

SOURCE WINDOW FILE OPS MENU COMMANDS:

Load [selection] Store [selection] Reset
Edit Save

