
THE LOOPS MANUAL

by Daniel G. Bobrow (Xerox PARC) & Mark Ste�k (Xerox PARC)

LOOPS adds data, object, and rule oriented programming to the procedure oriented programing
of Interlisp. In object oriented programming, behavior is determined by responses of instances of classes
to messages sent between these objects, with no direct access to the internal structure of an object. This
approach makes it convenient to de�ne program interfaces in terms of message protocols. Data oriented
programming is a dual of object oriented programming, where behavior can occur as a side e�ect of direct
access to (permanent) object state. This makes it easy to write programs which monitor the behavior of
other programs. Rule oriented programming is an alternative to programming in LISP. Programs in this
paradigm are organized around recursively composable sets of pattern- action rules for use in expert system
design. Rules make it convenient for describing �exible responses to a wide range of events. LOOPS
is integrated into Interlisp, and thus provides access to the standard procedure oriented programming of
Lisp, and use of the extensive environmental support of the Interlisp- D system

Our experience suggests that programs are easier to build in a language when there is an available
paradigm that matches the structure of the problem. The paradigms described here o�er distinct ways
of partitioning the organization of a program, as well as distinct ways of viewing the signi�cance of side
e�ects. LOOPS provides all these paradigms within a single environment. This manual is intended as
the primary documentation for users of LOOPS. It describes the concepts and the programming facilities,
and gives examples and scenarios for using LOOPS.

1

Abstract:

1 INTRODUCTION

Four distinct paradigms of programming available in the computer science community today are oriented
around procedures, objects, data access and rules. Usually these paradigms are embedded in di�erent
languages. LOOPS is designed to incorporate all of them within the Interlisp programming environment,
to allow users to choose the style of programming which best suits their application.

Lisp is a procedure oriented language; the procedure oriented paradigm
is the dominant one provided in most programming languages today. Two separate kinds of entities are
distinguished: procedures and data. Procedures are active and data are passive. The ability to compose
procedures out of instructions and to invoke them is central to organizing programs using these languages.
This is a major source of leverage in synthesizing programs. Side e�ects happen when separate procedures
share a data structure and change parts of it independently.

This paradigm was pioneered by Smalltalk, and has its roots in SIMULA
and in the concept of data abstraction. In contrast with the procedure- oriented paradigm, programs are not
primarily partitioned into procedures and separate data. Rather, a program is organized around entities
called objects that have aspects of both procedures and data. Objects have local procedures (methods)
and local data (variables). All of the action in these languages comes from sending messages between
objects. Objects provide local interpretation of the message form.

The object- oriented paradigm is well suited to applications where the description of entities is simpli�ed
by the use of uniform protocols. For example in a graphics application, windows, lines and composite
structures could be represented as objects that respond to a uniform set of messages (i.e., ,

, and). An important feature of these languages is an inheritance network, which makes
it convenient to de�ne objects which are other objects. This works together with the use of
uniform protocols because specialized objects usually share the protocols of their super classes.

In both of the previous paradigms, the invocation of procedures (either by
direct procedure call or by message sending) is convenient for creating a description of a single process.
In the data- oriented programming, action is potentially triggered when data are accessed. Data oriented
programming makes use of long term storage of objects with implicit links from structures to actions.

Data oriented programming is appropriate for interfacing between nearly independent processes. A good
example of this is the construction of a viewer for an independent tra�c simulation process. The viewer
provides a visual display of the changing tra�c simulation process without a�ecting the code for the
simulation. This independence means that the two processes can be written and understood separately.
It means that the interactions between them can often be controlled without changing them.

In rule oriented programming, the behavior of the system is determined
by sets of condition- action pairs. These play the same role as subroutines in the procedure
oriented metaphor. Within a RuleSet, invocation of rules is guided largely by patterns in the data. In
the typical case, rules correspond to nearly- independent patterns in the data. The rule- oriented approach
is convenient for describing �exible responses to a wide range of events characterized by the structure of
the data.

Our experience suggests that programs are easier to build in a language when there is an available
paradigm that matches the structure of the problem. A variety of programming paradigms gives breadth to
a programming language. The paradigms described here o�er distinct ways of partitioning the organization
of a program, as well as distinct ways of viewing the signi�cance of side e�ects. LOOPS provides all
these paradigms within the Interlisp environment [Xerox83]. In principle, the data- oriented programming

2

Procedure Oriented Programming:

Object Oriented Programming:

Display
Move Erase

almost like

Data Oriented Programming:

Rule Oriented Programming:
RuleSets

THE LOOPS MANUAL

can be used with either the object- oriented or the procedure- oriented paradigms. In LOOPS, we have
combined it only with variables in the object- oriented metaphor.

LOOPS adds data, object, and rule oriented programming to Interlisp. In object oriented
programming, behavior is determined by responses of instances of classes to messages sent between these
objects, with no direct access to the internal structure of an object. This approach makes it convenient to
de�ne program interfaces in terms of message protocols. LOOPS provides:

� inheritance of instance behavior and structure from multiple super classes

� user extendible property list descriptions of classes, their variables, and their methods

� composite objects - templates for related objects that are instantiated as a group.

Data oriented programming is a dual of object oriented programming, where behavior can occur as a side
e�ect of direct access to (permanent) object state. This makes it easy to write programs which monitor
the behavior of other programs. LOOPS provides:

� active values for object variables which can cause a procedure invocation on setting or fetching

� integration with facilities for long term storage of objects in shared knowledge bases

� support for incremental updates (layers), and the representation of multiple alternatives.

Rule oriented programming is an alternative to programming in LISP. Programs in this paradigm are
organized around recursively composable sets of pattern- action rules for use in expert system design.
Rules make it convenient for describing �exible responses to a wide range of events. LOOPS provides:

� a concise syntax for pattern matching and rule set construction

� use of objects as working memory for rule sets

� primitives for executing, stepping and suspending tasks based on ruleSets

� compilation of ruleSets into Lisp code for e�cient execution

LOOPS is integrated into Interlisp. LOOPS provides:

� classes and instances as Interlisp �le objects

� pseudoClasses to �eld messages to standard Interlisp datatypes

This manual is intended as the primary documentation for users of LOOPS. It describes the concepts and

3

Summary:

Intellectual Precursors

the programming facilities, and gives examples and scenarios for using LOOPS.

1.1 Intellectual Precursors

LOOPS grew out of our research in a knowledge representation language (called Lore) for use in a
project to create an for designers of integrated digital systems. Along the way, we
discovered that we needed to experiment with alternative versions of the representation language. A core
of features was identi�ed that we wanted to keep constant in our experiments. This core became a data
and object- oriented programming system with many features not found in other available systems. Many
of the features (e.g., active values, data bases, and composite objects) were motivated by the needs of our
project, but we they would be useful for many other applications. LOOPS has been su�ciently useful
and general that we decided to make it available outside of our group.

The design of LOOPS owes an intellectual debt to a number of other systems, including:

(1) Smalltalk ([Goldberg82], [Goldberg81], [Ingalls78]), which has pioneered many of the concepts of
object- oriented programming.

(2) Flavors [Cannon82], which supports this style of programming in the MIT Lisp Machine environment
and which confronted non- hierarchical inheritance.

(3) PIE [Goldstein80], which provided facilities for incremental, sharable data bases.

(4) KRL [Bobrow77], which explored many issues in the design of frame- based knowledge representation
languages and which provoked much additional work in this area.

(5) UNITS [Ste�k79], which provided a substantial testbed for experiments in problem solving that have
guided our decisions about the importance of several language features.

(6) EMYCIN [VanMelle80] which showed the power of rule oriented programming for building expert
systems.

While all of these languages provided ideas, none of them was quite right for our current needs. For
example, Smalltalk supports only hierarchical inheritance and does not have a layered data base, active
values, or property lists on variables. PIE and KRL are not easily supportable or extendable. Flavors
does not run on the machines available to us. UNITS was the closest existing language to our needs,
but we wanted to change many of its features. Since we have compared these languages and traced the
intellectual history elsewhere [Bobrow82], we will not pursue that further in this document.

In designing LOOPS, we wanted a general inheritance mechanism, a way of attaching access-triggered
procedures to variables, a way of instantiating composite objects recursively, and a way of creating
permanent databases of objects that can be shared and updated incrementally.

In tension with the desire for extensive language features was a desire to keep LOOPS small so that it
would be easy to understand and to implement. To this end we have tried to create a small repertoire of
powerful features that work well together.

1.2 Acknowledgments

4

expert assistant

from the LOOPS Manual:

THE LOOPS MANUAL

Thanks to Alan Bell, Harry Barrow, Harold Brown, Gordon Foyster, Phil Gerring and Gordon Novak,
Chris Tong, Schlomo Weiss, Terry Winograd and the other members of the KBVLSI project (past and
present) for bug reports and suggestions, and for enduring the wait for it to mature into existence
while so many things have been pressing. Special thanks to Johan de Kleer for extensive discussions of
design issues, and to Richard Fikes, Adele Goldberg, Danny Hillis, Dan Ingalls, and Gordon Novak for
comments on earlier drafts of this manuscript. We are grateful to Larry Masinter and Bill Van Melle
for help on the integration of LOOPS with Lisp, and to the Interlisp- D group for unfailing support and
encouragement. Thanks also to Lynn Conway for encouraging this work and to the Xerox Corporation
for providing the intellectual and computing environments in which it could be done.

Special thanks to Danny Berlin and Lynn Conway for many suggestions and for the patience it takes to
be the �rst real users of something new. Sanjay Mittal and Terry Winograd o�ered helpful criticisms
and advice on the documentation and concepts of the rule language. Larry Masinter and Bill van
Melle have provided substantial support in the entire Loops enterprise with Interlisp- D. Thanks to the
Xerox Corporation and George Pake of Xerox PARC for providing the stimulating environment and
computational facilities that made this work possible.

1.3 References

[Aiello81] Aiello, N., Bock, C., Nii, H. P., White, W. C., . Technical Report,
Heuristic Programming Project, Computer Science Department, Stanford University, October 1981.

[Bobrow82] Bobrow, D. G., & Ste�k, M. J. Introducing new programming metaphors to LISP. (submitted
to).

[Bobrow80] Bobrow, D. G., & Goldstein, I. P. Representing design alternatives.
, Amsterdam, 1980.

[Bobrow77a] Bobrow, D. G., & Winograd, T. An overview of KRL, a knowledge representation language,
1:1, 1977, pp 3-46.

[Bobrow77b] Bobrow, D. G., & Winograd, T. Experience with KRL- 0, one cycle of a knowledge
representation language, ,
Cambridge, Mass. August, 1977, pp 213-222.

[Cannon82] Cannon, H. I. Flavors: a non- hierarchical approach to object- oriented programming,
, 1982.

[Consumers80] Anon, Washing Machines. , November 1980, pp. 679-684.

[Erman81] Erman, L. D., London, P. E., Fickas, S. F. The design and an example use of Hearsay- III.
, August 1981, pp.

409-415.

[Fain81] Fain, J., Gorlin, D., Hayes- Roth, F., Rosenschein, S., Sowizral, H., Waterman, D.
, Rand Note N-1647-ARPA, Rand Corporation, December 1981.

[Feigenbaum78] Feigenbaum, E. A., The art of arti�cial intelligence: themes and case studies of knowledge
engineering, 47 National Computer Conference, 1978, pp. 227� 240.

5

from the Rules Manual:

AGE Reference Manual

Communications of the Association for Computing Machinery

Proceedings of the AISB
Conference

Cognitive Science

Proceedings of the Fifth International Joint Conference on Arti�cial Intelligence

personal
communication

Consumer Reports

Proceedings of the Seventh International Joint Conference on Arti�cial Intelligence

The ROSIE
Reference Manual

AFIPS Conference Proceedings

References

[Forgy81] Forgy, C. L. . Technical Report CMU- CS-81-135. Department of
Computer Science, Carnegie- Mellon University, Pittsburgh, Pennsylvania, July 1981.

[Goldberg82] Goldberg, A., Robson, D., Ingalls, D. .
Reading, Massachusetts: Addison- Wesley (in press).

[Goldberg81] Goldberg, A. Introducing the Smalltalk- 80 System, 6:8, August 1981.

[Goldstein80] Goldstein, I. P., & Bobrow, D. G. Extending object oriented programming in Smalltalk.
, Stanford University, 1980.

[Ingalls78] Ingalls, D. H. The Smalltalk- 76 programming system: design and implementation.
, Tucson, Arizona,

January 1978, pp 9-16.

[Maytag] Anon. . Printed by the Maytag Company, Newton Iowa
50208.

[Ste�k82] Ste�k, M., Aikins,5 J., Balzer, R., Benoit, J., Birnbaum, L., Hayes- Roth, F., Sacerdoti, E. The
organization of expert systems: a tutorial. , 18:2, March 1982, pp. 135-173.

[Ste�k79] Ste�k, M. An examination of a frame- structured representation system.
, Tokyo, Japan, August 1979, pp. 845-852.

[VanMelle80] Emycin ... To be �lled in

[Weinreb81] Weinreb, D., & Moon, D. , Massachusetts Institute of Technology,
1981

[Xerox83] , Xerox Palo Alto Research Center, October, 1983.

6

OPS5 User’s Manual

Smalltalk- 80: The language and its implementation

Byte

Proceedings of the Lisp Conference

Conference
Record of the Fifth Annual ACM Symposium on Principles of Programming Languages

Operating Instructions for Model A510

Arti�cial Intelligence

Proceedings of the Sixth
International Joint Conference on Arti�cial Intelligence

Lisp Machine Manual

Interlisp Reference Manual

2 OVERVIEW

2.1 Structure of Classes and Instances

A class is a description of one or more similar objects. An is an object described by
a particular class. Every object within LOOPS is an instance of exactly one class. Classes themselves
are instances of a class, usually the one called . Classes whose instances are classes are called

.

LOOPS supports two kinds of variables - class variables and instance variables. Class variables
are used to contain information shared by all instances of the class. A class variable is typically used
for information about a class taken as a whole. Instance variables contain the information speci�c to
an instance. Both kinds of variables have names, values, and other properties. A class describes the
structure of its instances by specifying the names and default values of instance variables. For example,
the class might specify two instance variables, and with default values of , and a class
variable, , used by methods associated with all instances of class . LOOPS
also allows ‘‘variable length’’ classes, which have some instance variables that are referenced by numerical
index.

A class speci�es the behavior of its instances in terms of their response to . The class
associates (LISP atoms) with , the Interlisp functions that respond to the messages. All
instances of a class use the same selectors and methods. Any di�erence in response by two instances
of the same class is determined by a di�erence in the values of their instance variables. For example,

is used as a selector for the message which knows how to print out a representation of an
object on a �le.

LOOPS provides user- extendible property lists for classes, their variables, and their methods.
Property lists provide places for storing documentation and additional kinds of information. A property
list on a variable is used to store additional information about both the variable and its value. For
example, in a knowledge engineering application, a property list for an instance variable could be used
to store such information as (i.e., reasons for believing a value), (i.e., numeric
assessments of degree of belief), on values, (i.e., relationships to other variables),
and (i.e., previous values).

Classes themselves are instances of some class. When we want to distinguish classes whose
instances are classes, we call them metaclasses, after the Smalltalk usage. When a class is sent a message,
its metaclass determines the response. For example, instances of a class are created by sending the class
the message . For most classes, this method is provided by the standard metaclass for classes: .
The user can create other metaclasses to perform specialized initialization. The metaclass for itself
(called) contains the method for making classes. Another useful metaclass provided in
the system is . It is used for classes that are placeholders in the inheritance network
that it would not make sense to instantiate. Its response to a message is to cause an error.

7

Classes: instance

Class
metaclasses

Variables:

Point x y 0
lastSelectedPoint Point

Methods: messages
selectors methods

PrintOn

Properties:

support certainty factors
constraints dependencies

histories

Metaclasses:

New Class
Class

MetaClass New
AbstractClass

New

[DEFCLASS AreaBudget
(MetaClass Class EditedBy (* dgb "15-Feb-82 14:32 ")

doc
(* * This is a sample class chosen to illustrate the syntax

of classes in LOOPS. Commentary on the class is inserted

Inheriting Variables and Methods

Figure 1. Example of a class de�nition in LOOPS. The class, called , inherits
variables and methods from both of its super classes (and). The form of
the de�nition here does not show inherited information, only the changes and additions. In this
example the new class variable is introduced, and six instance variables (, ,

, , , and) are de�ned. The declaration names
the Interlisp functions that implement the methods. For example, is
the name of a function that implements the method for instances of .

2.2 Inheriting Variables and Methods

Inheritance is an important tool for organizing information in objects. It enables the easy creation of
objects that are ‘‘almost like’’ other objects with a few incremental changes. Inheritance avoids the user
have to specify redundant information and simpli�es updating, since information that is common need
be changed in only one place.

LOOPS objects exist in an of classes. An object inherits its instance variable description
and message responses. All descriptions in a class are inherited by a subclass unless overridden in the
subclass. For methods and class variables, this is implemented by a runtime search for the information,
looking �rst in the class, and then at the super classes speci�ed by its . For instance variables, no
search is made at run time; default values are cached in the class, and are updated if any super is changed,
thus maintaining the same semantics as the search. Each class can specify inheritance of structure and
behavior from any number of super classes in its supers list.

In the simplest case, each class speci�es only one super class. If the class has the supers list
, a one element list containing , then all of the instance variables speci�ed local to are added to

those speci�ed for , recursively. That is, gets all those instance variables described in and all of ’s
supers. In this case one obtains strict inheritance hierarchy as in Smalltalk.

Any con�ict of variable names is resolved by using the description closer to in traversing up the
hierarchy to its root at the class . Method lookup uses the same con�ict resolution. The method
to respond to a message is obtained by �rst searching in , and then searching recursively in ’s supers
list. An example of this is given in �gure 2.

8

in a standard property in the class. -- e.g. Budgets are ...))
(Supers OwnedObject Budget)
(ClassVariables (maxBase 25000))
(InstanceVariables

(owner #$VLSI doc (* organizational area that owns budget))
(base 1000 doc (* The initial amount of money))
(overhead 2.25 doc (* Multiplied by base to get total.))
(employees NIL doc (* list of employees in this area))
(manager NIL doc (* manager of this area))
(total #(SHARED getTotal UpdateNotAllowed)

doc (* value of total is computed using active value.))
(Methods

(Report AreaBudget.Report doc (* Prints out a budget report))
(StoreBase AreaBudget.StoreBase

doc (* store base value checking maxBase))]

AreaBudget
OwnedObject Budget

maxBase owner base
overhead employees manager total Methods

AreaBudget.Report
Report AreaBudget

inheritance network

supers list

Hierarchy: A
(B) B A

B A B B

A
Object

B B

THE LOOPS MANUAL

Class Super InstanceVariables Methods

none

Figure 2. In the de�nitions given in the above chart, an instance of would be given four
instance variables, , , , and in that order. The default value for would be , which
overrides the default value of inherited from . The instance would also respond to the four
messages with selector , , , and . The method used for responding to is ,
which is said to override as the implementation of the message . Similarly, overrides

as the implementation of message . Notice that the root class in the system, ,
has no super class. All classes in the system are subclasses of , directly or indirectly.

Classes in LOOPS can have more than one class speci�ed on their supers list.
Multiple super classes admit a modular programming style where (i) methods and associated variables
for implementing a particular feature are placed in a single class and (ii) objects requiring combinations
of independent features inherit them from multiple supers. If had the supers list , �rst the
description from and its supers would be inherited, and then the description from and its supers. In
the simplest usage, the di�erent features have unique variable names and selectors in each super. In case
of a name con�ict, LOOPS uses a depth- �rst left to right precedence. For example, if any super of had
a method for , then it would be used instead of the method from . In every case, inheritance from

(or any other ‘‘common’’ super class) is only considered after all other classes on the recursively
de�ned supers list.

2.3 Data Oriented Programming � Using Active Values

In data oriented programming, one needs a way of specifying for any variable of an object whether any
special procedure is to be invoked on read or write access, and if so which. In LOOPS we check on
every variable access whether the value is marked as an . If so, the active value speci�es the
procedures to be invoked when the value of a variable (or property) is read or set. This mechanism is
dual to the notion of messages; messages are a way of telling objects to perform operations, which can
change their variables as a side e�ect; active values are a way of accessing variables, which can send
messages as a side e�ect. The following notation for active values illustrates its three parts:

This notation is converted by a read macro into an instance of the LISP data type . The
is a place for storing data. The and are the names of functions that are applied

with standard arguments when a program tries to get or put the value of a variable. Every active value
need not specify both a and a . If the is , then a get operation returns the local
state. If the is , then a put operation replaces the local state.

Active values enable one process to monitor another one. For example, we have developed a LOOPS
debugging package that uses active values to trace and trap references to particular variables. Another

9

Object NIL (s4 M6)

C Object (w 7) (s2 M4) (s3 M5)

B C (y 4) (z 3) (s1 M2) (s2 M3)

A B (x 1) (y 0) (s1 M1)

A
w y z x y 0

y B
s1 s2 s3 s4 s1 M1

M2 s1 M3
M4 s2 Object

Object

Multiple Super Classes:

D (E A)
E A

E
s1 M1 A

Object

active value

#()

activeValue

NIL
NIL

localStategetFn putFn

localState getFn putFn

getFn putFn getFn
putFn

Knowledge Bases

example is a graphics package that updates views of particular objects on a display when their variables
are changed. In both cases, the monitoring process is invisible to and isolated from the monitored process.
No changes to the code of the monitored object are necessary to enable monitoring.

�gure 3 shows an application of this to a simulation model. Suppose that
we want a program that simulates the �ow of tra�c in a city and displays selected parts of the simulation
on a screen. Active values enable us to divide the programming of this example into two parts: the
tra�c model and the view controller. The tra�c model consists of objects representing automobiles, tra�c
lights, emergency vehicles, and so on. These objects exchange messages to simulate tra�c interactions
(e.g., when a tra�c light turns green, it would send messages to start cars moving). The view
controller provides windows into di�erent parts of the city. It contains information about how the objects
are to be displayed. We want a user to be able to move these windows around to change the view.

Figure 3. Instance of an automobile in a tra�c simulation model. Other classes describe such
things as tra�c lights, city blocks, and emergency vehicles. Instances of these classes exchange
messages while simulating the vehicles moving around in the model. The instance variable

is used to record the location of an automobile in the tra�c coordinate system. In
this example, an active value in is used to update view objects that control pictures
of the tra�c patterns on an interactive display. Whenever a simulation method puts a new
value into the variable, the procedure sends update messages to
each object in a list of view objects. These messages ultimately cause the graphics display to
be updated.

In �gure 3, there is an active value in the variable of an instance of . This
active value is the interface between the object in the simulation model and the view controller.
Whenever a method in the simulation model changes the value of a variable, the procedure

in the of the active value is invoked. updates the local value
and sends a message to each of the view objects in the list stored as a property of . These
objects respond to a message by updating the view in the windows on the display screen. The important
point of this example is that it shows how the view controller can be invoked as a side e�ect of running
the simulation. The view can be changed without e�ecting any programs in the simulation model. To
change the set of simulation objects being monitored, only the interface to the view controller needs to be
changed by adding active values. The objects in the view controller may also be changed (e.g., to re�ect
changes to relative coordinates of the window and the tra�c model).

2.4 Knowledge Bases

LOOPS was created to support a design environment in which there are community knowledge bases
that people share, and to which they can add incremental updates. We have chosen the term

instead of to emphasize the intended application of LOOPS to expert systems. In expert
systems, knowledge bases contain inference rules and heuristics for guiding problem solving. This is in

10

Model/View Controller Example:

Move

(DEFINST Automobile- 1 ...
(InstanceVariables

(position #(Pos1 NIL UpdateDisplay)
displayObjects (DispObj1 DispObj2 DispObj3)
doc (* position of car in traffic coordinate system))

(speed 25))
...]

position
position

position UpdateDisplay

position Automobile

position
UpdateDisplay UpdateDisplay

position

knowledge
base data base

putFn

THE LOOPS MANUAL

contrast to the tabular �les of facts usually associated with data bases.

Knowledge bases in LOOPS are �les that are built up as a sequence of layers, where
each layer contains changes to the information in previous layers. A user can choose to get the most
recent version of a knowledge base (that is, all of the layers) or any subset of layers. The second option
o�ers the �exibility of being able to share a community knowledge base without necessarily incorporating
the most recent changes. It also provides the capability of referring to or restoring any earlier version.
�gure 4 illustrates this with an example.

Figure 4. Knowledge bases in LOOPS are �les that are built- up incrementally as a sequence of
layers. Each layer contains updated descriptions of objects. When a knowledge base is opened,
the information in the later layers overrides the information in the earlier layers. LOOPS
makes it possible to select which layers will be used when a knowledge base is opened. In this
example, if the knowledge base is opened and only the �rst 2 layers are used, then will
have an variable with value . If all three layers were connected, then the value would be

.

LOOPS partitions the process of updating a community knowledge base
into two steps. Any user of a community knowledge base can make tentative changes to a community
knowledge base in his own (isolated) environment. These changes can be saved in a layer of his personal
knowledge base, and are marked as associated with the community knowledge base. In a separate step,
a data base manager can later copy such layers into a community knowledge base. This separation of
tasks is intended to encourage experimentation with proposed changes. It separates the responsibility for
exploring possibilities from the responsibility of maintaining consistent and standardized knowledge bases
for shared use by a community. The same mechanisms can be used by two individuals using personal
knowledge bases to work on the same design. They can conveniently exchange and compare layers that
update portions of a design.

The ability to determine when di�erent layers are referring to the same entity is critical
to the ability to share data bases. To support this feature the LOOPS data base assigns unique identi�ers
(based on the computer’s identi�cation numbers, the date, and an unbounded count) to objects before
they are written to a knowledge base. This facility provides a grounding for more sophisticated notions
of equality that might be desired in knowledge representation languages built on LOOPS.

A user of LOOPS works in a personalized . An environment provides a lookup
table that associates unique identi�ers with objects in the connected knowledge bases. In an environment,
user indicate dominance relationships between selected knowledge bases. When an object is referenced
through its unique identi�er, the dominance relationships determine the order in which knowledge bases
are examined to resolve the reference. By making personal knowledge bases dominate over community
knowledge bases, a user can override portions of community knowledge bases with his own knowledge
bases.

11

Knowledge Bases:

------------------------- Layer 1 -------------------------
Obj1 (x 4) ...
Obj2 (y 5) (w 3) ...
------------------------- Layer 2 -------------------------
Obj2 (y 7) (w 2) ...
Obj3 (z 6) ...
------------------------- Layer 3 -------------------------
Obj1 (x 8) ...
Obj4 (z 9) ...

Obj1
x 4

8

Community Knowledge Bases:

Unique Identi�ers:

Environments: environment

Knowledge Bases

An important use of environments is for providing speedy access to alternative
versions (e.g., multiple alternatives in a design). A user can have any number of environments available
at the same time. Each environment is fully isolated from the others. Operations that move information
between environments are always done explicitly through knowledge bases.

12

Multiple Alternatives:

3 CREATING AND USING OBJECTS

In the LOOPS implementation of object- oriented programming, there are three types of objects:
Instances, Classes, and Metaclasses. Instances are used like data objects in Lisp; they are commonly
created, passed around, and modi�ed by procedures (although all objects can be). Classes and metaclasses
are objects which ‘‘de�ne’’ a group of objects that are ‘‘instances of’’ that class or metaclass. The
di�erence between classes and metaclasses is that the instances of a class are instances, and the instances
of a metaclass are classes� all comments about classes apply to metaclasses, except where otherwise stated.

Note that the word ‘‘instance’’ is used in two separate ways: the phrase ‘‘instance of’’ refers to the relation
between any object and the class (or metaclass) that ‘‘de�nes’’ it. The noun ‘‘instance’’ is only used to
refer to those objects which are instances of classes.

A class contains information about instance variables, class variables, and methods. Instance variables are
local variables stored within each instance of the class. Class variables are variables stored within the class
object, accessable from each instance of the class. Methods are procedures which are used to perform
operations on instances of the class.

Each Class also contains a list of other classes called ‘‘super classes’’ or ‘‘supers’’. The super class list
provides a mechanism for inheriting instance variables, class variables, and methods from other classes
(see page 31).

This section �rst describes how to create and use objects. Next, ‘‘sending a message’’ (the standard way
to invoke a method). Next, creating and using new instances. Next, de�ning and editing new classes.
Finally, de�ning a new method for a class.

3.1 Sending a Message to an Object

Operations in LOOPS are invoked by sending messages. Sending a message to an object invokes a method
(from the class that the object is an instance of) to execute the operation. Messages are sent using the
function as follows:

��� [NLambda NoSpread Function]
Sends the message to the object with the arguments ��� .

is always implicitly quoted (i.e., not evaluated); the remaining arguments
are evaluated.

must be an ‘‘internal pointer’’ to the object. The internal pointer to the object
with the LOOPS name can be extracted by the form .

Note: can be used instead of . The arrow notation, although less mnemonic,
is usually used to make expressions shorter and hence easier to type and read.

If it is necessary to the selector, one can use the function , which is just
like except that it also evaluates its argument.

Example:

13

_

(_)

FOO ($ FOO)

SEND _

compute _!
_

(_ ($ PayRoll) PrintOut file1)

objectSelectorarg1 argN
Selector object arg1 argN

Selector

object

Selector

Creating a New Instance

This sends a message to the class (with a single argument; the value of the Intrerlisp
variable).

3.2 Creating a New Instance

To create an instance of a particular class, one sends the message to the class:

[Message]
Returns a new instance of the class .

In the usual case, initial values for instance variables are taken from the instance
variable descriptions associated with the class. LOOPS provides some other ways to
exercise control over the initialization of values in instances (see page 34).

3.3 Naming and Pointing to Objects

In order to manipulate a LOOPS object, it is necessary to have a pointer to it. One way to do this is to
save a pointer to the object in an Interlisp variable, for example:

This creates a new instance of the class, and stores a pointer to this instance in the Interlisp
variable . Pointers to instances can also be saved in instance variables.

LOOPS objects may be passed around and examined by Lisp functions. The following function is useful:

[Function]
Returns if it is a LOOPS objects, otherwise .

Another way to manipulate an object is by giving it a unique ‘‘LOOPS name’’. An object can be given a
LOOPS name by sending it the message

[Message]
Sets the LOOPS name to refer to . LOOPS names are unique in a
LOOPS environment; the name is assigned in the environment speci�ed by the
global variable (see page 41 for a complete description of
environments).

If an attempt is made to assign a name already in use in the environment,
and the global �ag = , an error is generated. If

= , and there is already an object with that
name, the name is unset for and set for without generating an error.

For example, if is an Interlisp variable whose value is a pointer to some instance, the object can be
given the LOOPS name as follows:

After naming this way, the user can refer to this object as , which returns the object whose
name is .

14

PrintOut PayRoll
file1

New

(_ New)

(SETQ myVariable (_ ($ Transistor) New))

Transistor
myVariable

(Object?)
NIL

SetName

(_ SetName)

CurrentEnvironment

ErrorOnNameConflict T
ErrorOnNameConflict NIL

I1
Foo

(_ I1 SetName ’Foo)

I1 ($ Foo)
Foo

class
class

X
X

object name
name object

oldObject
oldObject object

THE LOOPS MANUAL

The user can refer to an object with a LOOPS name using the form . For example,
if the value of the lisp variable is the atom , then = .

Classes having (see page 115) as a super class inherit an instance variable, , that
contains the name of the objects. Instances of these classes can be named, as before, with a
message, or alternatively as a side e�ect of setting the instance variable.

Class objects are automatically given a LOOPS name when they are created, as described below.

3.4 De�ning a New Class

The way one creates a new class is to send the message to a metaclass. Usually, the metaclass named
is used.

[Message]
Returns a new instance of the metaclass . is the new class name
and is a list of the names of the super classes for this new class. If the
list of super class names is omitted, defaults to .

Example:

This de�nes a new class, as a subclass of the known classes named and
.

An abbreviated way of de�ning a class is to use the function :

[Function]
(‘‘de�ne class’’) Sends the class an appropriate message:

Example:

This speci�es that the class is to be used recursively, inheriting both from and all its
supers, and from and all its supers.

After de�ning the class, one can modify its structure by editing the textual source for the class with :

[Function]
(‘‘edit class’’) envokes the Interlisp editor on the textual source for the class
named .

The editor can also be envoked by sending the message:
.

For example, might start the editor editing the expression:

15

computed ($!)
X Apple ($! X) ($ Apple)

NamedObject name
SetName

name

New
Class

(_ New)

(Object)

(_ ($ Class) New ’StudentEmployee ’(Student Employee))

StudentEmployee Student
Employee

DC

(DC)
Class New

(_ ($ Class))

(DC ’StudentEmployee ’(Student Employee))

Student Student
Employee

EC

(EC)
EC

Edit (_ ($)
Edit)

(EC ’StudentEmployee)

[DEFCLASS StudentEmployee

EXPR

metaClass classNamesupersList
metaClassclassName

supersList
supersList

classNamesupersList

classNamesupersList

className_

className

className

De�ning a Method

One can then change this to:

Leaving the editor successfully at this point would install the two instance vararible descriptions in the
class . Then, in addition to those instance variables inherited
from and , each instance would also have two new ones, and with
default values of and respectively. A more extensive description of editing and changing classes is
found in section 13.4.

3.5 De�ning a Method

In order to de�ne a method for a class, one can use the Interlisp function :

[Function]
De�nes a method for the class named that can be called using the selector

. If is non- , then is interpreted as the list of
arguments for a function, and as the body of that function. If the �rst element
of the list is not , then is added on the front. de�nes
a function whose name is the concatenation of , a period, and .
For example, is the function name created for the selector in
the class . The function de�nition is created by substituting into

.

If and are , creates a skeleton de�nition for the function
and puts the user into the Interlisp editor, editing the skeleton.

If only is , is interpreted as the name of a function to be
used for implementing the method.

Note: a method can also be de�ned by sending the message to the
class: .

Example:

This de�nes a method with selector for the class which adds 1 to the instance
variable (the -notation for accessing variables is described on page 18). This form results in

16

(MetaClass Class Edited: (* lc: "18-Oct-82 14:26"))
(Supers Student Employee)
(InstanceVariables)
(Methods]

[DEFCLASS StudentEmployee
(MetaClass Class Edited: (* lc: "18-Oct-82 14:26"))
(Supers Student Employee)
(InstanceVariables

(sponsor NIL doc (* Name of sponsor))
(stay 3 doc (* number of months here)))

(Methods]

StudentEmployee StudentEmployee
Student Employee sponsor stay

NIL 3

DM

(DM)

NIL

self self DM

Class.List List
Class (LAMBDA

.)

NIL DM

NIL

DefMethod
(_ DefMethod)

(DM ’Number ’Increment ’(self)
’((* incr my IV) (_@ :myValue (ADD1 (@ :myValue)))))

Increment Number
myValue @

classNameselectorargsOrFnName form
className

selector form argsOrFnName
form

argsOrFnName
className selector

argsOrFnName form

argsOrFnName form

form argsOrFnName

class selectorargsOrFnName form

THE LOOPS MANUAL

the de�nition of a function named as follows:

[Function]
Calls the Interlisp editor to edit the method for the class named associated
with the selector .

Often it is more conveniently to use the LOOPS browser to edit the code for a
method (see page 102).

Example:

To edit the method from the example above, one could type:

This will edit the method of class which responds to the selector , whether or not it
has a name of the standard form.

17

Number.Increment

(DEFINEQ
(Number.Increment

(LAMBDA (self) (* incr my IV)
(_@ :myValue(ADD1 (@ :myValue)))]

(EM)

(EM ’Number ’Increment)

Number Increment

classNameselector_
className

selector

4 OBJECT VARIABLES AND PROPERTIES

There are two kinds of variables associated with an instance: its private and the
that it shares with all instances of the class. This section deals with the functions for getting

and putting values, and with a compact programming notation for referring to these variables from inside
functions that implement methods. In addition, there are properties which are associated with instance
variables and class variables, with the methods of a class, and with classes themselves. Given an object
or a class, one can fetch or set any of these properties. This section describes the functions for accessing
all of these properties and values.

4.1 Access Expressions

As mentioned above, there are a number of di�erent types of variables and properties that can be
associated with each class. However, most of the accessing operations (getting and putting) in methods
refer to the values or properties of instance variables or class variables of an instance. LOOPS provides
general functions (described later) for accessing these values, allowing variable names and property names
to be computed. However, most of the time the programmer knows the variable and property name to
be used, and writing calls to these functions can be cumbersome.

Therefore, a simpli�ed notation has been introduced for writing many common accessing operations,
which is translated into calls to the appropriate functions:

[Macro]
[Macro]

Returns the variable or property value of the object as speci�ed by .
Note that is not evaluated; is evaluated.

If only one argument is given to , it is assumed that the object is bound to the
variable . This is very useful because by convention the �rst argument to any
method is named .

[Macro]
[Macro]

Similar to , sets the value of the variable or property speci�ed by
(unevaluated) in the object to . Returns . Note that

is not evaluated; the other arguments are evaluated.

Like , if is ommitted, it defaults to the value of the variable .

Both and take the argument , which is an ‘‘access expression’’ which speci�es exactly
which variable or property value should be retrieved or set. is an atom which speci�es a
variable name, an optional property name, and whether the variable is an instance variable or a class
variable.

Some examples:

Retrieve the value of instance variable (from the object that is the value of
).

Retrieve the value of class variable (from the object that is the value of).

18

instance variables class
variables

(@)
(@)

@
self

self

(_@)
(_@)

@

@ self

@ _@

(@ :FOO) FOO
self

(@ XX ::FOO) FOO XX

objectaccessExpr
accessExpr

object accessExpr
accessExpr object

objectaccessExprnewValue
accessExprnewValue

accessExpr
object newValue newValue

accessExpr

object

accessExpr
accessExpr

THE LOOPS MANUAL

Store as the value of the property of class variable (of the object that is
the value of).

4.2 Getting Variable and Property Values

The functions and retrieve from an instance the values of variables or their
properties. If the value bound to an instance variable or class variable is an with a ,
then and of these functions trigger the (see page 25).

[Function]
Returns the value or property value of the instance variable in the object

. Each instance of a class has its own separate set of instance variables.

If is , returns the value of the variable. In proper usage,
is an instance and the local value of the variable is returned. If no local value

has been set, returns the default value from the class. Since this is a
common case, default values inherited from super classes of the class are cached in
the class itself, thus avoiding a runtime search.

If is not , returns the value associated with the property
named of the variable . If none is found in the instance, it
returns the default property value found in the class or one of its super classes. If
no property value is found in any of the super classes, the default value used is
the value of the global variable (currently bound to). Note: this
is di�erent from Interlisp, where if no value of a property is found, then is
returned.

fetches a value from an of a class. It is an error to try to use
to fetch an instance variable from a class. To fetch the default value of

an instance variable from a class, use (see page 22).

[Function]
Returns the value (if =) or property value of the class variable

for the class of the (which may be either an instance or a class).

Class variables are inherited from the super classes. If is an instance, lookup
begins at the class of since instances do not have class variables stored locally.
If the class does not have a class variable , searches
through the super classes of the class until it �nds . Since this is thought
to be an relatively rare in code, class variables are stored only in the class in which
they are de�ned, and the runtime search is necessary.

Conceptually, one should think of a class variable of a class as being shared by
all instances of that class, and by all instances of any of its subclasses. For
example, suppose is a class with class variable, , and

is a subclass of . Then setting the class
variable from an instance of would be
seen by all instances of .

19

(_@ ::FOO:,BAR 5)
5 BAR FOO

self

GetValue GetClassValue
active value

GetValue GetClassValue

(GetValue)

NIL GetValue

GetValue

NIL GetValue

NotSetValue ?
NIL

GetValue instance
GetValue

GetClassIV

(GetClassValue)
NIL

GetClassValue

Transistor TransSeqNum
DepletionTransistor Transistor

TransSeqNum DepletionTransistor
Transistor

getFn
getFn

objectvarName propName
varName

object

propName
object

propName
propName varName

objectvarName propName
propName

varName object

object
object

varName
varName

Putting Variable Values and Property Values

4.3 Putting Variable Values and Property Values

and are functions used for storing variable or property values in an instance.
They are analogous to and ; as with these functions, if the value of the
variable or property is an active value with a , trying to store a value for that variable or property
will invoke the (see page 25).

[Function]
Stores as the value or property value of the instance variable in
the object . Returns .

If is , stores as the value of in .
If is non- , then is stored as the value of the property

of the instance variable .

For example, , stores as the value of the instance variable
of the object .

works for storing values in an instance of a class. It is an error to try
to store a default instance variable in a class with . To store the default
value for an instance variable directly in the class, use (see page 22).

[Function]
Similar to , except it stores as the value or property value of
a class variable and property. may either be an instance or a class. Returns

.

If is not local to the class, then the value will be put in the �rst class in
the inheritance list that is found.

The following functions push a value on the front of a list already stored in a variable:

[Function]
[Function]

and add on the front of the list that is
the value of the indicated variable or property, and store the result back in the
variable or property.

These functions are de�ned so that if the value accessed is an active value, the
will be triggered when the old value of the list is fetched, and the when the
new value is stored back (see page 25).

The following function adds a value on the end of an instance variable list:

[Function]
Similar to , except that is added to the of the variable list.

There is no function for adding values to the end of class variable lists.

20

PutValue PutClassValue
GetValue GetClassValue

(PutValue)

NIL PutValue
NIL

(PutValue ’X 0) 0
X

PutValue
PutValue

PutClassIV

(PutClassValue)
PutValue

(PushValue)
(PushClassValue)

PushValue PushClassValue

(AddValue)
PushValue end

putFn
putFn

objectvarName newValuepropName
newValue varName

object newValue

propName newValue varName object
propName newValue

propName varName

pos
pos

objectvarName newValuepropName
newValue

object
newValue

varName
varName

objectvarName newValuepropName
objectvarName newValuepropName

newValue

getFn
putFn

objectvarName newValuepropName
newValue

THE LOOPS MANUAL

4.4 Non-triggering Get and Put

Using active values (page 25), it is possible to associate functions with a variable (or property) that will be
called whenever the variable (or property) is read or set. In some cases, it is useful to be able to access a
value from an instance or class variable without triggering any active value which might be stored. This
can be done using the following functions:

[Function]
[Function]

and retrieve the value of instance variables
and class variables, respectively, without triggering any active values.

retrieves the default value from the class if none exists in the
instance.

To store a value without triggering any active values, the following functions are provided:

[Function]
[Function]

These functions store in the instance variable or class variable, without
triggering any active values, and return .

Note that and can take either a class or an instance.
and will only take instances.

4.5 Local Get Functions

Sometimes it is desirable to �nd out if a value or property is set in a particular class or instance, without
inheriting any information which is not local, and not activating any active values. This can be done with
the following functions:

[Function]
must be an instance. Returns the instance variable value that is found

in the instance; if none is found, then returns the value of the global variable
(initially).

[Function]
must be a class. Returns the class variable value that is found in the class; if

none is found, then returns the value of .

In both and , if the value is an active value, the actual active value is returned,
without being triggered.

Note that there are no need to have special local put func tions, since all put func tions are local to the in-
stance or class. For local non triggering storage func tions, use and
(page 21).

21

(GetValueOnly)
(GetClassValueOnly)

GetValueOnly GetClassValueOnly

GetValueOnly

(PutValueOnly)
(PutClassValueOnly)

GetClassValueOnly PutClassValueOnly
GetValueOnly PutValueOnly

(GetIVHere)

NotSetValue ?

(GetCVHere)

NotSetValue

GetIVHere GetCVHere

PutValueOnly PutClassValueOnly

objectvarName propName
objectvarName propName

objectvarName newValuepropName
objectvarName newValuepropName

newValue
newValue

objectvarName propName
object

objectvarName propName
object

Accessing Class and Method Properties

4.6 Accessing Class and Method Properties

Most of the get and put functions described in the preceding sections work with instances, but not
with classes. Some exceptions are , , , and

, which can take either an instance or a class, and access class variables, and
which takes a class.

The following functions access the value or property value of an instance variable (which is stored
in the class):

[Function]
Returns the value or property value of the instance variable in the
class .

[Function]
Stores as the value or property value of the instance variable

in the class . If is not local to the class, this will cause an
error. Returns .

Note: and do not trigger active values (page 21).

LOOPS provides property list storage for classes themselves and for methods of classes. A typical use
of these properties is to document a class and its methods. Like the put and get functions for variables,
these functions can trigger active values. The functions for class properties are:

[Function]
Returns the value of the property of . If is ,

returns the metaclass of .

Class properties are inherited like class variables, so will search through
the super classes of if is not found in itself.

[Function]
Sets the value of the property of to . If is ,

sets the metaclass of to .

[Function]
[Function]

These functions are analogous to and , except that they never
trigger active values.

[Function]
Returns the local value of the property of . If
is not found locally, returns the value of the global variable

(initially).

The functions for accessing method properties are:

[Function]
If is , returns the method (Interlisp function name)
which implements the message of the class . If is non- ,
it returns the value of the property of the method.

22

GetClassValue PutClassValue GetClassValueOnly
PutClassValueOnly
GetCVHere

default

(GetClassIV)
default

(PutClassIV)
default

GetClassIV PutClassIV

(GetClass)
NIL

GetClass

GetClass

(PutClass)
NIL

GetClass

(GetClassOnly)
(PutClassOnly)

GetClass PutClass

(GetClassHere)

GetClassHere
NotSetValue ?

(GetMethod)
NIL GetMethod

NIL

classvarName propName
varName

class

classvarName newValuepropName
newValue

varName class varName
newValue

classpropName
propName class propName

class

class propName class

classnewValuepropName
propName class newValue propName

class newValue

classpropName _
classnewValuepropName

classpropName
propName class propName

classselectorpropName
propName

selector class propName
propName

THE LOOPS MANUAL

Method properties are inherited; the retrieval process involves searching through
super classes of if the property is not found in itself.

[Function]
If is , sets the method which implements the message

of the class to . If is non- , it sets the value of
the property of the method to . Returns .

[Function]
[Function]

Analogous to and except that they never trigger active
values.

[Function]
Returns the local value of the property the the method which implements
the message of . If is not found locally,
returns the value of the global variable (initially).

All of the above functions only work directly on classes, not on instances of those classes. In addition, if
a method or class variable is inherited, then the put functions change the property in the class in which
the method or class variable is found in the supers list, not in the class which was the argument of the
put function.

4.7 General Get and Put Functions

The following functions are generalized get and put functions which accept a type argument and invoke
the more specialized functions:

[Function]
[Function]
[Function]
[Function]
[Function]

For all of these functions, the value of the argument can be one of , ,
, or for instance variable, class variable, class, or method, respectively.

If is , is assumed. The argument is interpreted as a
variable name if is or , a selector name if is , and is ignored
if is .

These functions are interpreted as follows:

��� ���
��� ���
��� ���
��� ���

The other functions are similar.

Note: Actually, if = , these functions will call di�erent functions depending on whether the object
is a class or instance.

23

(PutMethod)
NIL PutMethod

NIL

(GetMethodOnly)
(PutMethodOnly)

GetMethod PutMethod

(GetMethodHere)

GetMethodHere
NotSetValue ?

(GetIt)
(PutIt)
(GetItOnly)
(PutItOnly)
(GetItHere)

IV CV
CLASS METHOD

NIL IV
IV CV METHOD

CLASS

(GetIt ’IV) ==> (GetValue)
(GetIt ’CV) ==> (GetClassValue)
(GetIt ’CLASS) ==> (GetClass)
(GetIt ’METHOD) ==> (GetMethod)

IV

class class

classselectornewValuepropName
propName

selector class newValue propName
propName newValue newValue

classselectorpropName
classselectornewValuepropName

classselectorpropName
propName

selector class propName

objectvarOrSelectorpropName type
objectvarOrSelectornewValuepropName type

objectvarOrSelectorpropName type
objectvarOrSelectornewValuepropName type
objectvarOrSelectorpropName type

type

type varOrSelector
type type

type

type

Summary of Get and Put Functions

4.8 Summary of Get and Put Functions

In the following table, * indicates that no function is available.

Inherit/Trigger Inherit/DontTrigger Local/DontTrigger

from instances:

Get/Put fns for
instance variables

/ /

Get/Put fns for class
variables

/
/

*

from classes:

Get/Put fns for
instance variables

* * /

Get/Put fns for class
variables

/
/

Get/Put fns for class
properties

/
/

Get/Put fns for
method properties

/ /

24

GetValue
PutValue

GetValueOnly
PutValueOnly

GetIVHere

GetClassValue
PutClassValue

GetClassValueOnly
PutClassValueOnly

GetClassIV
PutClassIV

GetClassValue
PutClassValue

GetClassValueOnly
PutClassValueOnly

GetCVHere

GetClass
PutClass

GetClassValueOnly
PutClassValueOnly

GetClassHere

GetMethod
PutMethod

GetMethodOnly
PutMethodOnly

GetMethodHere

5 ACTIVE VALUES

Active values provide a way of invoking procedures when the value of a variable (or property) is read
or set. This mechanism is dual to the notion of messages; messages are a way of telling objects to
perform operations, which can change their variables as a side e�ect; active values are a way of accessing
variables, which can send messages as a side e�ect. This section presents the notation for creating active
values. Then, the concept of nested active values is introduced. The nesting property enables many of
the important applications of active values by supporting composition of the access functions. Next is
described how to use active values as the default values in a class, and how to share them. Finally, the
standard arguments to active value access functions are described, along with LOOPS functions that can
be used in user- de�ned access functions.

5.1 Active Values Notation

The notation for an active value illustrates its three parts:

This notation is converted by a read macro into an instance of the Interlisp data type .
The �eld is used as a place for storing data. The and are the names of functions
that are applied with standard arguments when a program tries to get or put the value of a variable whose
value is an active value. Every active value need not specify both a and a . If the is

, then a get operation returns the local state. If the is , then a put operation replaces the
local state.

5.2 Nested Active Values

Often it is desirable to associate multiple access functions with a variable. For example, we may want more
than one process to monitor the state of some objects (e.g., a debugging process and a display process).
To preserve the isolation of these processes, it is important that they be able to work independently.
LOOPS uses nested active values as a way of composing these functions.

Nested active values are arranged so that the innermost active value is stored in the of the
penultimate , and the outermost active value is the immediate value of the variable. Put
operations to a variable through such nested active values trigger the s in sequence from the
outermost to the innermost. For example, suppose the variable tracing facility were used to trace access
of the variable from the model/view controller example (page 10). The resulting active value
would look like

An attempt to set the position variable would cause the function to be called with
the new value as one of its arguments. would operate and call the LOOPS function

to set its own . This, in turn, would trigger the inner active value causing
to be invoked.

Get operations work in the opposite order. If there are three nested active values, a request to get the
value will cause the innermost (if any) to run, followed by the middle (if any), followed

25

#()

activeValue

NIL NIL

position

#(#(NIL UpdateDisplay) GettingTracedVar SettingTracedVar)

SettingTracedVar
SettingTracedVar

PutLocalState
UpdateDisplay

localStategetFn putFn

localState getFn putFn

getFn putFn getFn
putFn

localState
localState

putFn

Pos1

localState

getFn getFn

Active Values as Default Values

by the outermost (if any) whose value is returned by the get operation. Each sees only the
value returned by the next nested , and the innermost sees the value stored in its localState.

LOOPS provides functions for embedding and removing active values from variables. This idea of
functional composition for nested active values is most appropriate when the order of composition does
not matter. We have resisted the development of other combinators for the functions using the same
parsimony arguments that we used earlier about specializing and combining methods. Just as inheritance
from multiple super classes works most simply when the super classes describe independent features, active
values work most simply when they interface between independent processes using simple functional
composition. Any more sophisticated control is seen as overloading the active value mechanism. The
escape for more complex cases is to combine the implicit access functions using Interlisp control structures
to express the interactions.

5.3 Active Values as Default Values

Suppose that is an instance of a class with an instance variable , whose default value is the active value
. Further suppose that the value of in the instance has never been set. The �rst time

is invoked, a copy of is made. This copy is inserted in the instance itself as the the value of
the instance variable, with pointers to the same contents as . Then the is invoked, with the copy
as the argument; this copy of provides a place where local state can be stored private to .

In some cases, one knows that the will not actually write into the active value, and therefore the
active value which is the default could be shared instead of needing to be copied. To indicate this, the

of should be made the atom . In the example below, the user knows that no change
will be made in itself and thus uses a shared active value.

Example: is a class with three instance variables, , , and ; and start with
default values of , and is to be computed when asked for. One cannot update independently.

The method for used in this example, and the , , and the ,
, are Lisp func tions whose de�nitions are not shown here. is

available as part of the kernel.

5.4 Standard Access Functions

LOOPS provides a convenient set of functions for some common applications. For example,
, described in the example above, is used to stop update of the of

an active value. is a standard that expects the of its active value to be

26

I V
A V I (PutValue
I V) A

A
A I

A Shared
A

SUM top bottom sum top bottom
0 sum sum

[DEFCLASS SUM
(MetaClass Class)
(Supers Object)
(InstanceVariables

(top 0)
(bottom 0)
(sum #(Shared ComputeSum NoUpdatePermitted))

(ClassVariables)
(Methods

(printOn PrintColumn)]

printOn ComputeSum
NoUpdatePermitted NoUpdatePermitted

NoUpdatePermitted
FirstFetch

getFn getFn
getFn getFn

exp
putFn

activeVal

putFn

localState

getFn putFn

localState
getFn localState

THE LOOPS MANUAL

an Interlisp expression to be evaluated; on the �rst fetch, the instance variable is set to the result of
evaluating the expression. This is illustrated in �gure 5, which shows a class that describes
an instance variable , to be computed on the �rst time that it is fetched, and then cached for
future references. At the time of activation of , and are bound to the
instance and instance variable name in which the active value was found.

Figure 5. Using an active value to compute and cache a value for a variable on the �rst fetch.

In some applications it is important to be able to access values indirectly from other instances. For
example, Steele [Steele80] has recommended this as approach for implementing equality constraints.
�gure 6 shows a way of achieving this by using using the standard access functions and

.

Figure 6. Active values can be used to provide indirect access to values. This is useful when it
is desired for a variable in one instance to re�ect the value of a variable stored elsewhere. In
this example, the instance has an variable which always
has the same value as the variable of the instance .

For some uses, the user may want to compute a default value if given, but replace the active value by
the value given if the user sets the value of a variable. For this the user can employ the system provided

of , as in:

If this value is made the default in a class, then when a program tries to set this value, the instance will
contain the value set. However, if the user tried to fetch the value form this variable before setting it,
the would be invoked.

5.5 User-De�ned Access Functions

The and of an active value are functions that are called with standard arguments:

These arguments are interpreted as follows:

The object containing this active value.

The name of the variable where this active value was stored. This is if it is not
stored in a variable.

27

TestDatum
sampleX

FirstFetch self varName

(DEFCLASS TestDatum
(MetaClass Class)
(...
(InstanceVariables (sampleX #((RAND 0. 100.) FirstFetch)))...)

GetIndirect
PutIndirect

(DEFINST JoeAsFatherPerspective ...
(InstanceVariables

(age #((#$JoeAsManPerspective age) GetIndirect PutIndirect))
...

#$JoeAsFatherPerspective age
age JoeAsManPerspective

ReplaceMe

#(NIL ComputeGoodValue ReplaceMe)

ComputeGoodValue

()

NIL

putFn

getFn

getFn putFn

selfvarName oldOrNewValuepropName activeVal type

self

varName

User-De�ned Access Functions

For a , this is the of the active value. For a , this is the new
value to be stored in the active value.

The name of a property. This is if the active value is not associated with the
value of a property (i.e., if it is associated with the value of the variable itself).

The active value in which this or was found.

This speci�es where the active value is stored; means a instance variable,
means a class variable, means a class property, or means a method
property.

The value returned by the is returned as the value of the get operation.

The is expected to make any necessary changes to the . This can be done using function
described below. In changing the , embedded active values may be triggered.

Given an active value, the following functions can be used to retrieve or store its :

[Function]
[Function]

returns the of the active value .
stores as the of the active value , and returns

.

Note that it is necessary to pass these functions the values for , ,
, and , in case any imbedded active values are triggered.

If the of the active value is itself an active value, then it will be triggered to obtain the
argument for the . For a , an embedded active value will be triggered when the calls

. The following functions can be used to access the of an active value without
triggering any embedded active values:

[Function]
[Function]

returns the value of the of the active value
. stores as the of the active

value , and returns . Both functions access the without
triggering embedded active values.

In some cases, it is important to be able to replace the entire active value expression by some quantity,
independent of the depth of nesting of active values, without destroying the outer levels of nesting:

[Function]
overwrites whereever it is (either directly as the

value or property of an instance variable, or as the local state of an embedded active
value) with

searches the value (property) determined by its arguments
until it �nds in the nesting. If is not found, an error is invoked.

Example: Suppose that we have a class which describes an instance variable ,
which we want to be computed as a random number on the �rst time that it is fetched, and then returned

28

NIL

NIL CV
CLASS METHOD

PutLocalState

(GetLocalState)
(PutLocalState)

GetLocalState PutLocalState

PutLocalState

(GetLocalStateOnly)
(PutLocalStateOnly)

GetLocalStateOnly
PutLocalStateOnly

(ReplaceActiveValue)
ReplaceActiveValue

ReplaceActiveValue

RandomDatum sampleX

oldOrNewValue getFn localState putFn

propName

activeVal getFn putFn

type

getFn

putFn localState
localState

localState

activeValueselfvarName propName type
activeValuenewValueselfvarName propName type

localState activeValue
newValue localState activeValue

newValue

selfvarName
propName type

localState localState
getFn putFn putFn

localState

activeValue
activeValuenewValue

localState
activeValue newValue localState

activeValue newValue localState

activeVal newValueselfvarName propName type
activeVal

newValue

activeVal activeVal

THE LOOPS MANUAL

as a constant on all future fetches. We could do this by de�ning the class as follows:

where the function is de�ned as follows:

On the �rst fetch of the value of in any instance of , the function
over-writes the active value with a random number. This is a special case of the active value function

described earlier.

The function is used to make the value of some variable or property be an active
value:

[Function]
is the object, is typically the name of a variable when the active value

is being placed in an instance variable. If the active value is being placed in a
method, then should be bound to the selector name. Active values can also
be used for class variables, or properties of instance or class variables, or methods.
The interpretation of where to create the active value is determined by the argument

, which must be one of (or), , , or .

If = , then a new active value is always created, containing as
its whatever was found by (page 23). For other values of

, an active value is created only if the current value is not an active
value; otherwise the old one is simply updated with , , and

.

If an old active value is being updated, then if or is , the
old or is not overwritten. If or is , the old

or is reset to .

The easiest way to de�ne a function for use in active values is to use the function :

[Function]
creates a template for de�ning an active value function and leaves the user

in the Interlisp editor. will be the name of the function and is if
this is to be a and if it is to be a .

For s, the template is

This template incorporates the standard arguments that a receives, and the convention that they

29

(DEFCLASS RandomDatum
(MetaClass Class)
(...
(InstanceVariables (sampleX #(NIL SmashRandom ReplaceMe)))
...)

SmashRandom

(LAMBDA (self varName value propName activeValue)
(ReplaceActiveValue activeValue (RAND 0. 100.) self varName]

sampleX RandomDatum SmashRandom

FirstFetch

MakeActiveValue

(MakeActiveValue)

IV NIL CV CLASS METHOD

EMBED
GetItOnly

NIL
T

NIL

DefAVP

(DefAVP)
DefAVP

T
NIL

[LAMBDA (self varName localSt propName activeVal type)
(* This is a getFn for ...)

localSt]

selfvarOrSelectornewGetFn newPutFn newLocalStpropName type

self varName

varName

type

newLocalSt
localState

newLocalSt
newLocalStnewGetFn

newPutFn

newGetFn newPutFn
getFn putFn newGetFn newPutFn

getFn putFn

fnName putFlg

fnName putFlg
putFn getFn

getFn

getFn

User-De�ned Access Functions

often return the value that is in their local state.

For s, the template is

This template incorporates the standard arguments that a receives, and the convention that they
often put their resulting in the .

30

[LAMBDA (self varName newValue propName activeVal type)
(* This is a putFn for ...)

(PutLocalState activeVal newValue self varName propName type)]

putFn

putFn
newValue localState

6 COMBINING INHERITED METHODS

In practice, most methods used to manipulate LOOPS objects are inherited. In the simplest examples
of multiple inheritance, classes represent independent features and there is no con�ict between inherited
methods. However, when features inherited from classes interact, it is essential to be able to describe how
to combine them. Howard Cannon recognized this ‘‘mixing issue’’ as central in the design of Flavors:

‘‘To restate the fundamental problem: there are several separate (orthogonal) that an
object wants to have; various of behavior (features) that want to be independently speci�ed
for an object. For example, a window has a certain behavior as a rectangular area on a bit-mapped
display. It also has its behavior as a labeled thing, and as a bordered thing. Each of these
three behaviors is di�erent, wants to be speci�ed independently for each object, and is
orthogonal to the others. It is this ’’essentially‘‘ that causes the trouble.’’

‘‘It is very easy to combine completely non- interacting behaviors. Each would have its own set
of messages, its own instance variables, and would never need to know about other objects with
which it would be combined. Either the multiple object or simple multiple superclass scheme
could handle this perfectly. The problem arises when it is necessary to have interactions
between the orthogonal issues. Though the label does not interact with either the window
or the border, it does have some minor interactions. For example it wants to get redrawn when
the window gets refreshed. Handling these sorts of interactions is the Flavor system’s main goal.’’

... from [Cannon82]

This section considers cases where the inherited features interact, and describes some LOOPS facilities
for combining interacting methods. First, we describe a way of combining an inherited method with local
method code. Next, we describe other ways of combining methods inherited from multiple super classes.
Finally, we describe some special functions one can use to ‘‘escape’’ from the normal method inheritence
conventions.

6.1 Augmenting an Inherited Method

The inheritance examples shown previously considered only cases where methods are inherited in toto.
In these examples, subclasses inherit a method or value unchanged, or they override it completely. No
mechanism was described that would enable a subclass to track changes in a method after it had been
specialized in some way.

For combining an inherited method with local code, LOOPS provides the special method invocation
.

��� [NLambda NoSpread Function]
is the object to which the method is applied (typically), is the

selector for the method and ��� are the arguments for the method. As
with , is not evaluated; the remaining arguments are evaluated.

provides a form of relative addressing; it invokes the next more general
method of the same name even when the specialized method invoking is
inherited over a distance. An example of the use of is given in �gure 7.

31

attributes
facets

essentially

modular
strongly

_Super

(_Super)
self

_

_Super
_Super

_Super

objectselectorarg1 argN
object selector

arg1 argN
selector

Combining Multiple Inherited Methods

Note: can be used instead of .

Figure 7. This Interlisp pro cedure imple ments the message for the class .
It uses to invoke the more general method in the class . The object for the
‘‘border’’ of the bor dered window is in the instance variable . The specialized method
returns the bor dered window as its value. In more complicated examples, calls to and

can be combined using Interlisp itera tive and conditional statements.

6.2 Combining Multiple Inherited Methods

Using , a method can invoke the next general method. However, when a class has multiple
super classes, sometimes it is necessary to invoke the general methods from of the super classes. In
this situation, one can call :

��� [NLambda NoSpread Function]
This is similar to , except that invokes the next more
general method of the same name for of the super classes on the supers list of
the class of the currently- executing method.

6.3 General Method Invocation

The functions and have proved to be su�cient for implementing most methods.
However, sometimes it is necessary to manipulate multiple inherited methods, and invoke them in some
other order. The following functions provide more general ways of invoking particular methods. It is
important to note that while these functions are more powerful than or , they
are also more ‘‘dangerous’’, in that they do not conform to the conventions of method inheritence. These
functions should only be used as a last resort when a method cannot be implemented in any other way.

��� [NLambda NoSpread Function]
allows computation of the name of the selector and the class from which

that method should be found; it applies that method to .

All the arguments to are evaluated; should evaluate to a
selector name in the class computed from . If is , then the class of

is used. If no method for the computed selector is found in the computed class,
an error is generated. The remaining arguments, ��� are the arguments

32

SENDSUPER _Super

(BorderedWindow.Refresh
[LAMBDA (self) (* mjs: "11-JAN-82 19:28")

(* * Method for refreshing a window that has a border)

(* First use the refresh method
inherited from Window.)

(_Super self Refresh)
(* Then Re-display the border.)

(_ (@ :border) Display)
self])

Refresh BorderedWindow
_Super Window

border
_Super

_

_Super single
each

_SuperFringe

(_SuperFringe)
_Super _SuperFringe

each

_Super _SuperFringe

_Super _SuperFringe

(DoMethod)
DoMethod

DoMethod
NIL

objectselectorarg1 argN

objectselectorExprclassarg1 argN

object

selectorExpr
class class

object
arg1 argN

THE LOOPS MANUAL

for the method.

In the case where the arguments to the method have already been evaluated, then one can use
instead of :

[Function]
is a list of all the arguments to the method (except) already evaluated.

The function applied is the one found by searching from . If is , the
class of is used.

��� [NLambda NoSpread Function]
Like , all of the arguments are evaluated. calls the
method for in the class of , if that method is de�ned in that class.
If the method is not de�ned in the class of , the method of the same name for

of the super classes on the supers list of the class of is envoked.

33

ApplyMethod DoMethod

(ApplyMethod)

NIL

(DoFringeMethods)
DoMethod DoFringeMethods

each

objectselectorargListclass
argList object

class class
object

objectselectorExprarg1 argN

selectorExpr object
object

object

7 INSTANCE CREATION

The standard process of creating an instance of a class is to send a message to the class. In the
simplest case, this causes the information in the of the class to be used to
establish default values for variables in the newly created instance. When that process is �nished, the
instance can be altered in various ways by sending it messages.

LOOPS provides a variety of facilities for controlling this by using active values, standard access functions,
and metaclasses. This section summarizes some of the common cases. See page 38 for an illustratation of
the use of these facilities to support the important example of composite objects.

7.1 Specifying Values at Instance Creation

The message simpli�es the case where it is desired to specify values and properties in
an instance when it is created. The form of this message is:

[Message]
must evaluate to a list of value descriptions, each of which is a list

of a variable name, variable value, and properties; e.g.

���
���

���

The method for �rst creates the object with other initialization
(e.g. without computing values speci�ed in the class, as described in sections below).
It then directly installs the values and property lists speci�ed in and
returns the created object. Variables which have no description in
will be given no value in the instance, and thus will inherit the default value from
the class.

7.2 Sending a Message at Instance Creation

A simpli�cation in form is available when one wants to send a message to an instance immediately after
its creation. For example, consider:

which creates an instance of the class, and then displays it at a point . A
more compact notation for doing this is provided:

where (‘‘send New’’) means to create a new instance and send it a message. The value returned by
is the new instance. Any value returned by the method is discarded.

In order to name an object, one can send the message to that object. As a simpli�cation, if
one provides an argument to the message, the default interpretation of that argument is to use it as
a name, sending the newly created object the message.

34

New
instance variable descriptions

NewWithValues

(_ NewWithValues)

(()
()

)

NewWithValues no

(_ (_ ($ Transistor) New) Display windowCenter)

Transistor windowCenter

(_New ($ Transistor) Display windowCenter)

_New
_New

SetName
New

SetName

class valDescriptionList
valDescriptionlist

varName1 value1 prop1 propVal1
varName2 value2

valDescriptionList
valDescriptionList

THE LOOPS MANUAL

7.3 Computing a Value at First Fetch

As described earlier, one can use an active value to activate arbitrary procedures when values are fetched.
The built- in function can be used as a in an active value as the default value in the
class. If no value has been assigned to the variable or property before the value is fetched for the �rst
time, the active value is invoked.

The local state of this active value can be a list which is a form to be evaluated. During the evaluation,
the variables , , and are are appropriately bound. The local state of the

active value can also be an atom; if so, it is treated as the name of a function to be applied
to the object, and . The value of the form or function application is made the value
in the instance as well as being returned as the value of the fetch.

For example, the random number example could have been done as follows:

In this example evaluates the form and replaces the value of the
variable of the instance by the random number. In many cases the form may be a expression.

7.4 Computing a Value at Instance Creation

In the previous example, initializes the value of an instance variables at �rst access.
Sometimes it is important to initialize an instance variable when the instance is created. For such cases
LOOPS provides a distinguished , . If a default value of an instance variable or
property contains an active value with as its , then at creation time, the of
this active value will be used to determine a value to be inserted in the new instance.

As with , if the is an atom, then it will be treated as the name of a function
to be applied to the object, variable name, and property name. If it is a list, then that list will be
evaluated in a context in which , , and are appropriately bound. Functions
run at initialization time are run in the order in which they appear in the class. Default values of variables
are available to these functions.

If an object is created by without a value being supplied for a variable which contains
an default value, then at the �rst fetch of that variable, the function or form will be
evaluated.

Example:

Suppose we want to have an instance variable called which tells the date that an instance
was created. This can be implemented in LOOPS as follows:

35

FirstFetch

FirstFetch

self varName propName
FirstFetch

varName propName

(DEFCLASS TestDatum
(MetaClass Class)
(...
(InstanceVariables (sampleX #((RAND 0. 100.) FirstFetch)))
...)

FirstFetch (RAND 0. 100.)
sampleX _

FirstFetch

AtCreation
AtCreation

FirstFetch

self varName propName

NewWithValues
AtCreation

creationDate

(DEFCLASS DatedObject
(MetaClass Class)
(...

getFn

getFn
getFn localState

localState

Special Actions at Instance Creation

The function in Interlisp computes a string which is the current date and time. The value of this
string at instance creation time is made the intitial value of .

Another use of an active value might be to make an index entry to a newly created object.

7.5 Special Actions at Instance Creation

For some special cases, the user may want to have more control over the creation of instances. For
example, LOOPS itself uses di�erent LISP data types to represent classes and instances. The message
for classes is �elded by their metaclass, usually the object . This section shows how to create
a new metaclass.

Any metaclass should have as one of its super classes and as its metaclass. The
easiest way to create a new metaclass is to send a message to as follows:

This creates a new metaclass with the name and with the super classes named in the list
. The default supers for metaclasses is the list containing . The metaclass for the the new

class is .

One then installs the specialized method for in the new metaclass. This method provides the
mechanism for creations of instances of the class which have this as a metaclass. Sending this metaclass
the message will cause the creation of a class with the appropriate property.

As a simple example we will de�ne a new metaclass which will augment the instance
creation process by keeping a list of all instances which have been created. This list will be kept on the
class property . To create this class we go through the scenario in �gure 8.

36

(InstanceVariables (creationDate #((DATE) AtCreation)))
...)

DATE
creationDate

AtCreation

New
MetaClass

Class MetaClass
New MetaClass

(_ ($ MetaClass) New)

Class
MetaClass

New

New

ListMetaClass

allInstances

_ (_ ($ MetaClass) New ’ListMetaClass ’(Class))
#$ListMetaClass � We have now de�ned a new metaclass

� This de�nes the New method for that metaclass
_ (DM ’ListMetaClass ’New ’(self name)

’((* Create an instance and add it to list in class)
(PROG ((newObj (_Super self New name)))

(* newObj created by super method from class)
(PutClass

self
(CONS newObj

(LISTP (GetClassHere self ’AllInstances)))
’AllInstances)

(* LISTP returns previous list or NIL if none)
(RETURN newObj]

ListMetaClass.New

_ (_ ($ ListMetaClass) New ’Book)

metaClassNamesupers

metaClassName
supers

THE LOOPS MANUAL

Figure 8. In this scenario, a new metaclass is de�ned by the method
of . It has metaclass . We then de�ne the specialized
method for . This includes a call to its super () to actually create the
object; it puts the newly created object on its list of objects. We then create which
has as its metaclass. When two instances of book are created, each is placed
on the list which is a class property.

37

#$Book � This creates a new class ($ Book)
whose metaclass is ($ ListMetaClass)

_ (_ ($ Book) New ’B1)
#$B1 � Creating #$B1 using ListMetaClass.New
_ (_ ($ Book) New ’B2)
#$B2
_ (GetClass ($ Book) ’AllInstances)
(#$B1 #$B2) � The list of instances created so far.

ListMetaClass New
($ MetaClass) ($ MetaClass) New

ListMetaClass Class
($ Book)

ListMetaClass
AllInstances

8 COMPOSITE OBJECTS

LOOPS extends the notion of objects to make it recursive under composition, so that one can instantiate a
group of related objects as an entity. This is especially useful when relative relationships between members
of the group must be isomorphic (but not equal) for distinct instances of the group. The implementation
of composite objects combines many of the programming features described above. In particular, it is an
application of the notion of metaclass.

8.1 Basic Concepts for Composite Objects

LOOPS supports the use of structural templates to describe composite objects
having a �xed set of parts. Composite objects are normal LOOPS objects, created by an instantiation
process and describable in the class inheritance network. This contrasts with the idea of using for templates
data structures that are merely to yield composite objects. A primary bene�t of making composite
objects be classes is the ability to create slightly modi�ed versions of a template by making a new subclass
which inherits most of the structure of its super.

To describe a composite object, one creates a class whose metaclass is
. One can also use a metaclass one of whose supers is . Any class whose

metaclass is or one of its subclasses is called a template. In a template, the default values for
instance variables can point to other templates; these will be treated as and will be recursively
instantiated when the parent template is instantiated. All non- template classes and any other default
values are treated as that are simply inherited by instances.

Instances of a template are created by sending it a message. The instantiation process
is recursive through all of the parameters of a template. Every parameter is instantiated when it is
�rst encountered. Multiple references to the same parameter are always replaced by references to the
same instantiated instance. The instantiated composite object that is created is isomorphic to the original
template structure with constants inherited and with distinct instances substituted for distinct templates
(parameters). Parameters in lists or active values are found and the containing structure is copied with
appropriate substitutions. If a composite object needs multiple distinct instances of the same type (e.g.,
two inverters), then multiple templates are needed in the description.

�gure 9 shows an example from digital design - a composite object for that is
composed of two series-connected inverters. The input of the �rst inverter is the input of the ampli�er,
the output of the �rst inverter is connected to the input of the second inverter, and the output of the
second inverter is the output of the ampli�er. Di�erent instantiations of contain distinct
inverters connected in the same relative way. This example also shows a possible use of active values in
templates. The containing composite object is set up so that its instance variable uses an active
value to track the value of the output variable of the second inverter.

38

Parameters and Constants:

copied

Creating a Template:
Template Template

Template
parameters

constants

Instantiation: New

Example: BitAmplifier

BitAmplifier

output

[DEFCLASS BitAmplifier
(MetaClass Template doc

(* * Composite object template for an amplifer
made of two series connected inverters.))

(Supers Amplifier)
(ClassVariables)
(InstanceVariables

THE LOOPS MANUAL

Figure 9. Composite object templates for a . When instances are made, they
will have distinct instances of the two inverters, with their input and output interconnected.
The instantiation process must be able to reach (possibly indirectly) all of the parts starting
from the class to which the message is sent. In this case, and
are both mentioned in . The example also illustrates the use of active values
to provide indirect variable access in LOOPS. In this example, the active value enables the
output variable of an instance of to track the corresponding output variable
of an instance of in the same composite object.

8.2 Specializing Composite Objects

Because the templates are classes, all of the power of the inheritance network is automatically available
for describing and specializing composite objects. To make this convenient, one can send the message

to any template form. For example:

This creates a new set of templates such that each template in the new set is a specialization of a template
in the old set. One can then selectively edit the templates describing the new composite object. In
particular, one may want to change the names of the generated classes by sending them the message

. Unchanged portions of the template structure will continue to inherit values from the parent
composite object. A user can specialize a template by overriding instance variables. To add parameters,
one creates references to new templates. Conversely, one can make a parameter into a constant by
overriding an inherited variable value with a non- template in a subclass.

39

(inputTerminal ($ Inverter1))
(output #((($ Inverter2) output) GetIndirect PutIndirect)

doc (* Data is stored and fetched from the variable
output in the instance of Inverter2))

(Methods)]

[DEFCLASS Inverter1
(MetaClass Template partOf ($ BitAmplifier)

doc (* Instance variable Input is inherited from Inverter))

(Supers Inverter)
(ClassVariables)
(InstanceVariables

(output ($ Inverter2)
doc (* Output connected to second inverter)))

(Methods)]

(DEFCLASS Inverter2
(MetaClass Template partOf ($ BitAmplifier))
(Supers Inverter)
(ClassVariables)
(InstanceVariables

(input ($ Inverter1)
doc (* Input connected to first inverter)))

(Methods)]

BitAmplifier

New Inverter1 Inverter2
BitAmplifier

BitAmplifier
Inverter2

Specialize

(_ ($ BitAmplifier) Specialize)

SetName

Conditional and Iterative Templates

8.3 Conditional and Iterative Templates

Because the templates are �xed, they are not a su�cient mechanism for describing the instantiation of
composite objects having conditional or repetitive parts. Consistent with our stand on control mechanisms,
we have not added or to LOOPS, but use available Interlisp
control structures in methods. For these cases, a user de�nes a new metaclass for the composite object.
(Recall that metaclasses are classes whose instances are classes.) The metaclasses for templates should
be subclasses of the distinguished metaclass . The specialized metaclass should have a
method that performs the conditional and iterative steps in the instantiation. This approach works well
in conjunction with the LOOPS mechanisms for specializing classes and methods. For example, the
specialized method can use to access the standard code for the template- directed portion
of the instantiation process. �gure 10 shows an example of a LOOPS template for a ring oscillator. This
composite object is made of a loop of serially connected inverters.

Figure 10. Example of an itera tively speci�ed composite object, a ring oscillator. The ring
oscillator is composed of a series of inverters serially-connected to form a loop. To specify the
itera tion and interconnection of the inverters, a method is de�ned for the metaclass

. The Interlisp func tion for this method ()
uses to per form the template- driven part of the instan tiation, that is, instan tiat ing the
ring oscillator object itself. In this case, the template- driven por tion of the instan tiation is trivial,
but the example shows how it can be combined generally with the pro cedural descrip tion.

uses itera tive statements to make an instance of for
each stage of the oscillator. After connect ing the components together, it returns the ring
oscillator object.

40

conditional iterative structural descriptions

Template New

New _Super

(MetaRingOscillator.New
[LAMBDA (self assocList numStages) (* mjs: "11-JAN-82 19:28")

(* * Procedure for creating a ring oscillator.)

(PROG (ringOscillator firstInverter lastInverter inv1)
(* Create the inverter chain.)

(SETQ inv1 (SETQ firstInverter (_ ($ Inverter) New)))
[for i to (SUB1 numStages)

do (SETQ lastInverter (_ ($ Inverter) New))
(_ inv1 Connect lastInverter)
(SETQ inv1 lastInverter]

(* Close the loop)
(_ lastInverter Connect firstInverter)

(* Make the ringOscillator object.)
(SETQ ringOscillator (_Super self New assocList))

(* * the assocList here is the pairing
of Template classes found in the
instantiation of a template so far)

(@_ (ringOscillator input) firstInverter)
(@_ (ringOscillator output) lastInverter)
(RETURN ringOscillator)])

New
MetaRingOscillator MetaRingOscillator.New

_Super

MetaRingOscillator.New Inverter

9 LOOPS KNOWLEDGE BASES

Loops was created to support a design environment in which there are community knowledge bases that
people share, and to which they can add incremental updates. This section describes our goals for this
facility, the concepts that we have employed, and scenarios for using knowledge bases in Loops.

We have chosen the term knowledge base instead of data base to emphasize two things: the kind of
information being stored and constraints on the amount of information. Loops will be used mainly for
expert system applications where relatively modest amounts of information are used for guiding reasoning.
This information (i.e., knowledge) consists of inference rules and heuristics for guiding problem solving.
This is in contrast to potentially enormous �les of facts, for example, social security records for California.
Re�ecting this di�erence of scale, we have optimized the implementation to support fast access and
updating to a smaller amount of information which is expected to �t in main memory for any one session.
For example, we maintain an index to the object information in computer memory.

9.1 Review of Knowledge Base Concepts

Knowledge bases in LOOPS are �les that are built up as a sequence of layers, where
each layer contains changes to the information in previous layers. A user can choose to get the most
recent version of a knowledge base (that is, all of the layers) or any subset of layers. The second option
o�ers the �exibility of being able to share a community knowledge base without necessarily incorporating
the most recent changes. It also provides the capability of referring to or restoring any earlier version.
�gure 11 illustrates this with an example.

Figure 11. Knowledge bases in LOOPS are �les that are built- up incrementally as a sequence of
layers. Each layer contains updated descriptions of objects. When a knowledge base is opened,
the information in the later layers overrides the information in the earlier layers. LOOPS
makes it possible to select which layers will be used when a knowledge base is opened. In this
example, if the knowledge base is opened and only the �rst 2 layers are used, then will
have an variable with value . If all three layers were connected, then the value would be

.

LOOPS partitions the process of updating a community knowledge base
into two steps. Any user of a community knowledge base can make tentative changes to a community
knowledge base in his own (isolated) environment. These changes can be saved in a layer of his personal
knowledge base, and are marked as associated with the community knowledge base. In a separate step,
a data base manager can later copy such layers into a community knowledge base. This separation of
tasks is intended to encourage experimentation with proposed changes. It separates the responsibility for

41

Knowledge Bases:

------------------------- Layer 1 -------------------------
Obj1 (x 4) ...
Obj2 (y 5) (w 3) ...
------------------------- Layer 2 -------------------------
Obj2 (y 7) (w 2) ...
Obj3 (z 6) ...
------------------------- Layer 3 -------------------------
Obj1 (x 8) ...
Obj4 (z 9) ...

Obj1
x 4

8

Community Knowledge Bases:

Environmental Objects and Boot Layers

exploring possibilities from the responsibility of maintaining consistent and standardized knowledge bases
for shared use by a community. The same mechanisms can be used by two individuals using personal
knowledge bases to work on the same design. They can conveniently exchange and compare layers that
update portions of a design.

The ability to determine when di�erent layers are referring to the same entity is critical
to the ability to share data bases. To support this feature the LOOPS data base assigns unique identi�ers
(based on the computer’s identi�cation numbers, the date, and an unbounded count) to objects before
they are written to a knowledge base. This facility provides a grounding for more sophisticated notions
of equality that might be desired in knowledge representation languages built on LOOPS.

A user of LOOPS works in a personalized . An environment provides a lookup
table that associates unique identi�ers with objects in the connected knowledge bases. In an environment,
user indicate dominance relationships between selected knowledge bases. When an object is referenced
through its unique identi�er, the dominance relationships determine the order in which knowledge bases
are examined to resolve the reference. By making personal knowledge bases dominate over community
knowledge bases, a user can override portions of community knowledge bases with his own knowledge
bases.

An important use of environments is for providing speedy access to alternative
versions (e.g., multiple alternatives in a design). A user can have any number of environments available
at the same time. Each environment is fully isolated from the others. Operations that move information
between environments are always done explicitly through knowledge bases.

9.2 Environmental Objects and Boot Layers

Knowledge bases, environments, and layers are represented in Loops by special objects called
. All knowledge base and environment operations are performed by sending messages to these

objects. Environmental objects are accessible from any environment in Loops.

In this section, we will need to distinguish between environmental objects and the things that they
represent. �gure 12 summarizes some of the terminology that we will use.

42

Unique Identi�ers:

Environments: environment

Multiple Alternatives:

environmental
objects

THE LOOPS MANUAL

Layer �le layer Portion of a �le which contains
descriptions of objects.

KB knowledge base A �le and sequence of �le layers.
A knowledge is known by the name
�eld of its �le name.

KBState State of a
knowledge base

A sequence of �le layers. Used to
access a �xed explicit set of �le layers
(e.g., a version of a knowledge base that
is older than the most recent version).

Environment environment An environment associates names and
unique identi�ers with objects in
working memory.

Figure 12. Summary of terminology for environmental Loops objects and the entities that they
represent.

An Environment provides a name space in working memory. Each Environment associates
names and unique identi�ers with objects. In general, Environments are designed to be independent. For
convenience, Environments are usually named. An Environment is always associated with a particular
knowledge base. The speci�cations for creating an Environment come from some knowledge base, and
changes to the Environment are stored on that knowledge base.

A �le layer is a portion of a �le which contains descriptions of objects. An object description
consists of a unique identi�er and an expression that can be read by Interlisp to create the Loops object. A
di�erent unique identi�er is associated with each expression. In addition, a �le layer contains a mapping
from names (Interlisp atoms) to unique identi�ers. A �le layer is represented in Loops by a Layer object.
A Layer indicates the �le on which it is written, the starting address of the �le layer, and the name of
the knowledge base with which it is conceptually associated. A Layer also contains various bookkeeping
information such as the name of its creator and the date of its creation.

A knowledge base is a set of �le layers. Typically, most of the layers of a knowledge
base are located on a single �le. A knowledge base is known by its �le name. By convention, such �les
have the extension ‘‘ ’’. A KB is a Loops object that represents a knowledge base. A KB has a name
equal to the name �eld of the �le name of the knowledge base that it represents. For example, the KB
with name would be associated with a version of the �le .

A KBState is a generalization of a KB. It refers to an explicit set of �le layers. KBs and KBStates indicate
their Layers using a list on an instance variable named . An element of this list must be either
a Layer or a KBState. When a KBState appears in the list, it is as if the Layers listed in the KBState’s
contents variable appeared explicitly in the list. This provides a mechanism for indirect fetching of layers
from other knowledge bases.

To indicate all of the layers of the most recent version of a knowledge base, the contents of the KBState
can be the special value ‘‘ ’’. When such a KBState appears in the list, it is as if the Layers of
the most recent version of the knowledge base were inserted in the list. These Layers are retrieved by
retrieving the KB from the referenced knowledge base.

43

Loops Object Represents Description

Environments:

Layers:

KBs and KBStates:

KB

Test Test.KB

contents

CURRENT

Starting With No Preexisting Knowledge Bases

Environmental objects are distinguished from other objects when they are accessed and
when they are written out to a knowledge base. They are accessed di�erently in that they are kept in a
global name table accessible in all environments. This means that an Environment can be described in
terms of the environmental objects before the Environment is made current.

Environmental objects are also special in that the �le layer that describes them is a special �le layer at
the end of a knowledge base called the boot layer. In order to access the contents of a knowledge base,
it is necessary to read the boot layer �rst because it contains the environmental objects that describe
the knowledge base. A boot layer for a knowledge base contains a single KB describing itself, a Layer
describing each of its �le layers, and the KBStates mentioned (directly or indirectly) in the KB.

Loops keeps environmental objects in a global name table that is accessible from
any environment. This name table also includes the basic classes that are part of the Loops kernel. If
Loops is used without exercising the Environments feature, then all created objects are also placed in the
global table.

When another environment is opened, objects not in core are �rst looked for by UID or name in the open
environment. If no object is found there, then the UID or name is looked up in the Global Environment.
Thus, object descriptions in a new environments override those in Global Envrionment, but old objects
which have no counterparts are still available.

9.3 Starting With No Preexisting Knowledge Bases

The knowledge base facility in Loops has been designed to cover a number of situations. Because of
this generality, it is not always easy for a newcomer to discover the simplest way of using the features.
The following sections describe all the features of the Knowledge Base system; however each feature is
introduced within a particular scenario that shows how to do some of the most common operations for
which Loops was designed.

In the �rst scenario, a user wants to start from scratch using no preexisting knowledge bases. The results
of this Loops session are saved in a personal knowledge base.

When a user invokes Loops, the Loops name space will contain some objects from the Loops kernel.
Before creating any new objects, the user should type an expression of the form:

where is an atom (e.g., use to create a knowledge base named) and
will be the name of the Environment. This will create both a new KB corresponding

to the and a new Environment with the name .

Loops checks that a knowledge base with does not already exist. If it does exist and
is , Loops will report an error. If is , then Loops will create a

new version of the �le. Because of the way the �le system works, the name of a KB must be all in upper
case. If the user attempts to use a which contains lowercase letters, Loops will correct the name
to all upper case and print a warning message.

Warning: Objects created before creating and opening an Environment are placed in the global name
table. Hence, any objects so created will be shared by all Environments. However, Loops will not save
such objects in a knowledge base later in the session unless they are explicitly moved to some environment.
Alternatively, such objects can be saved using the Interlisp �le package.

44

Boot Layers:

The Global Name Table:

(_ $KB New ’ ’)

FOO FOO.KB

NIL T

KBName environmentName newVersionFlg

KBName
environmentName

KBName environmentName

KBName
newVersionFlg newVersionFlg

KBName

THE LOOPS MANUAL

The next step is to open the Environment:

This makes the new Environment be the current environment. New objects that are created will be
associated with the KB.

Having created an Environment, the user can then proceed to create whatever new objects he desires in
the session. To dump the current state of the environment and continue afterwards, the user can type:

This does not close any �les, and leaves the environment as it was, except that all changed objects have
been dumped to the knowledge base, and then marked as unchanged. can be done any number
of times in a session.

At the end of a session the user should do a :

This writes out all of the objects to a �le layer, updates the environmental objects accordingly, and writes
them out to a boot layer, deletes these objects from memory, and closes all �les associated with the
environement. The user can then exit from Interlisp. After a is done, the user must go through
the following scenario to start up again.

9.4 Continuing from a Previous Session

The case where a user wants to create a new knowledge base is less common than the case where he
wants to modify or add objects to a knowledge base that he has previously created. In this scenario a
user wants to resume from where he was at the end of his previous session.

The �rst step is to obtain the user’s knowledge base, and link it to an environment. This is done by a
message to the class as follows:

This reads the boot layer of the knowledge base named and creates an Environment named
that is then connected to the KB. At this point the user must open the environment

to make the contents of the KB available in this environment:

This causes Loops to read in each Layer contained (possibly implicitly) in the contents of the associated
KB (named). It also makes the new Environment be the current environment. Having opened
an Environment, the user can then proceed to de�ne whatever new objects he desires in the session.
New objects that are created will be associated with the KB. When he is done, he should type as in the
previous scenario:

or

45

(_ $ Open)

(_ $ Cleanup)

Cleanup

Close

(_ $ Close)

Close

KB

(_ $KB Old ’ ’)

(_ $ Open)

(_ $ Cleanup)

environmentName

environmentName

environmentName

KBName environmentName

KBName
environmentName

environmentName

KBName

environmentName

Starting from a Community Knowledge Base

9.5 Starting from a Community Knowledge Base

Users will not usually start from scratch. Rather, they will often begin by using previously created
community knowledge bases. This scenario starts with obtaining a single community knowledge base.
The user does not own the community knowledge base, so the results of the session will have to be saved
in a personal knowledge base. The personal knowledge base will contain any new objects that created as
well as any objects from the community knowledge base that have changed.

As in the �rst or second scenario, the �rst step is to create a personal knowledge base.

or if the user has a personal knowledge base already, by doing a:

This obtains both the KB and an Environment. The next step is to add the community knowledge base
to the KB as follows:

where is an atom that is the name of the community knowledge base.

This step should be repeated for each knowledge base to be added to the KB named . The
message creates a KBState describing the ‘‘current’’ state of the community knowledge base and adds that
KBState to the contents of the KB for the personal knowledge base. The e�ect of this action is that
Loops will remember to associate the community knowledge base with the user’s knowledge base in the
future. (This step need not be repeated in any future session which uses the knowledge base .)

At this point, the user can open the Environment as before:

This causes Loops to read in each Layer contained (possibly implicitly) in the contents of the KB named
. The message also makes the Environment named be the current

environment.

Since the KB associated with the environment contains a KBState for , those Layers
will also be read. They are found by reading the boot layer of the community knowledge base. The
message on will work properly even after the environment is , in the
sense that when it is done on a KB connected to an environment, it causes all the layers of the
newly added KB to be read in.

All creation and modi�cation operations will take place in this Current Environment. The user can
create new objects and modify objects in the community knowledge base. When done, the results of the
session can be saved using (or). This will cause two �le layers to be written out to the
personal knowledge base (and none to the community knowledge base). First a �le layer is written out
to for changes made to the community knowledge base (if any). The Layer for this �le layer
is marked as associated with the community knowledge base. Second, a �le layer is written out for the

46

(_ $ Close)

(_ $KB New ’ ’)

(_ $KB Old ’ ’)

(_ $ AddToContents ’)

(_ $ Open)

Open

AddToContents Open
Open

Cleanup Close

environmentName

KBName environmentName newVersionFlg

KBName environmentName

KBName comm unityKBName

comm unityKBName

KBName

KBName

environmentName

KBName environmentName

comm unityKBName

KBName

KBName

THE LOOPS MANUAL

other objects that have been created. The Layer for this is marked as associated with . Finally,
the environmental objects for the knowledge base are written out to a boot layer.

Before the boot layer is written out, the KB for the personal knowledge base named is updated
to contain the new Layers. It contains the reference to the community knowledge base that was created
by the message. This continues to be interpreted as a reference to the most recent
version of the community knowledge base named .

If was used, then the �les storing the knowledge bases have been closed and all objects in the
environment have been destroyed. The environment was also made not current. This clean state is
recommended as a place from which the user can then exit from Interlisp.

9.6 Freezing and Thawing References to Knowledge Bases

In the previous scenarios, the user used the most recent version of the community knowledge base.
Community knowledge bases can be changed over time by their owners (i.e., their human knowledge
base managers). Sometimes a knowledge base manager may update the community knowledge base, but
a user may want to continue using a �xed older version. For example, if the new version of a community
knowledge base contains extensive changes, the user may want to �nish some project before converting
his personal knowledge bases to re�ect the changes. To do this the user must freeze references to the
community knowledge base. Freezing enables a user to continue to access a �xed set of layers even
though the community knowledge base may be changed by the knowledge base manager. In this scenario,
the user has a personal knowledge base whose contents include a named community knowledge base. She
anticipates the change to the community knowledge base before it happens and freezes reference to it.

Later, we will see how a user can return to an earlier version after a change has been made.

The �rst step is to obtain access to the user’s personal knowledge base. As in the previous
example, this is done by sending an message to the class :

This creates an Environment named with that KB as its outputKB. To freeze the
reference, the user needs to change the KBState in his personal KB that describes the community
knowledge base. This can be done as follows:

The user can then open his Environment, do his work, and then write updates as before:

From his point of view, the objects in the community knowledge base will be static even if the knowledge
base is changed several times. After the user ends this session and starts again the next day, his knowledge
base will continue to refer to �xed versions of the objects in the community knowledge base, even if new
versions are added later.

Eventually, however, the changes (and improvements) to the community knowledge base may
provide a compelling reason for the user to switch to the most recent version. To do this, he should type

47

AddToContents

Close

Freezing:
Old KB

(_ $KB Old ’ ’)

(_ $ FreezeKB ’)

(_ $ Open)
... <make changes to objects> ...

(_ $ Close)

Thawing:

KBName

KBName

comm unityKBName

KBName environmentName

environmentName

KBName comm unityKBName

environmentName

environmentName

Using Several Knowledge Bases in an Environment

the following messages at the beginning of a session:

The user can then open his Environment, do his work, and then write updates as before.

9.7 Using Several Knowledge Bases in an Environment

The partitioning of knowledge into multiple knowledge bases can be a useful tool for organizing knowledge.
For example, long term storage of di�erent versions of a design can be kept in separate knowledge bases
in Loops. (The di�erent knowledge bases in these cases correspond to di�erent environments.) It is also
convenient to partition knowledge bases to re�ect the partitioning of responsibility for setting standards and
maintaining consistency. The previous scenarios have shown the use of separate knowledge bases to keep
(tentative, idiosyncratic) personal knowledge separate from (open, standardized) community knowledge.
This scenario shows how a user can access several knowledge bases through a personal knowledge base.

The �rst step is to open the personal knowledge base as follows:

The next step is to add all of the other knowledge bases that the user wants as follows:

This can be repeated for each knowledge base to be added.

Each message changes the variable of the knowledge base named
so that it now refers indirectly to the other KBName. These references are preserved across sessions so
that the next time the user opens his knowledge base with an message, he will not need to repeat
the messages. These references can be removed as in the previous session.

For most applications, the order in which knowledge bases are added does not matter. However, if an
object reference is ambiguous in the sense that the object is contained in more than one of the knowledge
bases, then the last knowledge base added will dominate. After the knowledge bases have been added,
the user can optionally freeze the references to any of them as described earlier.

The next step is to open an environment:

As the user creates new objects in his environment, he could want them to be associated with particular
knowledge bases that he is using. Usually, he will want them associated with his personal knowledge base
(named in the example), and this is the default association. However, bugs in a community
knowledge base will often be found by a user working on an example in a personal knowledge base.
If the user simply changes the buggy objects, they will continue to be associated with the community
knowledge base when he saves them at the end of his session. However, if he creates new objects that he
wants associated with the community knowledge base, he can �rst type:

48

(_ $KB Old ’ ’)
(_ $ ThawKB ’)

(_ $KB Old ’ ’)

(_ $ AddToContents ’)
(_ $ AddToContents ’)
(_ $ AddToContents ’)
...

AddToContents contents

Old
AddToContents

(_ $ Open)

KBName environmentName
KBName comm unityKBName

KBName environmentName

KBName otherKBName1
KBName otherKBName2
KBName otherKBName3

KBName

environmentName

KBName

THE LOOPS MANUAL

This message �rst checks that there is a knowledge base named in the environment. It
does not cause the changes to be written to the other knowledge bases. Rather, it causes a specially
marked layer to be created in the user’s personal knowledge base which can be accessed later by the
community knowledge base manager.

The user can then create the new objects. When he is done creating these objects, he can then switch the
association back to his personal knowledge base by typing:

As before, the user can type

when he is done with the session.

Occasionally, a user may accidentally associate some objects with the wrong knowledge base. See the next
section for a way to change the association of an object after it has been created.

If he later resumes the session, he will have access to all of the knowledge bases that he added.

9.8 Changing the Associations of Objects

The previous scenario depends on anticipating a change in the intended association of an object before
creating it. This approach using an message works �ne if the creation of objects can be
conveniently organized into periods such that all of the objects created during a period are associated
with the same knowledge base. In practice, however, a user may forget to send the message or he may
later change his mind about the appropriate association for an object. The message for changing the
association of an object is the message as follows:

9.9 Switching Among Environments

One of the important features of Environments is that they provide a way of having independent versions
of designs. A user can have several open Environments and can switch between them by making one of
them the ‘‘current’’ Environment. In this scenario, we will �rst consider two ways that a user can create
multiple open Environments. Then we will consider how to switch among them and how to copy objects
between them.

In this case, a user is just starting a session. He has a personal knowledge base named ,
and he wants to create two knowledge bases (and) to represent two versions of a
design. To do this, the user can type:

49

(_ $ AssocKB ’)

(_ $ AssocKB ’)

(_ $ Close)

AssocKB

AssocKB

(_ $ AssocKB ’)

Case 1. KBName1
KBName2 KBName3

(_ $KB New ’KBName2 ’)
Create 2nd knowledge base and Environment.

(_ $KB New ’KBName3 ’)
Create 3rd knowledge base and Environment.

environmentName otherKBName1

otherKBName1

environmentName KBName

environmentName

objectName newKBName

environmentName2

environmentName3

Switching Among Environments

Alternatively, the user may discover part way through a session that he wants to branch out
with another Environment. In this scenario, the user is working in Environment1 and decides to create a
branch point. Before doing this, the user must �rst Close that environment:

The user can then create the Environment2 and Environment3 as in case 1.

In both cases, the last Environment opened will be the default current one. The user can
make any Environment be current by:

All Loops operations will then happen in this Environment. To switch to use:

and so on. To test whether any particular environment, is current, one uses:

To switch to the GlobalEnvironment, one sends to the current environments:

The Lisp global variable is bound to the environment which is current.

When done, the updates should be written out for all of the open Environments. This can be done
by sending or messages to each of the environment, or can be done by sending the
corresponding message to the class Environment which will send the message on to each open environment
(kept on a list in the Lisp global variable):

While a user is switching between environments, he may make
discover an error in some information that is global to both environments. In this scenario, the user
discovers an error in some objects from a community knowledge base while he is working in Environment2.
He corrects the objects in Environment2, and wants to copy those corrections into Environment3. He
does this using the message as follows:

where is the name of the environment that the objects are copied to, and is a

50

(_ $KBName2 AddToContents ’KBName1)
Add KBName1 to the contents of 2nd KB.

(_ $KBName3 AddToContents ’KBName1)
Add KBName1 to the contents of 3rd KB.

(_ $ Open)
Open the 2nd Environment.

(_ $ Open)
Open the 3rd Environment, leaving it as current.

Case 2.

(_ $ Close)

Switching.

(_ $ MakeCurrent)

(_ $ MakeCurrent)

(_ $ IsCurrent)

(_ CurrentEnvironment MakeNotCurrent)

CurrentEnvironment

Cleanup Close

openEnvironments

(_ $Environment Cleanup)
(_ $Environment Close)

Copying Objects between Environments.

CopyObjects

(_ $ CopyObjects)

environmentName2

environmentName3

environmentName1

environmentName2

environmentName3

environmentName3

testedEnvironment

testedEnvironment

toEnvironment objectsList

toEnvironment objectsList

THE LOOPS MANUAL

list of objects to be copied.

This message causes the objects to be copied. If the objects already exist in the , then the
copies overwrite the previous objects.

In our scenario, the user would perform the following steps:

9.10 Saving Parts of a Session

To selectively update the knowledge base with some of the changes that he made
in a session, a user can send a message to his Environment with KBs speci�ed. For example,
to save the updates associated only with the knowledge bases named and , he can
send the message:

This message writes out �le layers to the user’s personal knowledge base containing the objects that from
the current Environment that are associated with the knowledge base and . The user
has omitted the names of associated knowledge bases for which he wants to discard the changes. This
message completes by writing out the boot layer.

The message without KB’s speci�ed writes a layer for every associated knowledge base that has
been changed, followed by a . If the user does a , then all the
changes will be written out in a single layer associated with the connected knowledge base.

The previous scenarios assumed that a user wanted to save the changes that
he makes in a session. Sometimes, however, a user may prefer to discard the changes that he has made
in a session. He can do this and return the environment to an unopened state by typing:

Cancelling this session will not go back past the last time the user did a . backs
up changes made since that time and then does what a would do, destroying objects in the
environment, and closing �les.

9.11 Copying Layers from one Knowledge Base to Another

The ability to describe layers using a KBState makes it possible for one knowledge base to indirectly
access the �le layers of another one. This mechanism works �ne when it is used to extend a personal
knowledge base to include a community knowledge base. It enables several users to read a community

51

(_ $ MakeCurrent)
Make Environment2 current.

...
Collect the objects.

(SETQ objectsList ...)
Make a list of the collected objects.

(_ $ CopyObjects objectList)
Copy the objects to Environment3.

Saving part of a session.
Cleanup

KBName1 KBName2

(_ $ Cleanup ’(KBName1 KBName2))

KBName1 KBName2

Cleanup
WriteBoot (_ $ Cleanup T)

Cancelling an entire session.

(_ $ Cancel)

Cleanup Cancel
Close

toEnvironment

environmentName2

environmentName3

environmentName

envName

environmentName

Summarizing and Combining Knowledge Bases

knowledge base at the same time and to write their updates to their personal knowledge bases. However,
the indirection mechanism breaks down if some users want to read a knowledge base while another user is
writing to it. For example, such a con�ict could arise if a community knowledge base used the indirection
mechanism to access a �le layer in some personal knowledge base. Whenever the owner of the personal
knowledge base was updating it, users of the community knowledge base would be blocked by the �le
system. To avoid such situations, it is necessary to create community knowledge bases that physically
contain all of the �le layers that they reference.

In this scenario, the user is just starting a session and no knowledge bases have been opened. The user
wants to copy information from a knowledge base named to a knowledge base named

. The �rst step is to read the boot layers of the two knowledge bases.

In this scenario, one need not, and in fact should not, have an envrionment open or either of the two
KBs connected to an environment. All the work will go on in the Global Environemnt.

The second step is to create a description of the layers to be moved. This description can be either a
Layer or a KBState. One way to create this description is to use any of the object editors available in
Loops. Another way is to send a message as follows:

can be an Interlisp Date or an integer number of days. If it is a date, then only those Layers
created on or after the given date will be described. If it is an integer, then only Layers created within
that many days will be described. If it is , then no date �lter will be applied.

is the name of the knowledge base with which the Layers are associated. (If , then the
layers associated with any knowledge base will be described.)

For example:

returns a KBState describing the Layers created in the last fourteen days in the knowledge base named
that are associated with the knowledge base named .

Given such a description, the layers can be copied by typing:

9.12 Summarizing and Combining Knowledge Bases

As knowledge bases evolve over time, the number of layers and amount
of overridden information can consume a large fraction of the �le space. Economy- minded knowledge base
managers may want to create ‘‘compressed’’ versions of knowledge bases that have all of the information
contained in just one layer. In this scenario, the user starts a session by typing:

52

(_ $KB Old ’)
(_ $KB Old ’)

DescribeLayers

(_ $ DescribeLayers)

NIL

NIL

(SETQ layerDescription
(_ $ DescribeLayers 14 ’))

(_ $ CopyFileLayers layerDescription)

Summarizing a Knowledge Base.

fromKBName
toKBName

fromKBName
toKBName

fromKBName DateOrDays associatedKB

DateOrDays

associatedKB

fromKBName toKBName

fromKBName toKBName

toKBName

THE LOOPS MANUAL

where is the knowledge base to be summarized; is the knowledge base to be
created. It must be a di�erent name than ; must be a list of KBNames or

. If it is list, then all, and only those objects with associated KB’s on the list will be dumped to the
�le. One must include on if changes and objects associated with it are to
be dumped to the �le. If = , all objects on the �le will be dumped on a single layer
if .

This message causes Loops to read the boot layer of the old knowledge base (), create a
new knowledge base (), create an Environment associated with the new knowledge base, read
in all of the objects in , write them out to a single layer, and then write a boot layer for the
new knowledge base.

The message can also be used to combine several existing
knowledge bases into a single new knowledge base. In this case, the message is as follows:

where is a list of the names of the knowledge bases to be summarized; is the
name of the new knowledge base to be created; is as described above.

This message causes Loops to read the boot layers of the old knowledge bases, creates a new knowledge
base (), creates an Environment associated with the new knowledge base, reads in all of the
objects, writes them out to a single layer, and then writes a boot layer for the new knowledge base.

The user can create a new knowledge base which contains all of the objects in any open environment.
This may include objects from any number of KB’s.

will create a new KB named , and dump from the environment all objects with associated KB
on the list onto (or all objects if =).

9.13 Subdividing a Knowledge Base

Sometimes a user may want to subdivide a knowledge base so that a subset of the objects are moved away
to create a new knowledge base. In our scenario, the user wants to move the objects from a knowledge
base in to a knowledge base () included in . In
the �rst step of this scenario the user uses the message:

where

is a function that will be applied to every object name. If , then a list of object names and
UIDs in environment is returned as the value of the message. If it is the atom , then only names which
are not UIDs will be returned.

is an optional argument. If an atom, it is interpreted as the name of the associated knowledge
base for the objects. If a list, will be interpreted as a list of associated knowledge bases for the object. If

53

(_ $KB Summarize)

NIL

NIL

Combining Knowledge Bases. Summarize

(_ $KB Summarize)

(_ DumpToKB)

NIL

MapObjectNames

(_ $ MapObjectNames (FUNCTION))

NIL
T

fromKBName toKBName assocKBNames

fromKBName toKBName
fromKBName assocKBNames

fromKBName assocKBNames
assocKBNames

toKBName

fromKBName
toKBName
fromKBName

fromKBNames toKBName assocKBNames

fromKBNames toKBName
assocKBNames

toKBName

environment toKBName assocKBNames

toKBName
assocKBNames toKBName assocKBNames

fromEnvironmentName toKBName toEnvironmentName

environmentName UserFn AssocKBsNoUIDs

UserFn

AssocKBs

Going Back to a Previous Boot Layer of a Knowledge Base

, only objects associated with the current AssocKB of the Environment will be used.

If is , then will only be applied to real names, and not UIDs.

In our scenario, we will assume that will create a list of the objects () that the user
wants to move. The user switches to the source environment, �nds the objects and moves them:

The next step is to move the objects as follows:

This causes the objects to be copied to toEnvironment and deleted from fromEnvironment (or whatever
Environment they came from). The objects will continue to be associated with whatever AssocKB they
were before. In this scenario, however, the user wishes them be associated with the knowledge base
named toKBName.

The �nal step is to write out the changes:

9.14 Going Back to a Previous Boot Layer of a Knowledge Base

Since knowledge bases are represented as objects, it is possible to recon�gure their contents using the
standard object access functions. However if a Layer has been deleted from the contents of a KB, that
layer is no longer written out to the boot layer. This can make it di�cult to get back to versions modi�ed
in this way. The following message makes it possible restore such knowledge bases by reading in old
boot layers:

The value returned is a KB which has the name KBName, and the state corresponding to the boot layer
speci�ed. To preserve a KBState which has these contents, the user can then use:

9.15 A�ecting what is Saved

The user may not wish an object, or some part of an object saved on a knowledge base. In this section,
we describe a number of ways of stopping information from being written on the knowledge base, with
appropriate caveats for the use of these features.

54

NIL

T

MyFn objectList

(_ $ MakeCurrent)
Switch to fromEnvrionment.

(_ $ MapObjectNames (FUNCTION MyFn))
Make list of objects.

(SETQ newObjectList
(_ $ MoveObjects objectList)

(_ $ MakeCurrent)
(for object in newObjectList do (_ object AssocKB ’toKBName)

(_ $ Cleanup)

(_ $KB ReadOldBootLayer ’)

(_ $ Copy)

NoUIDs UserFn

fromEnvironmentName

fromEnvironmentName

toEnvironmentName

fromEnvironmentName

environmentName

KBName num berBack

KBName

THE LOOPS MANUAL

9.15.1 Temporary Objects

If the user is creating lots of objects for temporary use (as intermediate products of a computation) then
none of those objects are useful after the computation is done. To create such objects, the user should
use:

to create them instead of the usual message. Objects created in this way will not be given
a UID, and will be not be accessible by mapping through the environment. If by some chance they are
referenced from some object that is being dumped to the data base, they will then be converted into
permanent objects, and dumped to that same KB.

9.15.2 Not Saving some IV values

For some instances, it is useful to store in an instance variable a Lisp dataytpe (e.g. a pointer to a window,
or hash array). However, most Lisp datatypes are not stored appropriately on a KB. In general, when
read back in from a KB, what was formerly an instance of a datatype looks like an atom with a funny
printname. The solution we have adopted is to allow the user to specify IV values or properties which
should not be dumped to a knowledge base. When read back in, the IV value or property will inherit
the default value from the class which can be an active value to recreate the desired Lisp object.

For example, the class uses a hash table as the value of its IV nameTable. The following
fragment of the de�nition of Environment shows how saving the value of is suppressed and
how an active value is used to recreate it.

Any instance of environment will have �lled in by the �rst time it is
accessed. is a specialized version of which makes the local value be a
hashArray. The property with value (which is inherited in every instance) speci�es that
nothing about the IV should be saved on a KB. For �ner control, the property
could have been given a value which is a list of property names whose values should not be saved on
the KB. If the atom is included in the list, then the value of the IV itself will not be saved. The
value for is interpreted as meaning no porperty or value should be saved.

9.15.3 Ignoring changes on an IV

Whenever an object is modi�ed during the course of a session, it is marked as changed so that a new
version of the object will be written out on the KB. Suppose the user may be using an IV globally
known object as a place to cache some information. In this case the user does not need or even want
the known object to be marked as changed if the only change made was to store the cached information.
To allow this, the special active value function is provided which does not mark the
object as changed when it updates its localState. For example, if had an instance variable

which was updated each time a selection was made, then if looked like:

55

(_ NewTemp)

(_ New)

$Environment
nameTable

[DEFCLASS Environment ...
(InstanceVariables ...

(nameTable #(NIL NewNameTable) DontSave Any)
...]

nameTable NewNameTable
NewNameTable FirstFetch

DontSave Any
nameTable DontSave

Value
Any DontSave

StoreUnmarked
$WorldView

lastSelected $WorldView

class

class

Getting rid of objects explicitly

changes to would be ignored by the KB system. It is often useful to combine this
feature with described earlier so that when the object is dumped to a KB (because of some
other change) the value in this IV is not saved. Then the can be inherited directly from
the default value in the class. Using by itself is not su�cient to ensure that the object will
not be dumped if a value is changed in the not to be saved IV.

9.15.4 Getting rid of objects explicitly

During the course of a session users may create a number of objects they discover before the end of the
session are not needed. They may also decide that some old objects are no longer needed. By using:

for each such object, the user will cause any new objects to be forgotten (not written to the KB) and the
incore space reclaimed. For objects which were in the KB previously, there will be stored an indication
that this object has been deleted, so that later reading of this KB will not contain the object.

9.16 Examining Environmental Objects

Sending the message to an open environment allows one access to the names and
UIDs of objects in that environment. From the names and UIDs one can then access the objects
themselves using . One can determine the names and UIDs of objects in a Layer by
sending that layer the message . The form is:

which applies to each name (and to each UID unless =). If = then this
simply returns a list of the names (and UIDs). However, unless the layer has been read in to an
environment, one cannot get the object associated with that name (UID) on that layer.

A special pretty printing function is available for KB’s, KBStates, and Layers which
tell about its history and contents. If one does:

without necessarily opening an environment, then one can send:

to see what is in the KB and its containing layers.

In a particular environment, one can change objects which originate on any number of
community and personal knowledge bases. To �nd out the names of any KBs that have modi�ed entities
associated with them, one send to that environment, say :

56

[DEFINST WorldView ...
(lastSelected #(obj1 NIL StoreUnmarked) ...]

lastSelected
DontSave

activeValue
DontSave

(_ Destroy)

MapObjectNames

GetObjectRec
MapObjectNames

(_ $ MapObjectNames)

T NIL

PrettyPrinting a KB:

(_ $KB Old ’)

(_ $ PP)

ChangedKBs:

E1

obj

Layer1 mapFn noUIDs

mapFn noUIDs mapFn

KBName

KBName

THE LOOPS MANUAL

It is this list which is used by to determine the set of layers that will be dumped at cleanup
time.

9.17 The Class KBState

[Class]

IVs:

[IV of KBState]
Name of �le associated with this KBState. as value here overrides active value
in named object.

[IV of KBState]
Either , meaning the current state of the KB with name or a list of layers
and KBStates specifying layerset)

Methods:

[Method of KBState]
Add all items on and to . Called by functions which write
out the boot layer to make sure that all layers are added to the list of items to be
dumped.

[Method of KBState]
Adds a new item to of KB.

[Method of KBState]
Read in object �le indices from all, possibly implicit, layers in order. These are
being opened for input only.

[Method of KBState]
Create a KB state which re�ects the current state of this KB.

[Method of KBState]
Return a KBState whose contents are just those layers which occur after
and have KB , or if none.

[Method of KBState]
is a list of �les already found. Add any new ones found. Very similar

in structure to .

[Method of KBState]
Return the KB object corresponding to this KBState.

[Method of KBState]
Read the boot �le for this KB.

[Method of KBState]
Make KB have new contents. Check types of elements.

57

(_ $E1 ChangedKBs)

Cleanup

KBState

name
NIL

contents
CURRENT

(_ AddEntities)
contents

(_ AddToContents)
contents

(_ Connect)

(_ CurrentState)

(_ DescribeLayers)

NIL

(_ Files)
TCONC

KBState.Connect

(_ MyKB)

(_ ReadBoot)

(_ SetContents)

self entityList
self entityList

self newAddition

self nameTable

self

self dateOrDays assocKB
dateOrDays

assocKB

self |leList
|leList

self

self

self lst

The Class KB

9.18 The Class KB

[Class]

IVs:

[IV of KB]
List of Envs which have read in contents of this KB.

[IV of KB]
KBs start out with an empty list of contents.

[IV of KB]
Environment which is currently writing on this KB.

[IV of KB]
Full name of �le where this KB is stored. Computed the �rst time it is needed.
Never stored.

[IV of KB]
List of owners of this KB.

[IV of KB]
One of , , or .

Methods:

[Method of KB]
Adds a new item to contents of KB.

[Method of KB]
Read in object �le indices from all, possibly implicit, layers in order. This is being
opened for output.

[Method of KB]
Copies the FileLayer referred to by onto , and adds a new Layer describing
copied �leLayer onto contents of .

[Method of KB]
Copy all the layers in which should be a KBState into .

[Method of KB]
Disconnect this KB and close its �le if open.

[Method of KB]
Find a KBState with = and = . Replace it by a
new KBState with = currentState of myKB. Return new KBState or

if failure.

[Method of KB]
Fn to Print out a formatted description of the contents of a knowledge base.

58

KB

connectedEnvs

contents

currentWriter

fileName

owners

status
Disconnected Connected BootNeeded

(_ AddToContents)

(_ ConnectForOutput)

(_ CopyFileLayer)

(_ CopyFileLayers)

(_ Disconnect)

(_ FreezeKB)
%@name contents CURRENT

contents
NIL

(_ PrintContents)

self newAddition

self nameTable

self layer
layer self

self

self layerDescription
layerDescription self

self

self name
name

self |le

THE LOOPS MANUAL

[Method of KB]
Make KB have new contents. Check types of elements.

[Method of KB]
Find a KBState with = and
not equal . Replace it by a new KBState with = .
Return new KBState or if failure.

[Method of KB]
Write out boot �le containing KB and all layers and KBStates it contains implicitly
or explicitly.

[Method of KB]
Writes the entities (objects) out to a layer in a given kb.

[Method of KB]
Writes the facts on the �le, appending to �le. Format of layer is: - indexFilePosition
(up to 7 characters) - entityCount (up to 7 characters) - nameCount (up to 7 characters)
- entity records - indexRecords (UID followed by �le position,) - nameRecords (name
followed by UID) - initialFilePosition.

9.19 The Class Environment

[Class]

IVs:

[IV of Environment]
One of or . when indexes of KBs have been read in,
after .

[IV of Environment]
nameTable for looking up UIDs and names.

[IV of Environment]
KB to which changes will be �led, and which speci�es contents.

[IV of Environment]
Name of the KB associated with new objects created.

Methods:

[Method of Environment]
Make be the assocKB of this KB.

[Method of Environment]
Erase an environment without cleaning up so that environment is empty, as if it were
not open, but it is still connected to the same KB. Make it not current.

[Method of Environment]
Finds the names of all KBs that have any modi�ed entities associated with them.

59

(_ SetContents)

(_ ThawKB)
(GetValue (QUOTE name)) contents

CURRENT contents CURRENT
NIL

(_ WriteBoot)

(_ WriteEntityFile)

(_ WriteFileLayer)

Environment

status
NotOpen Open Open NotOpen

ClearObjectMemory

nameTable

outputKB

assocKB

(_ AssocKB)

(_ Cancel)

(_ ChangedKBs)

self lst

self name
self name

self

self changedEntitiesnamedEntitiesassockbName

self kbName nameTable

self akb
akb

self

self

The Class Environment

[Method of Environment]
Write FileLayers for KBs named in . If = then write a
layer for each changed KB. If = then write one layer for all changes. If

is a single atom, then the update is written for that single assocKB. Finish
by writing new boot layer for outputKB unless is .

[Method of Environment]
Write out boot layer if needed and clear nameTable.

[Method of Environment]
Cleanup an environment so that all �les are closed, and environment is empty, as if
it were just created.

[Method of Environment]
Make be the �le onto which changes in this Environment will be written.

[Method of Environment]
Copies objects on using the object structure of the object in Environment

with same UID, if found.

[Method of Environment]
???

[Method of Environment]
Get a list of all �les associated with this environment. Argument to
is a list.

[Method of Environment]
Test if current.

[Method of Environment]
Set values of and from and
make be my assocKB.

[Method of Environment]
Makes no Environment Current if this is current, elses causes Error if not Current
and = .

[Method of Environment]
to the name of each object stored in the environment. If

given, select only those which are in the list. If = then apply only to
names which are not UIDs. If = then just list all names and UIDs; if

= then just the names.

[Method of Environment]
Mark object as deleted in KB when new layer is written out. Done by smashing
localRecord �eld of entity, but NOT storedIn �eld. See .

[Method of Environment]
Read in the index of all the layers referred to by contents of outputKB.

[Method of Environment]
Make outputKB write it’s boot �le.

60

(_ Cleanup)
NIL

T

T

(_ ClearObjectMemory)

(_ Close)

(_ ConnectOutput)

(_ CopyObjects)

(_ DumpToKB)

(_ Files)
KBState.Files

TCONC

(_ IsCurrent)

(_ MakeCurrent)
CurrentNameTable CurrentEnvironment

DefaultKBName

(_ MakeNotCurrent)

T

(_ MapObjectNames)
APPLY

T
NIL

T

(_ MarkDeleted)

SelectChangedEntity

(_ Open)

(_ WriteBoot)

self KBNames noBootLayerFlg
KBNames KBNames

KBNames
KBNames

noBootLayerFlg

self

self assocKBs

self KB
KB

self objList
objList

self

self kbName assocKBNames

self |leLst

self

self
self

self bitchIfNotCurrent

bitchIfNotCurrent

self mapFn assocKBsnoUIDs
mapFn assocKBs

noUIDs
mapFn

mapFn

self objToBeDeleted

self

self

THE LOOPS MANUAL

[Method of Environment]
Write layer for , or all changes if = .

9.20 The Class Layer

[Class]

IVs:

[IV of Layer]
Name of the �le where FileLayer is found. Compute it on �rstFetch from the
kbName by searching directory path. Don’t save full name on �le.

[IV of Layer]
Name of kb where this layer was stored e.g. BRIDGE.

[IV of Layer]
Index on �le where FileLayer is found.

[IV of Layer]
Name of KB with which this Layer is associated conceptually.

Methods:

[Method of Layer]
Add to entity list for dumping on boot layer.

[Method of Layer]
Open layer �le and read in index.

[Method of Layer]
Add my �le to list if it is not already there.

[Method of Layer]
Apply to objectnames in layer, or make a list of them if = .

9.21 The Class KBMeta

[Class]

Methods:

[Method of KBMeta]
Create a new KnowledgeBase �le, and an environment if is given, and make
environment current.

[Method of KBMeta]
Get KB for this kbName. (Causes boot layer to be read unless KB is already in
the global table.) If is given, creates an Environment of that name and
connects the environment to the KB.

61

(_ WriteUpdate)
T

Layer

file

kbName

position

assocKB

(_ AddEntities)

(_ Connect)

(_ Files)

(_ MapObjectNames)
NIL

KBMeta

(_ New)

(_ Old)

self kbName
kbName kbName

self entityList
self

self nameTable

self |leLst

self mapFn noUIDs
mapFn mapFn

self kbName envName newVersionFlg
kbName

self kbName envName

envName

The Class EnvironmentMeta

[Method of KBMeta]
Read in index of existing KB given kbName.

[Method of KBMeta]
Read in index of already existing KB.

[Method of KBMeta]
Incorporate all objects of with assocKB in (or all if

=) into new KB . If = , then only
copies over all those entities referred to by a name or by a named object directly or
indirectly. This latter feature provides a mechanism for garbage collection.

9.22 The Class EnvironmentMeta

[Class]

Methods:

[Method of EnvironmentMeta]
Write updates for all open environments.

[Method of EnvironmentMeta]
Close all the open environments.

[Method of EnvironmentMeta]
Returns a list of the open �les for all open Environments.

62

(_ ReadBoot)

(_ ReadOldBootLayer)

(_ Summarize)

NIL T

EnvironmentMeta

(_ Cleanup)

(_ Close)

(_ OpenFiles)

self

self kbName numBack

self fromKBName toKBName assocKBNamesnamedObjectsOnly

fromKBName assocKBNames
assocKBNames toKBName namedObjectsOnly

self

self leaveKBattachedFlg

self

10 INTRODUCTION TO RULE-ORIENTED PROGRAMMING IN LOOPS

The core of decision- making expertise in many kinds of problem solving can be expressed succinctly
in terms of rules. The following sections describe facilities in Loops for representing rules, and for
organizing knowledge- based systems with rule- oriented programming. The Loops rule language provides
an experimental framework for developing knowledge- based systems. The rule language and programming
environment are integrated with the object- oriented, data- oriented, and procedure- oriented parts of Loops.

Rules in Loops are organized into production systems (called RuleSets) with speci�ed control structures
for selecting and executing the rules. The work space for RuleSets is an arbitrary Loops object.

Decision knowledge can be factored from control knowledge to enhance the perspicuity of rules. The rule
language separates decision knowledge from meta- knowledge such as control information, rule descriptions,
debugging instructions, and audit trail descriptions. An audit trail records inferential support in terms of
the rules and data that were used. Such trails are important for knowledge- based systems that must be
able to account for their results. They are also essential for guiding belief revision in programs that need
to reason with incomplete information.

10.1 Introduction

Production rules have been used in expert systems to represent decision- making knowledge for many
kinds of problem- solving. Such rules (also called rules) specify actions to be taken when certain
conditions are satis�ed. Several rule languages (e.g., [Forgy81], [Fain81], [Aiello81])
have been developed in the past few years and used for building expert systems. The following sections
describe the concepts and facilities for rule- oriented programming in Loops.

Loops has the following major features for rule- oriented programming:

(1) Rules in Loops are organized into ordered sets of rules (called RuleSets) with speci�ed control
structures for selecting and executing the rules. Like subroutines, RuleSets are building blocks for
organizing programs hierarchically.

(2) The work space for rules in Loops is an arbitrary Loops object. The names of the instance variables
provide a name space for variables in the rules.

(3) Rule- oriented programming is integrated with object- oriented, data- oriented, and procedure-
oriented programming in Loops.

(4) RuleSets can be invoked in several ways: In the object- oriented paradigm, they can be invoked as
methods by sending messages to objects. In the data- oriented paradigm, they can be invoked as
a side-e�ect of fetching or storing data in active values. They can also be invoked directly from
LISP programs. This integration makes it convenient to use the other paradigms to organize the
interactions between RuleSets.

(5) RuleSets can also be invoked from rules either as predicates on the LHS of rules, or as actions on
the RHS of rules. This provides a way for RuleSets to control the execution of other RuleSets.

63

if-then
OPS5 ROSIE AGE

Basic Concepts

(6) Rules can automatically leave an audit trail. An audit trail is a record of inferential support in
terms of rules and data that were used. Such trails are important for programs that must be able
to account for their results. They can also be used to guide belief revision in programs that must
reason with incomplete information.

(7) Decision knowledge can be separated from control knowledge to enhance the perspicuity of rules.
The rule language separates decision knowledge from meta- knowledge such as control information,
rule descriptions, debugging instructions, and audit trail descriptions.

(8) The invocation of RuleSets can also be organized in terms of tasks, that can be executed, suspended,
and restarted. Using task primitives it is convenient to specify many varieties of agenda- based
control mechanisms.

(9) The rule language provides a concise syntax for the most common operations.

(10) There is a fast and e�cient compiler for translating RuleSets into Interlisp functions.

(11) Loops provides facilities for debugging rule- oriented programs.

(12) The rule language is being extended to support concurrent processing.

The following sections are organized as follows: This section outlines the basic concepts of rule- oriented
programming in Loops. It contains many examples that illustrate techniques of rule- oriented programming.
The next section describes the rule syntax. The next section discusses the facilities for creating, editing,
and debugging RuleSets in Loops.

10.2 Basic Concepts

Rules express the conditional execution of actions. They are important in programming because they can
capture the core of decision- making for many kinds of problem- solving. Rule- oriented programming in
Loops is intended for applications to expert and knowledge- based systems.

The following sections outline some of the main concepts of rule- oriented programming. Loops provides
a special language for rules because of their central role, and because special facilities can be associated
with rules that are impractical for procedural programming languages. For example, Loops can save
specialized audit trails of rule execution. Audit trails are important in knowledge systems that need to
explain their conclusions in terms of the knowledge used in solving a problem. This capability is essential
in the development of large knowledge- intensive systems, where a long and sustained e�ort is required to
create and validate knowledge bases. Audit trails are also important for programs that do non- monotonic
reasoning. Such programs must work with incomplete information, and must be able to revise their
conclusions in response to new information.

64

THE LOOPS MANUAL

10.3 Organizing a Rule-Oriented Program

In any programming paradigm, it is important to have an organizational scheme for composing large
systems from smaller ones. Stated di�erently, it is important to have a method for partitioning large
programs into nearly- independent and manageably- sized pieces. In the procedure- oriented paradigm,
programs are decomposed into procedures. In the object- oriented paradigm, programs are decomposed
into objects. In the rule- oriented paradigm, programs are decomposed into . A Loops program
that uses more than one programming paradigm is factored across several of these dimensions.

Figure 13. RuleSet of consumer instructions for testing a washing machine. The work space for
the RuleSet is a Loops object of the class . The control structure
loops through the rules trying an escalating sequence of actions, starting again at the beginning
if some rule is applied. Some rules, called one- shot rules, are executed at most once. These
rules are indicated by the preceding one in braces.

There are three approaches to organizing the invocation of RuleSets in Loops:

This approach is analogous to the use of subroutines in procedure- oriented
programming. Programs are decomposed into RuleSets that call each other and return values when they
are �nished. can be invoked from multiple places. They are used to simplify the expression
in rules of complex predicates, generators, and actions.

In this approach, RuleSets are installed as methods for objects. They are
invoked as methods when messages are sent to the objects. The method RuleSets are viewed analogously
to other procedures that implement object message protocols. The value computed by the RuleSet is

65

RuleSets

RuleSet Name: CheckWashingMachine;
WorkSpace Class: WashingMachine;
Control Structure: while1 ;
While Condition: ruleApplied;

(* What a consumer should do when a washing machine fails.)

IF .Operational THEN (STOP T ’Success ’Working);

IF load>1.0 THEN .ReduceLoad;

IF ~pluggedInTo THEN .PlugIn;

{1} IF pluggedInTo:voltage=0 THEN breaker.Reset;

{1} IF pluggedInTo:voltage<110 THEN $PGE.Call;

{1} THEN dealer.RequestService;

{1} THEN manufacturer.Complain;

{1} THEN $ConsumerBoard.Complain;

{1} THEN (STOP T ’Failed ’Unfixable);

WashingMachine While1

Procedure-oriented Approach.

SubRuleSets

Object-oriented Approach.

Control Structures for Selecting Rules

returned as the value of the message sending operation.

In this approach, RuleSets are installed as access functions in active values. A
RuleSet in an active value is invoked when a program gets or puts a value in the Loops object. As with
active values with Lisp functions for the or , these RuleSet active values can be triggered by
any Loops program, whether rule- oriented or not.

These approaches for organizing RuleSets can be combined to control the interactions between bodies of
decision- making knowledge expressed in rules.

10.4 Control Structures for Selecting Rules

RuleSets in Loops consist of an ordered list of rules and a control structure. Together with the contents
of the rules and the data, a RuleSet control structure determines which rules are executed. Execution
is determined by the contents of rules in that the conditions of a rule must be satis�ed for it to be
executed. Execution is also controlled by data in that di�erent values in the data allow di�erent rules to
be satis�ed. Criteria for iteration and rule selection are speci�ed by a RuleSet control structure. There
are two primitive control structures for RuleSets in Loops which operate as follows:

[RuleSet Control Structure]
The �rst rule in the RuleSet whose conditions are satis�ed is executed. The value of
the RuleSet is the value of the rule. If no rule is executed, the RuleSet returns .

The control structure is useful for specifying a set of mutually exclusive actions,
since at most one rule in the RuleSet will be executed for a given invocation. When
a RuleSet contains rules for speci�c and general situations, the speci�c rules should
be placed before the general rules.

[RuleSet Control Structure]
Starting at the beginning of the RuleSet, every rule is executed whose conditions are
satis�ed. The value of the RuleSet is the value of the last rule executed. If no rule
is executed, the RuleSet returns .

The control structure is useful when a variable number of additive actions are
to be carried out, depending on which conditions are satis�ed. In a single invocation
of the RuleSet, all of the applicable rules are invoked.

�gure 14 illustrates the use of a control structure to specify three mutually exclusive actions.

66

Data-oriented Approach.

getFn putFn

Do1

NIL

Do1

DoAll

NIL

DoAll

Do1

RuleSet Name: SimulateWashingMachine;
WorkSpace Class: WashingMachine;
Control Structure: Do1 ;

(* Rules for controlling the wash cycle of a washing machine.)

IF controlSetting=’RegularFabric
THEN .Fill .Wash .Pause .SpinAndDrain

.SprayAndRinse .SpinAndDrain

.Fill .DeepRinse .Pause .DampDry;

THE LOOPS MANUAL

Figure 14. Rules to simulate the control of the wash cycle of a washing machine. These rules
illustrate the use of the control structure to select one of three mutually exclusive actions.
These rules were abstracted from [Maytag] for the Maytag A510 washing machine.

There are two control structures in Loops that specify iteration in the execution of a RuleSet. These
control structures use an explicit while-condition associated with the RuleSet. They are direct extensions
of the two primitive control structures above.

[RuleSet Control Structure]
This is a cyclic version of . If the while-condition is satis�ed, the �rst rule
is executed whose conditions are satis�ed. This is repeated as long as the while
condition is satis�ed or until a statement or transfer call is executed (see page
93). The value of the RuleSet is the value of the last rule that was executed, or
if no rule was executed.

[RuleSet Control Structure]
This is a cyclic version of . If the while-condition is satis�ed, every rule
is executed whose conditions are satis�ed. This is repeated as long as the while
condition is satis�ed or until a statement is executed. The value of the RuleSet
is the value of the last rule that was executed, or if no rule was executed.

The ‘‘while-condition’’ is speci�ed in terms of the variables and constants accessible from the RuleSet.
The constant can be used to specify a RuleSet that iterates forever (or until a statement or transfer
is executed). The special variable is used to specify a RuleSet that continues as long as
some rule was executed in the last iteration. �gure 15 illustrates a simple use of the control
structure to specify a sensing/acting feedback loop for controlling the �lling of a washing machine tub
with water.

67

IF controlSetting=’PermanentPress
THEN .Fill .Wash .Pause .SpinAndPartialDrain

.FillCold .SpinAndPartialDrain

.FillCold .Pause .SpinAndDrain

.FillCold .DeepRinse .Pause .DampDry;

IF controlSetting=’DelicateFabric
THEN .Fill .Soak1 .Agitate .Soak4 .Agitate

.Soak1 .SpinAndDrain .SprayAndRinse

.SpinAndDrain .Fill .DeepRinse .Pause .DampDry;

Do1

While1
Do1

Stop
NIL

WhileAll
DoAll

Stop
NIL

T Stop
ruleApplied

WhileAll

RuleSet Name: FillTub;
WorkSpace Class: WashingMachine;
Control Structure: WhileAll ;
Temp Vars: waterLimit;
While Cond: T;

(* Rules for controlling the filling of a washing machine
tub with water.)

{1!} IF loadSetting=’Small THEN waterLimit_10;
{1!} IF loadSetting=’Medium THEN waterLimit_13.5;
{1!} IF loadSetting=’Large THEN waterLimit_17;

One-Shot Rules

Figure 15. Rules to simulate �lling the tub in a washing machine with water. These rules
illustrate the use of the control structure to specify an in�nite sense-act loop that
is terminated by a statement. These rules were abstracted from [MayTag].

10.5 One-Shot Rules

One of the design objectives of Loops is to clarify the rules by factoring out control information whenever
possible. This objective is met in part by the declaration of a control structure for RuleSets.

Another important case arises in cyclic control structures which some of the rules should be executed only
once. This was illustrated in the WashingMachine example in �gure 13 where we wanted to prevent the
RuleSet from going into an in�nite loop of resetting the breaker, when there was a short circuit in the
Washing Machine. Such rules are also useful for initializing data for RuleSets as in the example in �gure
15.

In the absence of special syntax, it would be possible to encode the information that a rule is to be
executed only once as follows:

In this example, the variable is used to control the rule so that it will be executed at most
once in an invocation of a RuleSet. However, the proli�c use of rules with such control clauses in large
systems has led to the common complaint that control clauses in rule languages defeat the expressiveness
and conciseness of the rules. For the case above, Loops provides a shorthand notation as follows:

The brace notation means exactly the same thing in the example above, but it more concisely and clearly

68

{1!} IF loadSetting=’ExtraLarge THEN waterLimit_20;

(* Respond to a change of temperature setting at any time.)

IF temperatureSetting=’Hot
THEN HotWaterValve.Open ColdWaterValve.Close;

IF temperatureSetting=’Warm
THEN HotWaterValve.Open ColdWaterValve.Open;

IF temperatureSetting=’Cold
THEN ColdWaterValve.Open HotWaterValve.Close;

(* Stop when the water reaches its limit.)

IF waterLevelSensor.Test >= waterLimit
THEN HotWaterValve.Close ColdWaterValve.Close

(Stop T ’Done ’Filled);

WhileAll
Stop

Control Structure: While1
Temporary Vars: triedRule3;
...
IF ~triedRule3 THEN triedRule3_T ;

triedRule3

{1} IF THEN ;

condition1 condition2 action1

condition1 condition2 action1

THE LOOPS MANUAL

indicates that the rule executes only once. These rules are called ‘‘one shot’’ or ‘‘execute-once’’ rules.

In some cases, it is desired not only that a rule be executed at most once, but that it be tested at most
once. This corresponds to the following:

In this case, the rule will not be tried more than once even if some of the conditions fail the �rst time
that it is tested. The Loops shorthand for these rules (pronounced ‘‘one shot bang’’) is

These rules are called ‘‘try-once’’ rules.

The two kinds of one- shot rules are our �rst examples of the use of meta- descriptions preceding the rule
body in braces. See page 80 for information on using meta- descriptions for describing the creation of
audit trails.

10.6 Task-Based Control for RuleSets

* * * Tasks are Not Fully Implemented Yet * * *

Flexible control of reasoning is generally recognized as critical to the success of recent problem- solving
programs. Examples of �exible control are:

(1) In planning and design tasks, it is important to generate multiple alternatives. These alternatives
may be carried to di�erent degrees of completion, depending on success, resource limitations,
and information gained during a problem- solving process. In some cases, an alternative may be
temporarily set aside, only to be revived later in light of new information.

(2) In analysis tasks, it is important to pursue multiple hypotheses in parallel. As evidence and
conclusions accumulate, some hypotheses may be abandoned but revived later.

(3) Search and discovery tasks can be organized as opportunistic best- �rst searches. At each step only
the most promising avenues are pursued. As some avenues fail to work out and new information
accumulates, the other avenues can be re-evaluated and sometimes raised in priority.

These examples require the ability (1) to suspend parts of a computation with the possibility of restarting
them later, and (2) to reason about the control of computational resources.

Loops provides a set of language features to support these capabilities, based on the representation of the
execution of a RuleSet as a . A Task is a Loops object with much the same structure as an item in
an agenda (see �gure 16). It represents the RuleSet being invoked, the data on which it is operating, and
the status of its execution.

69

Control Structure: While1
Temporary Vars: triedRule3;
...
IF ~triedRule3 triedRule3_T THEN ;

{1!} IF THEN ;

Task

condition1 condition2 action1

condition1 condition2 action1

Task-Based Control for RuleSets

Figure 16. An example of a Task object. This Task could have been created for an invocation
of the RuleSet in �gure 17. The Task records the RuleSet, its data, and its execution status. The
instance variable is used only for the control structures and
as described in the next section. The instance variable priority was created in response to the
Task Vars declaration in the RuleSet.

�gure 17 illustrates a RuleSet for a task that can be suspended. This RuleSet represents part of the
behavior of a washing machine repair man. The repair task may be suspended after it has started on a
particular object if the failure is not diagnosed or is too expensive.

70

RepairTask5:

ruleNumber: NIL doc (* Number of the next rule to be executed.
Used for doNext and cycleNext.)

rs: #$RepairWashingMachine
doc (* RuleSet that was invoked.)

self: #&(FixitJob "uid1")
doc (* work space given to the RuleSet.)

value: #&(MotorBrushes "uid2")
doc (* value returned by the RuleSet)

status: Suspended
doc (* Execution status. Examples: Started,

Done, Aborted, Suspended.)
reason: TooExpensive

doc (* Reason for the status. Examples: Success,
NoSpace, Blocked)

caller: #$(RuleSet "uid3")
doc (* Caller of the RuleSet.)

priority: 300

ruleNumber DoNext CycleNext

FixitJob

RuleSet Name: RepairWashingMachine;
WorkSpace Class: FixitJob;
Compiler Options: S ; (* S for Task Stepping.)
Control Structure: doAll ;
Task Vars: priority;

(* Rules for washing machine repair.)

{1} priority_300;
...
{1} IF ~(replacementPart_motor.FindBrokenPart)

THEN (STOP T ’Suspended ’NoDiagnosis);

IF replacementPart.Availability=’NotInTruck hoursLimit < 1
THEN (STOP badPart ’Suspended ’UnavailablePart);

IF replacementPart:cost > dollarLimit
THEN (STOP badPart ’Suspended ’TooExpensive);

...

THE LOOPS MANUAL

Figure 17. A suspendable Task. This RuleSet characterizes part of the behavior of a repair
man of washing machines. The Stop statements specify how the RuleSet may report failure
after it has been started on a particular . Information in task variables (like priority)
are saved in the Task record. In this example, the machine failure may not be diagnosed or
may be too expensive to �x.

�gure 18 illustrates a RuleSet for controlling suspendable tasks. This RuleSet represents part of the
behavior of the owner of a washing machine repair business. This RuleSet may restart any suspended
task by the repairman RuleSet after getting more information about the customer.

Figure 18. Control of Tasks. This RuleSet characterizes part of the behavior of the manager of
a washing machine repair business. When a repair task fails, the manager RuleSet may change
some resource limits and start the repair task going again (e.g., if the customer is a).

Loops has facilities for creating Task objects, starting and waiting for tasks, stepping and suspending
Tasks. Task variables are used for saving state information. Distinct Tasks can refer to distinct invocations
of the same RuleSet in di�erent states of execution. The language features supporting Tasks are described
later.

10.7 Control Structures for Generators

Since Tasks represent suspended processes with local state, it is natural to use them for describing
generators. For the concise speci�cation of generators, two additional control structures have been
provided in Loops. To use these control structures, a Task is �rst created that associates a RuleSet and a
work space. The Task is then invoked repeatedly. At each invocation at most one rule is activated and

71

FixitJob

RuleSet Name: RePlanRepairWork;
WorkSpace Class: JobSchedule;
Control Structure: cycleAll ;
RuleVars: currentTask customer substitutePart;

(* Sample Rules -- part of the behavior of a manager of a
Washing Machine repair business.)

...
IF currentTask:status=’Success
THEN (STOP T ’Done ’Success);

IF currentTask:reason=’UnavailablePart
substitutePart_expert.AskForSubstitutePart

THEN currentTask:self:replacementPart_substitutePart
(Start currentTask);

IF customer:category=’VIP
currentTask:reason=’TooExpensive

THEN currentTask:self:dollarLimit _ VIP:dollarLimit
currentTask:priority _ 100
(Start currentTask);

...

VIP

Saving an Audit Trail of Rule Invocation

the Task records which rule was activated. At the next invocation, the search for the next rule to apply
starts with the rule following the rule that was last executed.

[RuleSet Control Structure]
At each invocation of the Task, the next rule is executed whose conditions are
satis�ed. The value of the RuleSet is the value of the executed rule, or if no
rule was executed. After the last rule of the RuleSet has been tried, the Task will
always return .

This control structure is convenient for specifying a generator of a limited number
of items. At each invocation, the remaining rules are tried until the next item is
generated. The generator returns after all of the rules have been tried.

[RuleSet Control Structure]
At each invocation of the Task, the generator �rst checks whether the while condition
of the RuleSet is satis�ed. If yes, then the next rule is executed whose conditions
are satis�ed. The rules can be visualized as forming a circle, so that after the last
rule of the RuleSet has been tried, the generator goes back to the beginning. During
a single invocation, no rule is tried more than once and the while-condition is tested
only once at the beginning of the Step. The value of the RuleSet is the value of the
last rule executed or if no rule was executed.

This control structure is convenient for specifying a generator that repeats itself
periodically, and which has an extra condition that is factored from all of the rules.

If a RuleSet with one of these control structures is invoked directly (instead of through a Task), its
behavior is equivalent to that of a control structure.

The variable , which can be used in the while-condition of and control
structures, is not meaningful with the control structure since at most one rule is applied in
a given invocation.

10.8 Saving an Audit Trail of Rule Invocation

A basic property of knowledge- based systems is that they use knowledge to infer new facts from older
ones. (Here we use the word ‘‘facts’’as a neutral term, meaning any information derived or given, that is
used by a reasoning system.) Over the past few years, it has become evident that reasoning systems need
to keep track not only of their conclusions, but also of their reasoning steps. Consequently, the design
of such systems has become an active research area in AI. The audit trail facilities of Loops support
experimentation with systems that can not only use rules to make inferences, but also keep records of the
inferential process itself.

10.8.1 Motivations and Applications

In most expert systems, knowledge bases are developed over time and are the major
investment. This places a premium on the use of tools and methods for identifying and correcting bugs
in knowledge bases. By connecting a system’s conclusions with the knowledge that it uses to derive them,
audit trails can provide a substantial debugging aid. Audit trails provide a focused means of identifying
potentially errorful knowledge in a problem solving context.

72

DoNext

NIL

NIL

NIL

WhileNext

NIL

Do1

ruleApplied While1 WhileAll
WhileNext

Debugging.

THE LOOPS MANUAL

Expert systems are often intended for use by people other than their creators, or
by a group of people their knowledge. An important consideration in validating expert systems
is that reasoning should be , that is, that a system should be able to give an account of its
reasoning process. Facilities for doing this are sometimes called and the creation
of powerful explanation systems is an active research area in AI and cognitive science. The audit trail
mechanism provides an essential computational prerequisite for building such systems.

Another active research area is the development of systems that can ‘‘change their minds’’.
This characteristic is critical for systems that must reason from incomplete or errorful information. Such
systems get leverage from their ability to make assumptions, and then to recover from bad assumptions
by e�ciently reorganizing their beliefs as new information is obtained. Research in this area ranges
from work on non- monotonic logics, to a variety of approaches to belief revision. The facilities in the
rule language make it convenient to use a user- de�ned calculus of belief revision, at whatever level of
abstraction is appropriate for an application.

10.8.2 Overview of Audit Trail Implementation

When is speci�ed for a RuleSet, the compilation of assignment statements on the right- hand
sides of rules is altered so that audit records are created as a side-e�ect of the assignment of values to
instance variables. Audit records are Loops objects, whose class is speci�ed in RuleSet declarations. The
audit records are connected with associated instance variables through the value of the properties
of the variables.

Audit descriptions can be associated with a RuleSet as a whole, or with speci�c rules. Rule- speci�c
audit information is speci�ed in a property- list format in the meta- description associated with a rule. For
example, this can include information, categories of inference, or categories of support.
Rule- speci�c information overrides RuleSet information.

During rule execution in audit mode, the audit information is evaluated after the rule’s LHS has been
satis�ed and before the rule’s RHS is applied. For each rule applied, a single audit record is created
and then the audit information from the property list in the rule’s meta- description is put into the
corresponding instance variables of the audit record. The audit record is then linked to each of the
instance variables that have been set on the RHS of the rule by way of the property of the
instance variable.

Additional computations can be triggered by associating active values with either the audit record class
or with the instance variables. For example, active values can be speci�ed in the audit record classes in
order to de�ne a uniform set of side-e�ects for rules of the same category. In the following example,
such an active value is used to carry out a ‘‘certainty factor’’ calculation.

10.8.3 An Example of Using Audit Trails

The following example illustrates one way to use the audit trail facilities. �gure 19 illustrates a RuleSet
which is intended to capture the decisions for evaluating the potential purchase of a washing machine. As
with any purchasing situation, this one includes the di�culty of incomplete information about the product.
The meta- descriptions for the rules categorize them in terms of the (fact or estimate) and a

that is supposed to measure the ‘‘implication power’’ of the rule. (Realistic belief revision
systems are usually more sophisticated than this example.)

73

Explanation Facilities.
pooling

transparent
explanation systems

Belief Revision.

audit mode

reason

certainty factor

reason

basis of belief
certainty factor

An Example of Using Audit Trails

Figure 19. RuleSet for evaluating a washing machine for purchase. Like many kinds of
problems, a purchase problem requires making decisions in the absence of complete information.
For example, in this RuleSet the reliability of the washing machine is estimated to be .5 in
the absence of speci�c information from . The meta- description in braces
in front of each rule characterizes the rule in terms of a (certainty factor) and a
(basis of belief). Within the braces, the variable on the left of the assignment statement is
always interpreted as meaning a variable in the audit record, and the variables on the right are
always interpreted as variables accessible within the RuleSet. This makes it straightforward to
experiment with user- de�ned audit trails and experimental methods of belief revision.

The result of running the RuleSet is an evaluation report for each candidate machine. Since the RuleSet
was run in audit mode, each entry in the evaluation report is tagged with a reason that points to an audit
record. �gure 20 illustrates the evaluation report for one machine and one of its audit records.

Figure 20. Example of an audit trail. The object for the expense report was prepared by the

74

RuleSet Name: EvaluateWashingMachine;
WorkSpace Class: EvaluationReport;
Control Structure: doAll ;
Audit Class: CFAuditRecord ;
Compiler Options: A;

(* Rules for evaluating a potential washing machine for a purchase.)

...

{(basis_’Fact cf_1)}
IF buyer:familySize>2 machine:capacity<20
THEN suitability_’Poor;

{(basis_’Fact cf_.8)}
reliability_(_ $ConsumerReports GetFacts machine);

{(basis_’Estimate cf_.4)}
IF ~reliability THEN reliability_.5;
...

ConsumerReports
cf basis

EvaluationReport "uid1"
expense: 510
suitability: Poor cc 1 reason ...
reliability: .5 cc .6 reason "uid2"
...

AuditRec "uid2"
rule: "uid3"
basis: Estimate;
cf: #(.4 NIL PutCumulativeCertainty)

...

THE LOOPS MANUAL

RuleSet in �gure 19. In this example, each of the entries in the report has a and
a (for cumulative certainty) property in addition to the value. The value of the
properties are created as a side e�ect of running the RuleSet. The auditing process
records the meta- description information of each rule in its audit record. This information can
be used later for generating explanations or as a basis for belief revision. The auditing process
can have side e�ects. For example, the active value in the variable of the audit record
performs a computation to maintain a calculated cumulative certainty in the
variable of the evaluation report.

The result of running the RuleSet is an evaluation report for each candidate machine. The meta-
descriptions for and are saved directly in the audit record. The calculation in
this combines information from the audit description with other information already associated with the
object. To do this, the description triggers an active value inherited by the audit record from its class.
This active value computes a in the evaluation report. (Other variations on this idea
would include certainty information descriptive of the premises of the rule.)

10.9 Comparison with other Rule Languages

This section considers the rationale behind the design of the Loops rule language, focusing on ways that
it diverges from other rule languages. In general, this divergence was driven by the following observation:

Rules are harder to create, understand, and modify when they contain too much control information.
This observation led us to �nd ways to factor control information out of the rules.

10.9.1 The Rationale for Factoring Meta-Level Syntax

One of the most striking features of the syntax of the Loops rule language is the factored syntax for
meta- descriptions, which provides information about the rules themselves. Traditional rule languages only
factor rules into conditions on the left hand side (LHS) and actions on the right hand side (RHS), without
general provisions for meta- descriptions.

Decision knowledge expressed in rules is most perspicuous when it is not mixed with other kinds
knowledge, such as control knowledge. For example, the following rule:

is more obscure than the corresponding one- shot rule from �gure 13:

which factors the control information (that the rule is to be applied at most once) from the domain
knowledge (about voltages and breakers). In the Loops rule language, a meta- description (MD) is
speci�ed in braces in front of the LHS of a rule. For another example, the following rule from �gure 19:

75

reason
cc reason

audit records

cf
reliability

basis cf certainty factor

cf
cumulative certainty

When a rule is heavy with control information, it obscures the domain knowledge that the rule is intended
to convey.

IF ~triedRule4 pluggedInTo:voltage=0
THEN triedRule4_T breaker.Reset;

{1} IF pluggedInTo:voltage=0 THEN breaker.Reset;

{(basis_’Fact cf_.8)}

The Rationale for RuleSet Hierarchy

uses an MD to indicate that the rule has a particular (‘‘certainty factor’’) and category for
belief support. The MD in this example factors the description of the inference category of the rule from
the action knowledge in the rule.

In a large knowledge- based system, a substantial amount of control information must be speci�ed in order
to preclude combinatorial explosions. Since earlier rule languages fail to provide a means for factoring
meta- information, they must either mix it with the domain knowledge or express it outside the rule
language. In the �rst option, perspecuity is degraded. In the second option, the transparency of the
system is degraded because the knowledge is hidden.

10.9.2 The Rationale for RuleSet Hierarchy

Some advocates of production systems have praised the �atness of traditional production systems, and
have resisted the imposition of any organization to the rules. The �at organization is sometimes touted as
making it . The argument is that other organizations diminish the power of pattern- directed
invocation and make it more complicated to add a rule.

In designing Loops, we have tended to discount these arguments. We observe that there is no inherent
property of production systems that can make rules additive. Rather, is a consequence of the
independence of particular sets of rules. Such independence is seldom achieved in large of rules.
When rules are dependent, rule invocation needs to be carefully ordered.

Advocates of a �at organization tend to organize large programs as a single very large production system.
In practice, most builders of production systems have found it essential to create groups of rules.

Grouping of rules in �at systems can be achieved in part by using clauses in the rules. Context
clauses are clauses inserted into the rules which are used to alter the �ow of control by naming the context
explicitly. Rules in the same ‘‘context’’ all contain an extra clause in their conditions that compares the
context of the rules with a current context. Other rules redirect control by switching the current context.
Unfortunately, this approach does not conveniently lend itself to the reuse of groups of rules by di�erent
parts of a program. Although context clauses admit the creation of ‘‘subroutine contexts’’, they require
a user to explicitly program a stack of return locations in cases where contexts are invoked from more
than one place. The decision to use an implicit calling-stack for RuleSet invocation in Loops is another
example of the our desire to simplify the rules by factoring out control information.

10.9.3 The Rationale for RuleSet Control Structures

Production languages are sometimes described as having a , which speci�es how rules
are selected for execution. An important part of this cycle is the , which speci�es
how to choose a production rule when several rules have conditions that are satis�ed. For example, the

production language [Forgy81] has a con�ict resolution strategy () which prevents rules from
being invoked more than once, prioritizes rules according to the recency of a change to the data, and
gives preference to production rules with the most speci�c conditions.

In designing the rule language for Loops, we have favored the use of a small number of specialized
control structures to the use of a single complex con�ict resolution strategy. In so doing, we have drawn

76

IF buyer:familySize>2 machine:capacity<20
THEN suitability_’Poor;

cf basis

easy to add rules

additivity
sets

context

recognize-act cycle
con�ict resolution strategy

OPS5 MEA

THE LOOPS MANUAL

on some control structures in common use in familiar programming languages. For example, is like
Lisp’s , is like Lisp’s , is similar to statements in many programming
languages.

The specialized control structures are intended for concisely representing programs with di�erent control
relationships among the rules. For example, the control structure is useful for rules whose e�ects
are intended to be additive and the control structure is appropriate for specifying mutually exclusive
actions. Without some kind of iterative control structure that allows rules to be executed more than once,
it would be impossible to write a simulation program such as the washing machine simulation in �gure
15.

We have resisted a reductionist argument for having only one control structure for all programming. For
example, it could be argued that the control structure is not strictly necessary because any RuleSet
that uses could be rewritten using . For example, the rules

could be written alternatively as

However, the control structure admits a much more concise expression of mutually exclusive actions.
In the example above, the control structure makes it possible to abbreviate the rule conditions to
re�ect the assumption that earlier rules in the RuleSet were not satis�ed.

For some particular sets of rules the conditions are naturally mutually exclusive. Even for these rules
can yield additional conciseness. For example, the rules:

can be written as

Similarly it could be argued that the and control structures are not strictly necessary because

77

Do1
COND DoAll PROG WhileAll WHILE

DoAll
Do1

Do1
Do1 DoAll

Control Structure: Do1;

IF THEN ;
IF THEN ;
IF THEN ;

Control Structure: DoAll;
Task Vars: firedSomeRule;

IF THEN firedSomeRule_T ;
IF ~firedSomeRule THEN firedSomeRule_T ;
IF ~firedSomeRule THEN firedSomeRule_T ;

Do1
Do1

Do1

Control Structure: Do1;

IF THEN ;
IF ~ THEN ;
IF ~ ~ THEN ;

Control Structure: Do1;

IF THEN ;
IF THEN ;
IF THEN ;

Do1 DoAll

a1 b1 c1 d1 e1
a2 b2 c2 d2 e2
a3 b3 c3 d3 e3

a1 b1 c1 d1 e1
a2 b2 c2 d2 e2
a3 b3 c3 d3 e3

a1 b1 c1 d1 e1
a1 b1 c1 d2 e2
a1 b1 c1 d3 e3

a1 b1 c1 d1 e1
b1 c1 d2 e2

c1 d3 e3

The Rationale for an Integrated Programming Environment

such RuleSets can always be written in terms of and . Following this reductionism
to its end, we can observe that every RuleSet could be re-written in terms of .

10.9.4 The Rationale for an Integrated Programming Environment

RuleSets in Loops are integrated with procedure- oriented, object- oriented, and data- oriented programming
paradigms. In contrast to single-paradigm rule systems, this integration has two major bene�ts. It
facilitates the construction of programs which don’t entirely �t the rule- oriented paradigm. Rule- oriented
programming can be used selectively for representing just the appropriate decision- making knowledge in
a large program. Integration also makes it convenient to use the other paradigms to help organize the
interactions between RuleSets.

Using the object- oriented paradigm, RuleSets can be invoked as methods for Loops objects. �gure 21
illustrates the installation of the RuleSet to carry out the
method for instances of the class . The use of object- oriented paradigm is facilitated
by special RuleSet syntax for sending messages to objects, and for manipulating the data in Loops objects.
In addition, RuleSets, work spaces, and tasks are implemented as Loops objects.

Figure 21. Example of using a RuleSet as a method for object- oriented invocation. This
de�nition of the class speci�es that Lisp functions are to be invoked for

and messages. For example, the Lisp function is to
be applied when a message is received. When a message is received, the
RuleSet is to be invoked with the washing machine as its
work space. messages to invoke the RuleSet may be sent by any Loops program,
including other RuleSets.

Using the data- oriented paradigm, RuleSets can be installed in active values so that they are triggered by
side-e�ect when Loops programs get or put data in objects. For example:

78

While1 WhileAll
WhileAll

SimulateWashingMachineRules Simulate
WashingMachine

[DEFCLASS WashingMachine
(MetaClass Class Edited (* "mjs: 25-Nov-82 16:42")

doc (* Home appliance for washing clothes.))
(Supers ElectricalDevice PlumbedDevice CleaningDevice)
(ClassVariables)
(InstanceVariables

(controlSetting Medium
doc (* One of Small, Medium, Large, ExtraLarge)) ...)

(Methods
(Fill WashingMachine.Fill doc (* Fill the tub with water.))
(Wash WashingMachine.Wash doc (* Perform the wash cycle.))
(Simulate UseRuleSet RuleSet SimulateWashingMachineRules)

...]

WashingMachine
Fill Wash WashingMachine.Fill

Fill Simulate
SimulateWashingMachineRules

Simulate

(DEFINST WashingMachine (StefiksMaytagWasher "uid2")
(controlSetting RegularFabric)
(loadSetting #(Medium NIL RSPut) RSPutFn CheckOverLoadRules)
(waterLevelSensor "uid3")

]

THE LOOPS MANUAL

The above code illustrates a RuleSet named which is triggered whenever a
program changes the variable in the instance in the �gure. This
data- oriented triggering can be caused by any Loops program when it changes the variable, whether or
not that program is written in the rules language.

79

CheckOverLoadRules
loadSetting WashingMachine

11 THE RULE LANGUAGE

11.1 Rule Forms

A rule in Loops describes actions to be taken when speci�ed conditions are satis�ed. A rule has three
major parts called the (LHS) for describing the conditions, the (RHS) for
describing the actions, and the (MD) for describing the rule itself. In the simplest case
without a meta- description, there are two equivalent syntactic forms:

The and tokens are recognized in several combinations of upper and lower case letters. The
syntax for LHSs and RHSs is given below. In addition, a rule can have no conditions (meaning always
perform the actions) as follows:

Rules can be preceded by a meta- description in braces as in:

Examples of meta- information include rule- speci�c control information, rule descrip tions, audit instruc-
tions, and debug ging instruc tions. For example, the syntax for one- shot rules shown on page 68:

is an example of a meta- description. Another example is the use of meta- assignment statements for
describing audit trails and rules. These statements are discussed on page 89.

The clauses on the LHS of a rule are evaluated in order from left to right to determine
whether the LHS is satis�ed. If they are all satis�ed, then the rule is satis�ed. For example:

In this rule, there are four clauses on the LHS. If the values of some of the clauses are during
evaluation, the remaining clauses are not evaluated. For example, if is non- but is , then the
LHS is not satis�ed and will not be evaluated.

The RHS of a rule consists of actions to be performed if the LHS of the rule is satis�ed.
These actions are evaluated in order from left to right. Actions can be the invocation of RuleSets, the
sending of Loops messages, Interlisp function calls, variables, or special termination actions.

RuleSets always return a value. The value returned by a RuleSet is the value of the last rule that was

80

left hand side right hand side
meta-description

-> ;

IF THEN ;

If Then

-> ;

if T then ;

{ } -> ;

{ } If Then ;

{ } ;

{1} IF THEN ;

LHS Syntax:

A B C+D (Prime D) -> ;

NIL
A NIL B NIL

C+D

RHS Syntax:

LHS RHS

LHS RHS

RHS

RHS

MD LHS RHS

MD LHS RHS

MD RHS

condition1 condition2 action1

RHS

THE LOOPS MANUAL

executed. Rules can have multiple actions on the right hand side. Unless there is a statement or
transfer call as described later, the value of a rule is the value of the last action. When a rule has no
actions on its RHS, it returns as its value.

Comments can be inserted between rules in the RuleSet. They are enclosed in parentheses
with an asterisk for the �rst character as follows:

11.2 Kinds of Variables

Loops distinguishes the following kinds of variables:

All RuleSets have the variable as their workspace. References to can
often be elided in the RuleSet syntax. For example, the expression means to send a
message to . This expression can be shortened to . Other arguments can be de�ned for
RuleSets. These are declared in an declaration.

All RuleSets use a Loops object for their workSpace. In the LHS and RHS of a
rule, the �rst interpretation tried for an undeclared literal is as an instance variable in the work space.
Instance variables can be indicated unambiguously by preceding them with a colon, (e.g., or

).

Literals can be used to refer to class variables of Loops objects. These variables must be
preceded by a double colon in the rule language, (e.g., or).

Literals can also be used to refer to temporary variables allocated for a speci�c
invocation of a RuleSet. These variables are initialized to when a RuleSet is invoked. Temporary
variables are declared in the declaration in a RuleSet.

[not implemented yet.] Task variables are used for saving information state information
related to particular invocations of RuleSets. Unlike temporary variables which are reset to at the
beginning of RuleSet execution, Task variables are associated with Task objects and keep their values
inde�nitely. Task variables are used to hold information about a computational process, such as indices
for generator Tasks. Task variables are declared indirectly � they are the instance variables of the class
declared as the of the RuleSet.

Literals can also be used to refer to instance variables of audit records created by
rules. These literals are used only in statements in the MD part of a rule. They are used
to describe the information saved in audit records, which can be created as a side-e�ect of rule execution.
These variables are ignored if a RuleSet is not compiled in mode. Undeclared variables appearing
on the left side of assignment statements in the MD part of a rule are treated as audit record variables
by default. These variables are declared indirectly � they are the instance variables of the class declared
as the of the RuleSet.

[Not implemented yet.] Literals can also be used to hold descriptions of the rules themselves.
These variables are used only in statements in the MD part of a rule. They describe
information to be saved in the rule objects, which are created as a side-e�ect of RuleSet compilation.
Rule variables are declared indirectly � they are the instance variables in the declaration.

Literals can also be used to refer to Interlisp variables during the invocation of a

81

Stop

NIL

Comments:

(* This is a comment)

RuleSet arguments: self self
self.Print Print

self .Print
Args:

Instance variables:

:
:

Class variables:
:: ::

Temporary variables:
NIL

Temporary Vars

Task variables:
NIL

Task Class

Audit record variables:
meta-assignment

audit

Audit Class

Rule variables:
meta-assignment

Rule Class

Interlisp variables:

varName
obj varName

classVarName obj classVarName

Kinds of Variables

RuleSet. These variables can be global to the Interlisp environment, or are bound in some calling
function. Interlisp variables can be used when procedure- oriented and rule- oriented programs are
intermixed. Interlisp variables must be preceded by a backSlash in the syntax of the rule language (e.g.,

).

The following literals are treated as variables with special interpretations:

[Variable]
The current work space.

[Variable]
The current RuleSet.

[Variable]
The Task representing the current invocation of this RuleSet.

[Variable]
The RuleSet that invoked the current RuleSet, or if invoked otherwise.

[Variable]
Set to if some rule was applied in this cycle. (For use only in while-conditions).

The following reserved words are intended mainly for use in creating audit trails:

[Variable]
Variable bound to the object representing the rule itself.

[Variable]
Variable bound to the sequence number of the rule in a RuleSet.

[Variable]
Variable bound to the label of a rule or .

[Variable]
Variable bound a list of audit records supporting the instance variables mentioned
on the LHS of the rule. (Computed at run time.)

[Variable]
Variable bound to the object to which the reason record will be attached. (Computed
at run time.)

[Variable]
Variable bound to the name of the variable on which the reason will be attached as
a property.

As described later, literals can also refer to Interlisp functions, Loops objects, and message
selectors. They can also be used in strings and quoted constants.

The determination of the meaning of a literal is done at compile time using the declarations and syntax
of RuleSets. The characters used in literals are limited to alphabetic characters and numbers. The �rst
character of a literal must be alphabetic.

The syntax of literals also includes a compact notation for sending unary messages and for accessing

82

\

Reserved Words: read-only

self

rs

task

caller
NIL

ruleApplied
T

ruleObject

ruleNumber

ruleLabel
NIL

reasons

auditObject

auditVarName

Other Literals:

lispVarName

THE LOOPS MANUAL

instance variables of Loops objects. This notation uses . A compound literal is a literal
composed of multiple parts separated by a periods, colons, and commas.

11.3 Rule Forms

The quote sign is used to indicate constant literals:

In this example, the LHS is satis�ed if is non- , and the value of is 3, and the value of is exactly
the atom , the value of is the same as the value of , and the value of is the list

.

The double quote sign is used to indicate string constants:

In this example, the LHS is satis�ed if is non- , and the value of is 3, and the value of is
exactly the atom , the value of is the same as the value of , and the value of equal to the
string .

The literals and are interpreted as the Interlisp constants of the same name.

In this example, the function is called with the arguments , , and . Then the variable is set
to .

11.4 In�x Operators and Brackets

To enhance the readability of rules, a few in�x operators are provided. The following are in�x binary
operators in the rule syntax:

[Rule In�x Operator]
Addition.

[Rule In�x Operator]
Addition modulo 4.

[Rule In�x Operator]
Subtraction.

[Rule In�x Operator]
Subtraction modulo 4.

[Rule In�x Operator]
Multiplication.

83

compound literals

Quoted Constants:

a b=3 c=’open d=f e=’(This is a quoted expression) -> ...

a NIL b c
open d f e (This is a

quoted expression)

Strings:

IF a b=3 c=’open d=f e=="This is a string"
THEN (WRITE "Begin configuration task") ... ;

a NIL b c
open d f e

"This is a string"

Interlisp Constants: T NIL

a (Foo x NIL b) -> x_T ...;

Foo x NIL b x
T

+

++

-

--

*

In�x Operators and Brackets

[Rule In�x Operator]
Division.

[Rule In�x Operator]
Greater than.

[Rule In�x Operator]
Less than.

[Rule In�x Operator]
Greater than or equal.

[Rule In�x Operator]
Less than or equal.

[Rule In�x Operator]
� simple form of equals. Works for atoms, objects, and small integers.

[Rule In�x Operator]
. (Not .)

[Rule In�x Operator]
� long form of equals.

[Rule In�x Operator]
Member of a list. ()

In addition, the rule syntax provides two unary operators as follows:

[Rule Unary Operator]
Minus.

[Rule Unary Operator]
Not.

The precedence of operators in rule syntax follows the usual convention of programming languages. For
example

and

Brackets can be used to control the order of evaluation:

Whenever there is an ambiguity about the interpretation of a minus sign as
a unary or binary operator, the rule syntax interprets it as a binary minus. For example

In this example, the �rst and second minus signs are both treated as binary subtraction statements. That

84

/

>

<

>=

<=

=
EQ

~=
NEQ EQ

==
EQUAL

<<
FMEMB

-

~

1+5*3 = 16

[3 < 2 + 4] = T

[1+5]*3 = 18

Ambiguity of the minus sign:

a-b c d -e [-f] (g -h) (_ $Foo Move -j) -> ...

THE LOOPS MANUAL

is, the �rst three clauses are (1) , (2) and (3) . Because the rule syntax allows arbitary spacing
between symbols and there is no syntax to separate clauses on the LHS of a rule, the interpretation of
‘‘ ’’ is as a single clause (with the subtraction) instead of two clauses. To force the interpretation
as a unary minus operator, one must use brackets as illustrated in the next clause. In this clause, the
minus sign in the clause is treated as a unary minus because of the brackets. The minus sign in
the function call is treated as unary because there is no preceding argument. Similarly, the
in the message expression is treated as unary because there is no preceding argument.

11.5 Interlisp Functions and Message Sending

Calls to Interlisp functions are parenthesized with the function name as the �rst literal after the left
parenthesis. Each expression after the function name is treated as an argument to the function. For
example:

In this example, , , and are interpreted as the names of Interlisp functions. Since
the expression is surrounded by brackets instead of parentheses, it is recognized as meaning
minus as opposed to a call to the function with the argument minus . In the example above, the call
to the Interlisp function has four arguments: , , the value of the function call

, and .

The use of Interlisp functions is usually outside the spirit of the rule language. However, it enables the
use of Boolean expressions on the LHS beyond simple conjunctions. For example:

Loops classes and other named objects can be referenced by using
the dollar notation. The sending of Loops messages is indicated by using a left arrow. For example:

In the LHS, an message is sent to the object named . In the message expression
on the RHS, there is no dollar sign preceding . Hence, the message is sent to the object that is the
value of the variable .

For unary messages (i.e., messages with only the selector speci�ed and the implicit argument), a
more compact notation is available as described selow.

When a period is used as the separator in a compound literal, it indicates that a
unary message is to be sent to an object. (We will alternatively refer to a period as a .) For example:

In this example, the object to receive the unary message is referenced indirectly through the
instance variable in the work space. The left literal is the variable and its value must be a Loops
object at execution time. The right literal must be a method selector for that object.

The dot notation can be combined with the dollar notation to send unary messages to named Loops
objects. For example,

85

a-b c d-e

d -e

[-f]
(g -h) -j

a (Prime b) [a -b] -> c (Display b c+4 (Cursor x y) 2) ;

Prime Display Cursor
[a -b] a

b a b
Display b c+4 (Cursor

x y) 2

a (OR (NOT b) x y) z -> ... ;

Loops Objects and Message Sending:

IF cell_(_ $LowCell Occupied? ’Heavy)
THEN (_ cell Move 3 ’North);

Occupied? LowCell
cell

cell

self

Unary Message Sending:
dot

tile.Type=’BlueGreenCross command.Type=’Slide4 -> ... ;

Type tile
tile

Variables and Properties

In this example, a unary message is sent to the Loops object whose name is .

The dot notation can also be used to send a message to the work space of the RuleSet, that is, .
For example, the rule

would cause a message to be sent to . This is an abbreviation for

11.6 Variables and Properties

When a single colon is used in a literal, it indicates access to an instance variable of an object. For
example:

In this example, access to the Loops object is indirect in that it is referenced through an instance variable
of the work space. The left literal is the variable , and its value must be a Loops object when
the rule is executed. The right literal must be the name of an instance variable of that object.
The compound literal refers to the value of the instance variable of the object in the
instance variable .

The colon notation can be combined with the dollar notation to access a variable in a named Loops
object. For example,

refers to the variable of the object whose Loops name is .

A double colon notation is provided for accessing class variables. For example

In this example, is a class variable of the object bound to . is a class
variable of .

A colon- comma notation is provided for accessing property values of class and instance variables. For
example

In the �rst clause, is an instance variable of the work space and is a property of
that variable. The interpretation of the second clause is left to right as usual: (1) the object that is the
value of the variable is retrieved, and (2) the property of the variable of that
object is retrieved. For properties of class variables

86

$Tile.Type=’BlueGreenCross ...

Type Tile

self

IF scale>7 THEN .DisplayLarge;

DisplayLarge self

IF scale>7 THEN self.DisplayLarge;

tile:type=’BlueGreenCross command:type=Slide4 -> ... ;

tile
type

tile:type type
tile

$TopTile:type=’BlueGreenCross ...

type TopTile

truck::MaxGas<45 ::ValueAdded>600 -> ... ;

MaxGas truck ValueAdded
self

wire:,capacitance>5 wire:voltage:,support=’simulation -> ...

wire capacitance

wire support voltage

::Wire:,capacitance>5 node::Voltage:,support=’simulation -> ...

THE LOOPS MANUAL

In the �rst clause, is a class variable of the work space and is a property of that
variable. In the second clause, is an instance variable bound to some object. is a class
variable of that object, and is a property of that class variable.

The property notation is illegal for ruleVars and lispVars since those variables cannot have properties.

11.7 Perspectives

* * * Not implemented yet in the rule language * * *

In many cases it is useful to organize information in terms of multiple points of view. For example,
information about a man might be organized in terms of his role as a , as an , and as
a . Each point of view, called a , contains information for a di�erent purpose. The
perspectives are related to each other in the sense that they collectively provide information about the
same object. As described in the Loops manual, Loops supports this organizational metaphor by providing
special mixin classes called and .

Loops perspectives can be accessed in the rule language by using a comma notation. In the following
rule, the variable is bound to an object with three perspectives: ,

, and . The rule accesses the variable of the object that is the
perspective.

In this syntax, the term before the comma names a variable, and the term after the comma is the name
of the perspective.

11.8 Computing Selectors and Variable Names

The short notations for instance variables, properties, perspectives, and unary messages all show the
selector, variable, and perspective names in the object.

For example,

refers to the instance variable of the object bound to the variable . In Interlisp terminology,
this implies implicit quoting of the name of the instance variable ().

In some applications it is desired to be able to compute the names, For this, the Loops rule language
provides analogous notations with an added exclamation sign. After the exclamation sign, the interpretation
of the variable being evaluated starts over again. For example

87

wire capacitance
node Voltage

Support

father employee
traveler perspective

perspectives nodes

washingMachine commodity
electrical cleaning voltage
electrical

IF washingMachine,electrical:voltage<100 THEN

as they actually appear

.
:
::
: :,
,

(_)

apple:flavor

flavor apple
flavor

objectselector
objectivName
object cvName
objectvarname propName
objectperspName

objectselectorarg1 arg2

Recursive Compound Literals

refers to the same thing as if the Interlisp variable is bound to . The fact that
is a Lisp variable is indicated by the backSlash. If is an instance variable of or a temporary

variable, we could use the notation:

If is a class variable of , we could use the notation:

All combinations are possible, including:

11.9 Recursive Compound Literals

Multiple colons or periods can be used in a literal, For example:

means to (1) get the object that is the value of , (2) get the object that is the value of the instance
variable of , and �nally (3) get the value of the instance variable of that object.

Similarly, the notation

means to get the variable of the object returned after sending a message to the object that is the
value of the variable . Again, the operations are carried out left to right: (1) the object that is the value
of the variable is retrieved, (2) it is sent a message which must return an object, and then (3) the
value of the variable of that object is retrieved.

Compound literal notation can be nested arbitrarily deeply.

11.10 Assignment Statements

An assignment statement using a left arrow can be used for setting all kinds of variables. For example,

88

apple:!\x

apple:flavor x flavor
x x self

apple:!x

x self

apple:!::x

.!

.!\

.!::
:!
::!
:! :,
,!

(_!)

a:b:c

a b
a c

a.b:c

c b
a

a b
c

x_a;

object selector
object selector
object selector
object ivName
object cvName
object varname propName
object perspName

objectselectorarg1 arg2

THE LOOPS MANUAL

sets the value of the variable to the value of . The same notation works if is a task variable,
rule variable, class variable, temporary variable, or work space variable. The right side of an assignment
statement can be an expression as in:

The assignment statement can also be used with the colon notation to set values of instance variables of
objects. For example:

In this example, �rst the object that is the value of is computed, then the value of its instance variable
is set to .

Assignment statements can also be used to set property values as in:

or variables of perspectives as in:.

Assignment statements can be nested as in

This statement sets the values of , , and the instance variable of to . The value of an assignment
statement itself is the new assigned value.

11.11 Meta-Assignment Statements

Meta- assignment statements are assignment statements used for specifying rule descriptions and audit
trails. These statements appear in the MD part of rules.

The default interpretation of meta- assignment statements for undeclared variables is as audit
trail speci�cations. Each meta- assignment statement speci�es information to be saved in audit records
when a rule is applied. In the following example from �gure 19, the audit record must have variables
named and :

In this example, the RHS of the rule assigns the value of the work space instance variable
to if the conditions of the rule are satis�ed. In addition, if the RuleSet was compiled in
mode, then during RuleSet execution an audit record is created as a side-e�ect of the assignment. The
audit record is attached to the property of the suitability variable. It has instance variables

and .

In general, an audit description consists of a sequence of meta- assignment statements. The assignment
variable on the left must be an instance variable of the audit record. The class of the audit record is
declared in the declaration of the RuleSet. The expression on the right is in terms of the

89

x a x

x_a*b + 17*(LOG d);

y:b_0 ;

y
b 0

Properties and perspectives:

box:x:,origin_47 fact:,reason_currentSupport;

washingMachine,electrical:voltage_110;

Nesting:

a_b_c:d_3;

a b d c 3

Audit Trails:

basis cf

{(basis_’Fact cf_1)}
IF buyer:familySize>2 machine:capacity<20
THEN suitability_’Poor;

suitability
’Poor audit

reason
basis cf

Audit Class

Push and Pop Statements

variables accessible by the RuleSet. If the conditions of a rule are satis�ed, an audit record is instantiated.
Then the meta- assignment statements are evaluated in the execution context of the RuleSet and their
values are put into the audit record. A separate audit record is created for each of the object variables
that are set by the rule.

Meta- assignment statements can also be used to set variables in the objects that represent
individual rules. This interpretation of meta- assignment statements is indicated when the assignment
variable of the meta- assignment statement has been declared to be a rule variable. For example, if
the variable in the previous example was declared to be a rule variable, then the meta- assignment
statement would set the instance variable of the rule object to at compilation time, instead of
saving a in every audit record for every rule application at execution time. The value on the right
hand side of the meta- assignment statement for a rule variable must be known at compile time.

11.12 Push and Pop Statements

A compact notation is provided for pushing and popping values from lists. To push a new value onto a
list, the notation is used:

To pop an item from a list, the notation is used:

As with the assignment operator, the push and pop notation works for all kinds of variables and properties.
They can be used in conjunction with in�x operator for membership testing.

11.13 Invoking RuleSets

One of the ways to cause RuleSets to be executed is to invoke them from rules. This is used on the LHS
of rules to express predicates in terms of RuleSets, and on the RHS of rules to express actions in terms
of RuleSets. A short double- dot syntax for this is provided that invokes a RuleSet on a work space:

In this example, the RuleSet bound to the variable is invoked with the value of the variable
as its work space. The value of the invocation expression is the value returned by the RuleSet. The
double- dot syntax can be combined with the dollar notation to invoke a RuleSet by its Loops name, as
in

which invokes the RuleSet object that has the Loops name .

This form of RuleSet invocation is like subroutine calling, in that it creates an implicit stack of arguments
and return addresses. This feature can be used as a mechanism for of RuleSets as in:

90

Rule Descriptions:

cf
cf .5

cf

_+

myList_+newItem;

focus:goals_+newGoal;

_-

item_-myList;

nextGoal_-focus:goals;

<<

Rs1..ws1

Rs1 ws1

$MyRules..ws1

MyRules

meta-control

THE LOOPS MANUAL

In this example, two ‘‘meta-rules’’ are used to control the invocation of specialized RuleSets for diagnosing
overloads or short circuits.

11.14 Transfer Calls

An important optimization in many recursive programs is the elimination of tail recursion. For example,
suppose that the RuleSet A calls B, B calls C, and C calls A recursively. If the �rst invocation of A must
do some more work after returning from B, then it is useful to save the intermediate states of each of the
procedures in frames on the calling stack. For such programs, the space allocation for the stack must be
enough to accommodate the maximum depth of the calls.

There is a common and special case, however, in which it is unnecessary to save more than one frame
on the stack. In this case each RuleSet has no more work to do after invoking the other RuleSets, and
the value of each RuleSet is the value returned by the RuleSet that it invokes. RuleSet invocation in
this case amounts to the evaluation of arguments followed by a direct transfer of control. We call such
invocations transfer calls.

The Loops rule language extends the syntax for RuleSet invocation and message sending to provide this
as follows:

The RuleSet is invoked on the work space . With transfer calls, RuleSet invocations can be
arbitrarily deep without using proportional stack space.

11.15 Task Operations

Tasks in the Loops rule language represent the invocation of RuleSets. They provide a mechanism for
specifying and controlling processes in terms of tasks that can be created, started, suspended, and restarted.
They also provide a handle for specifying concurrent processing.

A Task records the work space of a RuleSet (), the value returned (), and two special variables
called the and . A Task can also have RuleSet- speci�c instance variables called task
variables for saving process information.

A Task is represented as a Loops object and can be created and associated with a work
space as follows:

The argument is optional. Specialized versions of will eventually be available, such as
, Information about a Task is stored in its instance variables, and can be accessed like other

Loops variables:

91

IF breaker:status=’Open
THEN source_$OverLoadRules..washingMachine;

IF source=’NotFound
THEN $ShortCircuitRules..washingMachine;

RS..*ws

RS ws

ws value
status reason

Creating Tasks:

Task6_(_ $Task New)

Task
RemoteTask

RuleSetworkSpace

workSpace

Stop Statements

The primary operations on Tasks are starting them and waiting for them to �nish execution.
These operations have been designed to work when Loops is extended for concurrent processing. The
operations for starting tasks are as follows:

[Function]
[Function]
[Function]

Each of the start operations takes an argument which is either a Task object,
or a list of Task objects. A Task cannot be started if it is already running, as
indicated by its variable. iterates through its and starts
the �rst Task that is not already running. The value of is the Task that
was started. starts all of the tasks, and does not return control until
all of the tasks have been started. is like except
that none of the tasks are started until all of them are ready. The synchronization
aspect of is important for avoiding Task deadlock situations in
programs that share Tasks as resources. (It avoids the di�culties associated with
partial allocation of Tasks when a complete set of Tasks is needed.)

The following operations are provided for waiting for Tasks:

[Function]
[Function]

iterates through its and returns as its value the �rst Task that is not
running. returns when all of its Tasks have �nished running The value
returned by the RuleSet that ran in a Task can be obtained from the Task object, as
in:

In many cases, the speci�cation of Task control can be simpli�ed by using a operation
that combines the start and wait operations. The run operations are as follows:

[Function]
[Function]
[Function]

goes through its arguments left to right and selects the �rst Task that is not
running. It starts that Task and then waits for it to complete. The value of
is the Task that was executed. starts all of the Tasks running and then
waits for them all to complete. waits for all of the Tasks to become
available, runs them all, and then waits for them all to complete.

11.16 Stop Statements

At invocation, the in the Task is set to . If a RuleSet ends normally, the in
the Task is set to and the saved in the RuleStep is . Other terminations can be

92

Task6:status
Task6:reason
Task6:ws
Task6:value

Starting Tasks:

(Start1)
(StartAll)
(StartAll)

status Start1

StartAll
StartTogether StartAll

StartTogether

Waiting for Tasks:

(Wait1)
(WaitAll)

Wait1
WaitAll

task6:value.

Running Tasks: run

(Run1)
(RunAll)
(RunTogether)

Run1
Run1

RunAll
RunTogether

status Running status
Done reason Success

taskList
taskList
taskList

taskList

taskList
Start1

taskList
taskList

taskList

taskList
taskList

taskList

THE LOOPS MANUAL

speci�ed in a Stop statement as follows:

[RuleSet Statement]
is the value to be returned by the RuleSet, characterizes the termination

of the Task, and is a symbolic reason for the status. Typical examples of the
use of Stop are:

where means that the RuleSet has failed, and means that the
RuleSet has stopped but may be re-invoked. Particular applications will probably
develop standardized notations for status and reason. Values for these can be Interlisp
atoms or Loops objects. The arguments and are optional in a
statement.

93

(Stop)

(Stop ’Aborted)
(Stop ’Suspended)

Aborted Suspended

Stop

valuestatusreason
value status

reason

value reason
value reason

status reason

12 USING RULES IN LOOPS

The Loops rules language is supported by an integrated programming environment for creating, editing,
compiling, and debugging RuleSets. This section describes how to use that environment.

12.1 Creating RuleSets

RuleSets are named Loops objects and are created by sending the class a message as
follows:

After entering this form, the user will be prompted for a Loops name as

Afterwards, the RuleSet can be referenced using Loops dollar sign notation as usual. It is also possible
to include the RuleSet name in the message as follows:

12.2 Editing RuleSets

A RuleSet is created empty of rules. The RuleSet editor is used to enter and modify rules. The editor
can be invoked with an message (or shorthand message) as follows:

If a RuleSet is installed as a method of a class, it can be edited conveniently by selecting the option
from a browser containing the class. Alternatively, the function or message can be
used:

[Message]

[Function]

Both approaches to editing retrieve the source of the RuleSet and put the user into the TTYIN editor,
treating the rule source as text.

Initially, the source is a template for RuleSets as follows:

94

RuleSet New

(_ $RuleSet New)

RuleSet name:

New

(_ $RuleSet New NIL)

EditRules ER

(_ EditRules)
(_ ER)

EM
EM EditMethod

(_ EditMethod)

(EM)

RuleSet Name: RuleSetName;
WorkSpace Class: ClassName;
Control Structure: doAll;
While Condition: ;
Audit Class: StandardAuditRecord;
Rule Class: Rule;

RuleSetName

RuleSetName

RuleSet
RuleSet

ClassName selector

ClassName selector

THE LOOPS MANUAL

Figure 22. Initial template for a RuleSet. The rules are entered after the comment at the
bottom. The declarations at the beginning are �lled in as needed and super�uous declarations
can be discarded.

The user can then edit this template to enter rules and set the declarations at the beginning. In the current
version of the rule editor, most of these declarations are left out. If the user chooses the
option in the RuleSet editor menu, the declarations and default values will be printed in full.

The template is only a guide. Declarations that are not needed can be deleted. For example, if there
are no temporary variables for this RuleSet, the declaration can be deleted. If the
control structure is not one of the while control structures, then the declaration can
be deleted. If the compiler option is not chosen, then the declaration can be deleted.

When the user leaves the editor, the RuleSet is compiled automatically into a LISP function.

If a syntax error is detected during compilation, an error message is printed and the user is given another
opportunity to edit the RuleSet.

12.3 Copying RuleSets

Sometimes it is convenient to create new RuleSets by editing a copy of an existing RuleSet. For this
purpose, the method is provided as follows:

[Message]

This creates a new RuleSet by some of the information from the pespectives of the old RuleSet. It also
updates the source text of the new RuleSet to contain the new name.

12.4 Saving RuleSets on LISP Files

RuleSets can be saved on LISP �les just like other Loops objects. In addition, it is usually useful to save
the LISP functions that result from RuleSet compilation. In the current implementation, these functions
have the same names as the RuleSets themselves. To save RuleSets on a �le, it is necessary to add two
statements to the �le commands for the �le as follows:

where is a LISP variable whose value is a list of the names of the RuleSets to be

95

Task Class: ;
Meta Assignments: ;
Temporary Vars:;
Lisp Vars: ;
Debug Vars: ;
Compiler Options: ;

(* Rules for whatever. Comment goes here.)

EditAllDecls

Temporary Vars
While Condition

A Audit Class

CopyRules

(_ CopyRules)

(FNS * MyRuleSetNames)
(INSTANCES * MyRuleSetNames)

MyRuleSetNames

oldRuleSet newRuleSetName

Printing RuleSets

saved.

12.5 Printing RuleSets

To print a RuleSet without editing it, one can send a or message as follows:

[Message]
[Message]

A convenient way to make hardcopy listings of RuleSets is to use the function . The
�les will be printed on the as is standard in Interlisp- D. can
be given three kinds of arguments as follows:

In the case, all of the RuleSets that have been installed as methods of the class will be printed.
In the last case, all of the RuleSets stored in the �le will be printed.

12.6 Running RuleSets from Loops

RuleSets can be invoked from Loops using any of the usual protocols.

The way to invoke a RuleSet from Loops is to use the function:

��� [Function]
is the Loops object to be used as the work space. This is ‘‘procedural’’ in

the sense that the RuleSet is invoked by its name. can be either a RuleSet
object or its name.

When RuleSets are installed as methods in Loops classes, they can be invoked
in the usual way by sending a message to an instance of the class. For example, if is
a class with a RuleSet installed for its method, the RuleSet is invoked as follows:

When RuleSets are installed in active values, they are invoked by side-e�ect as a
result of accessing the variable on which they are installed.

12.7 Installing RuleSets as Methods

RuleSets can also be used as methods for classes. This is done by installing automatically- generated
invocation functions that invoke the RuleSets. For example:

96

PPRules PPR

(_ PPRules)
(_ PPR)

ListRuleSets
DEFAULTPRINTINGHOST ListRuleSets

(ListRuleSets)
(ListRuleSets)
(ListRuleSets)
(ListRuleSets)

Procedure-oriented Protocol: RunRS

(RunRS)

Object-oriented Protocol:
WashingMachine

Simulate

(_ washingMachineInstance Simulate)

Data-oriented Protocol:

[DEFCLASS WashingMachine
(MetaClass Class doc (* comment) ...)

RuleSet
RuleSet

RuleSetName
ListOfRuleSetNames
ClassName
FileName

ClassName

RuleSetworkSpacearg2 argN
workSpace

RuleSet

THE LOOPS MANUAL

When an instance of the class receives a message, the RuleSet
will be invoked with the instance as its work space.

To simplify the de�nition of RuleSets intended to be used as Methods, the function (for ‘‘De�ne
Rule Set as a Method’’) is provided:

[Function]
If the optional argument is given, installs that RuleSet as a
method using the and . It does this by automatically generating
an installation function as a method to invoke the RuleSet. automatically
documents the installation function and the method.

If the argument is , then creates the RuleSet object, puts
the user into an Editor to enter the rules, compiles the rules into a LISP function,
and installs the RuleSet as before.

12.8 Installing RuleSets in ActiveValues

RuleSets can also be used in data- oriented programming so that they are invoked when data is accessed.
To use a RuleSet as a , the function is used with the property as follows:

is a Loops system function that can be used in an active value to invoke a RuleSet in response
to a Loops get operation (e.g.,) is performed. It requires that the name of the RuleSet be
found on the property of the item. activates the RuleSet using the local state as the
work space. The value returned by the RuleSet is returned as the value of the get operation.

To use a RuleSet as a , the function is used with the property as follows:

is a function that can be used in an active value to invoke a RuleSet in response to a Loops put
operation (e.g.,). It requires that the name of the RuleSet be found on the property of
the item. activates the RuleSet using the from the put operation as the work space.
The value returned by the RuleSet is put into the local state of the active value.

97

...
(InstanceVariables (owner ...))
(Methods

(Simulate RunSimulateWMRules)
(Check RunCheckWMRules

doc (* Rules to Check a washing machine.))
...]

WashingMachine Simulate
SimulateWMRules

DefRSM

(DefRSM)
DefRSM

DefRSM

NIL DefRSM

RSGetFn RSGet

...
(InstanceVariables

(#(RSGetFn NIL) RSGet))
...

RSGetFn
GetValue

RSGet RSGetFn

RSPutFn RSPut

...
(InstanceVariables

(#(NIL RSPutFn) RSPut))
...

RSPutFn
PutValue RSPut

RSGetFn

ClassName SelectorRuleSetName
RuleSetName

ClassName Selector

RuleSetName

getFn

m yVar m yVal RuleSetName

putFn

m yVar m yVal RuleSetName

newValue

Tracing and Breaking RuleSets

12.9 Tracing and Breaking RuleSets

Loops provides breaking and tracing facilities to aid in debugging RuleSets. These can be used in
conjunction with the auditing facilities and the rule executive for debugging RuleSets. �gure 23 summarizes
the compiler options for breaking and tracing:

Trace if rule is satis�ed. Useful for creating a running display of executed
rules.

Trace if rule is tested.

Break if rule is satis�ed.

Break if rule is tested. Useful for stepping through the execution of a
RuleSet.

Figure 23. Compiler options for Breaking and Tracing the execution of RuleSets.

Specifying the declaration in a RuleSet indicates that tracing information
should be displayed when a rule is satis�ed. To specify the tracing of just an individual rule in the
RuleSet, the meta- descriptions should be used as follows:

This tracing speci�cation causes Loops to print a message whenever the LHS of the rule is tested, or
the RHS of the rule is executed. It is also possible to specify that the values of some variables (and
compound literals) are to be printed when a rule is traced. This is done by listing the variables in the

declaration in the RuleSet:

This will print the values of , , and when any rule is traced or broken.

Analogous speci�cations are provided for breaking rules. For example, the declaration
indicates that Loops is to enter the rule executive (see next section) after the LHS is

satis�ed and before the RHS is executed. The rule- speci�c form:

indicates that Loops is to break before the execution of a particular rule.

Sometimes it is convenient in debugging to display the source code of a rule when it is traced or broken.
This can be e�ected by using the compiler option as in

which prints out the source of a rule when the LHS of the rule is tested and

which prints out the source of a rule when the LHS of a rule is satis�ed, and before entering the break.

98

T

TT

B

BT

Compiler Options: T;

T

{T} IF THEN ;

Debug Vars

Debug Vars: a a:b a:b.c;

a a:b a:b.c

Compiler
Options: B;

{B} IF THEN ;

PR

Compiler Options: T PR;

Compiler Options: B PR;

cond action

cond action

THE LOOPS MANUAL

12.10 The Rule Exec

A Read- Compile- Evaluate- Print loop, called the rule executive, is provided for the rule language. The rule
executive can be entered during a break by invoking the LISP function . During RuleSet execution,
the rule executive can be entered by typing (<control>-f) on the keyboard.

On the �rst invocation, prompts the user for a window. It then displays a stack of RuleSet invocations
in a menu to the left of this window in a manner similar to the Interlisp- D Break Package. Using the left
mouse button in this window creates an Inspector window for the work space for the RuleSet. Using the
middle mouse button pretty prints the RuleSet in the default prettyprint window.

In the main rule executive window, prompts the user with ‘‘ ’’. Anything in the rule language
(other than declarations) that is typed to this executive will be compiled and executed immediately and
its value printed out. For example, a user may type rules to see whether they execute or variable names
to determine their values. For example:

this example shows how to get the value of the variable of the object. If the
value of a variable was set by a RuleSet running with auditing, then a question can be typed to the
rule executive as follows:

The rule executive may be exited by typing .

12.11 Auditing RuleSets

Two declarations at the beginning of a RuleSet a�ect the auditing. Auditing is turned on by the compiler
option . The simplest form of this is

The declaration indicates the class of the audit record to be used with this RuleSet if it
is compiled in mode.

A declaration can be used to indicate the audit description to be used for the rules
unless overridden by a rule- speci�c meta- assignment statement in braces.

99

RE
^f

RE

RE re:

re: trafficLight:color
Red
re:

color trafficLight
why

re: why trafficLight:color

IF highLight:color = ’Green farmRoadSensor:cars timer.TL
THEN highLight:color _ ’Yellow timer.Start;

Rule 3 of RuleSet LightRules
Edited: Conway "13-Oct-82"

re:

OK

A

Compiler Options: A;

Audit Class
audit

Audit Class: StandardAuditRecord;

Meta Assignments

Auditing RuleSets

100

Meta Assignments: (cf_.5 support_’GroundWff);

13 USING THE LOOPS SYSTEM

Loops is integrated with Interlisp- D, and makes use of many of its advanced features. In order to run
Loops one must have the appropriate version of the Interlisp- D system and the corresponding versions of
a set of LispUsers packages. The instructions for building the system as of February 1, 1983 are contained
in a document of export instructions, currently �led on: .

13.1 Starting up the System

At PARC, we maintain two version of Loops most of the time, a current system which is a released
version, an another which is the system under development. There are two command �les:
and which start up a Lisp and fetch the appropriate sysout from a server.

In the version of the system as loaded at PARC, we include the following Lispusers packages: ,
, , , ,

The �rst four packages must be included in any loadup of Loops; the second are ones we �nd useful.
Documentation of these facilities are to be found on directories on various servers.

13.2 The Loops Screen Setup

The screen as one sees it set up contains the following windows(top to bottom, left to right):

� Small black window in upper left. Prompts for what will happen in various mouse
interactions appear here. Also various noti�cations of directory attachment changes. Labelled with the
date of the Lisp system loadup and of the Loops system loadup.

� Normal interaction window. Labelled with the currently connected directory.

� Below the EditCommands menu is a title icon of the UserExec
window. When this is expanded it �lls the bottom half of the screen. It can be used for TTY interactions.
It can be made the primary window for such interactions by calling the function . Typing when in
that window returns you to the previous . This window is also used as the default
place to prettyprint class and instance descriptions.

There are three icons on the right half of the screen.

� This circular icon is active and if buttoned gives the user the option of setting up the
screen again (useful if it has been cluttered with many windows), and of producing a graph browser of
the current classes in the system.

� This icon will expand to give a History menu list. See the write up on .

� This window is shown only by a title icon in the upper right. It expands when
necessary, and takes up the entire right half of the screen. It shrinks automatically when is
selected from the EditCommand menu. It can be expanded to allow you to look at the last expression
being edited.

101

{MAXC}<LOOPS>EXPORTINSTRUCTIONS.TXT

loops.cm
newLoops.cm

TTY
TMENU GRAPHER HISTMENU SINGLEFILEINDEX PATCHUP

<LISPUSERS>

Prompt Window

Top Level Window

User Exec � PPDefault Window

UE OK
TTYDIPLAYSTREAM

Loops Icon

History Icon <LISPUSERS>HISTMENU.TTY

Edit Work Area
DoneEdit

Using the Browser

13.3 Using the Browser

Two special classes in the system are used to build browsers based on the grapher package. The general
class is called , and the particular subClass that is used by the system is called

. We will �rst describe how to use the class browser which appears when requested by
buttoning in the Loops icon. We then describe how to build your own browser.

13.3.1 Using the Class Browser

The items in the class browser can be buttoned with either the left or middle button. When buttoned a
pop up menu will appear, and the user can make a selection of one of these.

If a browser menu selection is followed by an asterisk (i.e.,), this means that it has a number
of sub-commands. Selecting such a selection with the middle mouse button will present another pop- up
menu of sub-commands. Selecting a ‘‘starred’’ selection with the left mouse button will execute the
‘‘default’’ sub- command. The left and middle mouse buttons act the same when selecting an un- starred
selection.

The left button menu selections are:

Prints a summary of information about the selected class in the ‘‘User Exec �
PPDefault Window’’. If selected with the middle mouse button, another pop- up
menu gives a choice of what to print:

PrettyPrint Class de�nition.

PrettyPrint Class de�nition including inherited information.

Same as without seeing methods.

Puts up a pop- up menu of all of the methods de�ned in the class,
and prettyprints the de�nition of the selected one.

Prints a summary of all of the information (instance variables, class
variables, and methods) for the selected class

If is selected with the left button, is the default sub-
command that is executed.

Prints documentation for Classes, IVs, CVs, or Methods. If selected with the middle
mouse button, another pop- up menu gives a choice of what to print:

Prints Class doc information for selected class.

Puts up a pop- up menu of all of the methods de�ned in the class,
and prints the doc information of the selected one. This pop- up
menu is redisplayed until the user buttons outside the menu, so that
the user can see the doc information from multiple methods.

Same as , except that it prints the doc information for

102

LatticeBrowser
ClassBrowser

Print*

Print*

PP

PP!

PPV! PP!

PPM

PrintSummary

Print* PrintSummary

Doc*

ClassDoc

MethodDoc

IVDoc MethodDoc

THE LOOPS MANUAL

instance variables of the class.

Same as , except that it prints the doc information for
class variables of the class.

If is selected with the left button, is the default sub- command that
is executed.

This command is used to �nd out which super class of the selected class a particular
IV, CV, or Method was inherited from. When selected with the left or middle
mouse button, a pop- up menu is displayed with the elements , , .
Whichever element is selected, a pop- up menu of the class’ instance variables (or
class variables or methods) is displayed. When one of these is selected, the super
class from which that IV, CV or Method was inherited is �ashed, and its nameis
printed in the Prompt Window. This �nal pop- up menu is redisplayed until the user
buttons outside the menu, so that the user select multiple IVs (or CVs or methods).

Unreads into the typein bu�er. This is useful when typing messages to
particular classes.

The middle button menu selections are:

Edit a method in the selected class. If selected with the middle mouse button, puts
up another pop- up menu:

Puts up a pop- up menu of all of the methods de�ned in the class,
and envokes the editor on the selected method.

Same as , except that includes all inherited methods in the list.

If is selected with the left button, is the default sub- command that is
executed.

Add a new method, a specialized class, an IV, or a CV to the selected class, or make
a new instance. If selected with the middle mouse button, puts up another pop- up
menu:

Creates a new subclass of the selected class, giving it a name typed
by the user.

De�ne a new method to the selected class. Asks the user (in the
prompt window) to type the name of a selector, and envokes the
editor on a dummy de�nition for that new method.

Installs a RuleSet as a method in a class. Asks the user (in the
prompt window) to type the name of a selector, and invokes the
RuleSet editor. When the user exits the RuleSet editor, the RuleSet
is compiled and installed as the method in the class.

Asks the user to type an instance variable name, and adds it to the
selected class.

Asks the user to type a class variable name, and adds it to the

103

CVDoc MethodDoc

Doc* ClassDoc

WhereIs

IVS CVS Methods

Unread $

EM*

EM

EM! EM

EM* EM

Add*

Specialize

DefMethod

DefRSM

AddIV

AddCV

className

Using the Class Browser

selected class.

Sets the Interlisp variable to a new instance of the selected class.

If is selected with the left button, is the default sub- command
that is executed.

Delete a method, IV, or CV from the selected, or the whole selected class. Puts
up a pop- up menu with elements , , , and . If one of the
�rst three is selected, a menu of the selected class’ instance variables, class variables,
or methods is given, and the selected one is deleted from the class. If is
selected, the whole class is deleted.

Move or copy an IV, CV, method, or super from the selected class to another class.
The destination class is speci�ed by using the command, described below.
If selected with the middle mouse button, puts up another pop- up menu:

Puts up a pop- up menu with elements , , , and
. Selecting one of these will put up still another menu,

listing the items of that type. Selecting one of these items will cause
it to be moved to the destination class speci�ed with .

The same as , except that the selected item is copied to the
destination class.

If is selected with the left button, is the default sub- command that
is executed.

Draws a box around the selected class node. If the selected class is already boxed, the
box is removed. If any other class node has been boxed, that box is removed. This
command is used in conjunction with the command to specify a ‘‘destination
class’’, as described above.

Renames some part of the selected class. Puts up a pop- up menu with elements
, , , and . Selecting one of these will put up still another

menu, listing the items of that type. Selecting one of these items will cause it to be
renamed to a name typed in by the user.

Edit some part of the selected class. If selected with the middle mouse button, puts
up another pop- up menu:

Calls the editor to edit the selected class.

Calls the editor to edit the instance variables of the selected class.

Calls the editor to edit the class variables of the selected class.

Call the Interlisp inspector to inspect the selected class.

If is selected with the left button, is the default sub- command
that is executed.

Pressing either the left or middle mouse button in the title region at the top of the class browser brings

104

New IT

Add* DefMethod

Delete
IVs CVs Methods Class

Class

Move*
BoxNode

MoveTo IVS CVS Methods
Supers

BoxNode

CopyTo MoveTo

Move* MoveTo

BoxNode

Move*

Rename*
IVS CVS Methods Class

Edit*

EditObject

EditIVs

EditCVs

Inspect

Edit* EditObject

THE LOOPS MANUAL

up another pop- menu, containing commands which deal with the entire browser. The commands are:

Recompute class lattice from the ‘‘starting list’’ of objects (described below).

Add named item to starting list for browser.

Delete named item from starting list for browser.

Store this browser object in the Interlisp variable .

To create a Class Browser for a small set of classes, send the message to the class :

This displays the class inheritance lattice starting with the ‘‘starting list’’ of objects .
can be a single className or class, or a list of these. A new browse window will be created which contains
nodes for each class mentioned, and (recursively) all subclasses of those classes in the current environment
which have been accessed. If is given, then it will be used as the display window.

13.3.2 Building Your Own Browser

* * * The following information is incorrect. If you want to build your own browser, try poking around
the class . Good Luck. * * *

The general class which supports browsing is . The specialization is
used to generate the Class Inheritance Lattice Browser that we all use. provides an
example of how to specialize for your own use. The following is a brief description
of the messages.

If is an instance of (any subclass of) then:

will create a graph of elements starting with those in . should be a list of
objectNames or objects. If is single item, it will be treated as list of that item. The browser
will show a lattice of elements determined by a sub relation implemented by the
message . For each object, should produce a list of objects
which are the ‘‘subs’’ of , and should produce a string to be
used in the graph as a label. The method in just obtains the value of
the instance variable , if it exists in that object (no error otherwise). The method in

�nds the name of the object.

Each node in the browser graph has actions associated with the left and middle mouse buttons. When
either button is clicked over a node, a menu of actions is brought up. The items on the action menu are
determined by the class variables and .

The value obtained by selecting the menu item will be used as a message selector for an action. The
message will be sent either to the browser or to the object itself. Selectors on the class variable

, or those not understood by the object will be sent in a message to the browser, with
arguments of the object and objectName. Otherwise, the object will be sent that selector as a unary
message (no arguments).

105

Recompute

AddRoot

DeleteRoot

SaveInIT IT

Show ClassBrowser

(_New ($ ClassBrowser) Show)

LatticeBrowser

LatticeBrowser ClassBrowser
ClassBrowser

LatticeBrowser
LatticeBrowser

($ Lb) ($ LatticeBrowser)

(_ ($ Lb) Show)

LatticeBrowser
GetSub (_ ($ Lb) GetSubs)

(_ ($ Lb) GetLabel)
GetSubs LatticeBrowser

sub GetLabel
LatticeBrowser

LeftButtonItems MiddleButtonItems

LocalCommands

browseListwindow

browseListbrowseList

window

browseList

browseList browseList
browseList

object
object object

Building Your Own Browser

For example, assume that the value of was and the value
of was , and is not understood by selected in the browser.
By buttoning (or) in the action menu, would be sent the message (or). Selecting

would result in sending the message .

A responds to by sending the object the message
. The latter is necessary to allow the mouse to continue to work in the process world. If might

have understood the message , then that atom should appear on the list
to ensure that the browser is sent the message rather than .

As usual with menus, items need not be atoms. If an item is a list, EVAL of the second element is
returned. Thus one might have the element on a menu item list,
so the string will be displayed in the Menu, and the message sent when
that item is selected.

If the result of selecting an item returns a list, the of the list is treated as the selector, and is
an extra argument to send. For example, in the class browser contains an item

. Selecting in the menu causes the following message
to be sent:

� If one selects a node with the or mouse button while holding down
the left shift key, then a message is sent to the browser:

The default behavior for is to send to the object, and for to
send to the browser.

� Holding the key down when selecting allows one to move the selected node in
the browser window. This does not a�ect the underlying structure, just the display.

� One can obtain a browser display with a speci�ed title or in an existing
window. If one speci�es in

then if is a string, it will be used as the title of a new window for the browser. If
is a window, then that window will be used as is. If = , then the

title is obtained from the instance variable , and a new window is created and stored in the
instance variable . If the instance variable = (the default) then GRAPHER will
align the graph to the top of the window. The font used for labels is found in the instance variable

. At any time, the last object selected is found in .

To specialize a browser, de�ne the method for . If the browser is not using
object names for its labels, specialize . Set up the class variables ,

and . Specialize and
if desired.

[Class]

IV’s:

106

LeftButtonItems (PP PP! EditObject)
LocalCommands NIL EditObject

PP PP! PP PP!
EditObject (_ ($ Lb) EditObject (GetName))

LatticeBrowser EditObject Edit in a TTY
process

EditObject LocalCommands

("Edit With EE" ’EEObject)
"Edit With EE" EEObject

CAR CDR
MiddleButtonItems

(EditIVs ’(EditObject -2 EE)) EditIVs
(_ ($ Lb EditObject (-2 EE))

Shifted Selections LEFT MIDDLE

(_ ($ Lb) LeftShiftSelect)
(_ ($ Lb) MiddleShiftSelect)

LeftShiftSelect PP! MiddleShiftSelect
EEObject

Moving Nodes CTRL

Format of the Browser Window

(_ ($ Lb) Show)

NIL
title

window topAlign T

browseFont lastSelectedObject

SUMMARY: GetSubs
GetLabel LeftButtonItems

MiddleButtonItems LocalCommands LeftShiftSelect MiddleShiftSelect

LatticeBrowser

obj1
obj1

obj1 obj1

obj1

obj1

object

objectobjName
objectobjName

windowOrTitle

browseListwindowOrTitle

windowOrTitle
windowOrTitle windowOrTitle

THE LOOPS MANUAL

[IV of LatticeBrowser]
The last object boxed, if any.

[IV of LatticeBrowser]
The font used for labels.

[IV of LatticeBrowser]
Last object selected.

[IV of LatticeBrowser]
List of objects used to compute this browser.

[IV of LatticeBrowser]
Title passed to GRAPHER package.

[IV of LatticeBrowser]
Flag used to indicate whether graph should be aligned with the top or bottom of the
window. If = (the default) then GRAPHER will align the graph to the
top of the window.

[IV of LatticeBrowser]
Window for browsing.

CVs:

[CV of LatticeBrowser]
Items for left button menu. Value sent as message to object or browser.

[CV of LatticeBrowser]
List of messages that should be sent to browser when item is selected in menu, even
if object does understand them.

[CV of LatticeBrowser]
Items for middle button menu. Value sent as message to object or browser.

[CV of LatticeBrowser]
Items for menu in title of window.

Methods:

[Method of LatticeBrowser]
Draws a box around the node in the graph representing the object.

[Method of LatticeBrowser]
Does the selected command or forwards it to the object.

[Method of LatticeBrowser]
Edit , using the TTYIN editor (in a).

[Method of LatticeBrowser]
Edit using Lisp editor (in a), passing the commands .

107

boxedNode

browseFont

lastSelectedObject

startingList

title

topAlign

topAlign T

window

LeftButtonItems

LocalCommands

MiddleButtonItems

TitleItems

(_ BoxNode)

(_ DoSelectedCommand)

(_ EEObject)
TTYPROCESS

(_ EditObject)
TTYPROCESS

browser object

browser command obj objName

browser objectobjName
object

browser objectobjName args
object args

Editing in Loops

[Method of LatticeBrowser]
Call 2 times, delaying for milliseconds between �ips. Default
values: =3, =300.

[Method of LatticeBrowser]
Inverts the video around the node in the graph representing .

[Method of LatticeBrowser]
Returns the label for displayed in the browser.

[Method of LatticeBrowser]
Returns the node data structures of the tree starting at . If
is given, only include elements of it. If = , this is the same as

= .

[Method of LatticeBrowser]
Returns a list of the subs from .

[Method of LatticeBrowser]
Called when is selected with the mouse button while the shift key is
down.

[Method of LatticeBrowser]
Called when is selected with the mouse button while the shift key is
down.

[Method of LatticeBrowser]
may be either an object or a name used to label an object in the browser.

Returns the pair .

[Method of LatticeBrowser]
Recompute the browser display using same window and

[Method of LatticeBrowser]
Show the items and their subs on a browse window.

[Method of LatticeBrowser]
Put into the tty bu�er

13.4 Editing in Loops

This section is about editing in Loops. It describes the Loops interface to the standard Interlisp editors.
In addition to the usual teletype oriented editor, Interlisp- D, provides a variety of other editing programs
that make available the bene�ts of a bitmap display and a mouse. We will describe some of the interfaces
to these editors, but leave the instruction on editing to the appropriate other documents

13.4.1 Editing a Class

The editor for classes is invoked by sending the message to the class to be edited. The message
allows an optional argument, a list of editing commands, as do all the usual Lisp editing functions.

108

(_ FlashNode)
FlipNode

(_ FlashNode)

(_ GetLabel)

(_ GetNodeList)

T

(_ GetSubs)

(_ LeftShiftSelect)
LEFT

(_ MiddleShiftSelect)
MIDDLE

(_ ObjNamePair)

(.)

(_ Recompute)

(_ Show)

(_ Unread)
$

Edit
Edit

browser node N }ashTime
N }ashTime

N }ashTime

browser object
object

browser object
object

browser browseListgoodList
browseList goodList

goodList
goodList browseList

browser object
object

browser objectobjname
object

browser objectobjname
object

browser objOrName
objOrName

object objName

browser
browseList

browser browseListwindowOrTitlegoodList

browser objectobjName
objName

THE LOOPS MANUAL

Example: To edit :

An alternative way to edit a class is provided by the LISP function (for ‘‘edit class’’). takes the
class name as its argument. For this example, the form is:

At this point, if you prettyprint the expression you will see:

Suppose now you edit this structure to the one shown below:

This speci�es that each instance will have two instance variables, and , with default values
of and , respectively. The class has a class variable , initialized to . If
we have an instance of this class bound to the Lisp variable , the following expression causes this
instance to respond to the message :

The result of evaluating this expression is to call the Lisp function with
arguments (the value of) and 3. This is described in more detail in the section on methods.

The normal way to terminate editing is with . This causes the revised de�nition to be installed. If you
exit from this editing session with or ^D, all the changes of this session will be lost, since the list
structure is not saved; it is only used to build the new class structure. If you have made any syntax errors
in editing, warning messages will be printed when you type , and you will be returned to the editor.

13.4.2 Editing an Instance

To edit an instance, send it the message .

This will put you in the Interlisp editor editing a source for the instance. When you end with , the
new values will be inserted in the instance.

109

StudentEmployee

(_ ($ StudentEmployee) Edit)

EC EC

(EC ($ StudentEmployee))

[DEFCLASS StudentEmployee
(MetaClass Class)
(Supers Student Employee)
(InstanceVariables)
(ClassVariables)
(Methods)]

[DEFCLASS StudentEmployee
(MetaClass Class)
(Supers Student Employee)
(InstanceVariables (name)

(project "KBE"))
(ClassVariables (numberEmployees 0))
(Methods (Work StudentEmployee.Work))

name project
NIL "KBE" numberEmployees 0

worker
Work

(_ worker Work 3)

StudentEmployee.Work
worker

OK
STOP

OK

Edit

(_ Edit)

OK

object

Editing a Method

An equivalent way to edit an instance is

where is an instance. (If one has an Interlisp variable, say , bound to an instance then to edit
one should type .

When instances refer to other instances, they are printed out in the form , that is as a hash
mark () followed by a string which is a unique identi�er. When this is read back in from the string
editing bu�er of TTYIN, a readmacro for converts it back into a pointer to an instance with that unique
identi�er. When a class is printed out for TTYIN it prints as , and the readmacro
converts it bvack into a pointer to the class.

13.4.3 Editing a Method

Often it is convenient to type to enter only a skeletal de�nition for a method, and then �nish making the
speci�cations by using an editor. To edit the function for a particular method:

This puts you in the Lisp editor, editing whatever function is associated with the selector speci�ed. The
name of the actual function is printed out as you enter the editing process. Aside from the syntactic
convention of having the �rst argument to a function implementing a method be , these methods are
perfectly normal Lisp functions. However, special compilations can be done on these using the GLISP
compiler for Loops. This is documented in the section on Lisp interactions.

13.5 Inspecting in Loops

Loops is integrated into the Lisp system so that one can invoke the Inspector on Loops objects. This
uses the Loops inspect package, which allows a specialized way of viewing the objects in Loops terms as
described in the two sections below.

13.5.1 Inspecting Classes

To inspect a class, send the message :

13.5.2 Inspecting Instances

An alternative way to modify an instance is to inspect it:

and then you can set any values and properties, and add or delete any IVs.

110

(EI)

X1
(EI X1)

#"UI&DII"
#

#
#$ClassName #

(EM)

self

Inspect

(_ ($) Inspect)

(_ Inspect)

object

object

classNameselector

className

object

THE LOOPS MANUAL

13.6 Errors in Loops

Most errors in Loops which are not errors in Lisp call the function , which prints out a
message, and goes into a Lisp break. The appropriate response to some errors is described below.

13.6.1 When the Object is Not Recognized

When the value of in the form

���

is not a Loops object, Loops activates the method in the kernel class .

The response to this condition can be changed as described below.

This condition can arise if the �ller refers to an object that is not in the current environment. For
example,

���

will cause the condition if there is no class named in the current environment. In the default case,
this causes an error. A user can return from the error by typing

to let the process continue, returning as the value that should have been returned had the
method been applied successfully.

Alternatively it is possible to create user- speci�c responses to this condition by creating a class with a
method and setting the global LISP variable to that class. The

arguments to the method are and . This method should carry out
whatever response is appropriate, apply the method that was intended, and return the value of that
application.

13.6.2 When the Selector is Not Recognized

If the object is recognized but the selector is not, then the object is sent a mes-
sage as follows:

In most cases, this invokes the default method on the kernel class which attempts to perform
spelling correction. If the correction fails, then a break is caused. If the user then types

to the Lisp Break Package, the selector so named will be used.

Alternatively it is possible to create user- speci�c responses to this condition by provid ing a

111

HELPCHECK

(_)

NoObjectForMsg Object

(_ ($ FOO))

FOO

RETURN

NoObjectForMsg DefaultObject
NoObjectForMsg

MessageNotUnderstood

(_ MessageNotUnderstood)

Object

RETURN

MessageNotUnderstood

object

objectselectorarg1 argN

selectorarg1 argN

MyV alue

MyV alue

object Selector

object selector

selector

Breaking and Tracing Methods

method in some super of the object. This method should return a Lisp atom other than , which is
then used as the selector as the is tried again.

13.7 Breaking and Tracing Methods

[Function]
This function will break the method called by in the speci�ed class. It will
�nd the function name and break it, even if the selector is only found in a superclass.
All calls to that function will be broken, even ones that do not come from className.

[Function]
Similar to , except that it traces the appropriate method.

The Lisp function will unbreak the function which was broken.

13.8 Monitoring Variable Access

[Function]
This function is used for causing an Interlisp break when the value of a variable
or property is set or fetched. The argument is one of , , , or

for instance variables, class variables, method properties, or class properties
respectively. If it is , then is assumed. If is , then type must
be or and refers to the value of a variable.

If is then the break is only entered when an attempt is
made to store into the value. If is , then breaks will also occur
on attempts to fetch the value.

[Function]
Similar to , except that it will trace the value of a variable or property,
printing the old and new values when the variable or property is accessed.

[Function]
This function is used to remove monitoring (breaking or tracing) for the speci�ed
variable or property. If = , then all known breaks and traces are removed.

112

NIL
SEND

(BreakMethod)

(TraceMethod)
BreakMethod

UNBREAK

(BreakIt)

IV CV METHOD
CLASS

NIL IV NIL
IV CV BreakIt

NIL
T

(TraceIt)
BreakIt

(UnBreakIt)

NIL

classNameselector
selector

classNameselector

selfvarName propName type breakOnGetAlsoFlg

type

propName

breakOnGetAlsoFLg
breakOnGetAlsoFLg

selfvarName propName type traceOnGetAlsoFlg

selfvarName propName type

self

14 THE LOOPS KERNEL

14.1 The Golden Braid (Object, Class, MetaClass)

All objects are directly or indirectly a subclass of the object called . holds all the
methods for the defualt behavior of objects. Heuristics for using these classes. This is the only object
with no super classes.

is the class which holds the default behavior for all classes as objects. is the default
MetaClass for all classes. If is not the MetaClass for a class, it must be on the supers of that
metaClass. There are messages �elded by that know how to create and initialize instances.

is the class which holds the default behavior for classes which create classes.
is the metaclass for , and is the only class which is its own metaClass. In accordance with the
paragraph above is a super of .

14.2 Perspectives and Nodes

In many cases it is useful to organize information in terms of multiple points of view. For example,
information about a man might be organized in terms of his role as a father, as an employee, and
as a traveler. Each point of view, called a perspective, contains information for a di�erent purpose.
The perspecitives are related to each other in the sense that they collectively provide information about
the same object. Loops supports this organizational metaphor by providing special mixin classes called

and .

[Class]

IVs:

[IV of Perspective]
Indirect pointer to onode containing all perspectives of this object.

Methods:

[Method of Perspective]
Adds a perspective to my node.

[Method of Perspective]
Delete this object as a perspective of node.

[Method of Perspective]
Deletes a perspective from node.

[Method of Perspective]
Destroy self but leave other perspectives on Node.

[Method of Perspective]
Destroy self, Node and all other perspectives on Node.

113

Object Object

Class Class
Class

Class

MetaClass MetaClass
Class

Class MetaClass

Perspective Node

Perspective

perspectiveNode

(_ AddPersp)

(_ DeleteMeAsPersp)

(_ DeletePersp)

(_ Destroy)

(_ Destroy!)

self viewName view

self

self viewName view dontCauseError

self

self

Useful Mixins

[Method of Perspective]
Returns the perspective of this instance with viewName perspName.

[Method of Perspective]
If no current perspectiveNode exists, then a node will be created of class
(or if =). should be a subclass of . will
be made the value of the property on perspectives of node. If
already has a node, then it is used.

[Class]

IVs:

[IV of Node]
Associated objects are stored on the property list of under their
perspective names. The value of this IV is irrelevant.

Methods:

[Method of Node]
Adds a perspective to a node on the IV as value of property

.

[Method of Node]
Deletes a perspective of a node on the IV on property .
Checks for consistency. Removes from IV of , as value,
and from property . If is not that perspective, then
causes an error, unless surpressed.

[Method of Node]
Destroy the node after detaching all its perspectives.

[Method of Node]
Destroy the node and all its perspectives.

[Method of Node]
Returns the perspective of this node with viewName of .

14.3 Useful Mixins

and contain only one instance variable, which holds the
name of this object. Any Loops object can be named, but and
both have their names as part of their structure, and if the structure is changed they update their name.
As indicated by its name, instances of are named in the global name table and
will be known independent of the environment they are in. Instances of may only be
known in a single environment, and the name may be reused in another environment.

114

(_ GetPersp)

(_ MakePersp)

Node NIL Node
IV

Node

perspectives
perspectives

(_ AddPersp)
perspectives

(_ DeletePersp)
perspectives
pespectiveNode

myViewName

(_ Destroy)

(_ Destroy!)

(_ GetPersp)

NamedObject GlobalNamedObject name
NamedObject GlobalNamedObject

GlobalNamedObject
NamedObject

self perspNamecauseError

self viewName nodeType
nodeType

nodeType nodeType self
viewName self

self viewName view dontCauseError

viewName

self viewName view dontCauseError
viewName

view self
viewName view

self

self

self perspNamecauseError
perspName

THE LOOPS MANUAL

[Class]

[Class]

[Class]
has appropriate initial active values on its two instance variables so

that they are �lled in at creation with the right values.

IVs:

[IV of DatedObject]
Date and time of creation of object.

[IV of DatedObject]
USERNAME of creator of object.

[Class]
is a mixin class which allows a class to have indexed instance variables,

from 1 to . These have not yet been extensively used.

IVs:

[IV of Varlength]
Place where indexed variables are stored for classes.

Methods:

[Method of Varlength]
Returns number of indexed variables allocated in this instance.

14.4 The MetaClass Named ‘‘Class’’

This sections describes the methods de�ned in the metaClass . Any of these methods can be
augmented or superceeded in a particular class. The complete list of methods associated with a class can
be determined by using the browser.

The , , and methods have an argument which speci�es the type of element
to be added, deleted, or listed. For specifying single items, should be one of , , ,

, , , or . For specifying sets of items, should be , , ,
, , , , or .

In the following methods, adding or deleting instance variables and instance variable properties a�ects
the class, and and therefore a�ects only instances created after the change. Already existing instances are
not changed.

[Method of Class]
Add an instance speci�ed by to the class. E.g. if = then add an instance
variable with the given name using the given value as default. If is
given, use instead as the property value on created or found. The type
must be one of the item types speci�ed above: , , , , ,

, or .

115

NamedObject

GlobalNamedObject

DatedObject
DatedObject

created

creator

Varlength
VarLength

(_ Length)

indexedVars
VarLength

(_ Length)

Class

Add Delete List List!
IV CV IVProp

CVProp Method Super Meta IVs CVs IVProps
CVProps Methods Supers Selectors Functions

(_ Add)
IV

IV CV IVProp CVProp Method
Super Meta

obj

self

type
type

type

self type name valuepropertyName
type type

propertyName
value type

The MetaClass Named ‘‘Class’’

[Method of Class]
For each method in the class, obtain its argument list, and insert this in the class
de�nition under the method property . If the source code of a method is in
core, extract the comment which should be the fourth item in the source code, and
insert in the class de�nition under the method property . If no comment is
found in the source code, put the user into the editor looking at that function. When
editing is �nished, retrieve the comment from the method.

[Method of Class]
Copy the method associated with the selector from to
(under the new selector). defaults to .

[Method of Class]
Adds a method for to class. If and are , puts the user into the
editor)

[Method of Class]
Deletes the speci�ed element from class. must be one of , , ,

, , , or .

[Method of Class]
Destroys (deletes) a class.

[Method of Class]
Recursive version of Destroy. Destroys class and its subclasses.

[Method of Class]
Calls the Interlisp Editor on the source for class.

[Method of Class]
Finds the function associated with in class, and calls the Interlisp Editor on
it.

[Method of Class]
Returns the name of the function which implements this method in this class.

[Method of Class]
Tests if class has the speci�ed class variable/property.

[Method of Class]
Tests if class has the speci�ed instance variable/property.

[Method of Class]
List the immediate components of a class. is one of the item or
set speci�ers described above. If is one of the item speci�ers, then

should be speci�ed; will show that item. If is
or , then will show just the property names of the named

item. Otherwise, for all set descriptors, it will list all relevant items.
must be speci�ed only if component is or . and

are synonyms, returning the list of selectors for the class;
returns the list of names of functions called for methods in this class.

116

(_ CommentMethods)

args

doc

(_ CopyMethod)

(_ DefMethod)
NIL

(_ Delete)
IV CV IVProp

CVProp Method Super Meta

(_ Destroy)

(_ Destroy!)

(_ Edit)

(_ EditMethod)

(_ FetchMethod)

(_ HasCV)

(_ HasIV)

(_ List)

List
IVProps CVProps List

IVProps CVProps Selectors
Methods Functions

self

self m ySelectornewClassnewSelector
m ySelector self newClass

newSelectornewSelector m ySelector

self selectorargsexp
selector args expr

self type name prop
type

self

self

self commands

self selectorcommands
selector

self selector

self CVName prop

self IVName prop

self componentType componentName propName
componentType

componentType
componentName componentType

propName

THE LOOPS MANUAL

[Method of Class]
Recursive version of . Omits things inherited from and unless

= .

[Method of Class]
Print documentation for the method associated with in TTY window.

[Method of Class]
Moves the method speci�ed by from this class to the speci�ed class, changing
the name of the function if it is of form .

[Method of Class]
method for . Since is its own metaClass, this needs to

work correctly whether is or or a subClass of .
Work is done by in LOOPS.

[Method of Class]
Make a new temporary instance of this class which will not get saved on a database
unless referred to by another saved object.

[Method of Class]
Returns if is de�ned on the �le .

[Method of Class]
Prettyprints the class on the �le .

[Method of Class]
PrettyPrints the class at all levels.

[Method of Class]
Prettyprints the function which implements in this class.

[Method of Class]
Prettyprints the function which implements in this class.

[Method of Class]
must be one of , , , , , , or . Adds

the speci�ed type to the class.

[Method of Class]
Give a class a new name, renaming those methods of the form .

[Method of Class]
Replace the entire supers list for this class.

[Method of Class]
Change the name of the class, forgetting old name. Change the names of all methods
which are of the form . Same as .

[Method of Class]
Returns a list of immediate subclasses currently known for this class.

117

(_ List!)
List Object Class

T

(_ MethodDoc)

(_ MoveMethod)

.

(_ New)
New MetaClass MetaClass

Class MetaClass MetaClass
DefineClass

(_ NewTemp)

(_ OnFile)
T

(_ PP)

(_ PP!)

(_ PPM)

(_ PPMethod)

(_ Put)
IV CV IVProp CVProp Method Super Meta

(_ Rename)
.

(_ ReplaceSupers)

(_ SetName)

. Rename

(_ SubClasses)

self type name verboseFlg

verboseFlg

self selector
selector

self newClassselector
selector

classNameselector

self name supers

self

self selectorsuperFlg

self |le
self |le

self |le
|le

self |le

self selector
selector

self selector
selector

self type name valueprop
type

self newName environment
classNameselector

self supers

self newName environment

classNameselector

self

The Class Named ‘‘Object’’

14.5 The Class Named ‘‘Object’’

All classes have as one of their supers, directly or indirectly. Therefore, all instances know how
to respond to the messages de�ned in . These can of course be overridden in any class, but

provides a set of default behaviors, and generally available subroutines.

[Method of Object]
Adds an IV to instance. If it is not in regular set, puts it in assoc List on otherIVs.

[Method of Object]
Change assocKB of this object to .

[Method of Object]
Returns the value of an ‘‘instance variable’’ for an object. For an instance object,
instance variables hold local state. For an object that is a class, we use ‘‘instance
variable’’ to refer to the variables that are private to instances of the class. If the
value is an active value, activates its .

[Method of Object]
Creates an active value which will cause a break when this value is changed. If

= , this will also break when the value is fetched.

[Method of Object]
Returns the class of this object.

[Method of Object]
Returns the className of the class of the object.

[Method of Object]
Copies the unit, sharing the iName list, copying instances, activeValues and lists.

[Method of Object]
Makes a new instance (a copy of this instance, not copying the values of the instance
variables), with the same contents as .

[Method of Object]
Removes an IV from an instance. No longer shares IVName List with class. Some
programs which depend on IV may not work.

[Method of Object]
Deletes a property of an instance variable.

[Method of Object]
Destroy an object in an environment. Removes all IVs, class pointers, etc. For
garbage collection by user.

[Method of Object]
Message form of the function .

[Method of Object]
Calls the Interlisp editor on the source of the object.

118

Object
Object

Object

(_ AddIV)

(_ AssocKB)

(_ At)

GetValue

(_ BreakIt)

T

(_ Class)

(_ ClassName)

(_ CopyDeep)

(_ CopyShallow)

(_ DeleteIV)

(_ DeleteIVProp)

(_ Destroy)

(_ DoMethod)

DoMethod

(_ Edit)

self name valueprop

self newKBName
newKBName

self varName prop index

getFn

self varName propName type brkOnGetAlsoFlg

brkOnGetAlsoFlg

self

self

self KBC

self

self

self varName propName

self ivName ivProp

self

self selectorclassarg1 arg2 arg3 arg4 arg5 arg6 arg7 arg8 arg9 arg10

self commands

THE LOOPS MANUAL

[Method of Object]
Returns if contains the speci�ed IV.

[Method of Object]
Calls the Interlisp inspector to examine (as an object of type).

[Method of Object]
Returns if is an immediate instance of the class with name .

[Method of Object]
Returns if is an instance of the class with name either directly or
through the supers chain of its class.

[Method of Object]
Called from macro FetchIVDescr when there is no IV . If is an
IV of the class, then it adds IV to the instance and returns the IVDescr as requested.
Will also do this if user returns with from .

[Method of Object]
List IV properties, IVS of object, or other properties inherited from class.

[Method of Object]
Recursive form of for objects. Omits things inherited from unless

is .

[Method of Object]
Invoked when a selector is not found for an object during a message sending
operation. Attempts to do spelling correction on the selector. Causes an error if this
fails.

[Method of Object]
Called from when is not a Loops object with a de�ned
class. A specialized response to this can be tailored in a given Loops application by
�rst reseting the global Interlisp variable to point to an object. This
default object will �eld messages from .
The method for on should return a default
value, usually dependent on the selector.

This version of just causes an error break. A user can return
from the error by typing , where is the value that should have
been returned as the result of sending to .

[Method of Object]
PrettyPrints an instance de�nition on .

[Method of Object]
PrettyPrints an instance to all levels.

[Method of Object]
This is the default printing function for . It distinguishes between temporary
objects, named objects, and others.

119

(_ HasIV)
T

(_ Inspect)

(_ InstOf)
T

(_ InstOf!)
T

(_ IVMissing)

OK HELPCHECK

(_ List)

(_ List!)
List Object

T

(_ MessageNotUnderstood)

(_ NoObjectForMsg)
FetchMethodOrHelp

DefaultObject
NoObjectForMsg FetchMethodOrHelp

NoObjectForMsg DefaultObject

NoObjectForMsg
RETURN

(_ PP)

(_ PP!)

(_ PrintOn)
Object

self ivName prop
self

self ASTYPE
self ASTYPE

self className
self className

self className
self className

self varName
varName varName

self typeName

self type name verboseFlg

verboseFlg

self selectorsuperFlg

self selector
self

value value
selectorself

self
|le

self |le

self |le

Functions for changing Loops Structure

[Method of Object]
Puts in an instance variable (see , page 19). If the value/property
of the variable contains an active value, the is activated.

[Method of Object]
Removes an old name, and gives it new name.

[Method of Object]
Associates a name with an object in an environment. This works for instances and
classes. An object can have more than one name.

[Method of Object]
Creates an active value which will cause tracing when this variable is changed. Will
also trace on fetches if = .

[Method of Object]
If actually names in , then delete the association between
and .

[Method of Object]
Tests if will respond to .

[Method of Object]
Searches the supers hierarchy until it �nds the class from which is inherited.

= defaults to .

14.6 Functions for changing Loops Structure

14.6.1 Moving and Renaming Methods

There are a number of Interlisp functions available to help in the process of reorganizing class structures.
It is often the case in the development of a set of classes for some job that one �nds some common super
class of a set of classes, and wants to move a method up to the super, or copy it down from the super.
Also renaming both the selector and the function of a method is sometimes useful.

[Function]
Changes the selector to in and if the function
name is does a to .

[Function]
Renames a function used as a method in . Does not change the selector.
Complains if is not found.

[Function]
Moves the method from to , and renames the function
if it is of the form to .

[Function]
Given a list of classes, this function computes the list of all functions called by those

120

(_ Put)
GetValue

(_ Rename)

(_ SetName)

(_ TraceIt)

T

(_ UnSetName)

(_ Understands)

(_ WhereIs)

NIL METHODS

(RenameMethod)

. RENAME .

(RenameMethodFunction)

(MoveMethod)

. .

(CalledFns)

self varName newValuepropName index
newValue

putFn

self newName environment

self name environment noBitchFlg

self varName propName type traceGetAlsoFlg

traceGetAlsoFlg

self name environment
name self environment self

name

self selector
self selector

self name type propName
type

type

classNameoldSelectornewSelector
oldSelectornewSelector className

classNameoldSelector classNamenewSelector

classoldName newName
class

oldName

oldClassnamenewClassNameselector
oldClassname newClassName

oldClassnameselectornewClassNameselector

classesde|nedFlg

THE LOOPS MANUAL

classes. If = , only returns the list of those functions which are de�ned.

14.6.2 Moving and Renaming Variables

It is sometimes convenient to be able to move methods and variables when recon�guring classes in an
inheritance lattice. The following functions are provided for this.:

[Function]
Changes the name of the variable from to . Changes any
references to these variables in methods of the class.

[Function]
Moves the entire description of an instance variable into the new class.

[Function]
Moves the entire description of a class variable into the new class.

121

T

(RenameVariable)

(MoveVariable)

(MoveClassVariable)

de|nedFlg

classNameoldVarName newVarName classFlg
oldVarName newVarName

oldClassNamenewClassnamevariableName

oldClassNamenewClassnamevariableName

15 LOOPS AND THE INTERLISP SYSTEM

15.1 Saving Class and Instance De�nitions on Files

Loops has been integrated with the Interlisp �le system to allow saving of class de�nitions on �les. The
�le command:

added to the �lecoms of any �le will allow one to dump out the prettyprinted version of the source
you see when you edit the class de�nition. These class names can be listed in any order in a single list,
provided that all super classes of a class on the list are on the list as well, or will be previously de�ned.

added to the �lecoms of any �le will allow one to dump out the prettyprinted versions of named instances,
as well as any unnamed instances that they point to.

Functions used to implement methods are ordinary Interlisp functions. Those that are named automatically
by Loops as start with the same characters; they will be found alphabetically together
on any function list which is created. The function (page 120) can be used get a list of all
functions used by a list of classes.

15.2 Classes for Lisp Datatypes

One can use the message sending protocol with records (lists) whose �rst element is a class, or ordinary
Interlisp datatypes. In the �rst case, the �rst element is used as the class to look up the method to be
used. In the second case, the class is found using the function , which looks it
up in the hash table , based on the type name of the datatype.

We call datatypes with associated classes and records with �rst element a class , and instances
of them . If or are called with bound to a pseudoinstance,
then the method associated with the selector in the pseudoclass (call it) is called as follows:

or

If the associated class has a () method, then values of the variables can be
found. This allows a mixture of compiled access to datatype �elds, and interpreted access within Loops.

15.3 Some Details of the Loops implementation

Methods are implemented by Lisp functions. The message sending expression:

122

(CLASSES *)

(INSTANCES *)

.
CalledFns

(GetLispClass)
LispClassTable

pseudoclasses
pseudoinstances GetValue PutValue

GetValue PC

(APPLY* (GetMethod PC ’GetValue))

(APPLY* (GetMethod PC ’PutValue))

PC GetValue PutValue

classNameList

instanceNameList

classNameselector

obj

self

instancevarName propName

instancevarName newValuepropName

THE LOOPS MANUAL

���

is expanded as a compiler MACRO into

���

returns the name of the Interlisp function associated with anywhere in the class of
, or in the superClass chain of that class. Notice that the object is implicitly included as the �rst

argument of the function, as well as being the argument for . By syntactic convention the
�rst argument (bound to the object) in any function which is being used as a method is called . The
expression for the object is evaluated only once.

Objects in Loops are represented in memory as Interlisp datatypes. The datatypes for classes have property
lists for methods, class variables, instance variables, and their properties. Datatypes for instances have
property lists for instance variables and their properties. In general, the selector names and variable
names are stored in the class objects. When instances are read in from a data base, they have their local
name tables aligned with the class standards. Special provisions are provided for handling instances whose
variable names do not correspond to current class de�nitions. Instances act as if they have local tables for
lookup of variables and properties, but they usually share the class name table and no storage is actually
allocated for local tables unless it is needed.

Default values for instance variables and properties are not copied to an instance. No space for instance
variables or properties is allocated until that variable or property has been set individually for the instance.
This means that the default values are not just initial values. In particular, if a class is altered to change
the default value of an instance variable, then all of the instances that do not have individualized values
will re�ect the new default value. Also, there is no storage overhead in instances for unchanged properties
(e.g., for documentation) de�ned in classes. Since individualized values of variables are stored in the
instances, there is no need to search the class hierarachy after a variable or property has been set in the
instance. In contrast, since class variables are shared among instances it is always necessary to go to the
class (or a super class) to get a value.

Although many of the ideas of the Loops database were inspired by PIE, the implementation di�ers
along several dimensions. PIE was intended primarily for use with a browser (i.e., an interactive viewing
and editing program), and e�ciency was not a primary concern. Since Loops was intended for use by
programs with potentially extensive computational processes, a need for e�cient access was perceived and
this led to some di�erent tradeo�s in the choice of implementation.

One di�erence between PIE and Loops is the grainsize of the changes written in layers. PIE performs
separate bookkeeping on changes to values of every variable in objects. Loops avoids the storage penalty
of this by keeping track only of which objects have been changed. This means that �le layers in PIE
contain partial objects (e.g., a change to a single variable) while layers in Loops contain complete objects.
In e�ect, Loops economizes on space (and time) in memory instead of space in the databases.

Another di�erence is that the Loops implementation tries to reduce the cost of references to values
by snapping links to references. However, link snapping is fundamentally in con�ict with a lookup
process that takes an environment as an argument. Link snapping precludes the sharing of objects
between environments in those cases where the interpretation of the references in the shared objects is
sensitive to the environment. Loops preserves a complete isolation of environments, with exchange of
information permitted only as a knowledge base transaction. In general, realigning an environment to
incorporate changes from another environment requires writing out the changes, clearing the memory
in the environments, and re-opening the associated knowledge bases. In contrast, PIE always shared
information between contexts, but it paid the overhead of reinterpreting the symbolic addresses repeatedly

123

(_)

(APPLY* (FetchMethodOrHelp ’))

GetMethod

GetMethod
self

objectselectorarg1 argN

object selectorobjectarg1 argN

selector
object

Some Details of the Loops implementation

at every reference.

124

