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Abstract: LOOPS adds data, object, and rule oriented programming to the procedure oriented programing
of Interlisp. In object oriented programming, behavior is determined by responses of instances of classes
to messages sent between these objects, with no direct access to the internal structure of an object. This
approach makes it convenient to dene program interfaces in terms of message protocols. Data oriented
programming isadua of object oriented programming, where behavior can occur as a side eect of direct
access to (permanent) object state. This makes it easy to write programs which monitor the behavior of
other programs. Rule oriented programming is an aternative to programming in LISP. Programs in this
paradigm are organized around recursively composable sets of pattern- action rules for use in expert system
design. Rules make it convenient for describing exible responses to a wide range of events. LOOPS
is integrated into Interlisp, and thus provides access to the standard procedure oriented programming of
Lisp, and use of the extensive environmental support of the Interlisp- D system

Our experience suggests that programs are easier to build in a language when there is an available
paradigm that matches the structure of the problem. The paradigms described here oer distinct ways
of partitioning the organization of a program, as well as distinct ways of viewing the signi cance of side
eects. LOOPS provides al these paradigms within a single environment. This manual is intended as
the primary documentation for users of LOOPS. It describes the concepts and the programming facilities,
and gives examples and scenarios for using LOOPS.



1 INTRODUCTION

Four distinct paradigms of programming available in the computer science community today are oriented
around procedures, objects, data access and rules. Usualy these paradigms are embedded in di erent
languages. LOOPS is designed to incorporate all of them within the Interlisp programming environment,
to alow users to choose the style of programming which best suits their application.

Procedure Oriented Programming: Lisp isa procedure oriented language; the procedure oriented paradigm
is the dominant one provided in most programming languages today. Two separate kinds of entities are
distinguished: procedures and data. Procedures are active and data are passive. The ability to compose
procedures out of instructions and to invoke them is central to organizing programs using these languages.
This isa major source of leverage in synthesizing programs. Side eects happen when separate procedures
share a data structure and change parts of it independently.

Object Oriented Programming: This paradigm was pioneered by Smalltalk, and has its roots in SIMULA
and in the concept of data abstraction. In contrast with the procedure- oriented paradigm, programs are not
primarily partitioned into procedures and separate data. Rather, a program is organized around entities
caled objects that have aspects of both procedures and data. Objects have loca procedures (methods)
and local data (variables). All of the action in these languages comes from sending messages between
objects. Objects provide loca interpretation of the message form.

The object- oriented paradigm is well suited to applications where the description of entities is simpli ed
by the use of uniform protocols. For example in a graphics application, windows, lines and composite
structures could be represented as objects that respond to a uniform set of messages (i.e, Di spl ay,
Move, and Erase). An important feature of these languages is an inheritance network, which makes
it convenient to dene objects which are almost like other objects. This works together with the use of
uniform protocols because specialized objects usually share the protocols of their super classes.

Data Oriented Programming: In both of the previous paradigms, the invocation of procedures (either by
direct procedure call or by message sending) is convenient for creating a description of a single process.
In the date- oriented programming, action is potentially triggered when data are accessed. Data oriented
programming makes use of long term storage of objects with implicit links from structures to actions.

Data oriented programming is appropriate for interfacing between nearly independent processes. A good
example of this is the construction of a viewer for an independent trac simulation process. The viewer
provides a visua display of the changing trac simulation process without aecting the code for the
simulation. This independence means that the two processes can be written and understood separately.
It means that the interactions between them can often be controlled without changing them.

Rule Oriented Programming: In rule oriented programming, the behavior of the system is determined
by sets of condition- action pairs. These RuleSets play the same role as subroutines in the procedure
oriented metaphor. Within a RuleSet, invocation of rules is guided largely by patterns in the data In
the typical case, rules correspond to nearly-independent patterns in the data. The rule-oriented approach
is convenient for describing exible responses to a wide range of events characterized by the structure of
the data.

Our experience suggests that programs are easier to build in a language when there is an available
paradigm that matches the structure of the problem. A variety of programming paradigms gives breadth to
a programming language. The paradigms described here oer distinct ways of partitioning the organization
of a program, as well as distinct ways of viewing the signi cance of side eects. LOOPS provides al
these paradigms within the Interlisp environment [Xerox83]. In principle, the data- oriented programming
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can be used with either the object-oriented or the procedure- oriented paradigms. In LOOPS, we have
combined it only with variables in the object- oriented metaphor.

Summary: LOOPS adds data, object, and rule oriented programming to Interlisp. In object oriented
programming, behavior is determined by responses of instances of classes to messages sent between these
objects, with no direct access to the internal structure of an object. This approach makes it convenient to
dene program interfaces in terms of message protocols. LOOPS provides:

inheritance of instance behavior and structure from multiple super classes

user extendible property list descriptions of classes, their variables, and their methods

composite objects - templates for related objects that are instantiated as a group.

Data oriented programming isadua of object oriented programming, where behavior can occur as a side
eect of direct access to (permanent) object state. This makes it easy to write programs which monitor
the behavior of other programs. LOOPS provides:

active values for object variables which can cause a procedure invocation on setting or fetching

integration with facilities for long term storage of objects in shared knowledge bases

support for incremental updates (layers), and the representation of multiple alternatives.

Rule oriented programming is an dternative to programming in LISP. Programs in this paradigm are
organized around recursively composable sets of pattern- action rules for use in expert system design.
Rules make it convenient for describing exible responses to a wide range of events. LOOPS provides:

a concise syntax for pattern matching and rule set construction

use of objects as working memory for rule sets

primitives for executing, stepping and suspending tasks based on ruleSets

compilation of ruleSets into Lisp code for ecient execution

LOOPS isintegrated into Interlisp. LOOPS provides.

classes and instances as Interlisp le objects

pseudoClasses to eld messages to standard Interlisp datatypes

This manua isintended as the primary documentation for users of LOOPS. It describes the concepts and



Intellectual Precursors

the programming facilities, and gives examples and scenarios for using LOOPS.

1.1 Intellectual Precursors

LOOPS grew out of our research in a knowledge representation language (caled Lore) for use in a
project to create an expert assistant for designers of integrated digita systems. Along the way, we
discovered that we needed to experiment with aternative versions of the representation language. A core
of features was identi ed that we wanted to keep constant in our experiments. This core became a data
and object-oriented programming system with many features not found in other available systems. Many
of the features (e.g., active values, data bases, and composite objects) were motivated by the needs of our
project, but we they would be useful for many other applications. LOOPS has been suciently useful
and general that we decided to make it available outside of our group.

The design of LOOPS owes an intellectual debt to a number of other systems, including:

(1) Smalltalk ([Goldberg82], [Goldberg8l], [Ingalls78]), which has pioneered many of the concepts of
object- oriented programming.

(2) Flavors [Cannon82], which supports this style of programming in the MIT Lisp Machine environment
and which confronted non- hierarchical inheritance.

(3) PIE [Goldstein80], which provided facilities for incremental, sharable data bases.

(4) KRL [Bobrow77], which explored many issues in the design of frame-based knowledge representation
languages and which provoked much additional work in this area.

(5) UNITS [Stek79], which provided a substantial testbed for experiments in problem solving that have
guided our decisions about the importance of several language features.

(6) EMYCIN [VanMelle80] which showed the power of rule oriented programming for building expert
systems.

While all of these languages provided ideas, none of them was quite right for our current needs. For
example, Smalltalk supports only hierarchical inheritance and does not have a layered data base, active
values, or property lists on variables. PIE and KRL are not easily supportable or extendable. Flavors
does not run on the machines available to us. UNITS was the closest existing language to our needs,
but we wanted to change many of its features. Since we have compared these languages and traced the
intellectual history elsewhere [Bobrow82], we will not pursue that further in this document.

In designing LOOPS, we wanted a general inheritance mechanism, a way of attaching access-triggered
procedures to variables, a way of instantiating composite objects recursively, and a way of creating
permanent databases of objects that can be shared and updated incrementally.

In tension with the desire for extensive language features was a desire to keep LOOPS small so that it
would be easy to understand and to implement. To this end we have tried to create a small repertoire of
powerful features that work well together.
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2 OVERVIEW

2.1 Structure of Classes and I nstances

Classes: A class is a description of one or more similar objects. An instance is an object described by
a particular class. Every object within LOOPS is an instance of exactly one class. Classes themselves
are instances of a class, usualy the one called Cl ass. Classes whose instances are classes are called
metaclasses.

Variables: LOOPS supports two kinds of variables - class variables and instance variables. Class variables
are used to contain information shared by all instances of the class. A class variable is typicaly used
for information about a class taken as a whole. Instance variables contain the information specic to
an instance. Both kinds of variables have names, values, and other properties. A class describes the
structure of its instances by specifying the names and default values of instance variables. For example,
the class Poi nt might specify two instance variables, x and y with default values of 0, and a class
variable, | ast Sel ect edPoi nt , used by methods associated with al instances of class Poi nt . LOOPS
also alows ‘*variable length’’ classes, which have some instance variables that are referenced by numerica
index.

Methods: A class speci es the behavior of its instances in terms of their response to messages. The class
associates selectors (LISP atoms) with methods, the Interlisp functions that respond to the messages. All
instances of a class use the same selectors and methods. Any di erence in response by two instances
of the same class is determined by a di erence in the values of their instance variables. For example,
Print On is used as a selector for the message which knows how to print out a representation of an
object on a le.

Properties: LOOPS provides user-extendible property lists for classes, their variables, and their methods.
Property lists provide places for storing documentation and additional kinds of information. A property
list on a variable is used to store additional information about both the variable and its value. For
example, in a knowledge engineering application, a property list for an instance variable could be used
to store such information as support (i.e., reasons for believing a value), certainty factors (i.e., numeric
assessments of degree of belief ), constraints on values, dependencies (i.e., relationships to other variables),
and histories (i.e., previous values).

Metaclasses: Classes themselves are instances of some class. When we want to distinguish classes whose
instances are classes, we call them metaclasses, after the Smalltalk usage. When a class is sent a message,
its metaclass determines the response. For example, instances of a class are created by sending the class
the message New. For most classes, this method is provided by the standard metaclass for classes: Cl ass.
The user can create other metaclasses to perform specialized initialization. The metaclass for C ass itself
(caled Met aCl ass) contains the New method for making classes. Another useful metaclass provided in
the system is Abstract Cl ass. It is used for classes that are placeholders in the inheritance network
that it would not make sense to instantiate. Its response to a New message is to cause an error.

[ DEFCLASS Ar eaBudget
(Metad ass O ass EditedBy (* dgb "15-Feb-82 14:32 ")
doc
(* * This is a sanple class chosen to illustrate the syntax
of classes in LOOPS. Comentary on the class is inserted
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in a standard property in the class. -- e.g. Budgets are ...))
(Supers OanedCbj ect Budget)
(d assVari abl es (nmaxBase 25000))
(I nstanceVari abl es
(owner #$VLSI doc (* organizational area that owns budget) )
(base 1000 doc (* The initial anpbunt of noney))
(overhead 2.25 doc (* Multiplied by base to get total.))
(enployees NIL doc (* list of enployees in this area))
(manager NI L doc (* nanager of this area))
(total #(SHARED get Total UpdateNot Al | owed)
doc (* value of total is conputed using active value.))
(Met hods
(Report AreaBudget.Report doc (* Prints out a budget report))
(St oreBase AreaBudget. StoreBase
doc (* store base val ue checking maxBase))]

Figure 1. Example of a class denition in LOOPS. The class, called AreaBudget , inherits
variables and methods from both of its super classes (OmedOhj ect and Budget ). The form of
the denition here does not show inherited information, only the changes and additions. In this
example the new classvariable maxBase isintroduced, and six instance variables (owner , base,
over head, enpl oyees, nanager ,and t ot al ) are dened. The Met hods declaration names
the Interlisp functions that implement the methods. For example, AreaBudget. Report is
the name of a function that implements the Report method for instances of Ar eaBudget .

22 Inheriting Variables and Methods

Inheritance is an important tool for organizing information in objects. It enables the easy creation of
objects that are ‘‘almost like'’ other objects with a few incremental changes. Inheritance avoids the user
have to specify redundant information and simpli es updating, since information that is common need
be changed in only one place.

LOOPS objects exist in an inheritance network of classes. An object inherits its instance variable description
and message responses. All descriptions in a class are inherited by a subclass unless overridden in the
subclass. For methods and class variables, this is implemented by a runtime search for the information,
looking rst in the class, and then at the super classes speci ed by its supers list. For instance variables, no
search ismade at run time; default values are cached in the class, and are updated if any super is changed,
thus maintaining the same semantics as the search. Each class can specify inheritance of structure and
behavior from any number of super classes in its supers list.

Hierarchy: In the simplest case, each class speci es only one super class. If the class A has the supers list
(B), a one element list containing B, then all of the instance variables speci ed local to A are added to
those speci ed for B, recursively. That is, A gets al those instance variables described in B and all of B's
supers. In this case one obtains strict inheritance hierarchy as in Smalltalk.

Any conict of variable names is resolved by using the description closer to A in traversing up the
hierarchy to its root at the class Obj ect . Method lookup uses the same conict resolution. The method
to respond to a message is obtained by rst searching in B, and then searching recursively in B's supers
list. An example of this is given in gure 2.
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Class Super InstanceVariables Methods
bj ect NI L none (s4 MB)
C oj ect (w 7) (s2 M4) (s3 Mp)
B C (y 4) (z 3) (s1 M) (s2 MB)
A B (x 1) (y 0 (s1 M)

Figure 2. In the denitions given in the above chart, an instance of A would be given four
instance variables, w, y, z, and x in that order. The default value for y would be 0, which
overrides the default value of y inherited from B. The instance would also respond to the four
messages with selector s1, s2, s3, and s4. The method used for responding to sl is ML,
which is said to override M2 as the implementation of the message s1. Similarly, M3 overrides
M4 as the implementation of message s2. Notice that the root class in the system, bj ect
has no super class. All classes in the system are subclasses of Qbj ect , directly or indirectly.

Multiple Super Classes: Classes in LOOPS can have more than one class speci ed on their supers list.
Multiple super classes admit a modular programming style where (i) methods and associated variables
for implementing a particular feature are placed in a single class and (ii) objects requiring combinations
of independent features inherit them from multiple supers. If D had the supers list (E A), rst the
description from E and its supers would be inherited, and then the description from A and its supers. In
the simplest usage, the di erent features have unique variable names and selectors in each super. In case
of a name conict, LOOPS uses a depth- rst left to right precedence. For example, if any super of E had
a method for s1, then it would be used instead of the method ML from A. In every case, inheritance from
oj ect (or any other ‘‘common’’ super class) isonly considered after all other classes on the recursively
dened supers list.

2.3 Data Oriented Programming Using Active Values

In data oriented programming, one needs a way of specifying for any variable of an object whether any
special procedure is to be invoked on read or write access, and if so which. In LOOPS we check on
every variable access whether the value is marked as an active value. If so, the active value speci es the
procedures to be invoked when the value of a variable (or property) isread or set. This mechanism is
dual to the notion of messages, messages are a way of telling objects to perform operations, which can
change their variables as a side eect; active values are a way of accessing variables, which can send
messages as a side eect. The following notation for active values illustrates its three parts:

#(1 ocal St aget Fn put Fn

This notation is converted by a read macro into an instance of the LISP data type acti veVal ue. The
| ocal St aitsea place for storing data. The get Fnand put Fnare the names of functions that are applied
with standard arguments when a program tries to get or put the value of a variable. Every active value
need not specify both a get Fnand a put Fn If the get Fnis NI L, then a get operation returns the local
state. If the put Fnis NI L, then a put operation replaces the local state.

Active values enable one process to monitor another one. For example, we have developed a LOOPS
debugging package that uses active values to trace and trap references to particular variables. Another
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example is a graphics package that updates views of particular objects on a display when their variables
are changed. In both cases, the monitoring process isinvisible to and isolated from the monitored process.
No changes to the code of the monitored object are necessary to enable monitoring.

Model/View Controller Example: gure 3 shows an application of this to a simulation model. Suppose that
we want a program that simulates the ow of trac in acity and displays selected parts of the simulation
on a screen. Active values enable us to divide the programming of this example into two parts: the
trac model and the view controller. The trac model consists of objects representing automobiles, trac

lights, emergency vehicles, and so on. These objects exchange messages to simulate trac interactions
(e.g., when a trac light turns green, it would send Move messages to start cars moving). The view
controller provides windows into di erent parts of the city. It contains information about how the objects
are to be displayed. We want a user to be able to move these windows around to change the view.

(DEFI NST Autonpbile-1 ...
(I'nstanceVari abl es
(position #(Posl N L UpdatebDi spl ay)
di spl ayObj ects (DispCbj1l DispObj2 Disphj3)
doc (* position of car in traffic coordinate system)
(speed 25))

-]

Figure 3. Instance of an automobile in atrac simulation model. Other classes describe such
things as trac lights, city blocks, and emergency vehicles. Instances of these classes exchange
messages while simulating the vehicles moving around in the model. The instance variable
posi tion isused to record the location of an automobile in the trac coordinate system. In
this example, an active value in posi ti on isused to update view objects that control pictures
of the trac patterns on an interactive display. Whenever a simulation method puts a new
value into the posi ti on variable, the procedure Updat eDi spl ay sends update messages to
each object in a list of view objects. These messages ultimately cause the graphics display to
be updated.

In gure 3, there is an active value in the position variable of an instance of Aut onobil e. This
active vaue is the interface between the object in the simulation model and the view controller.
Whenever a method in the simulation model changes the value of a positi on variable, the procedure
Updat eDi spl ay in the put Fnof the active value isinvoked. Updat eDi spl ay updates the local value
and sends a message to each of the view objects in the list stored as a property of position. These
objects respond to a message by updating the view in the windows on the display screen. The important
point of this example is that it shows how the view controller can be invoked as a side eect of running
the simulation. The view can be changed without eecting any programs in the simulation model. To
change the set of simulation objects being monitored, only the interface to the view controller needs to be
changed by adding active values. The objects in the view controller may aso be changed (e.g., to reect
changes to relative coordinates of the window and the trac model).

24 Knowledge Bases

LOOPS was created to support a design environment in which there are community knowledge bases
that people share, and to which they can add incrementa updates. We have chosen the term knowledge
base instead of data base to emphasize the intended application of LOOPS to expert systems. In expert
systems, knowledge bases contain inference rules and heuristics for guiding problem solving. This isin

10
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contrast to the tabular les of facts usually associated with data bases.

Knowledge Bases: Knowledge bases in LOOPS are les that are built up as a sequence of layers, where
each layer contains changes to the information in previous layers. A user can choose to get the most
recent version of a knowledge base (that is, al of the layers) or any subset of layers. The second option
oers the exibility of being able to share a community knowledge base without necessarily incorporating
the most recent changes. It also provides the capability of referring to or restoring any earlier version.
gure 4 illustrates this with an example.

------------------------- Layer 1 -------------“-----------
Qoj1 (x 4)

j 2 (y 5) (w3)

------------------------- Layer 2 ----------iii e
Qj2 (y 7) (w2)

hj 3 (z 6)

————————————————————————— Layer 3 -----c-cmcmcmcnenee e
bj1 (x 8)

hj4 (z 9)

Figure 4. Knowledge bases in LOOPS are les that are built- up incrementally as a sequence of
layers. Each layer contains updated descriptions of objects. When a knowledge base is opened,
the information in the later layers overrides the information in the earlier layers. LOOPS
makes it possible to select which layers will be used when a knowledge base is opened. In this
example, if the knowledge base is opened and only the rst 2 layers are used, then Cbj 1 will
have an x variable with value 4. If al three layers were connected, then the value would be
8.

Community Knowledge Bases: LOOPS partitions the process of updating a community knowledge base
into two steps. Any user of a community knowledge base can make tentative changes to a community
knowledge base in his own (isolated) environment. These changes can be saved in a layer of his personal
knowledge base, and are marked as associated with the community knowledge base. In a separate step,
a data base manager can later copy such layers into a community knowledge base. This separation of
tasks is intended to encourage experimentation with proposed changes. It separates the responsibility for
exploring possibilities from the responsibility of maintaining consistent and standardized knowledge bases
for shared use by a community. The same mechanisms can be used by two individuals using personal
knowledge bases to work on the same design. They can conveniently exchange and compare layers that
update portions of a design.

Unigue Identi ers. The ability to determine when di erent layers are referring to the same entity is critical
to the ability to share data bases. To support this feature the LOOPS data base assigns unique identi ers
(based on the computer’s identi cation numbers, the date, and an unbounded count) to objects before
they are written to a knowledge base. This facility provides a grounding for more sophisticated notions
of equality that might be desired in knowledge representation languages built on LOOPS.

Environments: A user of LOOPS works in a personalized environment. An environment provides a lookup
table that associates unique identi ers with objects in the connected knowledge bases. In an environment,
user indicate dominance relationships between selected knowledge bases. When an object is referenced
through its unique identi er, the dominance relationships determine the order in which knowledge bases
are examined to resolve the reference. By making personal knowledge bases dominate over community
knowledge bases, a user can override portions of community knowledge bases with his own knowledge
bases.

11
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Multiple Alternatives: An important use of environments is for providing speedy access to aternative
versions (e.g., multiple alternatives in a design). A user can have any number of environments available
at the same time. Each environment is fully isolated from the others. Operations that move information
between environments are always done explicitly through knowledge bases.

12



3 CREATING AND USING OBJECTS

In the LOOPS implementation of object-oriented programming, there are three types of objects:
Instances, Classes, and Metaclasses. Instances are used like data objects in Lisp; they are commonly
created, passed around, and modi ed by procedures (although all objects can be). Classes and metaclasses
are objects which ‘‘dene’’ a group of objects that are ‘‘instances of’’ that class or metaclass. The
di erence between classes and metaclasses is that the instances of a class are instances, and the instances
of a metaclass are classes al comments about classes apply to metaclasses, except where otherwise stated.

Note that the word ‘‘instance’’ is used in two separate ways. the phrase ‘‘instance of’’ refers to the relation
between any object and the class (or metaclass) that ‘‘denes’ it. The noun ‘‘instance’’ is only used to
refer to those objects which are instances of classes.

A class contains information about instance variables, class variables, and methods. Instance variables are
local variables stored within each instance of the class. Class variables are variables stored within the class
object, accessable from each instance of the class. Methods are procedures which are used to perform
operations on instances of the class.

Each Class also contains a list of other classes called ‘‘super classes” or ‘‘supers’. The super class list
provides a mechanism for inheriting instance variables, class variables, and methods from other classes
(see page 31).

This section rst describes how to create and use objects. Next, ‘‘sending a message’’ (the standard way
to invoke a method). Next, creating and using new instances. Next, dening and editing new classes.
Finally, dening a new method for a class.

31 Sending a Message to an Object

Operations in LOOPS are invoked by sending messages. Sending a message to an object invokes a method
(from the class that the object is an instance of ) to execute the operation. Messages are sent using the
function _ as follows:

(_ objectSel ect oarg argy) [NLambda NoSpread Function]
Sends the message Sel ect do the object obj ectwith the arguments ar g ar gy.
Sel ect as aways implicitly quoted (i.e., not evaluated); the remaining arguments
are evaluated.

obj ectnust be an “‘internal pointer’” to the object. The internal pointer to the object
with the LOOPS name FQOO can be extracted by the form ($ FQOO) .

Note: SEND can be used instead of _. The arrow notation, athough less mnemonic,
is usualy used to make expressions shorter and hence easier to type and read.

If it is necessary to compute the selector, one can use the function _!, which is just
like _ except that it also evauates its Sel ect @rgument.

Example:

(_ ($ PayRoll) PrintCQut filel)
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This sends a Pri nt Qut message to the class PayRol | (with a single argument; the value of the Intrerlisp
variable fil el).

3.2 Creating a New Instance

To create an instance of a particular class, one sends the message New to the class:

(_ clasdNew) [Message]
Returns a new instance of the class cl ass

In the usual case, initial values for instance variables are taken from the instance
variable descriptions associated with the class. LOOPS provides some other ways to
exercise control over the initialization of values in instances (see page 34).

3.3 Naming and Pointing to Objects

In order to manipulate a LOOPS object, it is necessary to have a pointer to it. One way to do this is to
save a pointer to the object in an Interlisp variable, for example:

(SETQ nyVariable (_ ($ Transistor) New))

This creates a new instance of the Tr ansi st or class, and stores a pointer to this instance in the Interlisp
variable nyVari abl e. Pointers to instances can also be saved in instance variables.

LOOPS objects may be passed around and examined by Lisp functions. The following function is useful:

(Object? X) [Function]
Returns X if it isa LOOPS objects, otherwise NI L.

Another way to manipulate an object is by giving it a unique ‘‘LOOPS name’’. An object can be given a
LOOPS name by sending it the message Set Nare

(_ obj ectSet Name nane) [Message]
Sets the LOOPS name nane to refer to obj ect LOOPS names are unique in a
LOOPS environment; the name is assigned in the environment specied by the
global variable Current Envi ronnment (see page 41 for a complete description of
environments).

If an attempt is made to assign a name adready in use in the environment,
and the globa ag ErrorOnNaneConflict =T, an eror is generated. If
Error OnNameConf | i ct = NI L, and there is aready an object ol dObj ecwith that
name, the name isunset for ol dObj ecdnd set for obj ectwithout generating an error.

For example, if 11 isan Interlisp variable whose value is a pointer to some instance, the object can be
given the LOOPS name Foo as follows:

(_ 11 SetNane '’ Foo)
After naming | 1 this way, the user can refer to this object as ($ Foo) , which returns the object whose

name is Foo.
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The user can refer to an object with a computed LOOPS name using the form ($! EXPR ). For example,
if the value of the lisp variable X isthe atom Appl e, then ($! X) = ($ Apple).

Classes having NanedOhj ect (see page 115) as a super class inherit an instance variable, nane, that
contains the name of the objects. Instances of these classes can be named, as before, with a Set Nane
message, or aternatively as a side eect of setting the name instance variable.

Class objects are automatically given a LOOPS name when they are created, as described below.
34 Dening a New Class
The way one creates a new class is to send the message New to a metaclass. Usually, the metaclass named

Cl ass is used.

(_ metad asdNew cl assNanmesuper sLi)st [Message]
Returns a new instance of the metaclass net aCl asscl assNanes the new class name
and supersLi & a list of the names of the super classes for this new class. If the
list of super class names is omitted, super sLi déefaults to ( Obj ect) .

Example:
(_ ($ Cdass) New 'Student Enpl oyee ' (Student Enpl oyee))

This denes a new class, St udent Enpl oyee as a subclass of the known classes named St udent and
Enmpl oyee.

An abbreviated way of dening a classis to use the function DC:

(DC cl assNanesuper sLi)st [Function]
(*‘dene class’) Sends the class Cl ass an appropriate New message:

(_ (% dass) classNanesuper sLi)st
Example:
(DC ' St udent Enpl oyee ' (Student Enpl oyee))

This speci es that the class St udent isto be used recursively, inheriting both from St udent and all its
supers, and from Enpl oyee and al its supers.

After dening the class, one can modify its structure by editing the textual source for the class with EC:

(EC cl assNane_ ) [Function]
(‘“edit class’) EC envokes the Interlisp editor on the textual source for the class
named cl assNamne

The editor can also be envoked by sending the Edit message: (_ ($ cl assNane
Edit).

For example, (EC ' St udent Enpl oyee) might start the editor editing the expression:

[ DEFCLASS St udent Enpl oyee
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(MetaClass Class Edited: (* lc: "18-Cct-82 14:26"))
(Supers Student Enpl oyee)

(I nstanceVari abl es)

(Met hods]

One can then change this to:

[ DEFCLASS St udent Enpl oyee
(MetaClass Class Edited: (* lc: "18-Cct-82 14:26"))
(Supers Student Enpl oyee)
(I'nstanceVari abl es
(sponsor NI L doc (* Name of sponsor))
(stay 3 doc (* nunber of nonths here)))
( Met hods]

Leaving the editor successfully at this point would install the two instance vararible descriptions in the
class St udent Enpl oyee. Then, in addition to those instance variables St udent Enpl oyee inherited
from St udent and Enpl oyee, each instance would also have two new ones, sponsor and st ay with
default values of NI L and 3 respectively. A more extensive description of editing and changing classes is
found in section 13.4.

35 Dening a Method

In order to dene a method for a class, one can use the Interlisp function Dwt

(DM cl assNanesel ect oar gsOr FnNane f or m [Function]
Denes amethod for the class named cl assNamhat can be called using the selector
sel ect.orlf formis non-NI L, then argsOr FnNaneis interpreted as the list of
arguments for a function, and f or mes the body of that function. If the rst element
of the list ar gsOr FnNaneis not sel f , then sel f isadded on the front. DM de nes
a function whose name is the concatenation of cl assNamnea period, and sel ect.or
For example, d ass. Li st isthe function name created for the Li st selector in
the class Cl ass. The function denition is created by substituting into ( LAMBDA
argsOr FnNarme. form.

If ar gsOr FnNaneand f or nare NI L, DM creates a skeleton de nition for the function
and puts the user into the Interlisp editor, editing the skeleton.

If only forms NI L, argsO FnNaneis interpreted as the name of a function to be
used for implementing the method.

Note: a method can also be dened by sending the Def Met hod message to the
class: (_ cl asdef Met hod sel ect aar gsOr FnNane f or .

Example:

(DM * Nunber ’Increment ' (self)
"((* incr ny IV) (_@:nyValue (ADDL (@ :nyValue)))))

This denes a method with selector | ncrement for the class Nunber which adds 1 to the instance
variable myVal ue (the @notation for accessing variables is described on page 18). This form results in
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the denition of a function named Nunber. | ncrenent as follows:

( DEFI NEQ
(Nunber . I ncrenment
(LAVBDA (sel f) (* incr nmy 1V)

(_@:myValue(ADD1 (@ :nyValue)))]

(EM cl assNanesel ect or ) [Function]
Cdls the Interlisp editor to edit the method for the class named cl assNamessociated
with the selector sel ect.or

Often it is more conveniently to use the LOOPS browser to edit the code for a
method (see page 102).

Example:
To edit the method from the example above, one could type:
(EM ' Nunber ’Increnent)

This will edit the method of class Nunber which responds to the selector | ncr ermrent , whether or not it
has a name of the standard form.
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4 OBJECT VARIABLES AND PROPERTIES

There are two kinds of variables associated with an instance: its private instance variables and the class
variables that it shares with al instances of the class. This section deals with the functions for getting
and putting values, and with a compact programming notation for referring to these variables from inside
functions that implement methods. In addition, there are properties which are associated with instance
variables and class variables, with the methods of a class, and with classes themselves. Given an object
or a class, one can fetch or set any of these properties. This section describes the functions for accessing
all of these properties and values.

4.1 Access Expressions

As mentioned above, there are a number of dierent types of variables and properties that can be
associated with each class. However, most of the accessing operations (getting and putting) in methods
refer to the values or properties of instance variables or class variables of an instance. LOOPS provides
genera functions (described later) for accessing these values, alowing variable names and property names
to be computed. However, most of the time the programmer knows the variable and property name to
be used, and writing calls to these functions can be cumbersome.

Therefore, a simpli ed notation has been introduced for writing many common accessing operations,
which is trandated into cals to the appropriate functions:

(@ obj ectaccessExpr [Macro]

(@ accessExpr [Macro]
Returns the variable or property value of the object obj ecés speci ed by accessExpr
Note that accessExps not evaluated; obj ects evaluated.

If only one argument is given to @ it is assumed that the object is bound to the
variable sel f. This is very useful because by convention the rst argument to any
method is hamed sel f.

(_@ obj ectaccessExpmewval ug [Macro]

(_@ accessExpmewval ug [Macro]
Similar to @ sets the value of the variable or property specied by accessExpr
(unevaluated) in the object obj ectto newval ue Returns newVal ue Note that
accessExps not evaluated; the other arguments are evaluated.

Like @ if obj ects ommitted, it defaults to the value of the variable sel f .

Both @and _@take the argument accessExpmwhich is an ‘‘access expression’”’ which speci es exactly
which variable or property value should be retrieved or set. accessExpis an atom which species a
variable name, an optional property name, and whether the variable is an instance variable or a class
variable.

Some examples:

(@ : FOO Retrieve the value of instance variable FOO (from the object that is the value of
sel f).

(@ XX :: FOO Retrieve the value of class variable FOO (from the object that is the value of XX).
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(_@::FOO , BAR 5)

Store 5 as the value of the BAR property of class variable FOO (of the object that is
the value of sel f).

4.2 Getting Variableand Property Values

The functions Get Val ue and Get Cl assVal ue retrieve from an instance the values of variables or their
properties. If the value bound to an instance variable or class variable is an active value with a get Fn
then Get Val ue and Get Cl assVal ue of these functions trigger the get Fn(see page 25).

(Get Val ue obj ectvar Narme pr opNang [Function]

(Get d assVal ue

Returns the value or property vaue of the instance variable var Nare in the object
obj ectEach instance of a class has its own separate set of instance variables.

If propNaneis NI L, Get Val ue returns the value of the variable. In proper usage,
obj ects an instance and the local value of the variable isreturned. If no local value
has been set, Get Val ue returns the default value from the class. Since this is a
common case, default values inherited from super classes of the class are cached in
the class itself, thus avoiding a runtime search.

If propNaneisnot NI L, Get Val ue returns the value associated with the property
named propNane of the variable var Nanme. If none is found in the instance, it
returns the default property value found in the class or one of its super classes. If
no property vaue is found in any of the super classes, the default value used is
the value of the global variable Not Set Val ue (currently bound to ?). Note: this
is di erent from Interlisp, where if no value of a property is found, then NI L is
returned.

Cet Val ue fetches a value from an instance of a class. It is an error to try to use
Get Val ue to fetch an instance variable from a class. To fetch the default value of
an instance variable from a class, use Get Cl assl V (see page 22).

obj ectvar Nane pr opNang [Function]
Returns the vaue (if propNanme= NI L) or property vaue of the class variable
var Name for the class of the obj ec{which may be either an instance or a class).

Class variables are inherited from the super classes. If obj ects an instance, lookup
begins at the class of obj ectince instances do not have class variables stored locally.
If the class does not have a class variable var Nane, Cet Cl assVal ue searches
through the super classes of the class until it nds var Name. Since this is thought
to be an relatively rare in code, class variables are stored only in the class in which
they are dened, and the runtime search is necessary.

Conceptually, one should think of a class variable of a class as being shared by
al instances of that class, and by al instances of any of its subclasses. For
example, suppose Transi stor is a class with class variable, Tr ansSegqNum, and
Depl eti onTransi stor is a subclass of Transi stor. Then setting the class
variable TransSeqNum from an instance of Depl eti onTransi stor would be
seen by all instances of Tr ansi st or .
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4.3 Putting Variable Values and Property Values

Put Val ue and Put C assVal ue are functions used for storing variable or property values in an instance.
They are analogous to Get Val ue and Get Cl assVal ue; as with these functions, if the value of the
variable or property is an active value with a put Fn trying to store a value for that variable or property
will invoke the put Fn(see page 25).

(Put Val ue obj ectvar Name newVal ue pr opNang [Function]
Stores newVal uess the value or property value of the instance variable var Name in
the object obj ectReturns newval ue

If propNaneis NI L, Put Val ue stores newVal uess the value of var Nare in obj ect
If propNane is non-Nl L, then newval ueis stored as the value of the property
pr opNane of the instance variable var Nane.

For example, (Put Val ue pos’ X 0), stores 0 as the value of the instance variable
X of the object pos

Put Val ue works for storing values in an instance of a class. It is an error to try
to store a default instance variable in a class with Put Val ue. To store the default
value for an instance variable directly in the class, use Put Cl assl V (see page 22).

(Put d assVal ue obj ectvar Nane newVal ue pr opNang [Function]
Similar to Put Val ue, except it stores newVal ueas the value or property vaue of
a class variable and property. obj ectmay either be an instance or a class. Returns
newval ue

If var Narre is not local to the class, then the value will be put in the rst classin
the inheritance list that var Nane is found.

The following functions push a value on the front of alist aready stored in a variable:

(PushVal ue obj ectvar Nane newVal ue pr opNang [Function]

(Pushd assVal ue obj ectvar Name newVal ue pr opNang [Function]
PushVal ue and PushCl assVal ue add newval ueon the front of the list that is
the vaue of the indicated variable or property, and store the result back in the
variable or property.

These functions are dened so that if the value accessed is an active vaue, the get Fn
will be triggered when the old value of the list is fetched, and the put Fnwhen the
new value is stored back (see page 25).

The following function adds a value on the end of an instance variable list:

(AddVal ue obj ectvar Name newVal ue pr opNang [Function]
Similar to PushVal ue, except that newVal uds added to the end of the variable list.

There is no function for adding values to the end of class variable lists.
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4.4 Non-triggering Get and Put

Using active values (page 25), it is possible to associate functions with a variable (or property) that will be
caled whenever the variable (or property) isread or set. In some cases, it is useful to be able to access a
value from an instance or class variable without triggering any active value which might be stored. This
can be done using the following functions:

(Get Val ueOnly obj ectvar Narme pr opNamg [Function]

(Get d assVal ueOnl y obj ectvar Nane pr opNang [Function]
CGet Val ueOnly and Get Cl assVal ueOnl y retrieve the value of instance variables
and class variables, respectively, without triggering any active values.

Cet Val ueOnl y retrieves the default value from the class if none exists in the
instance.

To store a value without triggering any active values, the following functions are provided:

(Put Val ueOnl 'y obj ectvar Nanme newval ue pr opNang [Function]

(Put d assVal ueOnl y obj ectvar Nane newVal ue pr opNan® [Function]
These functions store newVal uein the instance variable or class variable, without
triggering any active values, and return newval ue

Note that Get Cl assVal ueOnly and Put O assVal ueOnly can take either a class or an instance.
Cet Val ueOnly and Put Val ueOnl y will only take instances.

45 Local Get Functions

Sometimes it is desirable to nd out if avalue or property isset in a particular class or instance, without
inheriting any information which is not local, and not activating any active values. This can be done with
the following functions:

(Get | VHer e obj ectvar Nane pr opNang [Function]
obj ectmust be an instance. Returns the instance variable value that is found
in the instance; if none is found, then returns the value of the global variable
Not Set Val ue (initialy ?).

(Get CVHer e obj ectvar Nane pr opNang [Function]
obj ectnust be a class. Returns the class variable value that is found in the class; if
none is found, then returns the value of Not Set Val ue.

In both Get | VHer e and Get CVHer e, if the value is an active value, the actua active value is returned,
without being triggered.

Note that there are no need to have specia local put functions, since all put functions are local to the in-
stance or class. For local nontriggering storage functions, use Put Val ueOnl y and Put Cl assVal ueOnly

(page 21).
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4.6 Accessing Class and Method Properties

Most of the get and put functions described in the preceding sections work with instances, but not
with classes. Some exceptions are Get Cl assVal ue, Put O assVal ue, Get C assVal ueOnly, and
Put Cl assVal ueOnl y, which can take either an instance or a class, and access class variables, and
Get CVHer e which takes a class.

The following functions access the default value or property value of an instance variable (which is stored
in the class):

(Getd assl V cl assvar Narme pr opNang [Function]
Returns the default value or property value of the instance variable var Nane in the
class cl ass

(Put d asslV cl assvar Name newVal ue pr opNang [Function]

Stores newVal ueas the default value or property value of the instance variable
var Name in the class ¢l asslf var Nane is not local to the class, this will cause an
error. Returns newval ue

Note: Get O asslV and Put Cl assl V do not trigger active values (page 21).

LOOPS provides property list storage for classes themselves and for methods of classes. A typical use
of these properties is to document a class and its methods. Like the put and get functions for variables,
these functions can trigger active values. The functions for class properties are:

(Get d ass cl asgpropNamng [Function]
Returns the value of the property propName of cl ass If propName is NI L,
Get d ass returns the metaclass of cl ass

Class properties are inherited like class variables, so Get Cl ass will search through
the super classes of cl asg propNaneis not found in cl as#self.

(Put d ass cl assnewval ue pr opNang [Function]
Sets the value of the property pr opNaneof cl as® newval uelf propNaneis NI L,
Get A ass sets the metaclass of cl as® newval ue

(Getd assOnly cl asspropNane ) [Function]

(Put d assOnly cl assnewval ue pr opNang [Function]
These functions are analogous to Get Cl ass and Put Cl ass, except that they never
trigger active values.

(CGet A assHere cl asgpropNang [Function]
Returns the local value of the property propNane of class If propName
is not found locally, Get Cl assHere returns the value of the globa variable
Not Set Val ue (initialy ?).

The functions for accessing method properties are:

(Get Met hod cl asssel ect opr opNang [Function]
If propNare is NI L, Get Met hod returns the method (Interlisp function name)
which implements the message sel ect of the class cl assIf propNaneis non-NI L,
it returns the value of the property pr opNane of the method.
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Method properties are inherited; the retrieval process involves searching through
super classes of cl as# the property isnot found in cl as#self.

(Put Met hod cl asssel ect onewval ue pr opNang [Function]
If propNanmeis NI L, Put Met hod sets the method which implements the message
sel ect of the class cl asto newval uelf propNaneis non-NI L, it sets the value of
the property pr opName of the method to newval ue Returns newval ue

(Get Met hodOnly cl asssel ect opr opNang [Function]

(Put Met hodOnly cl asssel ect omewVal ue pr opNang) [Function]
Analogous to Get Met hod and Put Met hod except that they never trigger active
values.

(Get Met hodHer e cl asssel ect opr opNamng [Function]

Returns the local value of the property pr opNanethe the method which implements
the message sel ect of cl assIf propNaneis not found locally, Get Met hodHer e
returns the value of the globa variable Not Set Val ue (initialy ?).

All of the above functions only work directly on classes, not on instances of those classes. In addition, if
a method or class variable is inherited, then the put functions change the property in the class in which
the method or class variable is found in the supers list, not in the class which was the argument of the
put function.

47 General Get and Put Functions

The following functions are generalized get and put functions which accept a type argument and invoke
the more specialized functions:

(CGetlt objectvar O Sel ect qar opNane typé [Function]
(Putlt objectvar Or Sel ect arewval ue pr opNane typé [Function]
(CGetltOnly objectvar O Sel ect qar opNane typée [Function]
(PutltOnly objectvar O Sel ect arewval ue pr opNane typée [Function]
(GetltHere objectvar Or Sel ect qar opNane typé [Function]

For al of these functions, the value of the type argument can be one of |V, CV,
CLASS, or METHOD for instance variable, classvariable, class, or method, respectively.
If typeis NIL, IV is assumed. The argument var O Sel ect or interpreted as a
variable name if typeis| V or CV, a selector name if typeis METHOD, and is ignored
if typeis CLASS.

These functions are interpreted as follows:

(Getlt "1V)  ==> (GetValue )
(Getlt "CV) ==> (Getd assVal ue )
(Getlt "CLASS) ==> (Getd ass )
(Cetlt ' METHOD) ==> (Get Met hod )

The other functions are similar.

Note: Actudly, if type= |V, these functions will call di erent functions depending on whether the object
is a class or instance.
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Summary of Get and Put Functions

In the following table, * indicates that no function is available.

from instances:

Get/Put fns for
instance variables

Get/Put
variables

fns for class

from classes:

Get/Put  fns for
instance variables

Get/Put
variables

fns for class

Get/Put
properties

fns for class

Get/Put fns for
method properties

Inherit/Trigger

Cet Val ue /
Put Val ue

Cet Cl assVal ue
Put d assVal ue

CGet Cl assVal ue
Put Cl assVal ue

CGetCl ass /
Put d ass

Get Met hod /
Put Met hod
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Inherit/DontTrigger

Get Val ueOnly /
Put Val ueOnl y

Get d assVal ueOnl y

/ Put C assVal ueOnl y

Get d assVal ueOnly

/ Put C assVal ueOnl y

Get d assVal ueOnl y

[ Put C assVal ueOnly

Get Met hodOnly /
Put Met hodOnl y

Local/DontTrigger

CGet | VHer e

Getd asslV /
Put C assl V

Get CVHer e

Cet O assHere

Cet Met hodHer e



5 ACTIVE VALUES

Active values provide a way of invoking procedures when the value of a variable (or property) is read
or set. This mechanism is dual to the notion of messages, messages are a way of telling objects to
perform operations, which can change their variables as a side eect; active values are a way of accessing
variables, which can send messages as a side eect. This section presents the notation for creating active
values. Then, the concept of nested active values is introduced. The nesting property enables many of
the important applications of active values by supporting composition of the access functions. Next is
described how to use active values as the default values in a class, and how to share them. Finaly, the
standard arguments to active value access functions are described, along with LOOPS functions that can
be used in user-dened access functions.

5.1 Active Values Notation

The notation for an active value illustrates its three parts:
#(1 ocal St aget Fn put Fn

This notation is converted by a read macro into an instance of the Interlisp data type acti veVal ue.
The | ocal St aelel is used as a place for storing data. The get Fnand put Fnare the names of functions
that are applied with standard arguments when a program tries to get or put the value of a variable whose
value is an active value. Every active value need not specify both a get Fnand a put Fn If the get Fnis
NI L, then a get operation returns the local state. If the put Fnis NI L, then a put operation replaces the
loca dtate.

5.2 Nested Active Values

Often it is desirable to associate multiple access functions with a variable. For example, we may want more
than one process to monitor the state of some objects (e.g., a debugging process and a display process).
To preserve the isolation of these processes, it is important that they be able to work independently.
LOOPS uses nested active values as a way of composing these functions.

Nested active values are arranged so that the innermost active value is stored in the | ocal St abfethe
penultimate | ocal St atamd the outermost active value is the immediate value of the variable. Put
operations to a variable through such nested active values trigger the put Frs in sequence from the
outermost to the innermost. For example, suppose the variable tracing facility were used to trace access
of the posi ti on variable from the model/view controller example (page 10). The resulting active value
would look like

#( #(Pos1 NIL UpdateDi splay) GCettingTracedVar SettingTracedVar)

An attempt to set the position variable would cause the function Setti ngTracedVar to be caled with
the new value as one of its arguments. Setti ngTracedVar would operate and call the LOOPS function
Put Local St ate to set its own | ocal St at®his, in turn, would trigger the inner active value causing
Updat eDi spl ay to be invoked.

Get operations work in the opposite order. If there are three nested active values, a request to get the
value will cause the innermost get Fn(if any) to run, followed by the middle get Fn(if any), followed
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by the outermost get Fn(if any) whose value is returned by the get operation. Each get Fnsees only the
value returned by the next nested get Fnand the innermost get Fnsees the value stored in its local State.

LOOPS provides functions for embedding and removing active values from variables. This idea of
functional composition for nested active values is most appropriate when the order of composition does
not matter. We have resisted the development of other combinators for the functions using the same
parsimony arguments that we used earlier about specializing and combining methods. Just as inheritance
from multiple super classes works most simply when the super classes describe independent features, active
values work most simply when they interface between independent processes using simple functional
composition. Any more sophisticated control is seen as overloading the active value mechanism. The
escape for more complex cases isto combine the implicit access functions using Interlisp control structures
to express the interactions.

5.3 Active Values as Default Values

Suppose that | isan instance of a class with an instance variable V, whose default value is the active value
A. Further suppose that the value of V in the instance | has never been set. The rst time ( Put Val ue
| V exp isinvoked, acopy of Aismade. This copy isinserted in the instance itself as the the value of
the instance variable, with pointers to the same contents as A. Then the put Fnis invoked, with the copy
as the act ieMal argument; this copy of A provides a place where local state can be stored private to | .

In some cases, one knows that the put Fnwill not actually write into the active value, and therefore the
active value which is the default could be shared instead of needing to be copied. To indicate this, the
| ocal St adfeA should be made the atom Shar ed. In the example below, the user knows that no change
will be made in A itself and thus uses a shared active value.

Example: SUMis a class with three instance variables, t op, bott om and sunt t op and bot t omstart with
default values of 0, and sumis to be computed when asked for. One cannot update sum independently.

[ DEFCLASS SUM
(Metad ass d ass)
(Supers hj ect)
(I'nstanceVari abl es
(top 0)
(bottom 0)
(sum #( Shared Conput eSum NoUpdat ePernitted))
(d assVari abl es)
(Met hods
(printOn PrintColum)]

The method for printOn used in this example, and the get Fn Conput eSum, and the put Fn
NoUpdat ePer mi tt ed, are Lisp functions whose de nitions are not shown here. NoUpdat ePerm tted is
available as part of the kernel.

54 Standard Access Functions

LOOPS provides a convenient set of functions for some common applications. For example,
NoUpdat ePernmi tt ed, described in the example above, is used to stop update of the | ocal St abke
an active value. FirstFetch isa standard get Fnthat expects the | ocal St abfeits active vaue to be
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an Interlisp expression to be evaluated; on the rst fetch, the instance variable is set to the result of
evaluating the expression. This isillustrated in gure 5, which shows a class Test Dat um that describes
an instance variable sanpl eX, to be computed on the rst time that it is fetched, and then cached for
future references. At the time of activation of FirstFetch, sel f and var Nane are bound to the
instance and instance variable name in which the active value was found.

(DEFCLASS Test Dat um
(Metad ass O ass)

(...
(I'nstanceVari abl es (sanpleX #((RAND 0. 100.) FirstFetch)))...)
Figure 5. Using an active value to compute and cache a value for a variable on the rst fetch.

In some applications it is important to be able to access values indirectly from other instances. For
example, Steele [SteeleB0] has recommended this as approach for implementing equality constraints.
gure 6 shows a way of achieving this by using using the standard access functions Get | ndi rect and
Put I ndi rect .

(DEFI NST JoeAsFat her Per specti ve
(I'nstanceVari abl es
(age #((#$JoeAsManPerspective age) CGetlndirect Putlndirect))

Figure 6. Active values can be used to provide indirect access to values. This is useful when it
is desired for a variable in one instance to reect the value of a variable stored elsewhere. In
this example, the instance #$JoeAsFat her Per specti ve has an age variable which aways
has the same value as the age variable of the instance JoeAsManPer specti ve.

For some uses, the user may want to compute a default value if given, but replace the active value by
the value given if the user sets the value of a variable. For this the user can employ the system provided
put Fnof Repl aceMe, asin:

#(NIL Comput eGoodVal ue Repl aceMe)

If this value is made the default in a class, then when a program tries to set this value, the instance will
contain the value set. However, if the user tried to fetch the value form this variable before setting it,
the get FnComput eGoodVal ue would be invoked.

55 User-Dened Access Functions

The get Fnand put Fnof an active value are functions that are caled with standard arguments:
(sel fvar Nane ol dOr Newhal uepr opNane act ieMal typé

These arguments are interpreted as follows:

sel f The object containing this active value.

var Nanme The name of the variable where this active value was stored. This is NI L if it is not
stored in a variable.
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ol dOr NewMl ue For a get Fnthis is the | ocal St atfethe active value. For a put Fn this is the new
value to be stored in the active value.

pr opNane The name of a property. This is NI L if the active value is not associated with the
value of a property (i.e, if it is associated with the value of the variable itself).

act ieMal The active value in which this get Fnor put Fnwas found.

type This speci es where the active value is stored; NI L means a instance variable, CV
means a class variable, CLASS means a class property, or METHOD means a method
property.

The value returned by the get Fnis returned as the value of the get operation.

The put Fnis expected to make any necessary changes to the | ocal St atTéis can be done using function
Put Local St at e described below. In changing the | ocal St aembedded active values may be triggered.

Given an active value, the following functions can be used to retrieve or store its | ocal St at e

(Get Local State actieMal uesel fvar Name propNane typé [Function]
(Put Local State actiedal uenewal uesel fvar Name pr opNane typé [Function]
Cet Local St at e returns the | ocal St aifdhe active value act ieMal ue Put Local St at e
stores newval ueas the | ocal St abé the active value actieMal uge and returns
newval ue

Note that it is necessary to pass these functions the vaues for sel,fvar Nang,
pr opName and type in case any imbedded active values are triggered.

If the | ocal St atfehe active value isitself an active value, then it will be triggered to obtain the | ocal St at e
argument for the get Fn For a put Fn an embedded active value will be triggered when the put Fncals
Put Local St at e. The following functions can be used to access the | ocal St adfean active value without
triggering any embedded active values:

(Get Local StateOnly actiehal ug [Function]

(Put Local StateOnly actieMal uenewval ug [Function]
Get Local St at eOnly returns the value of the | ocal St abé the active value
act ieMal ue Put Local St at eOnl y stores newVal uess the | ocal St adfethe active
value act ieMal ueand returns newVal ue Both functions accessthe | ocal St awighout
triggering embedded active values.

In some cases, it is important to be able to replace the entire active value expression by some quantity,
independent of the depth of nesting of active values, without destroying the outer levels of nesting:

(Repl aceActi veVal ue actieMal newval uesel fvar Name propName typé [Function]
Repl aceAct i veVal ue overwrites act iaMal whereever it is (either directly as the
value or property of an instance variable, or asthe local state of an embedded active
value) with newval ue

Repl aceAct i veVal ue searches the value (property) determined by its arguments
until it nds actieMal in the nesting. If actieMal is not found, an error is invoked.

Example: Suppose that we have a class RandonDat um which describes an instance variable sanpl eX,
which we want to be computed as a random number on the rst time that it isfetched, and then returned
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as a constant on all future fetches. We could do this by dening the class as follows:

( DEFCLASS RandonDat um
(Metad ass d ass)
(...
(I'nstanceVari abl es (sanpl eX #(N L SmashRandom Repl aceMe)))

)
where the function SmashRandom isdened as follows:

(LAVBDA (sel f varName val ue propNane activeVal ue)
(Repl aceActiveVal ue activeValue (RAND 0. 100.) self varNane]

On the rst fetch of the value of sanpl eX in any instance of RandonDat um, the function SmashRandom
over-writes the active value with a random number. This is a special case of the active value function
Fi rst Fet ch described earlier.

The function MakeAct i veVal ue is used to make the value of some variable or property be an active
value:

(MakeActi veVal ue sel fvar O Sel ect arewGet Fn newPut Fn newlLocal Stpr opNane typé

[Function]
sel fs the object, var Nane is typically the name of a variable when the active value
is being placed in an instance variable. If the active value is being placed in a
method, then var Nane should be bound to the selector name. Active values can aso
be used for class variables, or properties of instance or class variables, or methods.
The interpretation of where to create the active value is determined by the argument
type which must be one of I V (or NI L), CV, CLASS, or METHOD.

If newLocal St EMBED, then a new active value is always created, containing as
its | ocal St atvbatever was found by Get 1t Only (page 23). For other vaues of
newlLocal Stan active value is created only if the current value is not an active
value; otherwise the old one is ssimply updated with newlLocal StnewGet Fn and
newPut Fn

If an old active value is being updated, then if newGet Fnor newPut Fnis NI L, the
old get Fnor put Fnis not overwritten. If newGet Fn or newPut Fnis T, the old
get Fnor put Fnisreset to NI L.

The easiest way to dene a function for use in active values is to use the function Def AVP:

(Def AVP f nName put Fl p [Function]
Def AVP creates a template for dening an active value function and leaves the user
in the Interlisp editor. f nName will be the name of the function and put Fl gs T if
this isto be a put Fnand NI L if it isto be aget Fn

For get Fis, the template is
[ LAMBDA (self varName |ocal St propNanme activeVal type)
(* This is a getFn for ...)
| ocal St]

This template incorporates the standard arguments that a get Fnreceives, and the convention that they
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often return the value that isin their local state.
For put Frs, the template is

[ LAMBDA (self varNanme newal ue propNanme activeVal type)
(* This is a putkFn for ...)
(Put Local State activeVal newval ue self varNane propNanme type)]

This template incorporates the standard arguments that a put Fnreceives, and the convention that they
often put their resulting newval uen the | ocal St at e
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6 COMBINING INHERITED METHODS

In practice, most methods used to manipulate LOOPS objects are inherited. In the simplest examples
of multiple inheritance, classes represent independent features and there is no conict between inherited
methods. However, when features inherited from classes interact, it is essential to be able to describe how
to combine them. Howard Cannon recognized this ‘‘mixing issue’’ as central in the design of Flavors:

““To restate the fundamental problem: there are several separate (orthogonal) attributes that an
object wants to have; various facets of behavior (features) that want to be independently speci ed
for an object. For example, a window has a certain behavior as a rectangular area on a bit- mapped
display. It also has its behavior as a labeled thing, and as a bordered thing. Each of these
three behaviors is di erent, wants to be speci ed independently for each object, and is essentially
orthogona to the others. It is this ""essentialy'’ that causes the trouble.”’

““It is very easy to combine completely non-interacting behaviors. Each would have its own set
of messages, its own instance variables, and would never need to know about other objects with
which it would be combined. Either the multiple object or simple multiple superclass scheme
could handle this perfectly. The problem arises when it is necessary to have modular interactions
between the orthogonal issues. Though the label does not interact strongly with either the window
or the border, it does have some minor interactions. For example it wants to get redrawn when
the window gets refreshed. Handling these sorts of interactions is the Flavor system’s main goal.”’

... from [Cannon82]

This section considers cases where the inherited features interact, and describes some LOOPS facilities
for combining interacting methods. First, we describe a way of combining an inherited method with local
method code. Next, we describe other ways of combining methods inherited from multiple super classes.
Finally, we describe some special functions one can use to ‘‘escape’’ from the normal method inheritence
conventions.

6.1 Augmenting an Inherited Method

The inheritance examples shown previously considered only cases where methods are inherited in toto.
In these examples, subclasses inherit a method or value unchanged, or they override it completely. No
mechanism was described that would enable a subclass to track changes in a method after it had been
specialized in some way.

For combining an inherited method with local code, LOOPS provides the specia method invocation
_Super.

(_Super objectsel ectoarg argy) [NLambda NoSpread Function]
obj ecis the object to which the method is applied (typicaly sel f), sel ect &g the
selector for the method and arg ar gy are the arguments for the method. As
with _, sel ect ¥ not evaluated; the remaining arguments are evaluated.

_Super provides a form of relative addressing; it invokes the next more general
method of the same name even when the specialized method invoking _Super is
inherited over a distance. An example of the use of _Super isgiven in gure 7.
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Note: SENDSUPER can be used instead of _Super .

(Bor der edW ndow. Ref resh
[ LAMBDA (sel f) (* njs: "11-JAN-82 19:28")

(* * Method for refreshing a wi ndow that has a border)

(* First use the refresh nethod
i nherited from W ndow.)
(_Super self Refresh)
(* Then Re-display the border.)
(_ (@:border) Display)
self])

Figure 7. This Interlisp procedure implements the Ref r esh message for the class Bor der edW ndow.

It uses _Super to invoke the more general method in the class W ndow. The object for the
“‘border’’ of the bordered window isin the instance variable bor der . The speciaized method
returns the bordered window as its value. In more complicated examples, callsto _Super and
_ can be combined using Interlisp iterative and conditional statements.

6.2 Combining Multiple Inherited M ethods

Using _Super , a method can invoke the single next general method. However, when a class has multiple
super classes, sometimes it is necessary to invoke the general methods from each of the super classes. In
this situation, one can cal _Super Fri nge:

(_Super Fringe objectsel ect oar g argy) [NLambda NoSpread Function]
This is similar to _Super, except that _Super Fri nge invokes the next more
general method of the same name for each of the super classes on the supers list of
the class of the currently- executing method.

6.3 General Method Invocation

The functions _Super and _Super Fri nge have proved to be sucient for implementing most methods.
However, sometimes it is necessary to manipulate multiple inherited methods, and invoke them in some
other order. The following functions provide more general ways of invoking particular methods. It is
important to note that while these functions are more powerful than _Super or _Super Fringe, they
are aso more ‘‘dangerous’, in that they do not conform to the conventions of method inheritence. These
functions should only be used as a last resort when a method cannot be implemented in any other way.

(DoMet hod obj ectsel ect or Exmi assar g argy) [NLambda NoSpread Function]
DoMet hod alows computation of the name of the selector and the class from which
that method should be found; it applies that method to obj ect

All the arguments to DoMet hod are evaluated; sel ect or Exghould evaluate to a
selector name in the class computed from cl assif cl asss NI L, then the class of
obj ectsused. If no method for the computed selector isfound in the computed class,
an error is generated. The remaining arguments, ar g ar gy are the arguments
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for the method.

In the case where the arguments to the method have already been evauated, then one can use
Appl yMet hod instead of DoMet hod:

(Appl yMet hod obj ectsel ect oar gLi stcl ags [Function]
argLi sis a list of al the arguments to the method (except obj egtaready evaluated.
The function applied is the one found by searching from cl asslf cl ass NI L, the
class of obj ects used.

( DoFri ngeMet hods obj ectsel ect or Exar g ar gy) [NLambda NoSpread Function]
Like DoMet hod, dl of the arguments are evaluated. DoFri ngeMet hods calls the
method for sel ect or Exiprthe class of obj ectif that method isdened in that class.
If the method isnot dened in the class of obj egtthe method of the same name for
each of the super classes on the supers list of the class of obj ects envoked.
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7 INSTANCE CREATION

The standard process of creating an instance of a class is to send a New message to the class. In the
simplest case, this causes the information in the instance variable descriptions of the class to be used to
establish default values for variables in the newly created instance. When that process is nished, the
instance can be altered in various ways by sending it messages.

LOOPS provides a variety of facilities for controlling this by using active values, standard access functions,
and metaclasses. This section summarizes some of the common cases. See page 38 for an illustratation of
the use of these facilities to support the important example of composite objects.

7.1 Specifying Values at Instance Creation

The NewW t hVal ues message simpli es the case where it is desired to specify values and properties in
an instance when it is created. The form of this message is:

(_ clasNewWt hVal ues val Descri pti onLi st [Message]
val Descri pt i omhusstevaluate to a list of value descriptions, each of which isalist
of a variable name, variable value, and properties, e.qg.

((var Nameq val ug¢ prog prop\l; )
(var Namep val ug )

The method for NewW t hVal ues rst creates the object with no other initialization

(e.g. without computing values speci ed in the class, as described in sections below).

It then directly installs the values and property lists speci ed in val Descri pti onénidst
returns the created object. Variables which have no description in val Descri pti onLi st
will be given no value in the instance, and thus will inherit the default value from

the class.

7.2 Sending a Message at Instance Creation
A simpli cation in form is available when one wants to send a message to an instance immediately after
its creation. For example, consider:

(_ (_ (% Transistor) New) Display w ndowCenter)

which creates an instance of the Transi st or class, and then displays it a a point wi ndowCenter . A
more compact notation for doing this is provided:

(_New ($ Transistor) Display w ndowCenter)

where _New (‘‘send New'’) means to create a new instance and send it a message. The value returned by
_New is the new instance. Any vaue returned by the method is discarded.

In order to name an object, one can send the message Set Nane to that object. As a simpli cation, if
one provides an argument to the New message, the default interpretation of that argument isto use it as
a name, sending the newly created object the Set Name message.
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7.3 Computing a Value at First Fetch

As described earlier, one can use an active value to activate arbitrary procedures when values are fetched.
The built-in function Fi r st Fet ch can be used as a get Fnin an active value as the default value in the
class. If no value has been assigned to the variable or property before the value is fetched for the rst
time, the Fir st Fet ch active value is invoked.

The local state of this active value can be a list which is a form to be evaluated. During the evaluation,
the variables sel f, var Nane, and propNane are are appropriately bound. The local state of the
Fi r st Fet ch active value can also be an atom; if so, it istreated asthe name of a function to be applied
to the object, var Name and pr opNane. The value of the form or function application is made the value
in the instance as well as being returned as the value of the fetch.

For example, the random number example could have been done as follows:

( DEFCLASS Test Dat um
(Metad ass C ass)
(...
(I'nstanceVari abl es (sanpleX #((RAND 0. 100.) FirstFetch)))
o)

In this example FirstFetch evauates the form (RAND 0. 100.) and replaces the value of the
sanpl eX variable of the instance by the random number. In many cases the form may be a _ expression.

7.4 Computing a Value at Instance Creation

In the previous example, FirstFetch initidizes the value of an instance variables at rst access.
Sometimes it is important to initialize an instance variable when the instance is created. For such cases
LOOPS provides a distinguished get Fn At Creation. If a default value of an instance variable or
property contains an active value with At Creati on asits get Fnthen at creation time, the | ocal St atfe
this active value will be used to determine a value to be inserted in the new instance.

As with FirstFetch, if the | ocal St atsean atom, then it will be treated as the name of a function
to be applied to the object, variable name, and property name. If it is a list, then that list will be
evaluated in a context in which sel f, var Name, and pr opNanme are appropriately bound. Functions
run at initialization time are run in the order in which they appear in the class. Default values of variables
are available to these functions.

If an object is created by NewW t hVal ues without a value being supplied for a variable which contains
an At Creation default value, then at the rst fetch of that variable, the function or form will be
evaluated.

Example:

Suppose we want to have an instance variable caled cr eati onDat e which tells the date that an instance
was created. This can be implemented in LOOPS as follows:

( DEFCLASS Dat edObj ect
(Metad ass d ass)

(...
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(I nstanceVari ables (creationDate #((DATE) AtCreation)))
L)

The function DATE in Interlisp computes a string which is the current date and time. The vaue of this
string at instance creation time is made the intitial value of creati onDat e.

Another use of an At Creati on active value might be to make an index entry to a newly created object.
75 Special Actions at Instance Creation

For some special cases, the user may want to have more control over the creation of instances. For
example, LOOPS itself uses di erent LISP data types to represent classes and instances. The New message
for classesis elded by their metaclass, usually the object Met aCl ass. This section shows how to create
a new metaclass.

Any metaclass should have Cl ass as one of its super classes and Met aCl ass as its metaclass. The
easiest way to create a new metaclass is to send a New message to Met aCl ass as follows:

(_ ($ Metad ass) New netad assNanmesuper)s

This creates a new metaclass with the name nmet aCl assNan@and with the super classes named in the list
super.sThe default supers for metaclasses is the list containing Cl ass. The metaclass for the the new
class is Met ad ass.

One then installs the specialized method for New in the new metaclass. This method provides the
mechanism for creations of instances of the class which have this as a metaclass. Sending this metaclass
the message New will cause the creation of a class with the appropriate property.

As a simple example we will dene a new metaclass Li st Met all ass which will augment the instance
creation process by keeping a list of al instances which have been created. This list will be kept on the
class property al | | nst ances. To create this class we go through the scenario in gure 8.

_(_ ($ MetaC ass) New 'ListMetad ass ' (dass))
#$Li st Met ad ass We have now dened a new metaclass

This denes the New method for that metaclass
_ (DM ' ListMetaCl ass 'New '(self nane)
"((* Create an instance and add it to list in class)
(PROG ((newObj (_Super self New nane)))
(* newObj created by super method from cl ass)
(Putd ass
sel f
(CONS newbj
(LI STP (Getd assHere self 'Alllnstances)))
"Al'l'l nst ances)
(* LISTP returns previous list or NIL if none)
(RETURN new(bj ]
Li st Met adl ass. New

_ (_ (% ListMetaCd ass) New ' Book)
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#$Book This creates a new class ($ Book)
whose metaclass is ($ ListMetaClass)
_ (_ (9% Book) New ’'B1)

#$B1 Creating #$B1 using ListMetaClass.New
_ (_ ($ Book) New 'B2)

#$B2

_ (Getd ass ($ Book) "Alllnstances)

(#$B1 #$B2) The list of instances created so far.

Figure 8. In this scenario, a new metaclass Li st Met aCl ass is dened by the New method
of ($ Metad ass) . It has metaclass ($ Met adl ass) . We then dene the specialized New
method for Li st Met aCl ass. This includes a call to its super (Cl ass) to actualy create the
object; it puts the newly created object on its list of objects. We then create ($ Book) which
has Li st Met aCl ass as its metaclass. When two instances of book are created, each is placed
on the list Al I I nst ances which is a class property.
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8 COMPOSITE OBJECTS

LOOPS extends the notion of objects to make it recursive under composition, so that one can instantiate a
group of related objects as an entity. This is especialy useful when relative relationships between members
of the group must be isomorphic (but not equal) for distinct instances of the group. The implementation

of composite objects combines many of the programming features described above. In particular, it isan
application of the notion of metaclass.

8.1 Basic Concepts for Composite Objects

Parameters and Constants: LOOPS supports the use of structural templates to describe composite objects
having a xed set of parts. Composite objects are normal LOOPS objects, created by an instantiation
process and describable in the class inheritance network. This contrasts with the idea of using for templates
data structures that are merely copied to yield composite objects. A primary benet of making composite
objects be classes is the ability to create dightly modi ed versions of a template by making a new subclass
which inherits most of the structure of its super.

Creating a Template: To describe a composite object, one creates a class whose metaclass is
Tenpl ate. One can aso use a metaclass one of whose supers is Tenpl ate. Any class whose
metaclass is Tenpl at e or one of its subclasses is called a template. In a template, the default values for
instance variables can point to other templates;, these will be treated as parameters and will be recursively
instantiated when the parent template is instantiated. All non-template classes and any other default
values are treated as constants that are smply inherited by instances.

Instantiation: Instances of a template are created by sending it a New message. The instantiation process
is recursive through all of the parameters of a template. Every parameter is instantiated when it is
rst encountered. Multiple references to the same parameter are always replaced by references to the
same instantiated instance. The instantiated composite object that is created is isomorphic to the original
template structure with constants inherited and with distinct instances substituted for distinct templates
(parameters). Parameters in lists or active values are found and the containing structure is copied with
appropriate subgtitutions. If a composite object needs multiple distinct instances of the same type (eg.,
two inverters), then multiple templates are needed in the description.

Example: gure 9 shows an example from digital design - a composite object for Bi t Anpl i fi er that is
composed of two series-connected inverters. The input of the rst inverter isthe input of the ampli er,
the output of the rst inverter is connected to the input of the second inverter, and the output of the
second inverter isthe output of the ampli er. Di erent instantiations of Bi t Anpl i fi er contain distinct
inverters connected in the same relative way. This example aso shows a possible use of active values in
templates. The containing composite object is set up so that its output instance variable uses an active
value to track the value of the output variable of the second inverter.

[ DEFCLASS Bit Anplifier
(Metadl ass Tenpl ate doc
(* * Conposite object tenplate for an anplifer
nmade of two series connected inverters.))
(Supers Anplifier)
(O assVari abl es)
(I nstanceVari abl es
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(inputTerminal ($ Inverterl))
(output #( (($ Inverter2) output) Getlndirect Putlndirect)
doc (* Data is stored and fetched from the vari able
output in the instance of Inverter2))
(Met hods) ]

[ DEFCLASS Inverterl
(MetaCl ass Tenplate partOf ($ BitAnplifier)
doc (* Instance variable Input is inherited fromlnverter))

(Supers Inverter)
(C assVari abl es)
(I nstanceVari abl es
(output ($ Inverter?2)
doc (* Qutput connected to second inverter)))
(Met hods) ]

(DEFCLASS Inverter?2
(Metad ass Tenplate partOf ($ BitAmlifier) )
(Supers Inverter)
(C assVari abl es)
(I'nstanceVari abl es
(input ($ Inverterl)
doc (* Input connected to first inverter)))
(Met hods) ]

Figure 9. Composite object templates for a Bi t Anpl i fi er . When instances are made, they
will have digtinct instances of the two inverters, with their input and output interconnected.
The instantiation process must be able to reach (possibly indirectly) al of the parts starting
from the class to which the New message is sent. In this case, | nverter1l and | nverter?2
are both mentioned in Bit Anplifier. The example aso illustrates the use of active values
to provide indirect variable access in LOOPS. In this example, the active value enables the
output variable of an instance of Bit Anplifier to track the corresponding output variable
of an instance of | nverter2 in the same composite object.

8.2 Specializing Composite Objects

Because the templates are classes, al of the power of the inheritance network is automatically available
for describing and specializing composite objects. To make this convenient, one can send the message
Speci al i ze to any template form. For example:

(_ ($ BitAmlifier) Specialize)

This creates a new set of templates such that each template in the new set is a specialization of a template
in the old set. One can then selectively edit the templates describing the new composite object. In
particular, one may want to change the names of the generated classes by sending them the message
Set Nane. Unchanged portions of the template structure will continue to inherit values from the parent
composite object. A user can specidize a template by overriding instance variables. To add parameters,
one creates references to new templates. Conversely, one can make a parameter into a constant by
overriding an inherited variable value with a non-template in a subclass.
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8.3 Conditional and Iterative Templates

Because the templates are xed, they are not a sucient mechanism for describing the instantiation of
composite objects having conditional or repetitive parts. Consistent with our stand on control mechanisms,
we have not added conditional or iterative structural descriptions to LOOPS, but use available Interlisp
control structures in methods. For these cases, a user denes a new metaclass for the composite object.
(Recal that metaclasses are classes whose instances are classes) The metaclasses for templates should
be subclasses of the distinguished metaclass Tenpl at e. The specialized metaclass should have a New
method that performs the conditional and iterative steps in the instantiation. This approach works well
in conjunction with the LOOPS mechanisms for specializing classes and methods. For example, the
specialized New method can use _Super to access the standard code for the template- directed portion
of the instantiation process. gure 10 shows an example of a LOOPS template for aring oscillator. This
composite object is made of aloop of serially connected inverters.

(Met aRi ngGsci | | at or. New
[ LAMBDA (sel f assoclList nunttages) (* mjs: "11-JAN 82 19:28")
(* * Procedure for creating a ring oscillator.)

(PROG (ringGscillator firstlnverter lastlnverter invl)
(* Create the inverter chain.)
(SETQ invl (SETQ firstlnverter (_ ($ Inverter) New)))
[for i to (SUBl1 nunftages)
do (SETQ lastlnverter (_ ($ Inverter) New))
(_ invl Connect |astlnverter)
(SETQ invl lastlnverter]
(* dose the |oop)
(_ lastlnverter Connect firstlnverter)
(* Make the ringGscillator object.)
(SETQ ringGscillator (_Super self New assoclList))
(* * the assocList here is the pairing
of Tenplate classes found in the
instantiation of a tenplate so far)
(@ (ringGCscillator input) firstlnverter)
(@ (ringGCscillator output) l|astlnverter)
(RETURN ringGscillator) ])

Figure 10. Example of an iteratively speci ed composite object, a ring oscillator. The ring
oscillator is composed of a series of inverters serially-connected to form aloop. To specify the
iteration and interconnection of the inverters, a New method is dened for the metaclass
Met aRi ngGOsci | | at or . The Interlisp function for this method (Met aRi ngGsci | | at or. New)
uses _Super to perform the template- driven part of the instantiation, that is, instantiating the
ring oscillator object itself. In this case, the template- driven portion of the instantiation istrivial,
but the example shows how it can be combined generaly with the procedural description.
Met aRi ngGsci | | at or. New uses iterative statements to make an instance of | nverter for
each stage of the oscillator. After connecting the components together, it returns the ring
oscillator object.
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9 LOOPS KNOWLEDGE BASES

Loops was created to support a design environment in which there are community knowledge bases that
people share, and to which they can add incremental updates. This section describes our goals for this
facility, the concepts that we have employed, and scenarios for using knowledge bases in Loops.

We have chosen the term knowledge base instead of data base to emphasize two things: the kind of
information being stored and constraints on the amount of information. Loops will be used mainly for
expert system applications where relatively modest amounts of information are used for guiding reasoning.
This information (i.e., knowledge) consists of inference rules and heuristics for guiding problem solving.
This isin contrast to potentially enormous les of facts, for example, social security records for California.
Reecting this di erence of scale, we have optimized the implementation to support fast access and
updating to a smaller amount of information which is expected to t in main memory for any one session.
For example, we maintain an index to the object information in computer memory.

9.1 Review of Knowledge Base Concepts

Knowledge Bases: Knowledge bases in LOOPS are les that are built up as a sequence of layers, where
each layer contains changes to the information in previous layers. A user can choose to get the most
recent version of a knowledge base (that is, all of the layers) or any subset of layers. The second option
oers the exibility of being able to share a community knowledge base without necessarily incorporating
the most recent changes. It also provides the capability of referring to or restoring any earlier version.
gure 11 illustrates this with an example.

————————————————————————— Layer 1 -----c-cmcmcmcncncennnna-
bj1 (x 4)

j 2 (y 5) (w3)

------------------------- Layer 2 ----------mmime e
j2 (y 7) (w2)

hj 3 (z 6)

————————————————————————— Layer 3 ------mcecmcm e
Ohj 1 (x 8)

hj4 (z 9)

Figure 11. Knowledge bases in LOOPS are les that are built- up incrementally as a sequence of
layers. Each layer contains updated descriptions of objects. When a knowledge base is opened,
the information in the later layers overrides the information in the earlier layers. LOOPS
makes it possible to select which layers will be used when a knowledge base is opened. In this
example, if the knowledge base is opened and only the rst 2 layers are used, then Cbj 1 will
have an x variable with value 4. If al three layers were connected, then the value would be
8.

Community Knowledge Bases: LOOPS partitions the process of updating a community knowledge base
into two steps. Any user of a community knowledge base can make tentative changes to a community
knowledge base in his own (isolated) environment. These changes can be saved in a layer of his personal
knowledge base, and are marked as associated with the community knowledge base. In a separate step,
a data base manager can later copy such layers into a community knowledge base. This separation of
tasks is intended to encourage experimentation with proposed changes. It separates the responsibility for
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exploring possibilities from the responsibility of maintaining consistent and standardized knowledge bases
for shared use by a community. The same mechanisms can be used by two individuas using persona
knowledge bases to work on the same design. They can conveniently exchange and compare layers that
update portions of a design.

Unique Identi ers: The ability to determine when di erent layers are referring to the same entity is critical
to the ability to share data bases. To support this feature the LOOPS data base assigns unique identi ers
(based on the computer’s identi cation numbers, the date, and an unbounded count) to objects before
they are written to a knowledge base. This facility provides a grounding for more sophisticated notions
of equality that might be desired in knowledge representation languages built on LOOPS.

Environments. A user of LOOPS works in a personalized environment. An environment provides a lookup
table that associates unique identi ers with objects in the connected knowledge bases. In an environment,
user indicate dominance relationships between selected knowledge bases. When an object is referenced
through its unique identi er, the dominance relationships determine the order in which knowledge bases
are examined to resolve the reference. By making personal knowledge bases dominate over community
knowledge bases, a user can override portions of community knowledge bases with his own knowledge
bases.

Multiple Alternatives: An important use of environments is for providing speedy access to aternative
versions (e.g., multiple alternatives in a design). A user can have any number of environments available
at the same time. Each environment is fully isolated from the others. Operations that move information
between environments are always done explicitly through knowledge bases.

9.2 Environmental Objects and Boot Layers

Knowledge bases, environments, and layers are represented in Loops by special objects called environmental
objects. All knowledge base and environment operations are performed by sending messages to these
objects. Environmental objects are accessible from any environment in Loops.

In this section, we will need to distinguish between environmental objects and the things that they
represent. gure 12 summarizes some of the terminology that we will use.
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Loops Object Represents Description

Layer le layer Portion of a le which contains
descriptions of objects.

KB knowledge base A le and sequence of le layers.
A knowledge is known by the name
ed of its le name.

KBState State of a A sequence of le layers. Used to
knowledge base access a xed explicit set of le layers
(eg., a version of a knowledge base that
is older than the most recent version).

Environment environment An environment associates names and
unique identi ers with objects in
working memory.

Figure 12. Summary of terminology for environmental Loops objects and the entities that they
represent.

Environments. An Environment provides a name space in working memory. Each Environment associates
names and unique identi ers with objects. In general, Environments are designed to be independent. For
convenience, Environments are usualy named. An Environment is always associated with a particular
knowledge base. The speci cations for creating an Environment come from some knowledge base, and
changes to the Environment are stored on that knowledge base.

Layers:. A le layer is a portion of a le which contains descriptions of objects. An object description
consists of aunique identi er and an expression that can be read by Interlisp to create the Loops object. A
di erent unique identi er is associated with each expression. In addition, a le layer contains a mapping
from names (Interlisp atoms) to unique identi ers. A le layer isrepresented in Loops by a Layer object.
A Layer indicates the le on which it is written, the starting address of the le layer, and the name of
the knowledge base with which it is conceptually associated. A Layer also contains various bookkeeping
information such as the name of its creator and the date of its creation.

KBs and KBSates: A knowledge base is a set of le layers. Typicaly, most of the layers of a knowledge
base are located on a single le. A knowledge base is known by its le name. By convention, such les
have the extension ‘KB’’. A KB is a Loops object that represents a knowledge base. A KB has a name
equal to the name eld of the le name of the knowledge base that it represents. For example, the KB
with name Test would be associated with a version of the le Test . KB.

A KBState is a generadization of a KB. It refers to an explicit set of le layers. KBs and KBStates indicate
their Layers using alist on an instance variable named cont ents. An eement of this list must be either
a Layer or a KBState. When a KBState appears in the list, it is as if the Layers listed in the KBState's
contents variable appeared explicitly in the list. This provides a mechanism for indirect fetching of layers
from other knowledge bases.

To indicate al of the layers of the most recent version of a knowledge base, the contents of the KBState
can be the specia value ““CURRENT’’. When such a KBState appears in the ligt, it is as if the Layers of
the most recent version of the knowledge base were inserted in the list. These Layers are retrieved by
retrieving the KB from the referenced knowledge base.
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Boot Layers: Environmental objects are distinguished from other objects when they are accessed and
when they are written out to a knowledge base. They are accessed di erently in that they are kept in a
global name table accessible in all environments. This means that an Environment can be described in
terms of the environmental objects before the Environment is made current.

Environmental objects are also specia in that the le layer that describes them is a speciad le layer at
the end of a knowledge base called the boot layer. In order to access the contents of a knowledge base,
it is necessary to read the boot layer rst because it contains the environmental objects that describe
the knowledge base. A boot layer for a knowledge base contains a single KB describing itself, a Layer
describing each of its le layers, and the KBStates mentioned (directly or indirectly) in the KB.

The Global Name Table: Loops keeps environmental objects in a global name table that is accessible from
any environment. This name table aso includes the basic classes that are part of the Loops kernel. If
Loops is used without exercising the Environments feature, then all created objects are aso placed in the
globa table.

When another environment is opened, objects not in core are rst looked for by UID or name in the open
environment. If no object isfound there, then the UID or name islooked up in the Global Environment.
Thus, object descriptions in a new environments override those in Global Envrionment, but old objects
which have no counterparts are still available.

9.3 Starting With No Preexisting Knowledge Bases

The knowledge base facility in Loops has been designed to cover a number of situations. Because of
this generality, it is not always easy for a newcomer to discover the simplest way of using the features.
The following sections describe all the features of the Knowledge Base system; however each feature is
introduced within a particular scenario that shows how to do some of the most common operations for
which Loops was designed.

In the rst scenario, a user wants to start from scratch using no preexisting knowledge bases. The results
of this Loops session are saved in a personal knowledge base.

When a user invokes Loops, the Loops name space will contain some objects from the Loops kernel.
Before creating any new objects, the user should type an expression of the form:

(_ $KB New ' KBNane ' ervironmenNane newVer si onFl g

where KBName is an atom (e.g., use FOO to create a knowledge base named FOO. KB) and
envi r onmenName will be the name of the Environment. This will create both a new KB corresponding
to the KBNane and a new Environment with the name ervi r onnenNarre.

Loops checks that a knowledge base with KBNane does not aready exist. |If it does exist and
newVer si onFlig NI L, Loops will report an error. If newMer si onFlig T, then Loops will create a
new version of the le. Because of the way the le system works, the name of a KB must be al in upper
case. If the user attempts to use a KBNanme which contains lowercase letters, Loops will correct the name
to all upper case and print a warning message.

Warning: Objects created before creating and opening an Environment are placed in the globa name
table. Hence, any objects so created will be shared by all Environments. However, Loops will not save
such objects in a knowledge base later in the session unless they are explicitly moved to some environment.
Alternatively, such objects can be saved using the Interlisp le package.
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The next step isto open the Environment:
(_ $ervi ronnmenNane Qpen)

This makes the new Environment be the current environment. New objects that are created will be
associated with the KB.

Having created an Environment, the user can then proceed to create whatever new objects he desires in
the session. To dump the current state of the environment and continue afterwards, the user can type:

(_ $ervironnenNanme C eanup)

This does not close any les, and leaves the environment as it was, except that all changed objects have
been dumped to the knowledge base, and then marked as unchanged. Cl eanup can be done any number
of times in a session.

At the end of a session the user should do a C ose:
(_ $ervironnmenNane C ose)

This writes out all of the objects to a le layer, updates the environmental objects accordingly, and writes
them out to a boot layer, deletes these objects from memory, and closes all les associated with the
environement. The user can then exit from Interlisp. After a Cl ose is done, the user must go through
the following scenario to start up again.

9.4 Continuing from a Previous Session

The case where a user wants to create a new knowledge base is less common than the case where he
wants to modify or add objects to a knowledge base that he has previously created. In this scenario a
user wants to resume from where he was at the end of his previous session.

The rst step isto obtain the user's knowledge base, and link it to an environment. This is done by a
message to the class KB as follows:

(_ $KB A d ' KBNane ' ernvironmenNane)

This reads the boot layer of the knowledge base named KBNane and creates an Environment named
envi r onmeinNane that is then connected to the KB. At this point the user must open the environment
to make the contents of the KB available in this environment:

(_ $ervi ronnmenNane Qpen)

This causes Loops to read in each Layer contained (possibly implicitly) in the contents of the associated
KB (named KBName ). It also makes the new Environment be the current environment. Having opened
an Environment, the user can then proceed to dene whatever new objects he desires in the session.
New objects that are created will be associated with the KB. When he is done, he should type as in the
previous scenario:

(_ $ernvi ronnenName C eanup)

or
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(_ $ernvi ronnenName Cl ose)

95 Starting from a Community Knowledge Base

Users will not usually start from scratch. Rather, they will often begin by using previously created
community knowledge bases. This scenario starts with obtaining a single community knowledge base.
The user does not own the community knowledge base, so the results of the session will have to be saved
in a personal knowledge base. The personal knowledge base will contain any new objects that created as
well as any objects from the community knowledge base that have changed.

Asin the rst or second scenario, the rst step isto create a personal knowledge base.
(_ $KB New ' KBNane ' ervironmenNane newWer si onFl g

or if the user has a personal knowledge base aready, by doing a

(_ $KB A d ' KBNane ' ervironmenNane)

This obtains both the KB and an Environment. The next step isto add the community knowledge base
to the KB as follows:

(_ $KBName AddToContents ' conmuni yKBNane )
where conmuni yKBNane is an atom that is the name of the community knowledge base.

This step should be repeated for each knowledge base to be added to the KB named KBNane . The
message creates a KBState describing the ‘‘current’’ state of the community knowledge base and adds that
KBState to the contents of the KB for the personal knowledge base. The eect of this action is that
Loops will remember to associate the community knowledge base with the user's knowledge base in the
future. (This step need not be repeated in any future session which uses the knowledge base KBNane .)

At this point, the user can open the Environment as before:
(_ $ervi ronnenNane QOpen)

This causes Loops to read in each Layer contained (possibly implicitly) in the contents of the KB named
KBNane . The Open message aso makes the Environment named ervi r onnenNanme be the current
environment.

Since the KB associated with the environment contains a KBState for conmuni yKBNane , those Layers
will also be read. They are found by reading the boot layer of the community knowledge base. The
message AddToCont ents on KBNane will work properly even after the environment is Qpen, in the
sense that when it is done on a KB connected to an Qpen environment, it causes all the layers of the
newly added KB to be read in.

All creation and modi cation operations will take place in this Current Environment. The user can
create new objects and modify objects in the community knowledge base. When done, the results of the
session can be saved using G eanup (or O ose). This will cause two le layers to be written out to the
personal knowledge base (and none to the community knowledge base). First a le layer is written out
to KBName for changes made to the community knowledge base (if any). The Layer for this le layer
is marked as associated with the community knowledge base. Second, a le layer is written out for the
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other objects that have been created. The Layer for this is marked as associated with KBNane . Finally,
the environmental objects for the knowledge base are written out to a boot layer.

Before the boot layer is written out, the KB for the personal knowledge base named KBNane is updated
to contain the new Layers. It contains the reference to the community knowledge base that was created
by the AddToCont ents message. This continues to be interpreted as a reference to the most recent
version of the community knowledge base named conmmuni yKBNane .

If Cl ose was used, then the les storing the knowledge bases have been closed and all objects in the
environment have been destroyed. The environment was also made not current. This clean state is
recommended as a place from which the user can then exit from Interlisp.

9.6 Freezing and Thawing References to Knowledge Bases

In the previous scenarios, the user used the most recent version of the community knowledge base.
Community knowledge bases can be changed over time by their owners (i.e., their human knowledge
base managers). Sometimes a knowledge base manager may update the community knowledge base, but
a user may want to continue using a xed older version. For example, if the new version of a community
knowledge base contains extensive changes, the user may want to nish some project before converting
his persona knowledge bases to reect the changes. To do this the user must freeze references to the
community knowledge base. Freezing enables a user to continue to access a xed set of layers even
though the community knowledge base may be changed by the knowledge base manager. In this scenario,
the user has a personal knowledge base whose contents include a named community knowledge base. She
anticipates the change to the community knowledge base before it happens and freezes reference to it.

Later, we will see how a user can return to an earlier version after a change has been made.

Freezing: The rst step is to obtain access to the user's personal knowledge base. As in the previous
example, this is done by sending an A d message to the class KB:

(_ $KB A d ' KBName ' ervironnenNane)

This creates an Environment named ervironnenNanme with that KB as its outputKB. To freeze the
reference, the user needs to change the KBState in his personal KB that describes the community
knowledge base. This can be done as follows:

(_ $KBNane FreezeKB ' communi yKBNane )
The user can then open his Environment, do his work, and then write updates as before:

(_ $ervi ronnmenNane Qpen)
. <make changes to objects> ...
(_ $ervironnenNane d ose)

From his point of view, the objects in the community knowledge base will be static even if the knowledge
base is changed several times. After the user ends this session and starts again the next day, his knowledge
base will continue to refer to xed versions of the objects in the community knowledge base, even if new
versions are added later.

Thawing: Eventually, however, the changes (and improvements) to the community knowledge base may
provide a compelling reason for the user to switch to the most recent version. To do this, he should type
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the following messages at the beginning of a session:

(_ $KB A d ' KBName ' ervironnenNane)
(_ $KBName ThawkB ' conmmuni yKBNane )

The user can then open his Environment, do his work, and then write updates as before.
9.7 Using Several Knowledge Bases in an Environment

The partitioning of knowledge into multiple knowledge bases can be a useful tool for organizing knowledge.
For example, long term storage of di erent versions of a design can be kept in separate knowledge bases
in Loops. (The di erent knowledge bases in these cases correspond to di erent environments.) It is also
convenient to partition knowledge bases to reect the partitioning of responsibility for setting standards and
maintaining consistency. The previous scenarios have shown the use of separate knowledge bases to keep
(tentative, idiosyncratic) personal knowledge separate from (open, standardized) community knowledge.
This scenario shows how a user can access several knowledge bases through a personal knowledge base.

The rst step isto open the personal knowledge base as follows:
(_ $KB A d ' KBNane ' ervironnenNane)
The next step isto add al of the other knowledge bases that the user wants as follows:

(_ $KBNane AddToContents ' other KBNang)
(_ $KBNane AddToContents ' other KBNang)
(_ $KBNane AddToContents ' ot her KBNangy)

This can be repeated for each knowledge base to be added.

Each AddToCont ent s message changes the cont ent s variable of the knowledge base named KBNane
so that it now refers indirectly to the other KBName. These references are preserved across sessions so
that the next time the user opens his knowledge base with an O d message, he will not need to repeat
the AddToCont ent s messages. These references can be removed as in the previous session.

For most applications, the order in which knowledge bases are added does not matter. However, if an
object reference is ambiguous in the sense that the object is contained in more than one of the knowledge
bases, then the last knowledge base added will dominate. After the knowledge bases have been added,
the user can optionally freeze the references to any of them as described earlier.

The next step is to open an environment:
(_ $ervi ronnmenNane Qpen)

As the user creates new objects in his environment, he could want them to be associated with particular
knowledge bases that he isusing. Usually, he will want them associated with his personal knowledge base
(named KBNane in the example), and this is the default association. However, bugs in a community
knowledge base will often be found by a user working on an example in a personal knowledge base.
If the user simply changes the buggy objects, they will continue to be associated with the community
knowledge base when he saves them at the end of his session. However, if he creates new objects that he
wants associated with the community knowledge base, he can rst type:
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(_ S$ervironnenName AssocKB ' ot her KBNamg))

This message rst checks that there is a knowledge base named ot her KBNamg in the environment. It
does not cause the changes to be written to the other knowledge bases. Rather, it causes a specialy
marked layer to be created in the user's personal knowledge base which can be accessed later by the
community knowledge base manager.

The user can then create the new objects. When he is done creating these objects, he can then switch the
association back to his personal knowledge base by typing:

(_ $ervi ronnenNane AssocKB ' KBNane )
As before, the user can type

(_ $ervi ronnenNane Cl ose)

when he is done with the session.

Occasionally, a user may accidentally associate some objects with the wrong knowledge base. See the next
section for a way to change the association of an object after it has been created.

If he later resumes the session, he will have access to all of the knowledge bases that he added.
9.8 Changing the Associations of Objects

The previous scenario depends on anticipating a change in the intended association of an object before
creating it. This approach using an AssocKB message works ne if the creation of objects can be
conveniently organized into periods such that all of the objects created during a period are associated
with the same knowledge base. In practice, however, a user may forget to send the message or he may
later change his mind about the appropriate association for an object. The message for changing the
association of an object isthe AssocKB message as follows:

(_ $obj ect NameAssocKB ' newKBNane )

9.9 Switching Among Environments

One of the important features of Environments isthat they provide a way of having independent versions
of designs. A user can have several open Environments and can switch between them by making one of
them the ‘‘current’” Environment. In this scenario, we will rst consider two ways that a user can create
multiple open Environments. Then we will consider how to switch among them and how to copy objects
between them.

Case 1. In this case, a user isjust starting a session. He has a personal knowledge base named KBNanel,
and he wants to create two knowledge bases (KBName2 and KBNane3) to represent two versions of a
design. To do this, the user can type:

(_ $KB New ' KBNane2 ' ervi ronnenNane2)

Create 2nd knowledge base and Environment.
(_ $KB New ’ KBNanme3 ' ervi r onnemnNane3)

Create 3rd knowledge base and Environment.
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(_ $KBNane2 AddToContents ' KBNanel)
Add KBNamel to the contents of 2nd KB.
(_ $KBNanme3 AddToContents ' KBNanel)
Add KBNamel to the contents of 3rd KB.
(_ $ervi ronmenNane2 Qpen)
Open the 2nd Environment.
(_ $ervi ronnenNane3 Open)
Open the 3rd Environment, leaving it as current.

Case 2. Alternatively, the user may discover part way through a session that he wants to branch out
with another Environment. In this scenario, the user is working in Environmentl and decides to create a
branch point. Before doing this, the user must rst Close that environment:

(_ $ervironnenNanel Cl ose)
The user can then create the Environment2 and Environment3 as in case 1.

Switching. In both cases, the last Environment opened will be the default current one. The user can
make any Environment be current by:

(_ $ervi ronmenNanme2 MakeCurrent)

All Loops operations will then happen in this Environment. To switch to envi r onmetnNane3 use:
(_ $ervi ronnmenNane3 MakeCurrent)

and so on. To test whether any particular environment, test edBa r onnenis current, one uses:
(_ $testedBmronnen | sCurrent)

To switch to the GlobalEnvironment, one sends to the current environments:

(_ CurrentEnvironnment MakeNot Current)

The Lisp globa variable Current Envi ronment isbound to the environment which is current.

When done, the updates should be written out for all of the open Environments. This can be done
by sending C eanup or C ose messages to each of the environment, or can be done by sending the
corresponding message to the class Environment which will send the message on to each open environment
(kept on alist in the Lisp global variable openEnvi ronment s ):

(_ $Environnent C eanup)
(_ $Environnent C ose)

Copying Objects between Environments. While a user is switching between environments, he may make
discover an error in some information that is globa to both environments. In this scenario, the user
discovers an error in some objects from a community knowledge base while he isworking in Environment2.
He corrects the objects in Environment2, and wants to copy those corrections into Environment3. He
does this using the Copybj ect s message as follows:

(_ $toErvi ronnen CopyQbj ects obj ectslL) st

where t oErvi r onnemnis the name of the environment that the objects are copied to, and obj ect sLiista
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list of objects to be copied.

This message causes the objects to be copied. If the objects already exist in the t oErvi r onnet then the
copies overwrite the previous objects.

In our scenario, the user would perform the following steps:

(_ $ervi ronnenNane2 MakeCurrent)
Make Environment2 current.

Collect the objects.
(SETQ obj ectsList ...)
Make a list of the collected objects.
(_ $ervi ronmenName3 CopyChj ects obj ect Li st)
Copy the abjects to Environment3.

9.10 Saving Parts of a Session

Saving part of a session. To selectively update the knowledge base with some of the changes that he made
in a session, a user can send a Cl eanup message to his Environment with KBs speci ed. For example,
to save the updates associated only with the knowledge bases named KBNanel and KBName2, he can
send the message:

(_ $ervironnenNane C eanup ' (KBNanmel KBNane2))

This message writes out le layers to the user’s personal knowledge base containing the objects that from
the current Environment that are associated with the knowledge base KBNanel and KBNane2. The user
has omitted the names of associated knowledge bases for which he wants to discard the changes. This
message completes by writing out the boot layer.

The O eanup message without KB’s speci ed writes a layer for every associated knowledge base that has
been changed, followed by a Wi t eBoot . If the user does a (_ $ervNanme C eanup T), then al the
changes will be written out in a single layer associated with the connected knowledge base.

Cancelling an entire session. The previous scenarios assumed that a user wanted to save the changes that
he makes in a session. Sometimes, however, a user may prefer to discard the changes that he has made
in a session. He can do this and return the environment to an unopened state by typing:

(_ $ervi ronnenNanme Cancel )

Cancelling this session will not go back past the last time the user did a C eanup. Cancel backs
up changes made since that time and then does what a Cl ose would do, destroying objects in the
environment, and closing les.

9.11 Copying Layers from one Knowledge Base to Another

The ability to describe layers using a KBState makes it possible for one knowledge base to indirectly
access the le layers of another one. This mechanism works ne when it is used to extend a personal
knowledge base to include a community knowledge base. It enables several users to read a community
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knowledge base at the same time and to write their updates to their personal knowledge bases. However,
the indirection mechanism breaks down if some users want to read a knowledge base while another user is
writing to it. For example, such aconict could arise if a community knowledge base used the indirection
mechanism to access a le layer in some personal knowledge base. Whenever the owner of the persona
knowledge base was updating it, users of the community knowledge base would be blocked by the le
system. To avoid such situations, it is necessary to create community knowledge bases that physicaly
contain al of the le layers that they reference.

In this scenario, the user is just starting a session and no knowledge bases have been opened. The user
wants to copy information from a knowledge base named fronmKBNanme to a knowledge base named
t oKBNanme. The rst step isto read the boot layers of the two knowledge bases.

(_ $KB A d ' fronkBNane)
(_ $KB A d 't oKBNane)

In this scenario, one need not, and in fact should not, have an envrionment open or either of the two
KBs connected to an environment. All the work will go on in the Global Environemnt.

The second step is to create a description of the layers to be moved. This description can be either a
Layer or a KBState. One way to create this description is to use any of the object editors available in
Loops. Ancther way isto send a Descri beLayers message as follows:

(_ $fronkKBNanme Descri belLayers DateOr Dys associ at edKB

Dat eOr Dgyscan be an Interlisp Date or an integer number of days. If it isa date, then only those Layers
created on or after the given date will be described. If it is an integer, then only Layers created within
that many days will be described. If it is NI L, then no date Iter will be applied.

associ at edi®the name of the knowledge base with which the Layers are associated. (If NI L, then the
layers associated with any knowledge base will be described.)

For example:

(SETQ | ayer Description
(_ $fronKBNane DescribelLayers 14 'toKBNane))

returns a KBState describing the Layers created in the last fourteen days in the knowledge base named
f ronkKBNane that are associated with the knowledge base named t oKBNane.

Given such a description, the layers can be copied by typing:

(_ $toKBNanme CopyFilelLayers |ayerDescription)

9.12 Summarizing and Combining Knowledge Bases

Summarizing a Knowledge Base. As knowledge bases evolve over time, the number of layers and amount
of overridden information can consume alarge fraction of the le space. Economy- minded knowledge base
managers may want to create ‘‘compressed’’ versions of knowledge bases that have all of the information
contained in just one layer. In this scenario, the user starts a session by typing:
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(_ $KB Sunmarize fronkKBNane toKBName assocKBNaney

where fr onkKBName is the knowledge base to be summarized; t oKBNan®e is the knowledge base to be
created. It must be a di erent name than fr onkKBNane; assocKBNanesmust be a list of KBNames or
NI L. If it islist, then all, and only those objects with associated KB's on the list will be dumped to the
le. One must include fronKBName on assocKBNanesif changes and objects associated with it are to
be dumped to the le. If assocKBNanes= N L, al objects on the le will be dumped on a single layer
if t oKBNane.

This message causes Loops to read the boot layer of the old knowledge base (f r omKBNan®e), create a
new knowledge base (t oKBNane), create an Environment associated with the new knowledge base, read
in al of the objects in f r onKBNan®e, write them out to a single layer, and then write a boot layer for the
new knowledge base.

Combining Knowledge Bases. The Sunmmari ze message can also be used to combine several existing
knowledge bases into a single new knowledge base. In this case, the message is as follows:

(_ $KB Summari ze fronkBNanmes t oKBNane assocKBNane}

where fr onKBNanes is a list of the names of the knowledge bases to be summarized; t oKBNane is the
name of the new knowledge base to be created; assocKBNanesis as described above.

This message causes Loops to read the boot layers of the old knowledge bases, creates a new knowledge
base (t oKBNane), creates an Environment associated with the new knowledge base, reads in all of the
objects, writes them out to a single layer, and then writes a boot layer for the new knowledge base.

The user can create a new knowledge base which contains al of the objects in any open environment.
This may include objects from any number of KB's.

(_ ervironnen DunpToKB t oKBNane assocKBNane}
will create a new KB named t oKBName, and dump from the environment all objects with associated KB
on the list assocKBNanesonto t oKBNane (or al objects if assocKBNanes= NI L).

9.13 Subdividinga Knowledge Base

Sometimes a user may want to subdivide a knowledge base so that a subset of the objects are moved away
to create a new knowledge base. In our scenario, the user wants to move the objects from a knowledge
base in fr onErvi r onnenNane to a knowledge base (t oKBNane) included in t oErvi r onnetnName. In
the rst step of this scenario the user uses the MapQhj ect Nanes message:

(_ $ervi ronnmenNane MapObj ect Nanes (FUNCTI ON User Fn AssocKBs NoUl Ds)
where

User Fnis a function that will be applied to every object name. If NI L, then alist of object names and
UIDs in environment is returned as the value of the message. If it isthe atom T, then only names which
are not UIDs will be returned.

AssocKBsis an optional argument. If an atom, it is interpreted as the name of the associated knowledge
base for the objects. If alist, will be interpreted as a list of associated knowledge bases for the object. If
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NI L, only objects associated with the current AssocKB of the Environment will be used.
If NoUl Ds is T, then User Fnwill only be applied to real names, and not UIDs.

In our scenario, we will assume that MyFn will create a list of the objects (obj ect Li st ) that the user
wants to move. The user switches to the source environment, nds the objects and moves them:

(_ $fronErvi ronmenNane MakeCurrent)
Switch to fromEnvrionment.

(_ $fronEwironmenName MapQObj ect Nanes (FUNCTI ON MyFn))
Make list of objects.

The next step is to move the objects as follows:

(SETQ new(bj ect Li st
(_ $toErvironnmenName Move(hj ects obj ectList)

This causes the objects to be copied to toEnvironment and deleted from fromEnvironment (or whatever
Environment they came from). The objects will continue to be associated with whatever AssocKB they
were before. In this scenario, however, the user wishes them be associated with the knowledge base
named toKBName.

(_ $fronErvi ronmemNane MakeCurrent)
(for object in newlhjectList do (_ object AssocKB 't oKBNane)

The na step isto write out the changes:

(_ $ervi ronnenNane C eanup)

9.14 Going Back to a Previous Boot Layer of a Knowledge Base

Since knowledge bases are represented as objects, it is possible to recongure their contents using the
standard object access functions. However if a Layer has been deleted from the contents of a KB, that
layer is no longer written out to the boot layer. This can make it di cult to get back to versions modi ed
in this way. The following message makes it possible restore such knowledge bases by reading in old
boot layers:

(_ $KB Readd dBoot Layer ' KBName number Back

The value returned is a KB which has the name KBName, and the state corresponding to the boot layer
speci ed. To preserve a KBState which has these contents, the user can then use:

(_ $KBNane Copy)

9.15 A ecting what is Saved

The user may not wish an object, or some part of an object saved on a knowledge base. In this section,
we describe a number of ways of stopping information from being written on the knowledge base, with
appropriate caveats for the use of these features.
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9.151 Temporary Objects

If the user is creating lots of objects for temporary use (as intermediate products of a computation) then
none of those objects are useful after the computation is done. To create such objects, the user should
use:

(_ cl asNewTenp)

to create them instead of the usual (_ cl assNew) message. Objects created in this way will not be given
a UID, and will be not be accessible by mapping through the environment. If by some chance they are
referenced from some object that is being dumped to the data base, they will then be converted into
permanent objects, and dumped to that same KB.

9.15.2 Not Saving some |V values

For some instances, it is useful to store in an instance variable a Lisp dataytpe (e.g. a pointer to a window,
or hash array). However, most Lisp datatypes are not stored appropriately on a KB. In general, when
read back in from a KB, what was formerly an instance of a datatype looks like an atom with a funny
printhame. The solution we have adopted is to alow the user to specify 1V values or properties which
should not be dumped to a knowledge base. When read back in, the 1V value or property will inherit
the default value from the class which can be an active value to recreate the desired Lisp object.

For example, the class $Envi r onment uses a hash table as the value of its IV nameTable. The following
fragment of the denition of Environment shows how saving the value of nanmeTabl e is suppressed and
how an active value is used to recreate it.

[ DEFCLASS Envi r onment
(I'nstanceVari abl es
(nanmeTabl e #(NI L NewNaneTabl e) Dont Save Any)
-]

Any instance of environment will have naneTabl e lled in by NewNaneTabl e the rst time it is
accessed. NewNaneTabl e is a specialized version of First Fet ch which makes the loca value be a
hashArray. The property Dont Save with value Any (which is inherited in every instance) speci es that
nothing about the IV naneTabl e should be saved on a KB. For ner control, the property Dont Save
could have been given a value which is a list of property names whose values should not be saved on
the KB. If the atom Val ue isincluded in the list, then the value of the IV itself will not be saved. The
vaue Any for Dont Save isinterpreted as meaning no porperty or vaue should be saved.

9.15.3 Ignoring changes on an 1V

Whenever an object is modi ed during the course of a session, it is marked as changed so that a new
version of the object will be written out on the KB. Suppose the user may be using an IV globally
known object as a place to cache some information. In this case the user does not need or even want
the known object to be marked as changed if the only change made was to store the cached information.
To dlow this, the specia active value function St or eUnmar ked is provided which does not mark the
object as changed when it updates its localState. For example, if $Wor | dVi ew had an instance variable
| ast Sel ect ed which was updated each time a selection was made, then if $Wor | dVi ew looked like:
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[ DEFI NST WorldView ...
(last Sel ected #(obj1l N L StoreUnmarked) ...]

changes to | ast Sel ect ed would be ignored by the KB system. It is often useful to combine this
feature with Dont Save described earlier so that when the object is dumped to a KB (because of some
other change) the value in this IV is not saved. Then the acti veVal ue can be inherited directly from
the default value in the class. Using Dont Save by itself is not sucient to ensure that the object will
not be dumped if a value is changed in the not to be saved IV.

9.154  Getting rid of objects explicitly
During the course of a session users may create a number of objects they discover before the end of the
session are not needed. They may aso decide that some old objects are no longer needed. By using:

(_ obj Destroy)

for each such object, the user will cause any new objects to be forgotten (not written to the KB) and the
incore space reclaimed. For objects which were in the KB previously, there will be stored an indication
that this object has been deleted, so that later reading of this KB will not contain the object.

9.16 Examining Environmental Objects

Sending the message MapChj ect Nanmes to an open environment alows one access to the names and
UIDs of objects in that environment. From the names and UIDs one can then access the objects
themselves using Get Obj ect Rec. One can determine the names and UIDs of objects in a Layer by
sending that layer the message MapCbj ect Nanmes . The form is:

(_ $Layer 1 MapQhj ect Nanes mapFn noUl Dy

which applies mapFn to each name (and to each UID unless noUl Ds= T). If mapFn= NI L then this
simply returns a list of the names (and UIDs). However, unless the layer has been read in to an
environment, one cannot get the object associated with that name (UID) on that layer.

PrettyPrinting a KB: A specia pretty printing function is available for KB’s, KBStates, and Layers which
tell about its history and contents. If one does:

(_ $KB A d ' KBNane )

without necessarily opening an environment, then one can send:
(_ $KBName PP)

to see what isin the KB and its containing layers.

ChangedKBs: In a particular environment, one can change objects which originate on any number of
community and personal knowledge bases. To nd out the names of any KBs that have modi ed entities
associated with them, one send to that environment, say E1:
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(_ $E1 ChangedKBs)

It is this list which is used by Cl eanup to determine the set of layers that will be dumped at cleanup
time.

9.17 The Class KBState

KBSt at e [Class]
Vs
name [IV of KBState]

Name of le associated with this KBState. NI L as value here overrides active value
in named object.

contents [IV of KBState]
Either CURRENT, meaning the current state of the KB with name or a list of layers
and KBStates specifying layerset)

Methods:

(_ selfAddEntities ertiyLis) [Method of KBState]
Add dl items on contents and sel fo ertiyLi st Caled by functions which write
out the boot layer to make sure that all layers are added to the list of items to be
dumped.

(_ sel fAddToCont ents newAddi ti 9n [Method of KBState]
Adds a new item to cont ents of KB.

(_ sel fConnect naneTabl g [Method of KBState]
Read in object le indices from all, possibly implicit, layers in order. These are
being opened for input only.

(_ selfCurrent State) [Method of KBState]
Create a KB state which reects the current state of this KB.

(_ sel fDescri beLayers dateO Dgs assocKB [Method of KBState]
Return a KBState whose contents are just those layers which occur after dat eOr Dgis
and have KB assocKBor NI L if none.

(_ selfFiles |leLi¥t [Method of KBState]
| I eLi 96a TCONC list of les aready found. Add any new ones found. Very similar
in structure to KBSt at e. Connect .

(_ sel fIWKB) [Method of KBState]
Return the KB object corresponding to this KBState.

(_ sel fReadBoot) [Method of KBState]
Read the boot le for this KB.

(_ sel fSet Contents | s} [Method of KBState]

Make KB have new contents. Check types of elements.
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9.18 The Class KB

KB [Clasg]

IVs:

connect edEnvs [IV of KB]
List of Envs which have read in contents of this KB.

contents [IV of KB]
KBs start out with an empty list of contents.

currentWiter [IV of KB]
Environment which is currently writing on this KB.

fil eNane [IV of KB]
Full name of le where this KB is stored. Computed the rst time it is needed.
Never stored.

owner s [IV of KB]
List of owners of this KB.

st at us [IV of KB]
One of Di sconnect ed, Connect ed, or Boot Needed.

Methods:

(_ sel fAddToCont ents newAddi ti 9n [Method of KB]
Adds a new item to contents of KB.

(_ sel fConnect For Qut put naneTabl e [Method of KB]
Read in object le indices from all, possibly implicit, layers in order. This is being
opened for output.

(_ sel fCopyFil eLayer | ger) [Method of KB]
Copies the FileLayer referred to by | ger onto sel,fand adds a new Layer describing
copied leLayer onto contents of sel.f

(_ sel fCopyFil eLayers | gerDescri pt) on [Method of KB]
Copy al the layers in | ger Descri pt imdiich should be a KBState into sel.f

(_ sel fDi sconnect) [Method of KB]
Disconnect this KB and close its le if open.

(_ sel fFreezeKB nane) [Method of KB]
Find a KBState with %@amnme= name and cont ent s= CURRENT. Replace it by a
new KBState with contents = currentState of myKB. Return new KBState or
NI L if failure.

(_ selfPrintContents |I¢& [Method of KB]

Fn to Print out a formatted description of the contents of a knowledge base.
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(_ sel fSet Contents | s} [Method of KB]
Make KB have new contents. Check types of elements.

(_ sel fThawkKB nane) [Method of KB]
Find a KBState with (Get Val ue sel f(QUOTE nane)) = nane and contents
not equal CURRENT. Replace it by a new KBState with contents = CURRENT.
Return new KBState or NI L if failure.

(_ sel fWiteBoot) [Method of KB]
Write out boot le containing KB and all layers and KBStates it contains implicitly
or explicitly.

(_ selfWiteEntityFile changedEniti esamedEntiti esssockbNang [Method of KB]

Writes the entities (objects) out to a layer in a given kb.

(_ selfWiteFil eLayer kbNane naneTabl g [Method of KB]
Writes the facts on the le, appending to le. Format of layer is: - indexFilePosition
(up to 7 characters) - entityCount (up to 7 characters) - nameCount (up to 7 characters)
- entity records - indexRecords (UID followed by le position,) - nameRecords (name
followed by UID) - initiaFilePosition.

9.19 The Class Environment

Envi r onment [Class]
Vs
st at us [IV of Environment]

One of Not Open or Open. Open when indexes of KBs have been read in, Not Open
after Cl ear Obj ect Menory .

naneTabl e [IV of Environment]
nameTable for looking up UIDs and names.

out put KB [IV of Environment]
KB to which changes will be led, and which speci es contents.

assocKB [IV of Environment]
Name of the KB associated with new objects created.

Methods:

(_ sel fAssocKB akh) [Method of Environment]
Make akb be the assockB of this KB.

(_ sel fCancel) [Method of Environment]
Erase an environment without cleaning up so that environment isempty, asif it were
not open, but it is still connected to the same KB. Make it not current.

(_ sel fChangedKBs) [Method of Environment]

Finds the names of all KBs that have any modi ed entities associated with them.
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sel f{O eanup KBNames noBoot Lger Fl [Method of Environment]
Write FileLayers for KBs named in KBNames. If KBNames = NI L then write a
layer for each changed KB. If KBNanmes = T then write one layer for all changes. If
KBNanes isasingle atom, then the update is written for that single assocKB. Finish
by writing new boot layer for outputKB unless noBoot Laer Fl gs T.

sel fC ear Obj ect Menory) [Method of Environment]
Write out boot layer if needed and clear nameTable.

sel fCl ose assocKBs [Method of Environment]
Cleanup an environment so that al les are closed, and environment is empty, as if
it were just created.

sel fConnect Qut put KB) [Method of Environment]
Make KB be the le onto which changes in this Environment will be written.

sel fCopy(Cbj ects obj Li 3t [Method of Environment]
Copies objects on obj Li stising the object structure of the object in Environment
sel ith same UID, if found.

sel fDunpToKB kbNane assocKBNane} [Method of Environment]

selfFiles |IeLst [Method of Environment]
Get alist of al les associated with this environment. Argument to KBSt at e. Fi | es
is a TCONC list.

sel fl sCurrent) [Method of Environment]
Test if current.

sel fMakeCurrent) [Method of Environment]

Set values of Current NaneTabl e and Current Envi ronnent from sel fand
make Def aul t KBName be my assocKB.

sel fivakeNot Current bitchlf Not Curt)en [Method of Environment]
Makes no Environment Current if this is current, elses causes Error if not Current
and bi t chl f Not Curt=em.

sel fvapChj ect Names mapFn assocKBsnoUl D9 [Method of Environment]
APPLY mapFn to the name of each object stored in the environment. If assocKBs
given, select only those which are in the list. If noU Dss T then apply only to
names which are not UIDs. If mapFn= NI L then just list all names and UIDs; if
mapFn= T then just the names.

sel fMar kDel et ed obj DBeDel et &d [Method of Environment]
Mark object as deleted in KB when new layer is written out. Done by smashing
localRecord eld of entity, but NOT storedin eld. See Sel ect ChangedEntity .

sel fOpen) [Method of Environment]
Read in the index of all the layers referred to by contents of outputkKB.

sel fWit eBoot) [Method of Environment]
Make outputKB write it's boot le.
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sel fwiteUpdat e kbNane) [Method of Environment]

Write layer for kbNane, or al changes if kbNane= T.

[Clasg]

[IV of Layer]

rstFetch from the

[IV of Layer]

[IV of Layer]

[IV of Layer]

9.20 The Class Layer
Layer
IVs:
file
Name of the le where FileLayer is found. Compute it on
kbName by searching directory path. Don't save full name on le.
kbNane
Name of kb where this layer was stored e.g. BRIDGE.
position
Index on le where FileLayer is found.
assocKB
Name of KB with which this Layer is associated conceptually.
Methods:

(—

(_

(_

(_

9.21

sel fAddEntities entiyLi s}t
Add sel fo entity list for dumping on boot layer.

sel fConnect naneTabl g
Open layer le and read in index.

selfFiles |IelLst
Add my le to list if it isnot aready there.

sel fMapQhj ect Nanes nmapFn noUl D9

[Method of Layer]

[Method of Layer]

[Method of Layer]

[Method of Layer]

Apply mapFn to objectnames in layer, or make a list of them if mnapFn= NI L.

The Class KBMeta

KBMet a

Methods:

(_

(_

sel fNew kbNanme ervName newMer si onFl g

[Clasq]

[Method of KBMeta)

Create a new KnowledgeBase le, and an environment if kbNane isgiven, and make

environment current.

sel fO d kbNanme ervNane)

[Method of KBMeta]

Get KB for this kbName. (Causes boot layer to be read unless KB is aready in
the global table) If erwNane is given, creates an Environment of that name and

connects the environment to the KB.
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(_ sel fReadBoot) [Method of KBMeta)
Read in index of existing KB given kbName.

(_ sel fReadd dBoot Layer kbNane nunBack) [Method of KBMeta)
Read in index of already existing KB.

(_ selfSummari ze fronKBNane toKBNane assocKBNanesnanmedObj ectsOn)y
[Method of KBMeta)
Incorporate all objects of fronkKBName with assocKB in assocKBNames(or al if
assocKBNames NI L) into new KB t oKBNane. If namedCbj ect sOnkyT, then only
copies over al those entities referred to by a name or by a named object directly or
indirectly. This latter feature provides a mechanism for garbage collection.

9.22 The Class EnvironmentM eta

Envi ronment Met a [Class]
Methods:
(_ sel fd eanup) [Method of EnvironmentMeta]

Write updates for all open environments.

(_ sel fCl ose | egeKBatt achedF) g [Method of EnvironmentMeta]
Close al the open environments.

(_ sel fOpenFi |l es) [Method of EnvironmentMeta]
Returns a list of the open les for al open Environments.
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10 INTRODUCTION TO RULE-ORIENTED PROGRAMMING IN LOOPS

The core of decision-making expertise in many kinds of problem solving can be expressed succinctly
in terms of rules. The following sections describe facilities in Loops for representing rules, and for
organizing knowledge- based systems with rule-oriented programming. The Loops rule language provides
an experimental framework for developing knowledge- based systems. The rule language and programming
environment are integrated with the object- oriented, data- oriented, and procedure- oriented parts of Loops.

Rules in Loops are organized into production systems (called RuleSets) with speci ed control structures
for selecting and executing the rules. The work space for RuleSets is an arbitrary Loops object.

Decision knowledge can be factored from control knowledge to enhance the perspicuity of rules. The rule
language separates decision knowledge from meta- knowledge such as control information, rule descriptions,
debugging instructions, and audit trail descriptions. An audit trail records inferential support in terms of
the rules and data that were used. Such trails are important for knowledge- based systems that must be
able to account for their results. They are also essential for guiding belief revision in programs that need
to reason with incomplete information.

10.1 Introduction

Production rules have been used in expert systems to represent decision- making knowledge for many
kinds of problem- solving. Such rules (also called if-then rules) specify actions to be taken when certain
conditions are satised. Severa rule languages (e.g., OPS5 [Forgy8l], ROSI E [Fain81], ACGE [Aiello8l])
have been developed in the past few years and used for building expert systems. The following sections
describe the concepts and facilities for rule-oriented programming in Loops.

Loops has the following major features for rule-oriented programming:

(1) Rules in Loops are organized into ordered sets of rules (called RuleSets) with speci ed control
structures for selecting and executing the rules. Like subroutines, RuleSets are building blocks for
organizing programs hierarchically.

2 The work space for rules in Loops is an arbitrary Loops object. The names of the instance variables
provide a name space for variables in the rules.

©)] Rule- oriented programming is integrated with object-oriented, data-oriented, and procedure-
oriented programming in Loops.

4 RuleSets can be invoked in several ways: In the object-oriented paradigm, they can be invoked as
methods by sending messages to objects. In the data-oriented paradigm, they can be invoked as
a side-eect of fetching or storing data in active values. They can aso be invoked directly from
LISP programs. This integration makes it convenient to use the other paradigms to organize the
interactions between RuleSets.

(5) RuleSets can also be invoked from rules either as predicates on the LHS of rules, or as actions on
the RHS of rules. This provides a way for RuleSets to control the execution of other RuleSets.
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(6) Rules can automatically leave an audit trail. An audit trail is a record of inferential support in
terms of rules and data that were used. Such trails are important for programs that must be able
to account for their results. They can also be used to guide belief revision in programs that must
reason with incomplete information.

@) Decision knowledge can be separated from control knowledge to enhance the perspicuity of rules.
The rule language separates decision knowledge from meta- knowledge such as control information,
rule descriptions, debugging instructions, and audit trail descriptions.

(8) The invocation of RuleSets can also be organized in terms of tasks, that can be executed, suspended,
and restarted. Using task primitives it is convenient to specify many varieties of agenda- based
control mechanisms.

9 The rule language provides a concise syntax for the most common operations.

(10) There isafast and ecient compiler for trandating RuleSets into Interlisp functions.

(11) Loops provides facilities for debugging rule-oriented programs.

(12) The rule language is being extended to support concurrent processing.

The following sections are organized as follows: This section outlines the basic concepts of rule-oriented
programming in Loops. It contains many examples that illustrate techniques of rule-oriented programming.
The next section describes the rule syntax. The next section discusses the facilities for creating, editing,
and debugging RuleSets in Loops.

10.2 Basic Concepts

Rules express the conditional execution of actions. They are important in programming because they can
capture the core of decision-making for many kinds of problem- solving. Rule-oriented programming in
Loops is intended for applications to expert and knowledge- based systems.

The following sections outline some of the main concepts of rule-oriented programming. Loops provides
a special language for rules because of their central role, and because specia facilities can be associated
with rules that are impractical for procedural programming languages. For example, Loops can save
specialized audit trails of rule execution. Audit trails are important in knowledge systems that need to
explain their conclusions in terms of the knowledge used in solving a problem. This capability is essentia
in the development of large knowledge- intensive systems, where a long and sustained eort isrequired to
create and validate knowledge bases. Audit trails are aso important for programs that do non- monotonic
reasoning. Such programs must work with incomplete information, and must be able to revise their
conclusions in response to new information.
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10.3 Organizing a Rule-Oriented Program

In any programming paradigm, it is important to have an organizational scheme for composing large
systems from smaller ones. Stated di erently, it is important to have a method for partitioning large
programs into nearly-independent and manageably- sized pieces. In the procedure- oriented paradigm,
programs are decomposed into procedures. In the object- oriented paradigm, programs are decomposed
into objects. In the rule-oriented paradigm, programs are decomposed into RuleSets. A Loops program
that uses more than one programming paradigm is factored across several of these dimensions.

Rul eSet Name: CheckWashi ngMachi ne;
Wor kSpace d ass: Washi ngMachi ne;
Control Structure: whilel ;

Wil e Condition: rul eApplied;

(* What a consuner should do when a washing machine fails.)
IF .Qperational THEN (STOP T ' Success 'Wrking);
| F | oad>1.0 THEN . Reduceload;
| F ~pl uggedl nTo THEN . Pl ugl n;

{1} | F pluggedl nTo: vol t age=0 THEN br eaker. Reset ;

{1} | F pl uggedl nTo: vol t age<110 THEN $PGE. Cal | ;

{1} THEN deal er. Request Servi ce;

{1} THEN nmanuf act ur er. Conpl ai n;

{1} THEN $Consuner Boar d. Conpl ai n;

{1} THEN (STOP T 'Failed ' Unfixable);

Figure 13. RuleSet of consumer instructions for testing a washing machine. The work space for
the RuleSet is a Loops object of the class Washi ngMachi ne. The control structure Wi | el
loops through the rules trying an escalating sequence of actions, starting again at the beginning
if some rule is applied. Some rules, called one-shot rules, are executed at most once. These
rules are indicated by the preceding one in braces.

There are three approaches to organizing the invocation of RuleSets in Loops:

Procedure-oriented Approach. This approach is analogous to the use of subroutines in procedure- oriented
programming. Programs are decomposed into RuleSets that call each other and return values when they
are nished. SubRuleSets can be invoked from multiple places. They are used to simplify the expression
in rules of complex predicates, generators, and actions.

Object-oriented Approach. In this approach, RuleSets are installed as methods for objects. They are
invoked as methods when messages are sent to the objects. The method RuleSets are viewed analogously
to other procedures that implement object message protocols. The value computed by the RuleSet is
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returned as the value of the message sending operation.

Data- oriented Approach. In this approach, RuleSets are installed as access functions in active vaues. A
RuleSet in an active value is invoked when a program gets or puts a value in the Loops object. As with
active values with Lisp functions for the getFn or putFn, these RuleSet active values can be triggered by
any Loops program, whether rule-oriented or not.

These approaches for organizing RuleSets can be combined to control the interactions between bodies of
decision- making knowledge expressed in rules.

104 Control Structures for Selecting Rules

RuleSets in Loops consist of an ordered list of rules and a control structure. Together with the contents
of the rules and the data, a RuleSet control structure determines which rules are executed. Execution
is determined by the contents of rules in that the conditions of a rule must be satised for it to be
executed. Execution is also controlled by data in that di erent values in the data alow di erent rules to
be satised. Criteria for iteration and rule selection are specied by a RuleSet control structure. There
are two primitive control structures for RuleSets in Loops which operate as follows:

Dol [RuleSet Control Structure]
The rst rule in the RuleSet whose conditions are satised is executed. The value of
the RuleSet isthe value of the rule. If no rule is executed, the RuleSet returns NI L.

The Dol control structure is useful for specifying a set of mutualy exclusive actions,
since at most one rule in the RuleSet will be executed for a given invocation. When
a RuleSet contains rules for speci ¢ and general situations, the speci ¢ rules should
be placed before the general rules.

DoAl | [RuleSet Control Structure]
Starting at the beginning of the RuleSet, every rule is executed whose conditions are
satised. The value of the RuleSet is the value of the last rule executed. If no rule
is executed, the RuleSet returns NI L.

The DoAl | control structure is useful when a variable number of additive actions are
to be carried out, depending on which conditions are satised. In a single invocation
of the RuleSet, al of the applicable rules are invoked.

gure 14 illustrates the use of a Dol control structure to specify three mutualy exclusive actions.

Rul eSet Nanme: Si nul at eWashi ngMachi ne;

Wor kSpace C ass: Washi ngMachi ne;

Control Structure: Dol ;

(* Rules for controlling the wash cycle of a washing nachine.)

| F control Setting="Regul arFabric

THEN . Fill .Wash . Pause . Spi nAndDrain
. SprayAndRi nse . Spi nAndDr ai n
.Fill .DeepRinse .Pause .DanmpDry;
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| F control Setting="Pernanent Press

THEN . Fill .Wash . Pause . SpinAndPartial Drain
.FillCold .SpinAndPartial Drain
.FillCold .Pause .SpinAndDrain
.Fill Cold .DeepRinse .Pause .DanpDry;

I F control Setting="DelicateFabric

THEN .Fill .Soakl .Agitate .Soak4 .Agitate
. Soakl . Spi nAndDrai n . SprayAndRi nse
. SpinAndDrain .Fill .DeepRi nse .Pause .DanpDry;

Figure 14. Rules to simulate the control of the wash cycle of a washing machine. These rules
illustrate the use of the Dol control structure to select one of three mutually exclusive actions.
These rules were abstracted from [Maytag] for the Maytag A510 washing machine.

There are two control structures in Loops that specify iteration in the execution of a RuleSet. These
control structures use an explicit while-condition associated with the RuleSet. They are direct extensions
of the two primitive control structures above.

Wi | el [RuleSet Control Structure]
This is a cyclic version of Dol. If the while-condition is satised, the rst rule
is executed whose conditions are satised. This is repeated as long as the while
condition is satised or until a St op statement or transfer call is executed (see page
93). The vaue of the RuleSet isthe value of the last rule that was executed, or NI L
if no rule was executed.

Whi | eAl | [RuleSet Control Structure]
This is a cyclic version of DoAl' | . If the while-condition is satised, every rule
is executed whose conditions are satised. This is repeated as long as the while
condition issatised or until a St op statement is executed. The value of the RuleSet
is the value of the last rule that was executed, or NI L if no rule was executed.

The “‘while-condition’’ is speci ed in terms of the variables and constants accessible from the RuleSet.
The constant T can be used to specify a RuleSet that iterates forever (or until a St op statement or transfer
is executed). The special variable rul eAppli ed is used to specify a RuleSet that continues as long as
some rule was executed in the last iteration. gure 15 illustrates a simple use of the Wi | eAl | control
structure to specify a sensing/acting feedback loop for controlling the lling of a washing machine tub
with water.

Rul eSet Nane: Fill Tub;

Wor kSpace C ass: Washi ngMachi ne;
Control Structure: WileAl ;
Tenp Vars: waterLinit;

Wiile Cond: T;

(* Rules for controlling the filling of a washing nmachi ne
tub with water.)

{1'} IF loadSetting="Small THEN waterLimt_10;

{1'} IF loadSetting="Medium THEN waterLinit_ 13.5;
{1'} IF |l oadSetting="Large THEN waterLinit_17;
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{1!'} IF | oadSetting="ExtralLarge THEN waterLinit_20;
(* Respond to a change of tenperature setting at any tine.)

| F tenperatureSetting="Hot
THEN Hot Wat er Val ve. Open Col dWat er Val ve. O ose;

| F tenperatureSetting="VWarm
THEN Hot Wat er Val ve. Open Col dWat er Val ve. Open;

| F tenperatureSetting="Cold
THEN Col dWat er Val ve. Open Hot Wt er Val ve. d ose;

(* Stop when the water reaches its limt.)

| F wat er Level Sensor. Test >= waterLinmt
THEN Hot Wat er Val ve. Cl ose Col dWat er Val ve. O ose
(Stop T 'Done 'Filled);

Figure 15. Rules to simulate Iling the tub in a washing machine with water. These rules
illustrate the use of the Whi | eAl'l control structure to specify an innite sense-act loop that
isterminated by a St op statement. These rules were abstracted from [MayTag].

105 One-Shot Rules
One of the design objectives of Loops isto clarify the rules by factoring out control information whenever

possible. This objective is met in part by the declaration of a control structure for RuleSets.

Another important case arises in cyclic control structures which some of the rules should be executed only
once. This was illustrated in the WashingMachine example in gure 13 where we wanted to prevent the
RuleSet from going into an innite loop of resetting the breaker, when there was a short circuit in the
Washing Machine. Such rules are also useful for initializing data for RuleSets as in the example in gure
15.

In the absence of specia syntax, it would be possible to encode the information that a rule is to be
executed only once as follows:

Control Structure: Wilel
Tenmporary Vars: triedRule3;

IF ~triedRul e3 conditiprconditionTHEN triedRul e3_T action

In this example, the variable tri edRul e3 isused to control the rule so that it will be executed at most
once in an invocation of a RuleSet. However, the proli ¢ use of rules with such control clauses in large
systems has led to the common complaint that control clauses in rule languages defeat the expressiveness
and conciseness of the rules. For the case above, Loops provides a shorthand notation as follows:

{1} I F conditifprcondi tionTHEN actign

The brace notation means exactly the same thing in the example above, but it more concisely and clearly
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indicates that the rule executes only once. These rules are caled ‘‘one shot’’ or ‘‘execute-once’’ rules.

In some cases, it is desired not only that a rule be executed at most once, but that it be tested at most
once. This corresponds to the following:

Control Structure: Wilel
Temporary Vars: triedRule3;

IF ~triedRule3 triedRul e3_T conditiprconditigonTHEN action

In this case, the rule will not be tried more than once even if some of the conditions fail the rst time
that it is tested. The Loops shorthand for these rules (pronounced ‘‘one shot bang'’) is

{1} I F conditiprconditinTHEN action
These rules are caled ‘‘try-once’’ rules.

The two kinds of one-shot rules are our rst examples of the use of meta- descriptions preceding the rule
body in braces. See page 80 for information on using meta- descriptions for describing the creation of
audit trails.

10.6 Task-Based Control for RuleSets

* * * Tasks are Not Fully Implemented Yet * * *

Flexible control of reasoning is generaly recognized as critica to the success of recent problem- solving
programs. Examples of exible control are:

@ In planning and design tasks, it is important to generate multiple aternatives. These alternatives
may be carried to di erent degrees of completion, depending on success, resource limitations,
and information gained during a problem- solving process. In some cases, an alternative may be
temporarily set aside, only to be revived later in light of new information.

2 In analysis tasks, it is important to pursue multiple hypotheses in paralel. As evidence and
conclusions accumulate, some hypotheses may be abandoned but revived later.

3 Search and discovery tasks can be organized as opportunistic best- rst searches. At each step only
the most promising avenues are pursued. As some avenues fail to work out and new information
accumulates, the other avenues can be re-evaluated and sometimes raised in priority.

These examples require the ability (1) to suspend parts of a computation with the possibility of restarting
them later, and (2) to reason about the control of computational resources.

Loops provides a set of language features to support these capabilities, based on the representation of the
execution of a RuleSet as a Task. A Task is a Loops object with much the same structure as an item in
an agenda (see gure 16). It represents the RuleSet being invoked, the data on which it is operating, and
the status of its execution.
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Repai r Task5:

rul eNumber : NIL doc (* Number of the next rule to be executed.
Used for doNext and cycl eNext.)
rs: #$Repai r Washi nghvachi ne
doc (* RuleSet that was invoked.)
sel f: #&(Fi xi tJob "uidl")
doc (* work space given to the RuleSet.)
val ue: #&( Mot or Brushes "ui d2")
doc (* value returned by the Rul eSet)
st at us: Suspended

doc (* Execution status. Exanples: Started,
Done, Aborted, Suspended.)
reason: TooExpensi ve
doc (* Reason for the status. Exanples: Success,
NoSpace, Bl ocked)
caller: #$(Rul eSet "ui d3")
doc (* Caller of the RuleSet.)
priority: 300

Figure 16. An example of a Task object. This Task could have been created for an invocation
of the RuleSet in gure 17. The Task records the RuleSet, its data, and its execution status. The
instance variable r ul eNunber isused only for the control structures DoNext and Cycl eNext
as described in the next section. The instance variable priority was created in response to the
Task Vars declaration in the RuleSet.

gure 17 illustrates a RuleSet for a task that can be suspended. This RuleSet represents part of the
behavior of a washing machine repair man. The repair task may be suspended after it has started on a
particular Fi xi t Job object if the failure is not diagnosed or istoo expensive.

Rul eSet Name: Repai r Washi ngMachi ne;

Wor kSpace C ass: FixitJob;

Conpiler Options: S ; (* S for Task Stepping.)
Control Structure: doAll ;

Task Vars: priority;

(* Rules for washing machine repair.)
{1} priority_300;

{1} I F ~(repl acenent Part _not or. Fi ndBr okenPart)
THEN (STOP T ' Suspended ’ NoDi agnosi s);

| F repl acement Part. Avai l ability="NotlnTruck hoursLimt <1
THEN (STOP badPart ' Suspended ' Unavail abl ePart);

I F replacement Part:cost > dollarLimt
THEN (STOP badPart ' Suspended ' TooExpensive);

70



THE LOOPS MANUAL

Figure 17. A suspendable Task. This RuleSet characterizes part of the behavior of a repair
man of washing machines. The Stop statements specify how the RuleSet may report failure
after it has been started on a particular Fi xi t Job. Information in task variables (like priority)
are saved in the Task record. In this example, the machine failure may not be diagnosed or
may be too expensive to X.

gure 18 illustrates a RuleSet for controlling suspendable tasks. This RuleSet represents part of the
behavior of the owner of a washing machine repair business. This RuleSet may restart any suspended
task by the repairman RuleSet after getting more information about the customer.

Rul eSet Nane: RePl anRepai r Wr k;

Wor kSpace C ass: JobSchedul g;

Control Structure: cycleAl ;

Rul evVars: current Task custoner substitutePart;

(* Sanple Rules -- part of the behavior of a manager of a
Washi ng Machi ne repair business.)

| F current Task: st at us=" Success
THEN (STOP T ' Done ’'Success);

| F current Task: reason=" Unavai | abl ePart
substitutePart _expert. AskFor Substit ut ePart
THEN current Task: sel f: repl acenment Part _substitutePart
(Start currentTask);

I F customner: category="VIP
current Task: reason=" TooExpensi ve
THEN current Task:self:dollarLimt _ VIP.dollarLimt
current Task: priority _ 100
(Start currentTask);

Figure 18. Control of Tasks. This RuleSet characterizes part of the behavior of the manager of
a washing machine repair business. When a repair task fails, the manager RuleSet may change
some resource limits and start the repair task going again (e.g., if the customer isa VI P).

Loops has facilities for creating Task objects, starting and waiting for tasks, stepping and suspending
Tasks. Task variables are used for saving state information. Distinct Tasks can refer to distinct invocations
of the same RuleSet in di erent states of execution. The language features supporting Tasks are described
later.

10.7 Control Structures for Generators

Since Tasks represent suspended processes with local state, it is natural to use them for describing
generators. For the concise speci cation of generators, two additional control structures have been
provided in Loops. To use these control structures, a Task is rst created that associates a RuleSet and a
work space. The Task is then invoked repeatedly. At each invocation at most one rule is activated and
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the Task records which rule was activated. At the next invocation, the search for the next rule to apply
starts with the rule following the rule that was last executed.

DoNext [RuleSet Control Structure]
At each invocation of the Task, the next rule is executed whose conditions are
satised. The value of the RuleSet is the value of the executed rule, or NI L if no
rule was executed. After the last rule of the RuleSet has been tried, the Task will
aways return NI L.

This control structure is convenient for specifying a generator of a limited number
of items. At each invocation, the remaining rules are tried until the next item is
generated. The generator returns NI L after al of the rules have been tried.

Wi | eNext [RuleSet Control Structure]
At each invocation of the Task, the generator rst checks whether the while condition
of the RuleSet is satised. If yes, then the next rule is executed whose conditions
are satised. The rules can be visuadized as forming a circle, so that after the last
rule of the RuleSet has been tried, the generator goes back to the beginning. During
a single invocation, no rule is tried more than once and the while-condition is tested
only once at the beginning of the Step. The value of the RuleSet isthe value of the
last rule executed or NI L if no rule was executed.

This control structure is convenient for specifying a generator that repeats itself
periodically, and which has an extra condition that is factored from all of the rules.

If a RuleSet with one of these control structures is invoked directly (instead of through a Task), its
behavior is equivalent to that of a Dol control structure.

The variable r ul eAppl i ed, which can be used in the while-condition of Whi | el and Whi | eAl | control
structures, is not meaningful with the Whi | eNext control structure since at most one rule is applied in
a given invocation.

10.8 Saving an Audit Trail of Rule Invocation

A basic property of knowledge- based systems is that they use knowledge to infer new facts from older
ones. (Here we use the word ‘‘facts’’ as a neutral term, meaning any information derived or given, that is
used by areasoning system.) Over the past few years, it has become evident that reasoning systems need
to keep track not only of their conclusions, but also of their reasoning steps. Conseguently, the design
of such systems has become an active research area in Al. The audit trail facilities of Loops support
experimentation with systems that can not only use rules to make inferences, but aso keep records of the
inferential process itself.

10.8.1 Motivations and Applications

Debugging. In most expert systems, knowledge bases are developed over time and are the major
investment. This places a premium on the use of tools and methods for identifying and correcting bugs
in knowledge bases. By connecting a system’s conclusions with the knowledge that it uses to derive them,
audit trails can provide a substantial debugging aid. Audit trails provide a focused means of identifying
potentially errorful knowledge in a problem solving context.

72



THE LOOPS MANUAL

Explanation Facilities. Expert systems are often intended for use by people other than their creators, or
by a group of people pooling their knowledge. An important consideration in validating expert systems
is that reasoning should be transparent, that is, that a system should be able to give an account of its
reasoning process. Facilities for doing this are sometimes called explanation systems and the creation
of powerful explanation systems is an active research area in Al and cognitive science. The audit trail
mechanism provides an essential computational prerequisite for building such systems.

Belief Revision. Another active research area isthe development of systems that can ‘‘change their minds'’.
This characteristic is critical for systems that must reason from incomplete or errorful information. Such
systems get leverage from their ability to make assumptions, and then to recover from bad assumptions
by eciently reorganizing their beliefs as new information is obtained. Research in this area ranges
from work on non- monotonic logics, to a variety of approaches to belief revision. The facilities in the
rule language make it convenient to use a user-dened calculus of belief revision, at whatever level of
abstraction is appropriate for an application.

10.8.2 Overview of Audit Trail Implementation

When audit mode is speci ed for a RuleSet, the compilation of assignment statements on the right- hand
sides of rules is atered so that audit records are created as a side-eect of the assignment of values to
instance variables. Audit records are Loops objects, whose class is speci ed in RuleSet declarations. The
audit records are connected with associated instance variables through the value of the r eason properties
of the variables.

Audit descriptions can be associated with a RuleSet as a whole, or with speci ¢ rules. Rule-speci ¢
audit information is speci ed in a property- list format in the meta- description associated with a rule. For
example, this can include certainty factor information, categories of inference, or categories of support.
Rule- speci ¢ information overrides RuleSet information.

During rule execution in audit mode, the audit information is evaluated after the rule's LHS has been
satised and before the rule's RHS is applied. For each rule applied, a single audit record is created
and then the audit information from the property list in the rule’'s meta- description is put into the
corresponding instance variables of the audit record. The audit record is then linked to each of the
instance variables that have been set on the RHS of the rule by way of the reason property of the
instance variable.

Additional computations can be triggered by associating active values with either the audit record class
or with the instance variables. For example, active values can be speci ed in the audit record classes in
order to dene a uniform set of side-eects for rules of the same category. In the following example,
such an active value is used to carry out a ‘‘certainty factor’’ calculation.

10.8.3 An Example of Using Audit Trails

The following example illustrates one way to use the audit trail facilities. gure 19 illustrates a RuleSet
which isintended to capture the decisions for evaluating the potential purchase of a washing machine. As
with any purchasing situation, this one includes the di culty of incomplete information about the product.
The meta-descriptions for the rules categorize them in terms of the basis of belief (fact or estimate) and a
certainty factor that is supposed to measure the ‘‘implication power’’ of the rule. (Realistic belief revision
systems are usually more sophisticated than this example)
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Rul eSet Name: Eval uat eWashi ngMachi ne;
Wor kSpace C ass: Eval uati onReport;
Control Structure: doAl ;

Audit d ass: CFAuditRecord ;

Conpi l er Options: A

(* Rules for evaluating a potential washing nachine for a purchase.)

{(basis_'Fact cf_1)}
I F buyer:fam |ySize>2 rmachi ne: capacity<20
THEN suitability ' Poor;

{(basis_'Fact cf_.8)}
reliability_(_ $ConsunerReports GetFacts machine);

{(basis 'Estimate cf_.4)}
IF ~reliability THEN reliability .5;

Figure 19. RuleSet for evaluating a washing machine for purchase. Like many kinds of
problems, apurchase problem requires making decisions in the absence of complete information.
For example, in this RuleSet the reliability of the washing machine is estimated to be .5 in
the absence of speci ¢ information from Consuner Reports. The meta description in braces
in front of each rule characterizes the rule in terms of a cf (certainty factor) and a basi s
(basis of belief ). Within the braces, the variable on the left of the assignment statement is
always interpreted as meaning a variable in the audit record, and the variables on the right are
always interpreted as variables accessible within the RuleSet. This makes it straightforward to
experiment with user-dened audit trails and experimental methods of belief revision.

The result of running the RuleSet is an evaluation report for each candidate machine. Since the RuleSet
was run in audit mode, each entry in the evaluation report istagged with areason that points to an audit
record. gure 20 illustrates the evaluation report for one machine and one of its audit records.

Eval uati onReport "uid1l"

expense: 510
suitability: Poor cc 1 reason ...
reliability: .5 ¢cc .6 reason "uid2"

Audi t Rec "ui d2"

rul e: "ui d3"
basi s: Esti mat e;
cf: #(.4 N L PutCunul ativeCertainty)

Figure 20. Example of an audit trail. The object for the expense report was prepared by the
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RuleSet in gure 19. In this example, each of the entries in the report has a r eason and
a cc (for cumulative certainty) property in addition to the value. The value of the r eason
properties are audit records created asa side eect of running the RuleSet. The auditing process
records the meta- description information of each rule in its audit record. This information can
be used later for generating explanations or as a basis for belief revision. The auditing process
can have side eects. For example, the active vaue in the cf variable of the audit record
performs a computation to maintain a calculated cumulative certainty in the reliability
variable of the evaluation report.

The result of running the RuleSet is an evaluation report for each candidate machine. The meta
descriptions for basi s and cf are saved directly in the audit record. The certainty factor calculation in
this combines information from the audit description with other information aready associated with the
object. To do this, the cf description triggers an active value inherited by the audit record from its class.
This active value computes a cumulative certainty in the evaluation report. (Other variations on this idea
would include certainty information descriptive of the premises of the rule)

10.9 Comparison with other Rule Languages
This section considers the rationale behind the design of the Loops rule language, focusing on ways that

it diverges from other rule languages. In general, this divergence was driven by the following observation:

When a rule is heavy with control information, it obscures the domain knowledge that the rule is intended
to convey.

Rules are harder to create, understand, and modify when they contain too much control information.
This observation led usto nd ways to factor control information out of the rules.

109.1 The Rationale for Factoring Meta-Level Syntax

One of the most striking features of the syntax of the Loops rule language is the factored syntax for
meta- descriptions, which provides information about the rules themselves. Traditional rule languages only
factor rules into conditions on the left hand side (LHS) and actions on the right hand side (RHS), without
general provisions for meta- descriptions.

Decision knowledge expressed in rules is most perspicuous when it is not mixed with other kinds
knowledge, such as control knowledge. For example, the following rule:

I F ~triedRul e4 pluggedl nTo: vol t age=0
THEN triedRul e4_T breaker. Reset;

is more obscure than the corresponding one-shot rule from gure 13:
{1} | F pl uggedl nTo: vol tage=0 THEN br eaker . Reset;

which factors the control information (that the rule is to be applied a most once) from the domain
knowledge (about voltages and breakers). In the Loops rule language, a meta- description (MD) is
speci ed in braces in front of the LHS of arule. For another example, the following rule from gure 19:

{(basis_'Fact cf_.8)}
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| F buyer:fam|ySize>2 nachine: capaci ty<20
THEN suitability ' Poor;

uses an MD to indicate that the rule has a particular cf (‘‘certainty factor’’) and basi s category for
belief support. The MD in this example factors the description of the inference category of the rule from
the action knowledge in the rule.

In alarge knowledge- based system, a substantial amount of control information must be speci ed in order
to preclude combinatorial explosions. Since earlier rule languages fail to provide a means for factoring
meta- information, they must either mix it with the domain knowledge or express it outside the rule
language. In the rst option, perspecuity is degraded. In the second option, the transparency of the
system is degraded because the knowledge is hidden.

10.9.2 The Rationale for RuleSet Hierarchy

Some advocates of production systems have praised the atness of traditional production systems, and
have resisted the imposition of any organization to the rules. The at organization is sometimes touted as
making it easy to add rules. The argument isthat other organizations diminish the power of pattern- directed
invocation and make it more complicated to add a rule.

In designing Loops, we have tended to discount these arguments. We observe that there is no inherent
property of production systems that can make rules additive. Rather, additivity is a consequence of the
independence of particular sets of rules. Such independence is seldom achieved in large sets of rules.
When rules are dependent, rule invocation needs to be carefully ordered.

Advocates of a at organization tend to organize large programs as a single very large production system.
In practice, most builders of production systems have found it essential to create groups of rules.

Grouping of rules in at systems can be achieved in part by using context clauses in the rules. Context
clauses are clauses inserted into the rules which are used to alter the ow of control by naming the context
explicitly. Rules in the same ‘‘context’’ al contain an extra clause in their conditions that compares the
context of the rules with a current context. Other rules redirect control by switching the current context.
Unfortunately, this approach does not conveniently lend itself to the reuse of groups of rules by di erent

parts of a program. Although context clauses admit the creation of ‘‘subroutine contexts'’, they require
a user to explicitly program a stack of return locations in cases where contexts are invoked from more
than one place. The decision to use an implicit calling-stack for RuleSet invocation in Loops is another
example of the our desire to simplify the rules by factoring out control information.

10.9.3 The Rationale for RuleSet Control Structures

Production languages are sometimes described as having a recognize-act cycle, which speci es how rules
are selected for execution. An important part of this cycleisthe conict resolution strategy, which speci es
how to choose a production rule when several rules have conditions that are satised. For example, the
OPS5 production language [Forgy81] has a conict resolution strategy (MEA) which prevents rules from
being invoked more than once, prioritizes rules according to the recency of a change to the data, and
gives preference to production rules with the most speci ¢ conditions.

In designing the rule language for Loops, we have favored the use of a smal number of specialized
control structures to the use of a single complex conict resolution strategy. In so doing, we have drawn
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on some control structures in common use in familiar programming languages. For example, Dol is like
Lisp’'s COND, DoAl | islike Lisp’s PROG, Wi | eAl | issimilar to WHI LE statements in many programming
languages.

The specialized control structures are intended for concisely representing programs with di erent control
relationships among the rules. For example, the DoAl | control structure is useful for rules whose eects
are intended to be additive and the Dol control structure is appropriate for specifying mutually exclusive
actions. Without some kind of iterative control structure that allows rules to be executed more than once,
it would be impossible to write a simulation program such as the washing machine simulation in gure
15.

We have resisted a reductionist argument for having only one control structure for al programming. For
example, it could be argued that the control structure Dol is not strictly necessary because any RuleSet
that uses Dol could be rewritten using DoAl | . For example, the rules

Control Structure: Dol;

IF a3 by cg THEN dq eq;
IF ay b2 co> THEN d2 €2;
IF a3 bz c3 THEN d3 eg;
could be written aternatively as

Control Structure: DoAll;
Task Vars: firedSoneRul e;

IF a; by cg THEN firedSomeRul e_T dq eqg;
IF ~firedSomeRul e ay by co THEN firedSoneRule_T dy ey
IF ~firedSomeRul e ag b3z c3 THEN firedSoneRul e_T d3 eg

However, the Dol control structure admits a much more concise expression of mutually exclusive actions.
In the example above, the Dol control structure makes it possible to abbreviate the rule conditions to
reect the assumption that earlier rules in the RuleSet were not satis ed.

For some particular sets of rules the conditions are naturally mutualy exclusive. Even for these rules
Dol can yield additional conciseness. For example, the rules:

Control Structure: Dol;

I F a bl C1 THEN dl €1
IF ~aq bl c1 THEN d2 €9;
IF ~aq ~b1 c1 THEN d3 es
can be written as

Control Structure: Dol;
IF aq bl cq1 THEN dl e
| F bl ¢q1 THEN d2 €9,
IF c1 THEN d3 eg3;

Similarly it could be argued that the Dol and DoAl | control structures are not strictly necessary because
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such RuleSets can always be written in terms of Whi | el and Wi | eAl | . Following this reductionism
to its end, we can observe that every RuleSet could be re-written in terms of Whi | eAl | .

10.9.4 The Rationale for an Integrated Programming Environment

RuleSets in Loops are integrated with procedure- oriented, object- oriented, and data- oriented programming
paradigms. In contrast to single-paradigm rule systems, this integration has two maor benets. It
facilitates the construction of programs which don't entirely t the rule-oriented paradigm. Rule- oriented
programming can be used selectively for representing just the appropriate decision- making knowledge in
a large program. Integration also makes it convenient to use the other paradigms to help organize the
interactions between RuleSets.

Using the object-oriented paradigm, RuleSets can be invoked as methods for Loops objects. gure 21
illustrates the installation of the RuleSet Si nul at eWashi ngMachi neRul es to carry out the Si mul at e
method for instances of the class WAshi ngMachi ne. The use of object-oriented paradigm is facilitated
by special RuleSet syntax for sending messages to objects, and for manipulating the data in Loops objects.
In addition, RuleSets, work spaces, and tasks are implemented as Loops objects.

[ DEFCLASS Washi ngMvachi ne
(MetaCdl ass Cass Edited (* "nmjs: 25-Nov-82 16:42")
doc (* Home appliance for washing clothes.))
(Supers Electrical Device PlunbedDevi ce C eani ngDevi ce)
(d assVari abl es)
(I nstanceVari abl es
(control Setting Medium
doc (* One of Small, Medium Large, Extralarge)) ...)
(Met hods
(Fill WashingMachine.Fill doc (* Fill the tub with water.))
(Wash Washi ngMachi ne. Wash doc (* Perform the wash cycle.))
(Simul ate UseRul eSet Rul eSet Si nul at eWashi ngMachi neRul es)

-]

Figure 21. Example of using a RuleSet as a method for object-oriented invocation. This
denition of the class Washi ngMachi ne species that Lisp functions are to be invoked for
Fill and Wash messages. For example, the Lisp function WAshi ngMachine. Fill isto
be applied when a Fi || message is received. When a Si nul at e message is received, the
RuleSet Si mul at eWashi ngMachi neRul es isto be invoked with the washing machine as its
work space. Si mul at e messages to invoke the RuleSet may be sent by any Loops program,
including other RuleSets.

Using the data-oriented paradigm, RuleSets can be installed in active values so that they are triggered by
side-eect when Loops programs get or put data in objects. For example:

(DEFI NST Washi ngMachi ne (Stefi ksMaytagWasher "uid2")
(control Setting Regul ar Fabri c)
(1 oadSetting #(Medium NIL RSPut) RSPut Fn CheckOver LoadRul es)
(wat er Level Sensor "ui d3")
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The above code illustrates a RuleSet named CheckOver LoadRul es which is triggered whenever a
program changes the | oadSetti ng variable in the Washi nghMachi ne instance in the gure. This

data- oriented triggering can be caused by any Loops program when it changes the variable, whether or
not that program is written in the rules language.
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111 Rule Forms

A rule in Loops describes actions to be taken when speci ed conditions are satised. A rule has three
major parts caled the left hand side (LHS) for describing the conditions, the right hand side (RHS) for
describing the actions, and the meta-description (MD) for describing the rule itself. In the simplest case
without a meta- description, there are two equivalent syntactic forms:

LHS -> RHS;
IF LHS THEN RHS;

The I f and Then tokens are recognized in several combinations of upper and lower case letters. The
syntax for LHSs and RHSs is given below. In addition, a rule can have no conditions (meaning always
perform the actions) as follows:

-> RHS;
if T then RHS;

Rules can be preceded by a meta- description in braces as in:
{MD} LHS -> RHS;

{MD} If LHS Then RHS;

{MD} RHS;

Examples of meta-information include rule-speci ¢ control information, rule descriptions, audit instruc-
tions, and debug ging instructions. For example, the syntax for one-shot rules shown on page 68:

{1} IF conditigprconditignTHEN acti on

is an example of a meta- description. Another example is the use of meta assignment statements for
describing audit trails and rules. These statements are discussed on page 89.

LHS Syntax: The clauses on the LHS of a rule are evaluated in order from left to right to determine
whether the LHS is satised. If they are al satised, then the rule is satised. For example:

A B C+D (Prime D) -> RHS;

In this rule, there are four clauses on the LHS. If the values of some of the clauses are NI L during
evaluation, the remaining clauses are not evaluated. For example, if Aisnon-NI L but B is NI L, then the
LHS isnot satised and C+D will not be evaluated.

RHS Syntax: The RHS of a rule consists of actions to be performed if the LHS of the rule is satised.
These actions are evaluated in order from left to right. Actions can be the invocation of RuleSets, the
sending of Loops messages, Interlisp function calls, variables, or special termination actions.

RuleSets always return a value. The value returned by a RuleSet is the value of the last rule that was
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executed. Rules can have multiple actions on the right hand side. Unless there is a St op statement or
transfer call as described later, the value of a rule is the value of the last action. When a rule has no
actions on its RHS, it returns NI L as its value.

Comments. Comments can be inserted between rules in the RuleSet. They are enclosed in parentheses
with an asterisk for the rst character as follows:

(* This is a conment)

11.2 Kindsof Variables

Loops distinguishes the following kinds of variables:

RuleSet arguments. All RuleSets have the variable sel f as their workspace. References to sel f can
often be elided in the RuleSet syntax. For example, the expression sel f. Pri nt means to send aPri nt
message to sel f. This expression can be shortened to . Print . Other arguments can be dened for
RuleSets. These are declared in an Args: declaration.

Instance variables: All RuleSets use a Loops object for their workSpace. In the LHS and RHS of a
rule, the rst interpretation tried for an undeclared literal is as an instance variable in the work space.
Instance variables can be indicated unambiguously by preceding them with a colon, (e.g., : var Name or
obj: var Nane).

Class variables: Literals can be used to refer to class variables of Loops objects. These variables must be
preceded by a double colon in the rule language, (e.g., : : cl assW Name or obj: : cl assV Nan®).

Temporary variables. Literals can also be used to refer to temporary variables alocated for a specic
invocation of a RuleSet. These variables are initialized to NI L when a RuleSet is invoked. Temporary
variables are declared in the Tenporary Vars declaration in a RuleSet.

Task variables: [not implemented yet.] Task variables are used for saving information state information
related to particular invocations of RuleSets. Unlike temporary variables which are reset to NI L at the
beginning of RuleSet execution, Task variables are associated with Task objects and keep their vaues
indenitely. Task variables are used to hold information about a computational process, such as indices
for generator Tasks. Task variables are declared indirectly they are the instance variables of the class
declared as the Task Class of the RuleSet.

Audit record variables: Literals can also be used to refer to instance variables of audit records created by
rules. These literals are used only in meta-assignment statements in the MD part of arule. They are used
to describe the information saved in audit records, which can be created as a side-eect of rule execution.
These variables are ignored if a RuleSet is not compiled in audit mode. Undeclared variables appearing
on the left side of assignment statements in the MD part of a rule are treated as audit record variables
by default. These variables are declared indirectly they are the instance variables of the class declared
as the Audit Class of the RuleSet.

Rule variables: [Not implemented yet.] Literals can also be used to hold descriptions of the rules themselves.
These variables are used only in meta-assignment statements in the MD part of a rule. They describe
information to be saved in the rule objects, which are created as a side-eect of RuleSet compilation.
Rule variables are declared indirectly they are the instance variables in the Rule Class declaration.

Interlisp variables. Literals can also be used to refer to Interlisp variables during the invocation of a
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RuleSet. These variables can be globa to the Interlisp environment, or are bound in some calling
function. Interlisp variables can be used when procedure- oriented and rule-oriented programs are
intermixed. Interlisp variables must be preceded by a backSlash in the syntax of the rule language (e.g.,
\ i spf Nan®).

Reserved Words: The following literals are treated as read-only variables with special interpretations:

sel f [Variable]
The current work space.

rs [Variable]
The current RuleSet.

t ask [Variable]
The Task representing the current invocation of this RuleSet.

cal l er [Variable]
The RuleSet that invoked the current RuleSet, or NI L if invoked otherwise.

rul eAppl i ed [Variable]
Set to T if some rule was applied in this cycle. (For use only in while-conditions).

The following reserved words are intended mainly for use in creating audit trails:

rul eoj ect [Variable]
Variable bound to the object representing the rule itself.

rul eNunber [Variable]
Variable bound to the sequence number of the rule in a RuleSet.

rul eLabel [Variable]
Variable bound to the label of arule or NI L.

reasons [Variable]
Variable bound a list of audit records supporting the instance variables mentioned
on the LHS of the rule. (Computed at run time.)

audi t oj ect [Variable]
Variable bound to the object to which the reason record will be attached. (Computed
at run time)

audi t Var Narre [Variable]
Variable bound to the name of the variable on which the reason will be attached as
a property.

Other Literals. As described later, literals can aso refer to Interlisp functions, Loops objects, and message
selectors. They can also be used in strings and quoted constants.

The determination of the meaning of a literal is done at compile time using the declarations and syntax
of RuleSets. The characters used in literals are limited to alphabetic characters and numbers. The rst
character of a litera must be alphabetic.

The syntax of literals aso includes a compact notation for sending unary messages and for accessing
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instance variables of Loops objects. This notation uses compound literals. A compound litera is a literal
composed of multiple parts separated by a periods, colons, and commas.

11.3 Rule Forms

Quoted Constants: The quote sign is used to indicate constant literals:
a b=3 c="open d=f e="(This is a quoted expression) -> ...

In this example, the LHS issatised if a isnon-NI L, and the value of b is 3, and the value of ¢ is exactly
the atom open, the value of d is the same as the value of f, and the value of e isthe list (This is a
guot ed expression) .

Srings: The double quote sign is used to indicate string constants:

IF a b=3 c="open d=f e=="This is a string"
THEN (WRI TE "Begin configuration task") ... ;

In this example, the LHS is satised if a is non-NI L, and the value of b is 3, and the value of c is
exactly the atom open, the value of d is the same as the value of f, and the value of e egual to the
string "This is a string".

Interlisp Constants: The literals T and NI L are interpreted as the Interlisp constants of the same name.
a (Foo x NNL b) ->x T ...;

In this example, the function Foo is called with the arguments X, NI L, and b. Then the variable x is set
to T.

114 Inx Operatorsand Brackets

To enhance the readability of rules, a few inx operators are provided. The following are inx binary
operators in the rule syntax:

+ [Rule Inx Operator]
Addition.

++ [Rule Inx Operator]
Addition modulo 4.

- [Rule Inx Operator]
Subtraction.

-- [Rule Inx Operator]
Subtraction modulo 4.

* [Rule Inx Operator]
Multiplication.
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/ [Rule Inx Operator]
Division.

> [Rule Inx Operator]
Greater than.

< [Rule Inx Operator]
Less than.

>= [Rule Inx Operator]

Greater than or equal.

<= [Rule Inx Operator]
Less than or equal.

= [Rule Inx Operator]
EQ simple form of equals. Works for atoms, objects, and small integers.

~= [Rule Inx Operator]
NEQ. (Not EQ)

== [Rule Inx Operator]
EQUAL long form of equals.

<< [Rule Inx Operator]
Member of alist. (FMEMB)

In addition, the rule syntax provides two unary operators as follows:

- [Rule Unary Operator]
Minus.

- [Rule Unary Operator]
Not.

The precedence of operators in rule syntax follows the usual convention of programming languages. For
example

1+5*3 = 16

and

[3<2+4] =T

Brackets can be used to control the order of evaluation:
[1+5]*3 = 18

Ambiguity of the minus sign: Whenever there is an ambiguity about the interpretation of a minus sign as
a unary or binary operator, the rule syntax interprets it as a binary minus. For example

a-bcd -e [-f] (g -h) (_ $Foo Mve -j) -> ...

In this example, the rst and second minus signs are both treated as binary subtraction statements. That
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is, the rst three clauses are (1) a- b, (2) ¢ and (3) d- e. Because the rule syntax alows arbitary spacing
between symbols and there is no syntax to separate clauses on the LHS of a rule, the interpretation of
“d -e’ isas asingle clause (with the subtraction) instead of two clauses. To force the interpretation
as a unary minus operator, one must use brackets as illustrated in the next clause. In this clause, the
minus sign in the clause [ -f] istreated as a unary minus because of the brackets. The minus sign in
the function call (g -h) istreated as unary because there is no preceding argument. Similarly, the -j
in the message expression is treated as unary because there is no preceding argument.

115 Interlisp Functions and Message Sending

Calls to Interlisp functions are parenthesized with the function name as the rst literal after the left
parenthesis. Each expression after the function name is treated as an argument to the function. For
example:

a (Prime b) [a -b] ->c (Display b c+4 (Cursor x vy) 2) ;

In this example, Pri me, Di spl ay, and Cur sor are interpreted as the names of Interlisp functions. Since
the expression [a -b] is surrounded by brackets instead of parentheses, it is recognized as meaning a
minus b as opposed to a call to the function a with the argument minus b. In the example above, the call
to the Interlisp function Di spl ay has four arguments. b, c+4, the value of the function call ( Cur sor
X y),and 2.

The use of Interlisp functions is usually outside the spirit of the rule language. However, it enables the
use of Boolean expressions on the LHS beyond simple conjunctions. For example:

a (OR (NOT b) xy) z ->... ;

Loops Objects and Message Sending: Loops classes and other named objects can be referenced by using
the dollar notation. The sending of Loops messages is indicated by using a left arrow. For example:

IF cell _(_ $LowCell Cccupi ed? 'Heavy)
THEN (_ cell Mve 3 'North);

In the LHS, an Cccupi ed? message is sent to the object named LowCel | . In the message expression
on the RHS, there is no dollar sign preceding cel | . Hence, the message is sent to the object that is the
value of the variable cel | .

For unary messages (i.e., messages with only the selector speci ed and the implicit argument sel f), a
more compact notation is available as described selow.

Unary Message Sending: When a period is used as the separator in a compound literal, it indicates that a
unary message is to be sent to an object. (We will alternatively refer to a period as a dot.) For example:

tile. Type=' Bl ueGeenCross conmand. Type="Slide4 -> ... ;

In this example, the object to receive the unary message Type is referenced indirectly through the til e
instance variable in the work space. The left literal is the variable til e and its value must be a Loops
object at execution time. The right literal must be a method selector for that object.

The dot notation can be combined with the dollar notation to send unary messages to named Loops
objects. For example,
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$Ti | e. Type=" Bl ueG eenCr oss
In this example, a unary Type message is sent to the Loops object whose name is Ti | e.

The dot notation can also be used to send a message to the work space of the RuleSet, that is, sel f.
For example, the rule

| F scal e>7 THEN . Di spl aylLar ge;
would cause a Di spl ayLar ge message to be sent to sel f. This is an abbreviation for

| F scal e>7 THEN sel f. Di spl ayLar ge;

11.6 Variables and Properties

When a single colon is used in a literal, it indicates access to an instance variable of an object. For
example:

tile:type=" Bl ueG eenCross conmand:type=Slide4 -> ... ;

In this example, access to the Loops object isindirect in that it is referenced through an instance variable
of the work space. The left literal is the variable til e, and its value must be a Loops object when
the rule is executed. The right literal t ype must be the name of an instance variable of that object.
The compound literal til e:type refers to the value of the t ype instance variable of the object in the
instance variable til e.

The colon notation can be combined with the dollar notation to access a variable in a named Loops
object. For example,

$TopTil e: type=" Bl ueG eenCross

refers to the t ype variable of the object whose Loops name is TopTi | e.

A double colon notation is provided for accessing class variables. For example
truck: : MaxGas<45 ::Val ueAdded>600 -> ... ;

In this example, MaxGas is a class variable of the object bound to truck. Val ueAdded is a class
variable of sel f.

A colon-comma notation is provided for accessing property values of class and instance variables. For
example

Wi re:, capacitance>5 wire:voltage:,support="sinulation -> ...

In the rst clause, wire is an instance variable of the work space and capacit ance is a property of
that variable. The interpretation of the second clause is left to right as usual: (1) the object that is the
value of the variable wi r e isretrieved, and (2) the support property of the vol t age variable of that
object is retrieved. For properties of class variables

::Wre:, capacitance>5 node:: Vol tage:, support="sinulation -> ...
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In the rst clause, wire is a class variable of the work space and capaci t ance is a property of that
variable. In the second clause, node is an instance variable bound to some object. Vol t age is a class
variable of that object, and Support is a property of that class variable.

The property notation isillegal for ruleVars and lispVars since those variables cannot have properties.

11.7 Per spectives

* * * Not implemented yet in the rule language * * *

In many cases it is useful to organize information in terms of multiple points of view. For example,
information about a man might be organized in terms of his role as a father, as an employee, and as
a traveler. Each point of view, called a perspective, contains information for a di erent purpose. The
perspectives are related to each other in the sense that they collectively provide information about the
same object. As described in the Loops manual, Loops supports this organizational metaphor by providing
special mixin classes called per specti ves and nodes.

Loops perspectives can be accessed in the rule language by using a comma notation. In the following
rule, the variable washi ngMachi ne is bound to an object with three perspectivess comuodity,
el ectrical , and cleaning. The rule accesses the vol t age variable of the object that is the
el ectrical perspective.

| F washi nghMachi ne, el ectrical : vol tage<100 THEN ....

In this syntax, the term before the comma names a variable, and the term after the comma is the name
of the perspective.

11.8 Computing Selectors and Variable Names

The short notations for instance variables, properties, perspectives, and unary messages all show the
selector, variable, and perspective names as they actually appear in the object.

obj ectsel ect or

obj ecti vNare

obj ect: cvNane

obj ectvar nane , pr opName
obj ecgtper spNane

(_ objectselect@rg ar@)
For example,
appl e: fl avor

refers to the f | avor instance variable of the object bound to the variable appl e. In Interlisp terminology,
this implies implicit quoting of the name of the instance variable (f | avor).

In some applications it is desired to be able to compute the names, For this, the Loops rule language
provides analogous notations with an added exclamation sign. After the exclamation sign, the interpretation
of the variable being evaluated starts over again. For example
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apple: '\ x

refers to the same thing as appl e: f I avor if the Interlisp variable x isbound to f | avor . The fact that
X is a Lisp variable is indicated by the backSlash. If x is an instance variable of sel f or a temporary
variable, we could use the notation:

appl e: ' x

If x isa class variable of sel f, we could use the notation:
apple:!::x

All combinations are possible, including:

obj ect! sel ect or

obj ect!'\ sel ect or

obj ect! : : sel ector

obj ect! i vNane

obj ect: ! cvNane

obj ect! var nane , pr opNane
obj ect! per spNane

(_! objectselecta@rg ar@)

119 Recursive Compound Literals

Multiple colons or periods can be used in a literal, For example:
a:b:c

means to (1) get the object that is the value of a, (2) get the object that is the value of the b instance
variable of a, and naly (3) get the value of the ¢ instance variable of that object.

Similarly, the notation
a.b:c

means to get the c variable of the object returned after sending a b message to the object that is the
value of the variable a. Again, the operations are carried out left to right: (1) the object that is the value
of the variable a is retrieved, (2) it is sent a b message which must return an object, and then (3) the
value of the ¢ variable of that object is retrieved.

Compound literal notation can be nested arbitrarily deeply.
1110  Assignment Statements
An assignment statement using a left arrow can be used for setting al kinds of variables. For example,

X_a;
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sets the value of the variable x to the value of a. The same notation works if x is a task variable,
rule variable, class variable, temporary variable, or work space variable. The right side of an assignment
statement can be an expression asin:

x_a*b + 17*(LOG d):

The assignment statement can aso be used with the colon notation to set values of instance variables of
objects. For example:

y:b_ 0 ;

In this example, rst the object that is the value of yis computed, then the value of its instance variable
b is set to 0.

Properties and perspectives: Assignment statements can also be used to set property vaues as in:

box: x:,origin_47 fact:,reason_current Support;

or variables of perspectives as in:.

washi ngMachi ne, el ectrical : vol tage_110;

Nesting: Assignment statements can be nested asin

ab c:d 3;

This statement sets the values of a, b, and the d instance variable of ¢ to 3. The value of an assignment
statement itself is the new assigned vaue.

1111 Meta-Assignment Statements

Meta assignment statements are assignment statements used for specifying rule descriptions and audit
trails. These statements appear in the MD part of rules.

Audit Trails: The default interpretation of meta- assignment statements for undeclared variables is as audit
trail speci cations. Each meta- assignment statement speci es information to be saved in audit records
when a rule is applied. In the following example from gure 19, the audit record must have variables
named basi s and cf:

{(basis_'Fact cf_1)}
I F buyer:fam|lySize>2 nmachi ne: capacity<20
THEN suitability ' Poor;

In this example, the RHS of the rule assigns the value of the work space instance variable suitability
to ' Poor if the conditions of the rule are satised. In addition, if the RuleSet was compiled in audit
mode, then during RuleSet execution an audit record is created as a side-eect of the assignment. The
audit record is attached to the reason property of the suitability variable. It has instance variables
basi s and cf.

In general, an audit description consists of a sequence of meta-assignment statements. The assignment
variable on the left must be an instance variable of the audit record. The class of the audit record is
declared in the Audit Class declaration of the RuleSet. The expression on the right is in terms of the
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variables accessible by the RuleSet. If the conditions of arule are satised, an audit record is instantiated.
Then the meta-assignment statements are evaluated in the execution context of the RuleSet and their
values are put into the audit record. A separate audit record is created for each of the object variables
that are set by the rule.

Rule Descriptions. Meta- assignment statements can also be used to set variables in the objects that represent
individual rules. This interpretation of meta-assignment statements is indicated when the assignment
variable of the meta- assignment statement has been declared to be a rule variable. For example, if
the variable cf in the previous example was declared to be a rule variable, then the meta- assignment
statement would set the cf instance variable of the rule object to . 5 at compilation time, instead of
saving a cf in every audit record for every rule application at execution time. The value on the right
hand side of the meta- assignment statement for a rule variable must be known at compile time.

11.12  Push and Pop Statements

A compact notation is provided for pushing and popping values from lists. To push a new vaue onto a
list, the notation _+ is used:

nyLi st _+new tem

focus: goal s_+newGoal ;

To pop an item from alist, the _- notation is used:

item - nyList;

next Goal _- focus: goal s;

As with the assignment operator, the push and pop notation works for al kinds of variables and properties.
They can be used in conjunction with inx operator << for membership testing.

11.13  Invoking RuleSets

One of the ways to cause RuleSets to be executed isto invoke them from rules. This is used on the LHS
of rules to express predicates in terms of RuleSets, and on the RHS of rules to express actions in terms
of RuleSets. A short double- dot syntax for this is provided that invokes a RuleSet on a work space:

Rsl..wsl

In this example, the RuleSet bound to the variable Rs1 is invoked with the value of the variable ws1
as its work space. The value of the invocation expression is the value returned by the RuleSet. The
double- dot syntax can be combined with the dollar notation to invoke a RuleSet by its Loops name, as
in

$M/Rul es. . ws1
which invokes the RuleSet object that has the Loops name MyRul es.

This form of RuleSet invocation is like subroutine calling, in that it creates an implicit stack of arguments
and return addresses. This feature can be used as a mechanism for meta-control of RuleSets as in:
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| F breaker: status=" Open
THEN sour ce_$Over LoadRul es. . washi nghvachi ne;

| F sour ce=" Not Found
THEN $Short G rcui t Rul es. . washi ngMachi ne;

In this example, two ‘‘meta-rules’ are used to control the invocation of specialized RuleSets for diagnosing
overloads or short circuits.

11.14 Transfer Calls

An important optimization in many recursive programs is the elimination of tail recursion. For example,
suppose that the RuleSet A calls B, B calls C, and C cals A recursively. If the rst invocation of A must
do some more work after returning from B, then it is useful to save the intermediate states of each of the
procedures in frames on the calling stack. For such programs, the space alocation for the stack must be
enough to accommodate the maximum depth of the calls.

There is a common and specia case, however, in which it is unnecessary to save more than one frame
on the stack. In this case each RuleSet has no more work to do after invoking the other RuleSets, and
the value of each RuleSet is the value returned by the RuleSet that it invokes. RuleSet invocation in
this case amounts to the evaluation of arguments followed by a direct transfer of control. We call such
invocations transfer calls.

The Loops rule language extends the syntax for RuleSet invocation and message sending to provide this
as follows:

RS. . *ws

The RuleSet RS is invoked on the work space ws. With transfer calls, RuleSet invocations can be
arbitrarily deep without using proportional stack space.

11.15  Task Operations

Tasks in the Loops rule language represent the invocation of RuleSets. They provide a mechanism for
specifying and controlling processes in terms of tasks that can be created, started, suspended, and restarted.
They aso provide a handle for specifying concurrent processing.

A Task records the work space of a RuleSet (ws), the value returned (val ue), and two specia variables
caled the status and reason. A Task can aso have RuleSet- speci ¢ instance variables called task
variables for saving process information.

Creating Tasks: A Task is represented as a Loops object and can be created and associated with a work
space as follows:

Task6_(_ $Task New Rul eSetwor kSpace

The wor kSpacargument is optional. Specialized versions of Task will eventually be available, such as
Renot eTask, Information about a Task is stored in its instance variables, and can be accessed like other
Loops variables:
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Task6: st at us
Task6: reason
Task6: ws

Task6: val ue

Sarting Tasks: The primary operations on Tasks are starting them and waiting for them to nish execution.
These operations have been designed to work when Loops is extended for concurrent processing. The
operations for starting tasks are as follows:

(Startl taskLipt [Function]
(Start All taskLi ¥yt [Function]
(StartAll taskLi¥pt [Function]

Each of the start operations takes an argument t askLi sthich iseither a Task object,
or a list of Task objects. A Task cannot be started if it is already running, as
indicated by its st at us variable. Start1 iterates through its t askLi sdnd starts
the rst Task that is not already running. The value of Start is the Task that
was started. Start All sarts all of the tasks, and does not return control until
al of the tasks have been started. Start Together is like Start All except
that none of the tasks are started until al of them are ready. The synchronization
aspect of Start Toget her is important for avoiding Task deadlock situations in
programs that share Tasks as resources. (It avoids the di culties associated with
partial allocation of Tasks when a complete set of Tasks is needed.)

Waiting for Tasks: The following operations are provided for waiting for Tasks:

(Waitl taskLi ¥t [Function]

(Wai t Al taskLi bt [Function]
Wi t 1 iterates through itst askLi sand returns as its value the rst Task that is not
running. Wit Al'l returns when all of its Tasks have nished running The value
returned by the RuleSet that ran in a Task can be obtained from the Task object, as
in:

t ask6: val ue.

Running Tasks: In many cases, the speci cation of Task control can be smpli ed by using a run operation
that combines the start and wait operations. The run operations are as follows:

(Runl taskLi ¥t [Function]
(RunAl I taskLi bt [Function]
(RunToget her taskLi ¥t [Function]

Runl goes through its arguments left to right and selects the rst Task that is not
running. It starts that Task and then waits for it to complete. The value of Runl
is the Task that was executed. RunAl | starts al of the Tasks running and then
waits for them al to complete. RunToget her waits for al of the Tasks to become
available, runs them al, and then waits for them all to complete.

11.16  Stop Statements

At invocation, the st at us in the Task is set to Runni ng. If a RuleSet ends normally, the st at us in
the Task is set to Done and the r eason saved in the RuleStep is Success. Other terminations can be
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speci ed in a Stop statement as follows:

(St op val uest at ug eason [RuleSet Statement]
val uasthe value to be returned by the RuleSet, st at usharacterizes the termination
of the Task, and r easoms a symbolic reason for the status. Typical examples of the
use of Stop are:

(Stop val ue’ Aborted reasagn
(Stop val ue’ Suspended reason

where Abort ed means that the RuleSet has failed, and Suspended means that the
RuleSet has stopped but may be re-invoked. Particular applications will probably
develop standardized notations for status and reason. Values for these can be Interlisp
atoms or Loops objects. The arguments st at usnd r easorare optional in a St op
statement.
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12 USING RULES IN LOOPS

The Loops rules language is supported by an integrated programming environment for creating, editing,
compiling, and debugging RuleSets. This section describes how to use that environment.

121 Creating RuleSets

RuleSets are named Loops objects and are created by sending the class Rul eSet a New message as
follows:

(_ $Rul eSet New)

After entering this form, the user will be prompted for a Loops name as

Rul eSet nane: Rul eSet Nane

Afterwards, the RuleSet can be referenced using Loops dollar sign notation as usual. It is aso possible
to include the RuleSet name in the New message as follows:

(_ $Rul eSet New N L Rul eSet Nang
122 Editing RuleSets
A RuleSet is created empty of rules. The RuleSet editor is used to enter and modify rules. The editor

can be invoked with an Edi t Rul es message (or ER shorthand message) as follows:

(_ Rul eSetEdi t Rul es)
(_ Rul eSetER)

If a RuleSet isinstalled as a method of a class, it can be edited conveniently by selecting the EM option
from a browser containing the class. Alternatively, the EM function or Edit Met hod message can be
used:

(_ d assNaneEditMet hod sel ect)or [Message]
(EM d assNane sel ect)or [Function]

Both approaches to editing retrieve the source of the RuleSet and put the user into the TTYIN editor,
treating the rule source as text.

Initially, the source is a template for RuleSets as follows:

Rul eSet Nane: Rul eSet Nane;

Wor kSpace d ass: Cl assNane;

Control Structure: doAl | ;

Whil e Condition: ;

Audit d ass: St andar dAudi t Recor d;
Rul e C ass: Rul e;
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Task C ass: ;
Met a Assi gnments: ;
Tenporary Vars:,;

Li sp Vars: ;
Debug Vars: ;

Conpi | er Options: ;

(* Rules for whatever. Comment goes here.)

Figure 22. Initial template for a RuleSet. The rules are entered after the comment at the
bottom. The declarations at the beginning are lled in as needed and super uous declarations
can be discarded.

The user can then edit this template to enter rules and set the declarations at the beginning. In the current
version of the rule editor, most of these declarations are left out. If the user chooses the Edi t Al | Decl s
option in the RuleSet editor menu, the declarations and default values will be printed in full.

The template is only a guide. Declarations that are not needed can be deleted. For example, if there
are no temporary variables for this RuleSet, the Tenporary Vars declaration can be deleted. If the
control structure is not one of the while control structures, then the Whil e Condi ti on declaration can
be deleted. If the compiler option A is not chosen, then the Audit C ass declaration can be deleted.

When the user leaves the editor, the RuleSet is compiled automatically into a LISP function.

If asyntax error is detected during compilation, an error message is printed and the user is given another
opportunity to edit the RuleSet.

12.3 Copying RuleSets

Sometimes it is convenient to create new RuleSets by editing a copy of an existing RuleSet. For this
purpose, the method CopyRul es is provided as follows:

(_ ol dRul eSeCopyRul es newRul eSet Nang [Message]
This creates a new RuleSet by some of the information from the pespectives of the old RuleSet. It also
updates the source text of the new RuleSet to contain the new name.

124 Saving RuleSets on LISP Files

RuleSets can be saved on LISP les just like other Loops objects. In addition, it is usually useful to save
the LISP functions that result from RuleSet compilation. In the current implementation, these functions
have the same names as the RuleSets themselves. To save RuleSets on a le, it is necessary to add two
statements to the le commands for the le as follows:

(FNS * MyRul eSet Nanes)
(1 NSTANCES * M/Rul eSet Nanes)

where MyRul eSet Nanes is a LISP variable whose value is a list of the names of the RuleSets to be

95



Printing RuleSets

saved.

125 Printing RuleSets

To print a RuleSet without editing it, one can send a PPRul es or PPR message as follows:

(_ Rul eSetPPRul es) [Message]
(_ Rul eSetPPR) [Message]

A convenient way to make hardcopy listings of RuleSets is to use the function Li st Rul eSets. The
les will be printed on the DEFAULTPRI NTI NGHOST as is standard in Interlisp- D. Li st Rul eSets can
be given three kinds of arguments as follows:

(Li st Rul eSets Rul eSet Nam

(Li st Rul eSets Li st O Rul eSet Nanes
(Li st Rul eSets C assNamg

(Li st Rul eSets Fil eNamp

In the O assNanecase, al of the RuleSets that have been installed as methods of the class will be printed.
In the last case, al of the RuleSets stored in the le will be printed.

12.6 Running RuleSets from L oops

RuleSets can be invoked from Loops using any of the usua protocols.
Procedure-oriented Protocol: The way to invoke a RuleSet from Loops isto use the RUnRS function:

(RuUnRS Rul eSet wor kSpacear @ ar gy) [Function]
wor kSpacés the Loops object to be used as the work space. This is‘‘procedural’’ in
the sense that the RuleSet is invoked by its name. Rul eSetcan be either a RuleSet
object or its name.

Object-oriented Protocol: When RuleSets are installed as methods in Loops classes, they can be invoked
in the usual way by sending a message to an instance of the class. For example, if WAshi ngMachi ne is
a class with a RuleSet installed for its Si nul at e method, the RuleSet isinvoked as follows:

(_ washi ngMachi nel nstance Sinul ate)

Data- oriented Protocol: When RuleSets are instaled in active values, they are invoked by side-eect as a
result of accessing the variable on which they are installed.

12.7 Installing RuleSets as Methods

RuleSets can also be used as methods for classes. This is done by installing automatically- generated
invocation functions that invoke the RuleSets. For example:

[ DEFCLASS Washi ngMachi ne
(MetaCll ass dass doc (* conment) ...)
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(I'nstanceVari ables (owner ...))
(Met hods
(Si nul ate RunSi nul at eWVRul es)
(Check RunCheckWwRul es
doc (* Rules to Check a washing machine.))

-]

When an instance of the class Washi ngMachi ne receives a Simul ate message, the RuleSet
Si mul at eWVRul es will be invoked with the instance as its work space.

To simplify the denition of RuleSets intended to be used as Methods, the function Def RSM (for ‘‘De ne
Rule Set as a Method'’) is provided:

(Def RSM C assNane Sel ect oRul eSet Nang [Function]
If the optional argument Rul eSet Nanes given, Def RSM installs that RuleSet as a
method using the Cl assNamneand Sel ect oft does this by automatically generating
an ingtalation function as a method to invoke the RuleSet. Def RSM automatically
documents the installation function and the method.

If the argument Rul eSet Namds NI L, then Def RSM creates the RuleSet object, puts
the user into an Editor to enter the rules, compiles the rules into a LISP function,
and installs the RuleSet as before.

12.8 Installing RuleSets in ActiveValues

RuleSets can also be used in data-oriented programming so that they are invoked when data is accessed.
To use a RuleSet as a get Fn the function RSGet Fn is used with the property RSGet as follows:

(I nstanceVari abl es
(myVar #( myVal RSGet Fn NI L) RSGet Rul eSet Nam)

RSGet Fn isaLoops system function that can be used in an active value to invoke a RuleSet in response
to a Loops get operation (e.g., Get Val ue) is performed. It requires that the name of the RuleSet be
found on the RSGet property of the item. RSGet Fn activates the RuleSet using the local state as the
work space. The value returned by the RuleSet is returned as the value of the get operation.

To use a RuleSet as a put Fn the function RSPut Fn is used with the property RSPut as follows:

(I nstanceVari abl es
(myVar #(myVal NI L RSPut Fn) RSPut Rul eSet Nang)

RSPut Fn is afunction that can be used in an active value to invoke a RuleSet in response to a Loops put
operation (e.g., Put Val ue). It requires that the name of the RuleSet be found on the RSPut property of
the item. RSGet Fn activates the RuleSet using the newVal uefrom the put operation as the work space.
The value returned by the RuleSet is put into the local state of the active value.
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129 Tracing and Breaking RuleSets

Loops provides breaking and tracing facilities to aid in debugging RuleSets. These can be used in
conjunction with the auditing facilities and the rule executive for debugging RuleSets. gure 23 summarizes
the compiler options for breaking and tracing:

T Trace if rule is satised. Useful for creating a running display of executed
rules.

TT Trace if rule is tested.

B Break if rule is satised.

BT Break if rule is tested. Useful for stepping through the execution of a
RuleSet.

Figure 23. Compiler options for Breaking and Tracing the execution of RuleSets.

Specifying the declaration Conpiler Options: T; in a RuleSet indicates that tracing information
should be displayed when a rule is satised. To specify the tracing of just an individual rule in the
RuleSet, the T meta- descriptions should be used as follows:

{T} I F cond THEN actign

This tracing speci cation causes Loops to print a message whenever the LHS of the rule is tested, or
the RHS of the rule is executed. It is also possible to specify that the values of some variables (and
compound literals) are to be printed when a rule is traced. This is done by listing the variables in the
Debug Vars declaration in the RuleSet:

Debug Vars: a a:b a:b.c;
This will print the values of a, a: b, and a: b. ¢ when any rule is traced or broken.

Analogous speci cations are provided for breaking rules. For example, the declaration Conpil er
Options: B; indicates that Loops is to enter the rule executive (see next section) after the LHS is
satised and before the RHS is executed. The rule-speci ¢ form:

{B} I F cond THEN actign
indicates that Loops is to break before the execution of a particular rule.

Sometimes it is convenient in debugging to display the source code of a rule when it istraced or broken.
This can be eected by using the PR compiler option asin

Conpiler Options: T PR;
which prints out the source of arule when the LHS of the rule is tested and
Conpi l er Options: B PR

which prints out the source of a rule when the LHS of arule is satised, and before entering the break.
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12.10 The Rule Exec

A Read- Compile- Evaluate- Print loop, called the rule executive, isprovided for the rule language. The rule
executive can be entered during a break by invoking the LISP function RE. During RuleSet execution,
the rule executive can be entered by typing ~f (<control>-f) on the keyboard.

On the rst invocation, RE prompts the user for a window. It then displays a stack of RuleSet invocations
in a menu to the left of this window in a manner similar to the Interlisp- D Break Package. Using the left
mouse button in this window creates an Inspector window for the work space for the RuleSet. Using the
middle mouse button pretty prints the RuleSet in the default prettyprint window.

In the main rule executive window, RE prompts the user with ‘re: . Anything in the rule language
(other than declarations) that is typed to this executive will be compiled and executed immediately and
its value printed out. For example, a user may type rules to see whether they execute or variable names
to determine their values. For example:

re: trafficLight:color
Red
re:

this example shows how to get the value of the col or variable of the traffi cLi ght object. If the
value of a variable was set by a RuleSet running with auditing, then a why question can be typed to the
rule executive as follows:

re: why trafficLight:color

I F highLight:color = 'Green farnRoadSensor:cars tiner.TL
THEN hi ghLight:color _ 'Yellow timer.Start;

Rule 3 of RuleSet LightRules
Edi ted: Conway "13-Cct- 82"

re:

The rule executive may be exited by typing OK.

1211 Auditing RuleSets

Two declarations at the beginning of a RuleSet aect the auditing. Auditing isturned on by the compiler
option A. The simplest form of this is

Conpil er Options: A

The Audit d ass declaration indicates the class of the audit record to be used with this RuleSet if it
is compiled in audit mode.

Audit C ass: StandardAudit Record;

A Meta Assignnents declaration can be used to indicate the audit description to be used for the rules
unless overridden by a rule-speci ¢ meta- assignment statement in braces.
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Meta Assignments: ( cf_.5 support_' GoundWf);
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13 USING THE LOOPS SYSTEM

Loops is integrated with Interlisp- D, and makes use of many of its advanced features. In order to run
Loops one must have the appropriate version of the Interlisp- D system and the corresponding versions of
a set of LispUsers packages. The instructions for building the system as of February 1, 1983 are contained
in a document of export instructions, currently led on: { MAXC} <LOOPS>EXPORTI NSTRUCTI ONS. TXT .

131 Starting up the System

At PARC, we maintain two version of Loops most of the time, a current system which is a released
version, an another which is the system under development. There are two command les: | oops. cm
and newLoops. cm which start up a Lisp and fetch the appropriate sysout from a server.

In the version of the system as loaded at PARC, we include the following Lispusers packages. TTY,
TMENU, GRAPHER, HI STMENU, SI NGLEFI LEI NDEX, PATCHUP

The rst four packages must be included in any loadup of Loops, the second are ones we nd useful.
Documentation of these facilities are to be found on <LI SPUSERS> directories on various servers.

13.2 The Loops Screen Setup

The screen as one sees it set up contains the following windows(top to bottom, left to right):

Prompt Window Small black window in upper left. Prompts for what will happen in various mouse
interactions appear here. Also various noti cations of directory attachment changes. Labelled with the
date of the Lisp system loadup and of the Loops system loadup.

Top Level Window Normal interaction window. Labelled with the currently connected directory.

User Exec  PPDefault Window Below the EditCommands menu is a title icon of the UserExec
window. When this is expanded it lls the bottom half of the screen. It can be used for TTY interactions.
It can be made the primary window for such interactions by calling the function UE. Typing OK when in
that window returns you to the previous TTYDI PLAYSTREAM. This window is also used as the default
place to prettyprint class and instance descriptions.

There are three icons on the right half of the screen.

Loops Icon This circular icon is active and if buttoned gives the user the option of setting up the
screen again (useful if it has been cluttered with many windows), and of producing a graph browser of
the current classes in the system.

History Icon  Thisicon will expand to give a History menu list. See the write up on <LI SPUSERS>HI STMENU. TTY .

Edit Work Area This window is shown only by a title icon in the upper right. It expands when
necessary, and takes up the entire right half of the screen. It shrinks automatically when DoneEdit is
selected from the EditCommand menu. It can be expanded to allow you to look at the last expression
being edited.

101



Using the Browser

133 Using the Browser

Two specia classes in the system are used to build browsers based on the grapher package. The general
class is caled LatticeBrowser , and the particular subClass that is used by the system is called
Cl assBrowser . We will rst describe how to use the class browser which appears when requested by
buttoning in the Loops icon. We then describe how to build your own browser.

13.3.1 Using the Class Browser

The items in the class browser can be buttoned with either the left or middle button. When buttoned a
pop up menu will appear, and the user can make a selection of one of these.

If a browser menu selection is followed by an asterisk (i.e, Print*), this means that it has a number
of sub-commands. Selecting such a selection with the middle mouse button will present another pop-up
menu of sub-commands. Selecting a ‘‘starred’’ selection with the left mouse button will execute the
“‘default’” sub-command. The left and middle mouse buttons act the same when selecting an un- starred
selection.

The left button menu selections are:

Print* Prints a summary of information about the selected class in the ‘‘User Exec
PPDefault Window''. If selected with the middle mouse button, another pop-up
menu gives a choice of what to print:

PP PrettyPrint Class de nition.

PP! PrettyPrint Class denition including inherited information.

PPV! Same as PP! without seeing methods.

PPM Puts up a pop-up menu of al of the methods dened in the class,

and prettyprints the denition of the selected one.

Pri nt Summary
Prints a summary of all of the information (instance variables, class
variables, and methods) for the selected class

If Print* is selected with the left button, Print Summary is the default sub-
command that is executed.

Doc* Prints documentation for Classes, 1Vs, CVs, or Methods. [If selected with the middle
mouse button, another pop-up menu gives a choice of what to print:

Cl assDoc Prints Class doc information for selected class.

Met hodDoc Puts up a pop-up menu of al of the methods dened in the class,
and prints the doc information of the selected one. This pop-up
menu isredisplayed until the user buttons outside the menu, so that
the user can see the doc information from multiple methods.

| VDoc Same as Met hodDoc, except that it prints the doc information for
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instance variables of the class.

CvDoc Same as Met hodDoc, except that it prints the doc information for
class variables of the class.

If Doc* is selected with the left button, Cl assDoc isthe default sub-command that
is executed.

This command isused to nd out which super class of the selected class a particular
IV, CV, or Method was inherited from. When selected with the left or middle
mouse button, a pop-up menu is displayed with the elements | VS, CVS, Met hods.
Whichever element is selected, a pop-up menu of the class instance variables (or
class variables or methods) is displayed. When one of these is selected, the super
class from which that IV, CV or Method was inherited is ashed, and its nameis
printed in the Prompt Window. This na pop-up menu is redisplayed until the user
buttons outside the menu, so that the user select multiple IVs (or CVs or methods).

Unreads $cl assNamento the typein buer. This is useful when typing messages to
particular classes.

The middle button menu selections are:

EMF

Add*

Edit a method in the selected class. If selected with the middle mouse button, puts
up another pop-up menu:

EM Puts up a pop-up menu of all of the methods dened in the class,
and envokes the editor on the selected method.

EM Same as EM except that includes al inherited methods in the list.

If EMF is selected with the left button, EM is the default sub-command that is
executed.

Add a new method, a specialized class, an IV, or a CV to the selected class, or make
a new instance. If selected with the middle mouse button, puts up another pop-up
menu:

Speci al i ze Creates a new subclass of the selected class, giving it a name typed
by the user.

Def Met hod Dene a new method to the selected class. Asks the user (in the
prompt window) to type the name of a selector, and envokes the
editor on a dummy denition for that new method.

Def RSM Installs a RuleSet as a method in a class. Asks the user (in the
prompt window) to type the name of a selector, and invokes the
RuleSet editor. When the user exits the RuleSet editor, the RuleSet
is compiled and installed as the method in the class.

AddIl V Asks the user to type an instance variable name, and adds it to the
selected class.
Addcv Asks the user to type a class variable name, and adds it to the
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selected class.
New Sets the Interlisp variable |1 T to a new instance of the selected class.

If Add* is selected with the left button, Def Met hod is the default sub-command
that is executed.

Delete a method, 1V, or CV from the selected, or the whole selected class. Puts
up a pop-up menu with elements | Vs, CVs, Met hods, and Cl ass. If one of the
rst three is selected, a menu of the selected class' instance variables, class variables,
or methods is given, and the selected one is deleted from the class. If C ass is
selected, the whole class is deleted.

Move or copy an 1V, CV, method, or super from the selected class to another class.
The destination class is speci ed by using the BoxNode command, described below.
If selected with the middle mouse button, puts up ancther pop-up menu:

MoveTo Puts up a pop-up menu with elements | VS, CVS, Met hods, and
Supers. Seecting one of these will put up sill another menu,
listing the items of that type. Selecting one of these items will cause
it to be moved to the destination class speci ed with BoxNode.

CopyTo The same as MoveTo, except that the selected item is copied to the
destination class.

If Mbve* is selected with the left button, MoveTo is the default sub-command that
is executed.

Draws a box around the selected class node. If the selected classis already boxed, the
box is removed. If any other class node has been boxed, that box is removed. This
command is used in conjunction with the Move* command to specify a ‘‘destination
class’’, as described above.

Renames some part of the selected class. Puts up a pop-up menu with elements
I VS, CVS, Met hods, and O ass. Selecting one of these will put up still another
menu, listing the items of that type. Selecting one of these items will cause it to be
renamed to a name typed in by the user.

Edit some part of the selected class. If selected with the middle mouse button, puts
up another pop-up menu:

Edi t Obj ect  Cdls the editor to edit the selected class.

Editl Vs Calls the editor to edit the instance variables of the selected class.
Edi t CVs Cdlls the editor to edit the class variables of the selected class.
I nspect Cdl the Interlisp inspector to inspect the selected class.

If Edit* isseected with the left button, Edit Gbj ect isthe default sub-command
that is executed.

Pressing either the left or middle mouse button in the title region at the top of the class browser brings
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up another pop-menu, containing commands which deal with the entire browser. The commands are:

Reconput e Recompute class lattice from the ‘‘starting list’” of objects (described below).
AddRoot Add named item to starting list for browser.

Del et eRoot Delete named item from starting list for browser.

Savelnl T Store this browser object in the Interlisp variable | T.

To create a Class Browser for a small set of classes, send the message Show to the class O assBr owser :
(_New ($ C assBrowser) Show brawseli stwi ndav)

This displays the class inheritance lattice starting with the ‘‘starting list’”’ of objects br avseLi stbr evseLi st
can be a single className or class, or alist of these. A new browse window will be created which contains
nodes for each class mentioned, and (recursively) all subclasses of those classes in the current environment
which have been accessed. If wi ndav is given, then it will be used as the display window.

13.3.2  Building Your Own Browser

* * * The following information is incorrect. If you want to build your own browser, try poking around
the class Lat ti ceBrowser . Good Luck. * * *

The general class which supports browsing is Latti ceBrowser . The specidization Cl assBrowser is
used to generate the Class Inheritance Lattice Browser that we al use. C assBrowser provides an
example of how to specialize Latti ceBrowser for your own use. The following is a brief description
of the Latti ceBrowser messages.

If ($ Lb) isan instance of (any subclass of) ($ Latti ceBrowser) then:
(_ ($ Lb) Show brawselLi 9t

will create a graph of elements starting with those in br wseLi st br awseli stshould be a list of
objectNames or objects. If br ewseli sis single item, it will be treated as list of that item. The browser
will show a lattice of elements determined by a sub relation implemented by the Latti ceBrowser
message Get Sub. For each object, (_ ($ Lb) Get Subs obj eqgt should produce a list of objects
which are the ‘‘subs’ of obj ectand (_ ($ Lb) GCetlLabel objedt should produce a string to be
used in the graph as a label. The Get Subs method in Latti ceBrowser just obtains the value of
the instance variable sub, if it exists in that object (no error otherwise). The Get Label method in
Latti ceBrowser nds the name of the object.

Each node in the browser graph has actions associated with the left and middle mouse buttons. When
either button is clicked over a node, a menu of actions is brought up. The items on the action menu are
determined by the class variables Left Buttonltens and M ddl eButtonltens.

The value obtained by selecting the menu item will be used as a message selector for an action. The
message will be sent either to the browser or to the object itself. Selectors on the class variable
Local Commands, or those not understood by the object will be sent in a message to the browser, with
arguments of the object and objectName. Otherwise, the object will be sent that selector as a unary
message (N0 arguments).
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For example, assume that the value of Left Buttonltens was (PP PP! EditObject) and the value
of Local Commands was NI L, and Edit Cbj ect is not understood by obj 1selected in the browser.
By buttoning PP (or PP!) in the action menu, obj 1would be sent the message PP (or PP!). Selecting
Edi t Obj ect would result in sending the message (_ ($ Lb) Edit Oohject obj1(GetNane obj]}).

A LatticeBrowser responds to Edit Obj ect by sending the object the message Edit in a TTY
process. The latter is necessary to allow the mouse to continue to work in the process world. If obj Imight
have understood the message Edi t Obj ect , then that atom should appear on the list Local Commands
to ensure that the browser is sent the message rather than obj 1

As usual with menus, items need not be atoms. If an item is a list, EVAL of the second element is
returned. Thus one might have the element ("Edit Wth EE' ' EEGChj ect ) on a menu item ligt,
so the string "Edit Wth EE" will be displayed in the Menu, and the message EEQbj ect sent when
that item is selected.

If the result of selecting an item returns a list, the CAR of the list is treated as the selector, and CDR is
an extra argument to send. For example, in the class browser M ddl eButtonltens contains an item
(EditlVs ’(EditObject -2 EE)). Sdecting Edit|Vs in the menu causes the following message
to be sent: (_ ($ Lb EditObject object(-2 EE))

Shifted Selections If one selects a node with the LEFT or M DDLE mouse button while holding down
the left shift key, then a message is sent to the browser:

(_ ($ Lb) LeftShiftSel ect objectobj Nang
(_ ($ Lb) Mddl eShiftSel ect objectobj Nang

The default behavior for Lef t Shi ft Sel ect isto send PP! to the object, and for M ddl eShi ft Sel ect to
send EEQbj ect to the brow ser.

Moving Nodes Holding the CTRL key down when selecting allows one to move the selected node in
the browser window. This does not aect the underlying structure, just the display.

Format of the Browser Window  One can obtain a browser display with a speci ed title or in an existing
window. If one species wi ndevOr Ti t | én

(_ (% Lb) Show braweListwi ndevOr Titl)e

then if wi ndovOr Ti t | @s a string, it will be used as the title of a new window for the browser. If
wi ndevOr Ti t | @s a window, then that window will be used as is. If wi ndeMOr Titl= N L, then the
title is obtained from the instance variable title, and a new window is created and stored in the
instance variable wi ndow. If the instance variable t opAl i gn= T (the default) then GRAPHER will
align the graph to the top of the window. The font used for labels is found in the instance variable
br owseFont . At any time, the last object selected is found in | ast Sel ect edObj ect .

SUMMARY:  To speciadize a browser, dene the method for Get Subs. If the browser is not using
object names for its labels, specialize Get Label . Set up the class variables Left Buttonltens,
M ddl eButt onl t ems and Local Conmands . Specialize Left Shi ft Sel ect and M ddl eShi ft Sel ect
if desired.

Latti ceBrowser [Class]

IV's.
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boxedNode [IV of LatticeBrowser]
The last object boxed, if any.

br owseFont [IV of LatticeBrowser]
The font used for labels.

| ast Sel ect edj ect [IV of LatticeBrowser]
Last object selected.

startingLi st [IV of LatticeBrowser]
List of objects used to compute this browser.

title [IV of LatticeBrowser]
Title passed to GRAPHER package.

t opAlign [IV of LatticeBrowser]
Flag used to indicate whether graph should be aligned with the top or bottom of the
window. If topAlign= T (the default) then GRAPHER will align the graph to the
top of the window.

w ndow [IV of LatticeBrowser]
Window for browsing.

Cvs:

Left Buttonltens [CV of LatticeBrowser]
Items for left button menu. Value sent as message to object or browser.

Local Commands [CV of LatticeBrowser]
List of messages that should be sent to browser when item is selected in menu, even
if object does understand them.

M ddl eButt onl t ens [CV of LatticeBrowser]
Items for middle button menu. Vaue sent as message to object or browser.

Titleltens [CV of LatticeBrowser]
Items for menu in title of window.

Methods:

(_ brawer BoxNode objedt [Method of LatticeBrowser]
Draws a box around the node in the graph representing the object.

(_ brawser DoSel ect edConmand conmand obj obj Nang [Method of LatticeBrowser]
Does the selected command or forwards it to the object.

(_ brawser EEQhj ect obj ectobj Nang [Method of LatticeBrowser]
Edit obj ectusing the TTYIN editor (in a TTYPROCESS).

(_ braower Edi t Obj ect obj ectobj Nanme ar g¥ [Method of LatticeBrowser]

Edit obj ecusing Lisp editor (in a TTYPROCESS), passing the commands ar gs
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(_ brower Fl ashNode node N }ashTi nmg [Method of LatticeBrowser]
Cdl Fl i pNode 2N times, delaying for } ashTi memilliseconds between ips. Default
values: N=3, } ashTi me300.

(_ braower Fl ashNode obj eqgt [Method of LatticeBrowser]
Inverts the video around the node in the graph representing obj ect

(_ brawer Get Label objedt [Method of LatticeBrowser]
Returns the label for obj ectlisplayed in the browser.

(_ brawer Get NodeLi st braweli stgoodLi s}t [Method of LatticeBrowser]
Returns the node data structures of the tree starting at br ewselLi st If goodLi st
is given, only include elements of it. If goodLi st T, this is the same as
goodLi st br awseli st

(_ braower Get Subs obj eqgt [Method of LatticeBrowser]
Returns a list of the subs from obj ect

(_ braower Left ShiftSel ect objectobj nang [Method of LatticeBrowser]
Cdled when obj ecis selected with the LEFT mouse button while the shift key is
down.

(_ brawer M ddl eShi ft Sel ect obj ectobj nang [Method of LatticeBrowser]
Cadled when obj ects selected with the M DDLE mouse button while the shift key is
down.

(_ braower Obj NanePair obj Or Nan® [Method of LatticeBrowser]

obj Or Nanemay be either an object or a name used to label an object in the browser.
Returns the pair (obj ect. obj Nang .

(_ brawer Reconput e) [Method of LatticeBrowser]
Recompute the browser display using same window and br avseli st

(_ brawer Show br awseli stwi ndevOr Ti t | egoodLi sit [Method of LatticeBrowser]
Show the items and their subs on a browse window.

(_ brawer Unread obj ectobj Namg [Method of LatticeBrowser]
Put $obj Naneinto the tty buer

134 Editing in Loops

This section is about editing in Loops. It describes the Loops interface to the standard Interlisp editors.
In addition to the usua teletype oriented editor, Interlisp- D, provides a variety of other editing programs
that make available the benets of a bitmap display and a mouse. We will describe some of the interfaces
to these editors, but leave the instruction on editing to the appropriate other documents

134.1 Editing a Class

The editor for classes is invoked by sending the message Edit to the class to be edited. The message
Edi t alows an optional argument, a list of editing commands, as do al the usua Lisp editing functions.
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Example: To edit St udent Enpl oyee:
(_ ($ Student Enpl oyee) Edit)

An alternative way to edit a class is provided by the LISP function EC (for ‘‘edit class’’). EC takes the
class name as its argument. For this example, the form is:

(EC ($ Student Enpl oyee))
At this point, if you prettyprint the expression you will see:

[ DEFCLASS St udent Enpl oyee
(Metad ass d ass)
(Supers Student Enpl oyee)
(I nstanceVari abl es)
(O assVari abl es)
(Met hods) ]

Suppose nhow you edit this structure to the one shown below:

[ DEFCLASS St udent Enpl oyee
(Metad ass d ass)
(Supers Student Enpl oyee)
(I nstanceVari abl es (nane)
(project "KBE"))
(Cd assVari abl es (nunber Enpl oyees 0))
(Met hods (Work St udent Enpl oyee. Wrk))

This speci es that each instance will have two instance variables, name and pr oj ect , with default values
of NI L and " KBE", respectively. The class has a class variable nunber Enpl oyees, initiaized to 0. If
we have an instance of this class bound to the Lisp variable wor ker , the following expression causes this
instance to respond to the message Wor k:

(_ worker Work 3)

The result of evaluating this expression is to call the Lisp function St udent Enpl oyee. Work with
arguments (the value of ) wor ker and 3. This is described in more detail in the section on methods.

The norma way to terminate editing is with OK. This causes the revised denition to be instaled. If you
exit from this editing session with STOP or "D, all the changes of this session will be lost, since the list
structure is not saved; it isonly used to build the new class structure. If you have made any syntax errors
in editing, warning messages will be printed when you type OK, and you will be returned to the editor.

13.4.2 Editing an Instance

To edit an instance, send it the message Edi t .
(_ objectEdit)

This will put you in the Interlisp editor editing a source for the instance. When you end with K, the
new values will be inserted in the instance.

109



Editing a Method

An equivalent way to edit an instance is
(El objeqt

where obj ecis an instance. (If one has an Interlisp variable, say X1, bound to an instance then to edit
one should type (EI X1).

When instances refer to other instances, they are printed out in the form #" Ul &DI | ", that is as a hash
mark (#) followed by a string which is a unique identi er. When this is read back in from the string
editing buer of TTYIN, areadmacro for # converts it back into a pointer to an instance with that unique
identi er.  When a class is printed out for TTYIN it prints as #$Cl assNanme, and the # readmacro
converts it bvack into a pointer to the class.

13.4.3 Editing a Method
Often it is convenient to type to enter only a skeletal denition for a method, and then nish making the
speci cations by using an editor. To edit the function for a particular method:

(EM cl assNanesel ect)or

This puts you in the Lisp editor, editing whatever function is associated with the selector speci ed. The
name of the actual function is printed out as you enter the editing process. Aside from the syntactic
convention of having the rst argument to afunction implementing a method be sel f , these methods are
perfectly normal Lisp functions. However, special compilations can be done on these using the GLISP
compiler for Loops. This is documented in the section on Lisp interactions.

135 Inspecting in Loops

Loops is integrated into the Lisp system so that one can invoke the Inspector on Loops objects. This
uses the Loops inspect package, which allows a specialized way of viewing the objects in Loops terms as
described in the two sections below.

1351 Ingpecting Classes

To inspect a class, send the message | nspect :

(_ ($ classNane | nspect)

13.5.2 Inspecting Instances

An dternative way to modify an instance is to inspect it:
(_ obj ectl nspect)

and then you can set any values and properties, and add or delete any IVs.
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13.6 Errorsin Loops

Most errors in Loops which are not errors in Lisp call the function HELPCHECK, which prints out a
message, and goes into a Lisp break. The appropriate response to some errors is described below.

13.6.1 When the Object is Not Recognized

When the value of obj ecin the form

(_ objectsel ectarg argy)

isnot a Loops object, Loops activates the NoCObj ect For Msg method in the kernel class Obj ect .
The response to this condition can be changed as described below.

This condition can arise if the ller refers to an object that is not in the current environment. For
example,

(_ ($ FOO selectarg argy)

will cause the condition if there is no class named FQOO in the current environment. In the default case,
this causes an error. A user can return from the error by typing

RETURN MyV al ue

to let the process continue, returning MyV al ueas the value that should have been returned had the
method been applied successfully.

Alternatively it is possible to create user-speci ¢ responses to this condition by creating a class with a
NoObj ect For Msg method and setting the global LISP variable Def aul t Obj ect to that class. The
arguments to the NoChj ect For Msg method are obj ectand Sel ect.orThis method should carry out
whatever response is appropriate, apply the method that was intended, and return the value of that
application.

13.6.2 When the Selector is Not Recognized
If the object isrecognized but the selector isnot, then the object issent a MessageNot Under st ood mes
sage as follows:

(_ obj ectMessageNot Under st ood sel ect)or

In most cases, this invokes the default method on the kernel class Obj ect which attempts to perform
spelling correction. If the correction fails, then a break is caused. If the user then types

RETURN sel ect or
to the Lisp Break Package, the selector so named will be used.

Alternatively it ispossible to create user-speci ¢ responses to this condition by providing a MessageNot Under st ood
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method in some super of the object. This method should return a Lisp atom other than NI L, which is
then used as the selector as the SEND is tried again.

137 Breaking and Tracing Methods

(BreakMet hod cl assNanesel ect)or [Function]
This function will break the method called by sel ect ar the speci ed class. It will
nd the function name and break it, even if the selector isonly found in a superclass.
All cdlsto that function will be broken, even ones that do not come from className.

(TraceMet hod cl assNanesel ect)or [Function]
Similar to Br eakMet hod, except that it traces the appropriate method.

The Lisp function UNBREAK will unbreak the function which was broken.
13.8 Monitoring Variable Access

(Breaklt sel fvar Nane propName type breakOnGet Al soBl g [Function]
This function is used for causing an Interlisp break when the value of a variable
or property is set or fetched. The type argument is one of |V, CV, METHOD, or
CLASS for instance variables, class variables, method properties, or class properties
respectively. If it isNI L, then |V is assumed. If propNaneis Nl L, then type must
be | Vor CV and Breaklt refers to the value of a variable.

If breakOnGet Al soFLs NI L then the break is only entered when an attempt is
made to store into the value. If br eakOnGet Al soFLig T, then breaks will also occur
on attempts to fetch the vaue.

(Tracelt sel fvar Nanme propNane type traceOnCet Al sofl g [Function]
Similar to Breaklt, except that it will trace the value of a variable or property,
printing the old and new values when the variable or property is accessed.

(UnBreaklt sel fvar Nane propNane typég [Function]
This function is used to remove monitoring (breaking or tracing) for the speci ed
variable or property. If sel=f NI L, then all known breaks and traces are removed.
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141 The Golden Braid (Object, Class, MetaClass)

All objects are directly or indirectly a subclass of the object caled Object. Object holds al the
methods for the defualt behavior of objects. Heuristics for using these classes. This is the only object
with no super classes.

O ass is the class which holds the default behavior for all classes as objects. C ass is the default
MetaClass for al classes. If C ass is not the MetaClass for a class, it must be on the supers of that
metaClass. There are messages elded by C ass that know how to create and initialize instances.

Met adl ass is the class which holds the default behavior for classes which create classes. Met adl ass
is the metaclass for Cl ass, and is the only class which is its own metaClass. In accordance with the
paragraph above Cl ass is a super of Met ad ass.

14.2 Per spectives and Nodes

In many cases it is useful to organize information in terms of multiple points of view. For example,
information about a man might be organized in terms of his role as a father, as an employee, and
as a traveler. Each point of view, caled a perspective, contains information for a di erent purpose.
The perspecitives are related to each other in the sense that they collectively provide information about
the same object. Loops supports this organizational metaphor by providing special mixin classes called
Per specti ve and Node.

Per spective [Class]

IVs:

per specti veNode [IV of Perspective]
Indirect pointer to onode containing all perspectives of this object.

Methods:

(_ sel fAddPersp vi ewNane vi ey [Method of Perspective]
Adds a perspective to my node.

(_ sel fDel et eMeAsPer sp) [Method of Perspective]
Delete this object as a perspective of node.

(_ sel fDel et ePersp vi ewName vi ewdont CauseEr rpr [Method of Perspective]
Deletes a perspective from node.

(_ sel fDestroy) [Method of Perspective]
Destroy self but leave other perspectives on Node.

(_ sel fDestroy!) [Method of Perspective]

Destroy self, Node and all other perspectives on Node.
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(_ sel fGet Persp perspNanecauseError [Method of Perspective]
Returns the perspective of this instance with viewName perspName.

(_ sel fMakePersp vi ewName nodeTypé [Method of Perspective]
If no current perspectiveNode exists, then a node will be created of class nodeType
(or Node if nodeType= NI L). nodeType should be a subclass of Node. sel fwill
be made the value of the property vi ewNameon |V perspectives of node. If sel f
aready has a node, then it is used.

Node [Class]
IVs:
per spectives [IV of Node]

Associated objects are stored on the property list of perspectives under ther
perspective names. The value of this IV is irrelevant.

Methods:

(_ sel fAddPer sp vi ewNane vi ewdort CauseErr pr [Method of Node]
Adds a perspective to a node on the IV perspectives as vaue of property
vi ewNane

(_ sel fDel et ePersp vi ewNamne vi ewdont CauseEr rpr [Method of Node]
Deletes a perspective of a node on the IV per specti ves on property vi ewNane
Checks for consistency. Removes from 1V pespecti veNode of vi ewsel &s value,
and vi ewNane from property nyVi ewNane. If vi ewis not that perspective, then
causes an error, unless surpressed.

(_ sel fDestroy) [Method of Node]
Destroy the node after detaching all its perspectives.

(_ sel fDestroy!) [Method of Node]
Destroy the node and al its perspectives.

(_ sel fGet Persp perspNamecauseErr)r [Method of Node]

Returns the perspective of this node with viewName of per spNane

14.3 Useful Mixins

NanedObj ect and d obal NanedObj ect contain only one instance variable, nane which holds the
name of this object. Any Loops object can be named, but NanedCbj ect and G obal NanmedObj ect
both have their names as part of their structure, and if the structure is changed they update their name.
As indicated by its name, instances of G obal NanedCbj ect are named in the globa name table and
will be known independent of the environment they are in. Instances of Named(Obj ect may only be
known in a single environment, and the name may be reused in another environment.
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NamedObj ect [Class]
d obal NamedObj ect [Class]
Dat edObj ect [Class]

Dat edObj ect has appropriate initial active values on its two instance variables so
that they are lled in at creation with the right values.

Vs

created [IV of DatedObject]
Date and time of creation of object.

creator [IV of DatedObject]
USERNAME of creator of object.

Var | engt h [Class]
Var Lengt h isa mixin class which alows a class to have indexed instance variables,
from 1to (_ obj Length). These have not yet been extensively used.

IVs:

i ndexedVar s [IV of Varlength]
Place where indexed variables are stored for Var Lengt h classes.

Methods:

(_ sel fLengt h) [Method of Varlength]

Returns number of indexed variables allocated in this instance.

14.4 The MetaClass Named ‘‘Class’’

This sections describes the methods dened in the metaClass Cl ass. Any of these methods can be
augmented or superceeded in a particular class. The complete list of methods associated with a class can
be determined by using the browser.

The Add, Del et e, Li st and Li st! methods have an argument typewhich speci es the type of element
to be added, deleted, or listed. For specifying single items, type should be one of 1V, CV, | VProp,
CVPr op, Met hod, Super, or Met a. For specifying sets of items, typeshould be | Vs, CVs, | VProps,
CVPr ops, Met hods, Supers, Sel ectors, or Functi ons.

In the following methods, adding or deleting instance variables and instance variable properties aects
the class, and and therefore aects only instances created after the change. Already existing instances are
not changed.

(_ sel fAdd type nane val uepr operntNane) [Method of Class]
Add an instance speci ed by typeto the class. E.g. if type= | V then add an instance
variable with the given name using the given value as default. If pr opentNane is
given, use val ueinstead as the property value on type created or found. The type
must be one of the item types speci ed above: |1V, CV, | VProp, CVProp, Met hod,
Super, or Met a.
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sel fConment Met hods) [Method of Class]
For each method in the class, obtain its argument list, and insert this in the class
denition under the method property args. If the source code of a method is in
core, extract the comment which should be the fourth item in the source code, and
insert in the class denition under the method property doc. If no comment is
found in the source code, put the user into the editor looking at that function. When
editing is nished, retrieve the comment from the method.

sel fCopyMet hod mySel ect arewC assnewSel ect)or [Method of Class|
Copy the method associated with the selector mySel ect drom sel ffo newCl ass
(under the new selector newSel ect)omewSel ect aefaults to mySel ect.or

sel fDef Met hod sel ect aar gsexp [Method of Class]
Adds a method for sel ect to class. If ar gsand exprare NI L, puts the user into the
editor)

sel fDel et e type nane prop [Method of Class]

Deletes the speci ed element from class. type must be one of 1V, CV, | VProp,
CVPr op, Met hod, Super, or Met a.

sel fDest r oy) [Method of Class]
Destroys (deletes) a class.

sel fDest roy!) [Method of Class|
Recursive version of Destroy. Destroys class and its subclasses.

sel fEdit comrands) [Method of Class]
Calls the Interlisp Editor on the source for class.

sel fEdi t Met hod sel ect arormands) [Method of Class]
Finds the function associated with sel ect ar class, and calls the Interlisp Editor on
it.

sel fFet chMet hod sel ect)or [Method of Class]
Returns the name of the function which implements this method in this class.

sel fHasCv CVNane prop [Method of Class]
Tests if class has the speci ed class variable/property.

sel fHasl V | VNane prop [Method of Class]
Tests if class has the speci ed instance variable/property.

sel fLi st conponen Type conponemn Nanme pr opNang [Method of Class]
List the immediate components of a class. conponen Typeis one of the item or
set speci ers described above. If componen Typeis one of the item speci ers, then
componemn Nane should be speci ed; Li st will show that item. If componen Typeis
| VProps or CVProps, then Li st will show just the property names of the named
item. Otherwise, for all set descriptors, it will list al relevant items. pr opNane
must be speci ed only if component is | VProps or CVProps. Selectors and
Met hods are synonyms, returning the list of selectors for the class, Functi ons
returns the list of names of functions called for methods in this class.
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sel fLi st!  type nane verboseF) g [Method of Class]
Recursive version of Li st . Omits things inherited from Cbj ect and Cl ass unless
ver boseFEgT.

sel fivet hodDoc sel ect)or [Method of Class]

Print documentation for the method associated with sel ect ar TTY window.

sel fMoveMet hod newd asssel ect)or [Method of Class]
Moves the method speci ed by sel ect from this classto the speci ed class, changing
the name of the function if it is of form cl assNanesel ect.or

sel fNew nanme super)s [Method of Class]
New method for Met aCl ass. Since Met aCl ass isits own metaClass, this needs to
work correctly whether sel fs Gl ass or Met aCl ass or a subClass of Met aCl ass.
Work is done by Defi neC ass in LOOPS.

sel fNewTenp sel ect aruper Fl)g [Method of Class]
Make a new temporary instance of this class which will not get saved on a database
unless referred to by another saved object.

selfOnFile |1¢ [Method of Class]
Returns T if sel fsdened onthe le |l e

sel fPP |1 & [Method of Class]
Prettyprints the classon the le |l e

sel fPP! |1 & [Method of Class]
PrettyPrints the class at al levels.

sel fPPM sel ect)or [Method of Class]
Prettyprints the function which implements sel ect ar this class.

sel fPPMet hod sel ect)or [Method of Class]
Prettyprints the function which implements sel ect ar this class.

sel fPut type name val ueprop [Method of Class|
type must be one of IV, CV, | VProp, CVProp, Met hod, Super, or Meta. Adds
the speci ed type to the class.

sel fRenamre newNane ervi r onnet) [Method of Class]
Give a class a new name, renaming those methods of the form cl assNanesel ect.or

sel fRepl aceSupers super)s [Method of Class]
Replace the entire supers list for this class.

sel fSet Nane newNane ervironnet) [Method of Class]
Change the name of the class, forgetting old name. Change the names of al methods
which are of the form cl assNanesel ect.ofame as Renane.

sel fSubd asses) [Method of Class]
Returns a list of immediate subclasses currently known for this class.
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The Class Named ‘‘Object’’

All classes have (bj ect as one of their supers, directly or indirectly. Therefore, al instances know how
to respond to the messages dened in Cbject. These can of course be overridden in any class, but
nj ect provides a set of default behaviors, and generaly available subroutines.

(_

(_

sel fAddl V nane val uepr op [Method of Object]
Adds an IV to instance. If it isnot in regular set, puts it in assoc List on otherlVs.

sel fAssockKB newkBNare ) [Method of Object]
Change assocKB of this object to newkBNane .

sel fAt var Name propi ndex [Method of Object]
Returns the value of an ‘‘instance variable’’ for an object. For an instance object,
instance variables hold local state. For an object that is a class, we use ‘‘instance
variable’’ to refer to the variables that are private to instances of the class. If the
value is an active value, Get Val ue activates its get Fn

sel fBreaklt var Name propNane type br kOnGet Al soF) g [Method of Object]
Creates an active value which will cause a break when this value is changed. If
br kOnGet Al soFkEgT, this will also break when the vaue is fetched.

sel fCl ass) [Method of Object]
Returns the class of this object.

sel fOl assNane) [Method of Object]
Returns the className of the class of the object.

sel fCopyDeep KBC) [Method of Object]
Copies the unit, sharing the iName list, copying instances, activeVaues and lists.

sel fCopyShal | ow) [Method of Object]
Makes a new instance (a copy of this instance, not copying the values of the instance
variables), with the same contents as sel.f

sel fDel et el V var Nane pr opNang [Method of Object]
Removes an IV from an instance. No longer shares IVName List with class. Some
programs which depend on IV may not work.

sel fDel et el VProp i vNane i vProp [Method of Object]
Deletes a property of an instance variable.

sel fDest r oy) [Method of Object]
Destroy an object in an environment. Removes all IVs, class pointers, etc. For
garbage collection by user.

sel fDoMet hod selectarlassarg arg arg arg arg arg argg arg arg argo
[Method of Object]
Message form of the function DoMet hod.

sel fEdit comrands) [Method of Object]
Cadlls the Interlisp editor on the source of the object.
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sel fHasl V i vNane prop [Method of Object]
Returns T if sel tontains the specied V.

sel fl nspect ASTYPE ) [Method of Object]
Cdlls the Interlisp inspector to examine sel fas an object of type ASTYPE ).

sel flnst O cl assNane [Method of Object]
Returns T if sel fs an immediate instance of the class with name cl assNane

selflnst ! cl assNane [Method of Object]
Returns T if sel fs an instance of the class with name cl assNameither directly or
through the supers chain of its class.

sel fl VM ssi ng var Nane) [Method of Object]
Cdled from macro FetchlVDescr when there is no IV var Nane. If var Nane is an
IV of the class, then it adds IV to the instance and returns the 1VDescr as reguested.
Will also do this if user returns with OK from HELPCHECK.

sel fLi st typeNane) [Method of Object]
List IV properties, 1VS of object, or other properties inherited from class.

sel fLi st! type name ver boseF) g [Method of Object]
Recursive form of Li st for objects. Omits things inherited from Cbj ect unless
ver boseFlig T.

sel fMessageNot Under st ood sel ect aruper Fl)g [Method of Object]
Invoked when a selector is not found for an object during a message sending
operation. Attempts to do spelling correction on the selector. Causes an error if this
fails.

sel fNoObj ect For Msg sel ect)or [Method of Object]
Called from Fet chiet hodOr Hel p when sel fs not a Loops object with a de ned
class. A specialized response to this can be tailored in a given Loops application by
rst reseting the global Interlisp variable Def aul t Cbj ect to point to an object. This
default object will eld NoCbhj ect For Msg messages from Fet chiMet hodOr Hel p .
The method for NoObj ect For Msg on Def aul t Obj ect should return a default
value, usually dependent on the selector.

This version of NoOhj ect For Msg just causes an error break. A user can return
from the error by typing RETURN val ugwhere val ues the value that should have
been returned as the result of sending sel ect tw sel.f

sel fPP) [Method of Object]
PrettyPrints an instance denition on || e

sel fPP! |1 ¢ [Method of Object]
PrettyPrints an instance to al levels.

selfPrintOn |1¢ [Method of Object]
This is the default printing function for Qbj ect . It distinguishes between temporary
objects, named objects, and others.

119



Functions for changing L oops Structure

(_ sel fPut var Name newVal uepr opNane i ndex [Method of Object]
Puts newVal uén an instance variable (see Get Val ue, page 19). If the value/property
of the variable contains an active value, the put Fnis activated.

(_ sel fRenane newNane ervironnet) [Method of Object]
Removes an old name, and gives it new name.

(_ sel fSet Nane nane envi ronnen noBi t chF) g [Method of Object]
Associates a name with an object in an environment. This works for instances and
classes. An object can have more than one name.

(_ selfTracelt varNanme propNane type traceGet Al sofl g [Method of Object]
Creates an active value which will cause tracing when this variable is changed. Will
also trace on fetches if t raceGet Al SoFl T

(_ sel fUnSet Nane nane ervi r onmet) [Method of Object]
If name actually names sel fn ervi r onmet then delete the association between sel f
and nane.

(_ sel funderstands sel ect)or [Method of Object]

Tests if sel fwill respond to sel ect.or

(_ sel fWerel s nane type propNang [Method of Object]
Searches the supers hierarchy until it nds the class from which typeis inherited.
type= NI L defaults to METHODS.

14.6 Functions for changing L oops Structure

146.1 Moving and Renaming Methods

There are a number of Interlisp functions available to help in the process of reorganizing class structures.
It is often the case in the development of a set of classes for some job that one nds some common super
class of a set of classes, and wants to move a method up to the super, or copy it down from the super.
Also renaming both the selector and the function of a method is sometimes useful.

(RenaneMet hod cl assNameol dSel ect mewSel ect)or [Function]
Changes the selector ol dSel ecttor newSel ect an cl assNamand if the function
name is cl assNaneol dSel ectdoes a RENAME to ¢l assNanenewSel ect.or

(RenaneMet hodFuncti on cl assol dName newNane) [Function]
Renames a function used as a method in cl ass Does not change the selector.
Complains if ol dNaneis not found.

(MoveMet hod ol dCl assnamaewCl assNanesel ect)or [Function]
Moves the method from ol dCl assnane newCl assNaneand renames the function
if it is of the form ol dCl assnansel ect to newCl assNanesel ect.or

(Cal | edFns cl assede| nedFl)g [Function]
Given alist of classes, this function computes the list of all functions called by those
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classes. If de| nedFlg T, only returns the list of those functions which are de ned.
146.2 Moving and Renaming Variables
It is sometimes convenient to be able to move methods and variables when reconguring classes in an

inheritance lattice. The following functions are provided for this.:

(RenanmeVari abl e cl assNameol d¥@r Nane newVar Nanme cl assF g [Function]
Changes the name of the variable from ol d¥r Name to newVar Nane. Changes any
references to these variables in methods of the class.

(MoveVvari abl e ol dO assNammewCl assnanevar i abl eNafre [Function]
Moves the entire description of an instance variable into the new class.

(Moved assVari abl e ol dC assNanmmewC assnanevar i abl eNajye [Function]
Moves the entire description of a class variable into the new class.
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151 Saving Class and Instance De nitions on Files

Loops has been integrated with the Interlisp le system to allow saving of class denitions on les. The
le command:

(CLASSES * cl assNanelLi)st

added to the lecoms of any le will allow one to dump out the prettyprinted version of the source
you see when you edit the class denition. These class nhames can be listed in any order in a single list,
provided that all super classes of a class on the list are on the list as well, or will be previously de ned.

(I NSTANCES * instanceNanelL) st

added to the lecoms of any le will alow one to dump out the prettyprinted versions of named instances,
as well as any unnamed instances that they point to.

Functions used to implement methods are ordinary Interlisp functions. Those that are named automatically
by Loops as cl assNanesel ect aiart with the same characters; they will be found aphabetically together
on any function list which is created. The function Cal | edFns (page 120) can be used get a list of al
functions used by alist of classes.

15.2 Classes for Lisp Datatypes

One can use the message sending protocol with records (lists) whose rst element is a class, or ordinary
Interlisp datatypes. In the rst case, the rst element is used as the class to look up the method to be
used. In the second case, the class is found using the function (GetLi spd ass obj), which looks it
up in the hash table Li spCl assTabl e, based on the type name of the datatype.

We cadll datatypes with associated classes and records with rst element a class pseudoclasses, and instances
of them pseudoinstances. If Get Val ue or Put Val ue are caled with sel bound to a pseudoinstance,
then the method associated with the selector Get Val ue in the pseudoclass (cal it PC) is called as follows:

(APPLY* (Get Met hod PC ' Get Val ue) i nstancear Name propNang
or
(APPLY* (Get Met hod PC ' Put Val ue) i nstancear Name newVal uepr opNang

If the associated class PC has a Get Val ue (Put Val ue) method, then values of the variables can be
found. This alows a mixture of compiled access to datatype elds, and interpreted access within Loops.

153 Some Details of the Loops implementation

Methods are implemented by Lisp functions. The message sending expression:
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(_ objectsel ectarg argy)
is expanded as a compiler MACRO into
(APPLY* (FetchMet hodOr Hel p obj ect’ sel ect)orobj ectar g argy)

Get Met hod returns the name of the Interlisp function associated with sel ect anywhere in the class of
obj ector in the superClass chain of that class. Notice that the object is implicitly included as the rst
argument of the function, as well as being the argument for Get Met hod. By syntactic convention the
rst argument (bound to the object) in any function which isbeing used as a method iscaled sel f. The
expression for the object is evaluated only once.

Objects in Loops are represented in memory as Interlisp datatypes. The datatypes for classes have property
lists for methods, class variables, instance variables, and their properties. Datatypes for instances have
property lists for instance variables and their properties. In genera, the selector names and variable
names are stored in the class objects. When instances are read in from a data base, they have their loca
name tables aligned with the class standards. Specia provisions are provided for handling instances whose
variable names do not correspond to current class denitions. Instances act as if they have local tables for
lookup of variables and properties, but they usually share the class name table and no storage is actually
allocated for local tables unless it is needed.

Default values for instance variables and properties are not copied to an instance. No space for instance
variables or properties isallocated until that variable or property has been set individually for the instance.
This means that the default values are not just initial vaues. In particular, if a classis altered to change
the default value of an instance variable, then al of the instances that do not have individualized values
will reect the new default value. Also, there isno storage overhead in instances for unchanged properties
(e.g., for documentation) dened in classes. Since individualized values of variables are stored in the
instances, there is no need to search the class hierarachy after a variable or property has been set in the
instance. In contrast, since class variables are shared among instances it is aways necessary to go to the
class (or a super class) to get a value.

Although many of the ideas of the Loops database were inspired by PIE, the implementation diers
aong several dimensions. PIE was intended primarily for use with a browser (i.e., an interactive viewing
and editing program), and eciency was not a primary concern. Since Loops was intended for use by
programs with potentially extensive computational processes, a need for ecient access was perceived and
this led to some di erent tradeos in the choice of implementation.

One di erence between PIE and Loops is the grainsize of the changes written in layers. PIE performs
separate bookkeeping on changes to values of every variable in objects. Loops avoids the storage penalty
of this by keeping track only of which objects have been changed. This means that le layers in PIE
contain partia objects (e.g., a change to a single variable) while layers in Loops contain complete objects.
In eect, Loops economizes on space (and time) in memory instead of space in the databases.

Another di erence is that the Loops implementation tries to reduce the cost of references to values
by snapping links to references. However, link snapping is fundamentally in conict with a lookup
process that takes an environment as an argument. Link snapping precludes the sharing of objects
between environments in those cases where the interpretation of the references in the shared objects is
sensitive to the environment. Loops preserves a complete isolation of environments, with exchange of
information permitted only as a knowledge base transaction. In general, realigning an environment to
incorporate changes from another environment requires writing out the changes, clearing the memory
in the environments, and re-opening the associated knowledge bases. In contrast, PIE aways shared
information between contexts, but it paid the overhead of reinterpreting the symbolic addresses repeatedly
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a every reference.
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