
Hardware Diagnostic and Maintenance Procedures Maxc Operations42

13. HARDWARE DIAGNOSTIC and MAINTENANCE PROCEDURES

This section discusses operation of various hardware diagnostic software and firmware.
Microprocessor diagnostics are normally used to isolate suspected failures of the microprocessor or
port hardware. Micro-Exec memory and disk testing commands are generally used to isolate
suspected failures of disk units and main storage modules.

The microprocessor diagnostics require that a small nucleus of the microprocessor and its interface
to the Alto be working, before meaningful failure diagnosis can take place. When a failure has
occurred in this essential nucleus, the Midas "Test-All" command and SMIDiag.run are used to
isolate the failure.

MemBash and TM have been used to check out memory reference interference problems and
failures in the Alto memory interface.

13.1. Running Microprocessor Diagnostics

The microprocessor diagnostics are normally kept on the Alto disk.

You must obtain the notebook labelled "Microprocessor Diagnostics" or "Maxc Diagnostics" in
order to do any useful debugging. However, the diagnostics all fall into a common pattern and they
can usually be run in a simple-minded way without understanding too much about what the
programs are really doing. The following generalizations may be helpful.

Associated with each of the diagnostics described below is a command file whose name is the same
as that of the diagnostic. If you type to Nova DOS or to the Alto Executive:

MIDAS diagname <cr>

Midas will load the diagnostic and show registers pertinent to the diagnostic’s operation on the
display. You may wish to set some parameters before starting a diagnostic (for example, the low
and high addresses for a memory test). However, the values as loaded are reasonable for thorough
testing.

When you are ready, type START;G to start the diagnostic. (DGM has two alternate starting
addresses for interrupt system testing.) The diagnostic will halt after one pass at IMA=20 (DGIML
is the only exception to this rule: it breaks at 3200 on Maxc1 and 7200 on Maxc2). This means
that no failures were detected. To repeat, type ;P to Midas. To loop indefinitely, delete the
breakpoint at 20 by typing 20;K and then ;P. All of the diagnostics except DGM loop in less than
two seconds, so something is wrong if the machine hangs in the loop.

A breakpoint at any location except 20 indicates that an error was detected. The most common
error breakpoint is at 25 or 26, the comparison error breakpoint. The location in the diagnostic
from which the comparison routine was called is displayed at STK 0. You can get Midas to tell
you the nearest label by selecting the value to the right of "STK 0" with the middle mouse button.
Following the .LS listing is the diagnostic listing, which contains general operating instructions in
comments preceding the program itself. DBEG0 is assembled or loaded ahead of some diagnostics,

Maxc Operations Hardware Diagnostic and Maintenance Procedures 43

so its listing and .LS file may also be relevant. Some diagnostics INSERT other files or are
assembled from several sources, so you may have to look a bit to find the relevant listings. When
tracing an error, find the tag nearest the address in STK 0 (if the breakpoint is at IMA=26) or
IMA (if the breakpoint is elsewhere) and read the comments there from the listing.

If the breakpoint is at IMA=26, the diagnostic may be resumed from the point of error by the
command ;P, which will return to the caller of the compare routine (this usually works but
not always).

The diagnostic names and what they test are listed below:

DGBASIC.MB Most basic diagnostic. Does not use the main memory, the inter-
rupt system or the P-register input multiplexors. Tests everthing
thing except the SM, DM, DM1, DM2, LM, and RM memories
first, then tests these memories and the F-register. Cycle time < 1
second.

DGP.MB Tests the P-register inputs and a few afterthoughts from
DGBASIC.MB. Cycle time < 1 second.

DGALU.MB Tests an assortment of P-register, Q-register, and ALU operations
using random numbers. Cycle time < 1 second.

DGM.MB Tests the memory interfaces. There are alternate entry points at
START and XSTART for interrupt system testing. Be sure to read
the listing comments before starting at XSTART. Cycle time ~ 20
minutes to test each 128K of main memory; correspondingly less if
the address range is restricted. Note: After running DGM, you
have to go through the "Power Up" procedure before running the
PDP-10 microcode again, because certain low core locations that
must be zero are not left zero by DGM. This will cause an
immediate NVIO punt, if you forget to do this.

DGI.MB Tests the interrupt system and repeats parts of DGBASIC and DGP
affected by interrupts. Cycle time < 1 second.

DGIML/DGIMH.MB Tests the SM, DM, DM1, DM2, and MP memories using random
numbers, then the instruction memory (IM) first by using each of
the 72 patterns of a single 0 in a field of 1’s, then the 72 patterns of
a single 1 in a field of 0’s, then random numbers. DGIML runs in
the top of IM and tests the memory below it, while DGIMH runs
in the bottom of IM and tests the memory above it. Cycle time < 3
seconds.

Alternate starting addresses exist to test only IM, only MP, or only
SM/DM/DM1/DM2 (which are physically a single memory).
There are a number of special loops for repeating test sequences
that have provoked failures in the past.

Hardware Diagnostic and Maintenance Procedures Maxc Operations44

DGRL.MB Tests the right register bank (RM) and the left register bank (LM)
using random numbers. Cycle time < 1 second.

DGMR.MB Tests the main memory using random numbers. Cycle time ~ 5
seconds. Note: After running DGMR, you have to go through the
"Power Up" procedure before running the PDP-10 microcode to
clear several low core locations that must be zeroed but are smashed
by DGMR.

DGREG.MB Tests assorted registers with random numbers. Like DGALU,
DGREG is a reliability diagnostic that supplements the basic tests
in DGBASIC and DGP. Cycle time < 1 second.

13.2. Running PDP-10 Diagnostics

PDP-10 instruction diagnostics 0A through 0N and 0R may be run on Maxc either in stand-alone
mode or under Tenex. We use them only for checking out new PDP-10 emulator microcode and
not for hardware diagnosis (which is what they were originally intended for). Some of them have
been patched to account for Maxc incompatibilities.

There are two methods of running PDP-10 diagnostics stand-alone. The more convenient is to run
them from Micro-Exec by means of the "run.diagnostic.program" command. However, if the
microcode is working so poorly that Micro-Exec won’t run, the other method is to load them from
the Alto using AltIO’s "Load" command.

Running diagnostics from Micro-Exec is simple. All the diagnostics that will run on Maxc are
stored as programs on save area 2. They may be listed out by the "Print.Program.Directory"
command. To execute a single pass of a given diagnostic, type:

*Run.Diagnostic.Program <program name> <cr>

Control returns to Micro-Exec when the diagnostic is finished. To make the program loop forever,
type:

*Goto 4000 <cr>

The iteration count (a decrementing negative number) may be displayed by examining Maxc
location 1. To abort this, you have to either reboot Micro-Exec or halt the microprocessor with
AltIO "H" command and then restart Micro-Exec with "20G."

Running diagnostics using DMPLD or AltIO is somewhat messier. This procedure should be used
only when, due to hardware or microcode problems, it is impossible to run the diagnostics from
Micro-Exec.

The procedure is as follows:

1) Retrieve the diagnostics from the <MAXC>DIAGNOSTICS> directory on Ivy using FTP. Only
a few diagnostics will fit on the Alto disk at once.

Maxc Operations Hardware Diagnostic and Maintenance Procedures 45

2) Load the PDP-10 microcode by means of the "MIDAS TENLOAD" command.

3) Enter AltIO by selecting the "AltIO", "Dont-Go", and "Do-It" menu items.

4) Load the selected diagnostic into Maxc memory by means of AltIO’s "Load" command. Then
make sure all the patches have been made.

5) Start the diagnostic by issuing the "Go" command.

On Ivy, the <MAXC>DIAGNOSTICS> directory contains all the PDP-10 diagnostics, along with a
set of RUNFILs for running them in user mode under Tenex (note that diagnostic 0D cannot be
run in user mode). The script named <diagnostic name>.RUNFIL will cause the specified
diagnostic to be started and run forever (type control-B to stop). Additionally, there are command
files BASIC.RUNFIL and RELIABILITY.RUNFIL which execute one pass of diagnostics 0A-0H
and 0I-0N respectively.

13.3. Memory Maintenance

Memory maintenance is scheduled periodically every 3 months or so to replace storage ic’s that
have failed. Because the memory is error-corrected, the system can be operated with a number of
bad components, so memory maintenance is not scheduled until the number of failures becomes
significant.

The procedure for doing this is as follows:

1) Schedule the system down using the procedure discussed in "Stopping Tenex."

2) At the appointed time, the system will halt; then unprotect AltIO with 3301P.

3) Boot MicroExec with the AltIO "B" command.

4) Run "Test.Memory.Slow" as discussed below. You want to get output on paper; you should
issue the "Diablo Printer On" command to AltIO before starting the test.

5) Power down the system as discussed in the "Power Down" section. It is possible to power-off
only the memory (so you don’t have to turn off the disks).

6) Pull the cards affected by bad chips and mark the bad ic’s with a magic marker; interpret the
output of "Test.Memory.Slow" as discussed below. Record the serial numbers of the boards pulled
from each position and attempt to restore the cards to their original positions after repair.

7) Replace the bad 1103 ic’s or, if that isn’t possible, use the spare memory cards in the rack above
the Maxc2 Alto. (Refer to Appendix A for diagrams showing memory board and chip locations.)

8) Restore the repaired cards to their original positions (if using a spare card, mark the bad card
with the complete failure information using a piece of paper and scotch tape).

Hardware Diagnostic and Maintenance Procedures Maxc Operations46

9) Power up the system as discussed in the "Power Up" section.

10) Reload the microcode and restart AltIO and MicroExec using "Midas MExecGo," as discussed
in the "Loading the PDP-10 Emulator" section; repeat Test.Memory.Slow to see if the repairs have
been successful.

11) If everything is ok, restart Tenex.

Memory maintenance is performed with the aid of Micro-Exec.1 After loading the microcode and
starting up Micro-Exec, simply type:

*Test.Memory.Slow <cr>

This requires about 6 minutes to test all 384K of memory. All data, tag, and parity bit failures
cause an error count to be accumulated for the affected chip. The physical location of each chip
with errors is reported at the end of testing each memory cabinet, along with the pages affected and
the error count. Every word in memory is tested 82 times using various patterns, so every chip is
written into and read from 83968 times. Hence, a total chip failure will generate on the order of
40000 errors (since it will yield the wrong value approximately half the time), while a solid single
bit failure will generate on the order of 40 errors.

Conclusively diagnosed check bit failures are also reported in this manner. For check bit failures
that Micro-Exec cannot diagnose (due to an insufficient sample or lack of any obviously failing bit
pattern), information is printed out as to the frequency of zeroes and ones in the correct values of
each check bit. Since the check bits can’t actually be read, the best that can be done is to deduce
which check bit is failing on the basis of these frequencies.

The "Test.Memory.Verbose" command does everything that "Test.Memory.Slow" does, but also
prints out the address, error type, correct data, incorrect data, and exclusive or for every error. For
check bit failures, the correct data and the computed Hamming code are printed out. This
command will generate reams of output unless the memory is pretty clean to begin with.

If the diagnostic crashes due to "fatal error from wrong place in code", one should re-boot Micro-
Exec and issue the "Test.Memory.Write.Slow" command before running the memory test. This sets
a mode switch that forces Micro-Exec to use a more conservative (but slower) method of writing
data into the memory under test.

To obtain hardcopy of the memory error printout, issue the "Diablo Copy On" command in the
AltIO command window before starting the memory test.

Because of error correction, Tenex can run ok with bad bits and even bad cards in the memory
system. Exception: a double error in pages 0 to about 217 will prevent Tenex from running. Non-
hardware-maintainers should ordinarily not attempt to repair the memory system. However, the
following instructions for locating failures reported by Test.Memory.Slow (or Test.Memory.Fast) are
provided, just in case.

1There is also a Maxc memory diagnostic called TMEM which runs on the Nova, but it does not test memory as
thoroughly, does not find bad check bits, and requires the use of a second program, PER, to analyze failures. These
programs are therefore not documented here.

Maxc Operations Hardware Diagnostic and Maintenance Procedures 47

The error printout is of the form:

Quad q Cab c Card d Col h Row r Pages 1360-1367 bit 14, 10 errors

where q is J, K, L, or M; c is 0 to 3; d is 1 to 16; h is 0 to 11; and r is 0 to 7.

The cabinets are numbered consecutively 0, 1, 2, ... starting with the one next to the processor. The
quadrants are each represented by a row of 16 cards starting at the top of the cabinet, so J is the
top row, then K, then L, and M is the bottom row. In each row the cards are numbered 1 to 16
starting at the left as you look from the back of the cabinet. (Ref. Figure 4, Appendix.)

If you hold the cards with the ic’s up, edge connector toward you, the storage chips form an array
of 12 columns by 8 rows starting with 0,,0 in the lower right corner. The other parts on the board
are 12 address drivers on the left and right and 6 sense amps and other stuff next to the edge
connector. (Ref. Figure 5, Appendix.)

In an emergency, you can replace a card with one of the spares in the unused rack above the
Maxc2 Alto. If you have to do this, be sure to attach the error printout and a note about where the
card came from to the card you remove; leave the card on the table in the Maxc room so system
maintainers can find it.

13.4. Disk Maintenance

Micro-Exec is used to diagnose most disk problems. The assortment of commands for doing this
are discussed in the Micro-Exec section. Two microdiagnostic programs called DSKD and EXAM
are also available. However, these programs are only of interest to Ed McCreight--they are not
intended for operation by novices.

Micro-Exec reports disk addresses in the following format:

0FFPPPHHCCCS

where:

FF = function (04 = read, 10 = write)
PPP = pack number
HH = head number
CCC = cylinder number
S = sector number

Basic test procedures are as follows:

a) Scanning a system pack for errors:

*Scan.Disk.Pack.For.Errors <pack>

Hardware Diagnostic and Maintenance Procedures Maxc Operations48

This prints out both soft and hard errors, and provides no way of telling which errors are
hard. To find only hard errors:

*Set.Disk.Error.Retry.Count 20
*Scan.Disk.Pack.For.Errors <pack>

b) Writing and verifying a test pack: (Note that pack 100 is reserved exclusively for this
purpose.)

*Mount.Auxiliary.Pack <drive><pack>
*Write.Disk.Test.Pattern (Writes and verifies test pattern)
*Verify.Disk.Test.Pattern (Verifies already written test pattern)
*Dismount.Auxiliary.Pack (when done)

c) Observing disk data on a scope:

*Loop.On.Specified.Disk.Page <pack><cylinder><head><sector>

This repeatedly reads a single page, blinking the screen whenever an error is detected.
Type DEL to terminate.

Following Tenex file system crashes, where fatal read errors in directories have occurred, the
following general methods help to isolate the cause of the failure.

1. Turn on the "Read-Only" switches for all the system disk packs.

2. Use Micro-Exec S.D.P.F.E to find out which drives/packs/controllers are causing trouble. If a
particular pack suffers many failures, but the others seem ok, it is likely that the common controller
is ok, but that something is wrong with either the unit controller or disk drive that is experiencing
the failures. If the failures are confined to a particular head, it is likely that that head is misaligned
or broken.

3. If a pack produces many irrecoverable read errors on one drive, try mounting it on another drive
and using S.D.P.F.E. If it can be read ok on the other drive, then it is likely that there is some
failure in the read electronics of the original unit controller or disk drive; otherwise, it is likely that
there is a failure in the write electronics of the original controller/drive.

4. Try writing a test pattern on a test disk pack on a good drive (Pack 100 usually used for this
purpose because it does not have any bad spots.). Then mount the pack on the suspect drive and
use S.D.P.F.E to see if it can be read correctly. If it cannot be read correctly, you have further
indication of a read electronics failure; if it can be read correctly, then you have further
confirmation of a write electronics or head failure.

5. If you determine that a particular drive/controller combination is broken, you can determine
whether it is the drive or controller by recabling the suspect controller to a working drive and the
suspect drive to a working controller. (Refer to last two paragraphs in section 12.1 for a discussion of
what to do if the disk configuration is changed.)

Maxc Operations Hardware Diagnostic and Maintenance Procedures 49

13.5. TM

TM is a Maxc memory diagnostic that runs on the Alto. It is used for basic debugging of the
memory system, or when the memory is too sick to support Maxc programs such as Micro-Exec.
TM is documented separately in a memo entitled "The Maxc2 Memory Test Program and Other
Folklore", by Larry Clark.

13.6. MemBash

MemBash is an Alto program that beats on the Alto/Maxc memory interface while monitoring the
state of the Maxc processor. It is intended to be run at the same time as a Maxc main memory
micro-diagnostic (DGM or DGMR) to provoke problems that arise under conditions of memory
contention.

The Maxc micro-diagnostic should first be loaded using Midas and the end-of-test breakpoint at 20
removed by typing "20;K". Then exit Midas, start up MemBash, and issue the "Go" command.
The program runs until any key is struck.

If any error occurs (in the processor, memory, or Alto memory interface), the state of the memory
system and all the memory interfaces is displayed. The processor is then restarted at the beginning
of the micro-diagnostic.

The Alto memory operations executed by MemBash are ordinarily sequential reads through the first
256K of memory. The "Alto Operation" command may be used to select write or RMW operations
or to specify that the Alto beat on a single memory location.

MemBash may be exited by means of the "Quit" command.

13.7. SMIDiag

This program is a diagnostic for the Alto System Maintenance Interface (SMI). Its operation is very
simple, and one should step through the various available commands using the "?" feature.

There are two main tests, one for the address register and the other for the data register. In either
test, one may use data patterns consisting of all zeroes, all ones, alternating ones and zeros, or
random data. Important: Before running the address test with random data, it is necessary to
disconnect the SMI cable to Maxc and install a terminator on the Alto interface.

13.8. AITest

Alto-IMP interface test.

