
JaM Manual 1

JaM is a simple stack-based interactive system with graphics utilities. It is implemented in Mesa
for the Xerox Alto and D-series computers. JaM is intended to be a �exible system, giving the
user rather direct control over the basic primitives. It is not intended to be a fault tolerant system
for inexperienced users. This manual is written in the same spirit: the goal is to elaborate only
those aspects of JaM which are not properties of programming languages in general. It provides
explanations of all but the most obscure intrinsic functions and a sampling of the most useful
external utilities.

For our purposes JaM has three major components: a virtual memory of 24 words; a set of
primitive objects and operations which use a stack discipline, much like a very powerful, �exible
Hewlett- Packard calculator; and a graphics package. The virtual memory is implemented by the
JaM system software using a �le called JaM.VM. To speed execution, objects are put in a special
cache after being looked up in the JaM.VM �le. Repeated calls to the same function can then be
satis�ed from the cache.

It is possible to use the virtual memory for long term storage of programs and data, although this
is probably not a good idea. If one gets into serious trouble, it is also nice to be able to start over
with a new JaM.VM �le without losing all of one’s work. For simplicity, virtual memory is always
allocated sequentially from the end of the JaM.VM �le with no garbage collection. This means
the �le keeps getting longer and longer. It is therefore necessary to �ush the �le periodically. In
general, however, it takes a long time before this is necessary.

All functions in JaM make use of the operand stack. This stack contains objects: integers (long and
short), reals, booleans, character strings, commands, streams (which are really �les), dictionaries,
arrays, and special stack markers. Execution proceeds by getting a token from the input stream,
converting it into an object, checking whether or not it is executable and then executing it. Non-
executable objects are pushed onto the stack. During execution, operands may be retrieved from
the operand stack and results are returned on this stack. This means that all input is given in
notation.

The graphics package is a group of functions, some written in JaM, others written directly in Mesa,
which must be loaded in addition to the basic JaM system. Normally, these are loaded automatically,
but when working with a brand new JaM.VM �le they must be loaded by hand or by running
a special initialization program. It is a good idea to do this, since JaM requires a good deal of
initialization.

JaM execution proceeds simply by transforming the input stream into a sequence of objects and
processing them in order. There are two types of objects: which are automatically placed on
the operand stack, and which are executed immediately. The JaM scanner parses the input
stream into a series of tokens separated by tabs, carriage returns, spaces, or commas. There are
three types of tokens: numbers, strings, and identi�ers. Numbers and strings are converted directly
into the corresponding objects and placed on the operand stack. Identi�ers are looked up in the
current dictionary (explained later) and the resulting object is processed according to whether it is
a noun or a verb.

Syntactically, a string is a sequence of up to 15 characters enclosed in parentheses. It may
contain anything except unbalanced parentheses (even carriage returns). Any token which is neither

2

2 � 1

1. Introduction

post�x

2. Basic Operation

nouns
verbs

JaM Manual 2

a number nor a string is an identi�er.

The system has three major stacks: the operand stack, the dictionary or context stack, and the
execution stack. The dictionary stack is used for keeping track of identi�ers during execution. This
stack functions as a set of nested contexts, much like the blocks of a block structured language.
A dictionary is essentially a table of �xed size for associating identi�ers with their values. When
the scanner comes across an identi�er, it tries to look it up in the dictionary on the top of the
dictionary stack. If the lookup is successful, the value found in the dictionary is the next object
returned by the scanner. Otherwise, the identi�er is looked up in each of the other dictionaries on
the dictionary stack in sequence, until a value is found.

The execution stack is used for keeping track of nested function calls. It contains the information
necessary to implement recursive function invocations. It need not be the direct concern of the
user.

To run JaM, you need the following �les: JaM.bcd, CedarGraphics.bcd, Splines.bcd and
JaMGraphics.bcd. JaM.bcd contains the compiled Mesa program which runs the JaM system
and the other three �les implement most of the graphics routines. If you do not have a JaM.VM
�le, you should run start.jam to put some needed de�nitions in your virtual memory (see
��.run’’ under). This program requires more �les: util.jam,
errordefs.jam, graphics.jam, and jamsave.jam. If your environment does not include a
lot of the standard Mesa bcd’s it is probably best to use a packaged up version of JaM available as
JaM.run.

Once you have the �les, type ��jam’’ to the Alto executive. This puts you in JaM � you will get a
prompt ��*’’, followed by a blinking cursor. The upper part of the screen is reserved for text. The
lower part is used by the graphics utilites. Initially, the operand stack is empty and the dictionary
stack contains only one dictionary, the system dictionary. All the JaM intrinsic functions are de�ned
in this dictionary. There are a number of other functions which JaM assumes exist and expects the
user to de�ne. These will be explained later when we discuss the relevant details of the system.
Running start.jam will de�ne these functions (e�ectively give them default de�nitions) and it
will load a number of useful utilities. The system dictionary is not big enough to hold all these
de�nitions, so they are put in a new dictionary on the top of the dictionary stack. From now on,
everything you need will be loaded automatically every time you use JaM.

This discussion is organized by function. All commands relating to a particular topic are given
together along with an explanation of the particular aspect of the system to which they relate. The
exact placement on the stack of arguments and results for each function is given by a diagram. For
example:

.add < >< > < >

The symbols in angle brackets represent objects on the stack; the rightmost object corresponds
to the top of the stack. An arrow () separates the condition of the operand stack before the
command is executed from the condition after. Only the top- most objects on the stack are shown,
the others are assumed to remain unchanged. The symbol will be used to mean the bottom of
the stack. A comment explaining the command more fully usually follows the symbol . There are

Input/Output Commands

� / +

/

>

3. How to Start

4. Commands and Utilities

x y x y n

n

JaM Manual 3

various error conditions which can occur when trying to execute a command. These are discussed
in a separate section (see) because there are special functions relating to this topic.

There are three types of numeric objects: reals, integers, and long integers. Integers are bits
long; reals and long integers are bits. Implicit type conversion is performed on numeric objects,
but it is also possible to do these conversions explicitly (see).

.add < >< > < >

.sub < >< > < >

.mul < >< > < >

.div < >< > < >

.neg < > < >

.cos < > < > (in degrees)

.sin < > < >

.atan < >< > < > ()

.exp < >< > < > (result always of real type)

.log < >< > < >

.bitor < >< > < >
(The integer is the bitwise or of bit integers and .)

.bitxor < >< > < >
(is the bit exclusive or of and .)

.bitand < >< > < > (is the bit logical and of and .)

.bitnot < > < > (is the bit bitwise complement of .)

.bitshift < >< > < >
(The integer is shifted left by places. If then the
low order bits are set to zero. If then the high

order bits are set to zero and is shifted right. If
then is set to zero.)

The following commands deal with boolean objects. They have two possible values represented
here by ��.true’’ and ��.false’’. For numeric comparisons, implicit type conversion occurs before
comparison. If one argument is integer and the other is long integer or real, the integer is converted
to that type. Similarly, long integers may be converted to real type. Strings may also be compared
using lexicographic ordering. It is not legal to compare integers with strings.

.true <.true>

.false <.false>

Error Handling

16
32

Type Conversion

� / +

� / �

� /

� / /

� / �

� / cos()

� / sin()

� / = atan(/) �180 < � 180

� /

� / log

� /
16

� /
16

� / 16

� / 16

� /
> 0

< 0 �
j j� 16

� /

� /

e

b

5. Arithmetic and Bit Manipulation

x y x y n

x y x y n

x y xy n

x y x y n

x x n

x x n x

x x n

y x p y x n p

b e b n

b v v n

x y p
n p x y

x m p
n p x y

x n p n p x y

x p n p x

x y p
n x y y
y y y

y y
p

6. Boolean and Relational Commands

n

n

JaM Manual 4

.eq < >< > <.true> if , otherwise <.false>

.gt < >< > <.true> if numerically or lexicographically,
else <.false>

.lt < >< > <.true> if numerically or lexicographically,
else <.false>

.not < > < >

.and < >< > < >

.or < >< > < >

.xor < >< > < >

It is often useful to manipulate the operand stack. It is probably not good practice, however, to try
to use the stack for all temporary storage. De�ne local variables instead (see

). Overuse of stack manipulation makes programs hard to read and di�cult to debug.
With this warning in mind, the following diagrams should make these commands clear.

.pop < >

.dup < > < >< >

.exch < >< > < >< >

.copy < 1>< 2> < >< > < 1>< 2> < >< 1>< 2> < >
(must be of type integer)

.roll < 1>< 2> < >< >< > < (1�)(mod) > < >< 1>
< � (mod) > Here and are of type integer, and
may be negative. If is postive then the top elements of
the stack are interchanged with the following , else the
bottom elements among the top are brought to the top by
a similar interchange. (Since we started counting from , not
, by we mean , when divides .)

.index < >< �1 > < 0>< > < >< �1 > < 0>< >
()

.cntstk < 1>< 2> < > < 1>< 2> < >< >

.clrstk < 1>< 2> < > clears the stack

/clr < 1>< 2> < >
(This is a synonym for the intrinsic function .clrstk. It

comes from the util.jam utility package.)

There is a special object called a stack mark. Its main purpose is for keeping variable numbers of
arguments on the stack. The .loop and .rept commands (see below) use this concept internally

� / =

� / >

� / <

� / �

� / ^

� / _

� / �

Dictionary Related
Commands

� /

� /

� /

� ... /

� ... /

�
j j

1
0 (mod)

� ... / ...
�

� ... / ...

� ... /

� ... /

i i i

i j i i

j i

n n n n i

> i > i

> i >

> i >

x y x y n

x y x y
n

x y x y
n

x x n

x y x y n

x y x y n

x y x y n

7. Stack Manipulation Commands

x n

x x x n

x y y x n

x x x i x x x x x x
n i

x x x i j x x x
x n i j j

j j
i j

j i

k i i i k

x x x i x x x x
n i n

x x x x x x i n

x x x n

x x x
n

8. Stack Marking and Mark Manipulation Commands

JaM Manual 5

to allow execution inside the loop without losing track of the original condition of the execution
stack.

.mark <mark> (mark type object put on stack)

.cnttomrk <mark>< 1>< 2> < > <mark>< 1>< 2> < >< >

.clrtomrk <mark>< 1>< 2> < > <mark>

JaM has much of the execution control machinery found in Algol-like languages. This includes
��looping’’ and ��if-else’’ constructions. There is no ��go to’’ command, however, as this would not
easily �t into the stack oriented structure of JaM. The constructions just mentioned do �t in with
the stack oriented structure because they can operate on executable objects in the operand stack.
For example, the .if command expects a boolean object and any other object on the operand
stack. If the boolean equals .true, then the other object is executed, otherwise the .if command
pops the object from the stack.

.exec < >
Remove from the operand stack and execute it as if it just

came from the input stream. To reverse this e�ect, see
.

.if < >< > if .true then execute

/if < >< >
utility equivalent to: ��.cvx .if’’

.ifelse < >< >< > if .true then execute else execute

/ifelse < >< >< >
utility equivalent to: ��.ifelse .cvx .exec’’

.rept < >< > execute times

.loop < > execute forever

.for < >< >< >< >
Execute times, with on top of the stack

the �rst time and on top thereafter.

.exit
Exit from current .rept, .loop, ..for .dictforall, or

.arrayforall loop. This clears the execution stack down to
the mark placed upon entering the current loop.

.interrupt This function is called when the
user presses the ��interrupt’’ (right shift +) key. This is
normally used for getting programs out of in�nite loops. It
prints ��interrupt--’’, clears the stack, and executes a .stop
command. You may rede�ne this, but be careful!

� /

� ... / ...

� ... /

� /

Type
Conversion

� / =

� /

� / =

� /

� /

� /

� /
b(�)/c+ 1

+ , + 2 ,...

� /

� /

i i

i

SWAT

n

x x x x x x i
n

x x x n

9. Execution Control Commands

x see comment
n x

b x b x n

b x see comment
n

b x y b x y
n

b x y see comment
n

i x x i n

x x n

i j k x see comment
n x k i j i

i j i j

see comment
n

see comment n

JaM Manual 6

/pause
This simple utility function merely waits for the user to type

something.

.stop
Clears the execution stack, terminat ing all un�nished execu-

tion. To see how this a�ects error conditions, refer to
.

.singlestep Puts execution in single step mode.
The function .step is called each time a command is executed.
You must de�ne .step before trying to use this feature! The
function .step might print whatever values you are interested
in. You may want to make the printing conditional, or perhaps
just gather statistics.

.runfree
Take execution control out of single step mode.

.quit
Save virtual memory and exit JaM gracefully.

Variables are stored in special objects called dictionaries. Dictionary objects are general symbol
tables useful for all kinds o� storage. They have a �xed maximum size speci�ed at the time of their
creation.

As mentioned earlier, there is a stack of dictionaries maintained by the system. The dictionaries
in this stack are used like levels of static nesting for variable de�nitions in an Algol-like language.
Dictionaries may be named and retrieved for later use just like other objects in JaM.

There are a few things to watch out for when dealing with dictionaries. Some of the system
commands and utilities assume that there is space left in the current dictionary (the one at the
top of the dictionary stack) to de�ne temporary variables. For this reason, you should be careful
about creating small dictionaries. Another problem is what to do when dictionaries get �lled up.
There are four choices: push another dictionary onto the dictionary stack with .begin, remove
the o�ending dictionary with .end, delete entries to make room, or clear the dictionary. This
problem is particularly severe for users who just start de�ning variables without ever worrying about
dictionaries. The system dictionary has a capacity of entries, most of which are already �lled
up with system command de�nitions. When the system dictionary gets �lled up, whatever you do,
don’t clear it!

In the following table, < > refer to keys or variables and < > refers to the corresponding values.

.curdict <current dictionary>
Pushes the top of the dictionary stack onto the operand stack.

.sysdict <system dictionary>

.dict < > < >
Creates new dictionary with capacity of entries.

.def < >< > Associate the value with the

� /

� /

Error
Handling

� /

� /

� /

256

� /

� /

� /

� /

see comment
n

see comment
n

see comment n

see comment
n

see comment
n

10. Dictionary Related Commands

k v

n

n

i d
n d i

k v see comment n v

JaM Manual 7

key in the current dictionary. To de�ne a function, make
executable.

/def < >< >< >
Equivalent to: ��< > < > .def $help < > < > .put’’. The

$help dictionary contains informative messages about certain
functions. It provides a convenient way to document programs.
To access this dictionary, see Input/Output Commands. This
utility resides in the �le util.jam

/xdef < >< >< >
Equivalent to: ��.cvx /def’’.

.del < >< >
deletes the key from the dictionary

.load < > < >
Retrieve the value associated with the key in the current

context (i.e., dictionary stack). If is an executable string, this
allows its de�nition to be printed. (See
and).

.store < >< > Finds a de�nition of in the
current context and replaces that de�nition with the value . If
no de�nition of exists, this functions as .def.

.put < >< >< >
associates value with key in dictionary

.get < >< > < >
retrieves the value associated with in dictionary

.known < >< >
<.true> if key is in dictionary , <.false> otherwise.

.where < > < ><.true> if is found in some
dictionary on the dictionary stack, <.false> otherwise.

/dir < >
Utility from util.jam which prints all key, value pairs in

the dictionary .

/kdir < >
Utility which prints all the keys in the dictionary .

?? < > This is a utility from util.jam
equivalent to $help /kdir. It prints all functions on which
help is available. This usually includes most of the external
utility functions which have been loaded.

.clrdict < > Clear all entries from dictionary

.dictforall < >< >
Put < >< > on the stack, and then execute < >. This is done

for every , pair in dictionary

� /

� /

� /

� /

Type Conversion
Input/Output Commands

� /

� /

� /

� /

� /

� /

� /

� /

� /

� /

k v

k s v see comment
n k v k s

k s v see comment
n

d k see comment
n k d

k v
n k

v

k v see comment n k
v

k

d k v see comment
n v k d

d k v
n v k d

d k see comment
n k d

k see comment n d k
d

d see comment
n

d

d see comment
n d

d see comment n

d see comment n d

d x see comment
n k v x

k v d

JaM Manual 8

.begin < >
Push on the top of the dictionary stack. (This makes the

current dictionary.)

.endend
Pop current dictionary o� the top of the dictionary stack.

.length < > < >
The current number of entries in the dictionary .

.maxlength < > < > The total capacity of dictionary .

Array objects are linear arrays of objects indexed starting at . They have �xed lengths determined
when they are created. There are commands for creating arrays, storing into them, retrieving objects
from them, etc. Most commands either expect array objects on the operand stack or return array
objects. Arrays can also be made executable. (See Type Conversion)

.array < > < > Creates a new array of objects.

[. <mark>
Mark the operand stack for use by the ��]’’ utility.

] < >
Put all the objects down to the �rst stack mark into an array
and return it on the operand stack. ��[obj0 obj1 obj �1]’’

forms an -element array.

.subarray < >< >< > < 0>
0 is the subarray of (a copy of the subarray) starting

at position and of length . If length this causes
a range error.

.aput < >< >< >
Store in the -th position of , if length .

.aget < >< > < >
Get from the -th position of , if length .

.aload < > < 0>< 2> < �1 >< >
(where is of length)

.astore < 0>< 2> < �1 >< > < with 0 1 �1 stored
in it> (is of length)

.arrayforall < >< >
Puts on the stack and executes for each object in

.

.length < > < > Replaces array with its length.

.acopy < > < >< > Duplicates the array on the stack.

.dictstck < > The array contains the dictionary stack.

� /

� /

� /

� /

� /

� /

� /

...

� /

+ > ()

� /
0 � < ()

� /
0 � < ()

� / ...

� ... / , ,...,

� /
[] []

� /

� /

� /

i

i

i i

d see comment
n d d

see comment
n

d i
n d

d l n d

11. Array Related Commands

zero

i a n a i

n

a
n
a

i

a i j a
n a a not

i j i j a

a i v see comment
n v i a i a

a i v
n v i a i a

a x x x a
n a i

x x x a a x x x
n a i

a x see comment
n a i x a i
a

a i n a

a a a n a

a n a

JaM Manual 9

.execstck < > The array contains the execution stack.

.makeob All following JaM commands and their arguments
are saved into an array, until .stopob is encountered.

.stopob < > Terminates the above and pushes the resulting
array on the operand stack

.drawob < > Executes the JaM commands saved in the array
by .makeob and .stopob.

This category of commands deals primarily with string and stream objects. Files are represented in
JaM as special objects called streams. There are three kinds of streams: byte streams for ordinary
�les of characters, word streams for �les of bit words, and keystreams for input from the
keyboard. Commands for reading and writing �les accept string type arguments and return string
results.

There is always an input stream and an output stream. By default, these are both identi�ed with
the terminal. When writing strings to a �le (stream), keep in mind that carriage returns can be part
of strings and no implicit carriage returns are ever written to an output stream. Either the input
stream or the output stream can be directed to any �le. It is also possible to convert streams to
strings and manipulate them that way. (see Type Conversion)

.print < >
Print the string on the current output stream

.version
Print a message indicating what version of JaM this is.

= < >
Utility function from the �le util.jam which converts

to a string and prints it, followed by a carriage return. (Uses
.cvis � see .)

/stk Print the the contents of the operand
stack without destroying it. This uses ��=’’ to print the entries.

== < > Utility function from the �le
util.jam. It functions like = for printable strings, but it
prints useful information about non- printable objects and even
uses a reverse dictionary to decipher commands. This dictionary
is de�ned with the /buildcommands function in util.jam
when JaM is initialized, so subsequent de�nitions will not be
included in it.

/pstk
Prints the operand stack like /stk, except it uses ==. This

may not be good for debugging since == does a dictionary look
up which could cause an error.

? < > Looks up the string in the
$help dictionary and prints the informative message it �nds

� /

� /

� /

� /

16

� /

� /

� /

Type Conversion

� /

� /

� /

� /

a n a

n

a n
a

a n
a

12. Input/Output Commands

s see comment
n s

see comment
n

x see comment
n x

see comment n

x see comment n

see comment
n

s see comment n s

JaM Manual 10

there. The string should be one of the system commands
or utility functions or something de�ned using the /def utility
(see).

??
Print all the keys in the $help dictionary (the commands for

which help is available).

.bytestream <�le name><access> <bs> This command creates a byte
stream with the access characteristics represented by <access>

for read, for write, for append � or the sum of any of
these. Byte streams are the proper type of streams for most text
�les. The created stream is left on the operand stack. If access
is greater than one, it becomes the current output stream.

.wordstream <�le name><access> <ws> This is like .bytestream
except the items in the stream are words instead of bytes. This
is not appropriate for text �les or string I/O.

.mystream <ks> This command searches the execution stack
for the �rst stream object and pushes it on the operand stack.
Normally this will be the keyboard stream. When you read
something from this stream, JaM sits and waits for you to type
something.

/altfile The user is asked for a �le name and
subsequent print commands apply to that �le. This is a utility
function based on .bytestream.

.killstream < > Kill the stream . For output streams
this restores the destination of .print to the terminal.

/endalt
Uses .killstream to stop printing to alternate �le.

.run <�le name>
The �le is read as a byte stream and executed. This is how

to read text �les of JaM function de�nitions. A ��*’’ prompt is
printed each time the scanner comes to a carriage return.

.loadbcd <�le name>
Load Mesa ��bcd’’ (binary �le) and start. This is like .run

except it runs a Mesa program.

.debugbcd <�le name> Like .loadbcd, but calls
the Mesa debugger before starting the bcd.

.readline < > <line from stream><.true> if the
stream is not empty, <.false> otherwise.

.readitem < >
<item from stream><.true> if the stream is not empty,

<.false> otherwise. (An item is one byte for a bytestream or
keystream and one word for a wordstream. Bytes are returned

Dictionary Related Commands

� /

� /
=

1 2 4

� /

� /

� /

� /

� /

� /

� /

� /

� /

� /

s

see comment
n

n

n

n

see comment n

t see comment n t

see comment
n

see comment
n

see comment
n

see comment n

t see comment n
t

t see comment
n t

JaM Manual 11

as integers, e.g. ascii codes for characters.)

.writeitem < >< >
The item (see above) is appended to the stream .

.writebytes < >< >
Write bytes in string to stream .

There are several di�erent types of objects in JaM. String objects have a �xed length once they
are created. It is possible to change existing strings (see

) but their length remains constant. There are three numeric types: integer, long
integer, and real. When the scanner �nds a string without any decimal point, it tries to make it
an integer, then if it’s too big, a long integer. Strings too long to be long integers are converted
to reals. Strings containing decimal points naturally become real type objects. It is not possible to
enter numbers in exponential notation; however, one can type 6.7 10 -11 .exp .mul to get

�11 .

Type conversion commands allow the user to determine the types of objects and convert from
one object type to another. Type mismatches cause run- time errors. These errors cause special
error routines to be executed, which are user de�nable and originally come from a �le called
errordefs.jam which start.jam reads when JaM is initialized.

.type < > <Name of Type>
Deliver the type of < > on top of the operand stack. Current

types include: .nulltype, .integertype (bits), .long-
integertype (bits), .realtype (bits), .boolean-
type, .stringtype (up to 15 characters), .stream-
type (�les), .arraytype (one dimensional), .dicttype,
.commandtype, .stacktype, .frametype, and .mark-
type (stack marker).

.itype < > <typenumber>
Deliver the number of the type of the object on the top of

the operand stack. Current assignments are:
nulltype integertype
longintegertype realtype
booleantype stringtype
streamtype commandtype
dicttype arraytype
stacktype frametype
marktype

.length < > < > Length of: string (in characters), array (in
elements), dictionary (in entries), else .

.cvs < > < > Convert to string equivalent. Applies to
numbers, strings, executable strings, and streams.

.cvis < >< > < >
This is like .cvs, except for numbers it destroys the string ,

� /

� /

Scanner and String Manipulation
Commands

6.7� 10

� /

16
32 32

2 � 1

� /

= 0 = 1
= 2 = 3

= 4 = 5
= 6 = 7

= 8 = 9
= 10 = 11

= 12

� /
1

� /

� /

t s see comment
n s t

t s see comment
n s t

13. Type Conversion Commands

x
n x

x
n

x i n i

x s n

x s s
n s

JaM Manual 12

reusing the space for the result. If the string is too short, JaM
calls the function .sizechk to handle the error. You must
de�ne this yourself.

.cvrs < >< > < > This is exactly like .cvs, except if is
a number it comes out in base .

.cvos < > < > The number is converted to a string giving
its octal representation.

.cvirs < >< >< > < >
This is like .cvis except numbers come out in base .

.cvi < > < >
(converts numbers in any form to type integer)

.cvli < > < >
(converts numbers in any form to long integer type (two

words))

.cvr < > < >
(converts numbers in any form to real type)

.cvx < > < 0>
Converts strings or arrays to executable form. They become

verbs. This is the way to get an executable string or array
on the operand stack as is required by the execution control
commands.

.cvlit < > < > This converts strings and arrays into literal
form (makes them nouns). This undoes the e�ect of .cvx.

.litchk < > <.true> if is a noun (i.e. not
executable), otherwise <.false>.

The most important type conversion is the conversion to executable. This is necessary every time
a function is de�ned. There are two main executable forms in JaM: strings and arrays. Strings are
easier to use, but arrays are faster. When a string is expected, the scanner must extract the objects
from the string and each identi�er must be looked up in the dictionary stack. When arrays are
executed, they are already sequences of objects.

Executable strings are simpler to use because it is easier to change the de�nitions of the functions
they call and they are easier to read and print. The use of the functions .cvx, .load, and .exec
when de�ning executable arrays can be very confusing. Recursive functions are also more di�cult
with arrays. The following examples illustrate the di�erence in format:

(average) (.add 2 .div) .cvx .def
(average) [(.add) .load 2 (.div) .load] .cvx .def

When using executable arrays, it is necessary to .load each function to get its de�nition (see
). There is a utility called /compile to make this a little

easier. Use ? (explained under) to �nd out about this.

� /

� /

� /

� /

� /

� /

� /

� /

� /

Dictionary Related Commands
Input/Output Commands

s

n r s n n
r

n s n n

n r s s
n r

x i
n

x i
n

i x
n

s s
n

x l n

x see comment n x

JaM Manual 13

In addition to searching and manipulating strings, the commands listed here allow access to the
JaM scanner. The scanner �rst parses the input into tokens. Tokens consist of blocks of characters
separated by tabs, spaces, carriage returns or commas, or anything in balanced parentheses (in
which case no separators are necessary). Strings are returned in �nal form without the surrounding
parentheses. All other tokens are exactly as they appear in the input stream.

.token < >
< >< ><.true> if a token is present in the string , <.false>

otherwise. (< > is the remainder of string , and < > is the �rst
token in .)

.string < > < >
< > is a new string of length . Until something is put in ,

it prints as a series of blanks.

.length < > < >
Replaces the string with its length in characters.

.substring < >< >< > < 0>
< 0> is the character substring of (a copy) starting at

positon . We must have length .

.putstring < >< >< > < 0> < 0> is the same as < >, except for the
substring starting at position . The �rst position is numbered
zero and is not allowed to extend beyond the bounds of .
Note that the original is destroyed.

.search < >< > < >< >< ><.true> if there is a
substring of matching , with and respectively the parts
of before and after the �rst occurrence of , and < ><.false>
if no substring of matches .

.asearch < >< >
< >< ><.true> if a starting substring of matches (is the

rest of), < ><.false> otherwise.

The graphics commands are not part of the basic JaM system. The basic graphics primitives
are enabled by loading JamGraphics.bcd. There are useful extensions to these basic graphics
commands in various �les of utilities. The basic primitives are implemented in Mesa and provide for
an entity called the , which holds state information concerning the graphics device.
Most transformation, clipping, and painting commands alter this state. Drawing commands both use
this state and alter it. In addition, the graphics package provides for a display context stack. This
is maintained so that transformations and other state information can easily be saved and restored.
The .pushdc, .popdc and .initdc commands control this stack.

One of the more important components of the state is the current de�nition of the coordinate
system. Points in the graphics display are referred to by pairs of real numbers. JaM maintains a
transformation matrix for converting these numbers to the coordinates used by the display device.

� /

� /

� /

� /

0 � < ()

� /

� /

� /

14. Scanner and String Manipulation Commands

s see comment
n r t s

r s t
s

i s
n s i s

s i
n s

s i j s
n s j s not

i i s

t i s t n t t
s i
s t

t

t s see comment n a s b
t s b a

t s t
t s

t s see comment
n a s t s a

t t

15. Graphics Commands

display context

JaM Manual 14

This matrix implements a general a�ne transform which can be used to give any combination of
tranlations, rotations, and scalings. Changing this matrix will a�ect the placement of new objects
on the display.

The state information also contains the position of a special point called the .
The line drawing commands use the draw position to de�ne one endpoint of the line. The draw
position is also used to control the placement of text within the display.

The �le Graphics.jam contains de�nitions useful to the beginning user. There are also other
de�nitions which are intended more for demonstration purposes. A sampling of functions from
Graphics.jam will be included in the following table along with the basic commands from
JamGraphics.bcd in terms of which they are de�ned. The commands whose names start with
a period come from JamGraphics.bcd and the other commands come from Graphics.jam. It
is possible to look at the de�nitions of the commands from Graphics.jam using .load == (see

and). This allows you to see
exactly what these commands do and examine how the more basic graphics commands are used.

There are several concepts common to many graphics commands. First of all, parametric cubic
splines are used to specify curves. Cubic splines in turn are speci�ed either in terms of the
and coordinates of points, or by the coe�cients of the actual parametric equations. Usually, the
coordinates come from the mouse. A cubic spline segment may be speci�ed by four points called
its Bezier points. They have a speci�c mathematical relationship to the spline; informally, the spline
passes through the �rst and fourth point, goes near the other two, and is always contained within
the convex quadrilateral de�ned by the four points.

Many commands facilitate the building of paths made up of curves and straight lines. The path
does not actually show up on the screen until a command is given to �ll in the area enclosed by the
path. There are commands which control how the area is �lled in. In particular, some commands
set up a clipping box which is intersected with the region to be �lled in. There is also a painting
function which controls the texture (halftone, etc.) of the shaded region.

.initdc
Initializes the stack of display contents.

.pushdc Pushes a copy of the current display
context onto the display contents stack.

.popdc
Replaces the current display context with that on top of the

display context stack.

.translate < >< >
The origin of the new coordinate system is set to the location

of in the old system.

.scale < >< >
The coordinate system is expanded by in the direction

and in the direction.

.rotate < >
The coordinate system is rotated clockwise by degrees.

.sixpoint < 0>< 0>< 1>< 1>< 2>< 2>< 3>< 3>< 4>< 4>< 5>< 5>
Transform the coordinate system so that the

Dictionary Related Commands Input/Output Commands

�

� /

� /

� /

� /

(,)

� /

� /

� /

x y

x

y

current draw position

x
y

see comment
n

see comment n

see comment
n

x y see comment
n

x y

s s see comment
n s x

s y

� see comment
n �

x y x y x y x y x y x y
see comment n

JaM Manual 15

�rst three points are mapped into the the last three. (A general
a�ne map.)

.concat Postmultiply the current transformation
matrix by another transformation matrix.

.drawto < >< > Draw a line from the current
draw position to the point . This moves the draw position
also.

.rdrawto < >< >
A line is drawn from the current draw position to the sum

of that position and the vector . This moves the draw
position as well.

.linewidth < >
Sets the current line thickness to .

.moveto < >< >
The current draw position becomes the point .

.getpos < >< > Put the current draw position on the stack.

.rmoveto < >< >
The vector is added to the current draw position.

.drawboxarea <ll ><ll ><ur ><ur >
A �lled box is drawn with the given lower left corner and

upper right corner. The draw position is left at the lower left
corner.

.drawcubic < ()
0 >< ()

0 >< ()
1 >< ()

1 >< ()
2 >< ()

2 >< ()
3 >< ()

3 >

A cubic is drawn with the given coe�cients in its parametric
equation.

.beziertocubic < 0>< 0>< 1>< 1>< 2>< 2>< 3>< 3> < ()
0 >< ()

0 >< ()
1 >

< ()
1 >< ()

2 >< ()
2 >< ()

3 >< ()
3 >

Four Bezier control points are converted to the parametric
form of a cubic.

.cubictobezier < ()
0 >< ()

0 >< ()
1 >< ()

1 >< ()
2 >< ()

2 >< ()
3 >< ()

3 >
< 0>< 0>< 1>< 1>< 2>< 2>< 3>< 3>

The parametric form of a cubic is converted to its four Bezier
control points.

.startpath A path is started for the area generation
machinery. Subsequent .enter, etc. commands will add to
the path. The interior of the path is determined by a winding
number technique.

.starteopath
A path is started for the area generation machinery except

that even/odd parity is used to determine interior. There is a
di�erence only in paths which cross themselves.

� /

� /
(,)

� /

(,)

� /

� /
(,)

� /

� /
(,)

� /

� /

� /

�

� /

�

� /

� /

x y x y

x y x y x y x y

x y x

y x y x y

x y x y x y x y

see comment n

x y see comment n
x y

x y see comment
n

x y

x see comment
n x

x y see comment
n x y

x y n

x y see comment
n x y

see comment
n

C C C C C C C C see
comment
n

x y x y x y x y C C C

C C C C C
n

C C C C C C C C
x y x y x y x y

n

see comment n

see comment
n

JaM Manual 16

.enterpoint < >< > This command, which must be
preceded by .startpath, enters the point in the current
path. Successive .enterpoint’s create polygonal paths.

path < >
Enter a path de�ned by calls to the .touch function. This

is equivalent to repetitions of: ��.touch .enterpoint’’.

.enterrect <ll ><ll ><ur ><ur >
The rectangle de�ned by the given lower left and upper right

corners is entered into the current path.

rect
The rectangle de�ned by two calls to the .touch function

(see below) is entered into the current path.

.entercubic < ()
0 >< ()

0 >< ()
1 >< ()

1 >< ()
2 >< ()

2 >< ()
3 >< ()

3 >

The given cubic (represented in parametric form) is entered
in the current path.

.enterspline < 0>< 0>< 1>< 1> < �1 >< �1 >< >
Creates an curve through the given points and enters

it in the current path. This curve is a natural spline consisting
of cubics.

.entercspline < 0>< 0>< 1>< 1> < �1 >< �1 >< >
This is the same as enterspline, except a curve is

formed, composed of cubics.

spline < >
This command from the �le graphics.jam is equivalent to

.enterspline except the points come from calls to the

.touch function (see below).

cspline < >
This command from the �le graphics.jam is equivalent to

spline except a closed curve is formed.

.newboundary
A new boundary is started on the current path. If the new

part of the path is inside a previous boundary in the same path,
it designates a hole in the center when it winds in the opposite
direction.

.drawarea Fill the interior of the boundaries
comprising the current path. The current path is then deleted.

.drawscreenarea Fill in the whole (but clipped) screen
using the current texture and painting function.

.eraseerase
Erase all area inside the current clipping regions.

.cliparea Set the clipping region to the interiors

� /
(,)

� /

� /

� /

� /

� ... /

� 1

� ... /

� /

� /

� /

� /

� /

� /

� /

x y x y

x y x y x y x y

n n

n n

x y see comment n
x y

i see comment
n i

i

see comment
n

see comment
n

C C C C C C C C see
comment
n

x y x y x y n see comment
n open n

n

x y x y x y n see comment
n closed

n

i see comment
n

i i

i see comment
n

see comment
n

see comment n

see comment n

see comment
n

see comment n

JaM Manual 17

of the boundaries comprising the current path.

.clippedcliparea Set the clipping region equal to its
intersection with the interiors of the boundaries comprising the
current path.

clip < > Start a new polygonal path de�ned
by calls to the .touch function (described below) and make
this the current clipping region (from graphics.jam).

cclip < > Execute the clip command except
use the intersection of the new region with the old clipping
region (from graphics.jam).

clips < >
The new clipping region is the union of rectangles each

de�ned by two calls to .touch (see below). Each rectangle is
de�ned by two .touch’s: one at its lower left corner and the
other at its upper right.

blob < > Start a new path and enter a closed
spline de�ned by .touch’s (like cspline) and �ll it in using
.drawarea (from graphics.jam).

cblob < >
Draw a blob de�ned by .touch’s as the blob command

does except cause it to be intersected with the current clipping
region (from graphics.jam).

poly < > Draw a polygonal line de�ned by
calls to the .touch function (from graphics.jam).

.dot < >< >
Put down a dot at the coordinates speci�ed.

dot < >< > < >< >
This command form graphics.jam is like .dot except it

copies its arguments.

area < >
Fills in polygonal area de�ned by calls to .touch, putting

a dot at each .touch (from graphics.jam).

.texture < >
The integer is viewed as a sixteen bit octal number. It

de�nes a bit pattern which is tessellated when �lling in
areas. By default, is used. This causes areas to be
�lled in solid black.

.paint < > This function interacts with the
.texture setting to determine how pixels are reset when
�lling in areas. The integer is in the range , but
is more convenient to use the identi�ers de�ned in the �le
graphics.jam. Pixels for which the texture bit is are: set

� /

� /

� /

� /

� /

� /

� /

� /

� /

� /

� /

4 � 4
= �1

� /

0...3

1

see comment n

i see comment n
i

i see comment n

i see comment
n i

i see comment n
i

i see comment
n i

i see comment n
i

x y see comment
n

x y x y
n

i see comment
n i

n see comment
n n

n

n see comment n

n

JaM Manual 18

to (black) if (paint), inverted if (invert), set to
and all other pixels are set to if (replace), and set

to (white) if (erase). The default is paint.

.touch < >< >
Returns the current corrdinates of the mouse when the ��red’’

button is pushed. Execution is halted while waiting for the user
to push the button.

.mouse < >< >
Returns the current coordinates of the mouse in the current

coordinate system. Execution does not halt. No buttons need
be pushed.

.redup This is a user de�nable function which
is executed every time the ��red’’ mouse button is released and
the keystream is empty. When this happens, the coordinates of
the mouse are put on top of the stack. Then the function is
executed. All of these default to .pop .pop so they originally
function as no-ops.

.reddown

.yellowup

.yellowdown

.blueup

.bluedown

.setfont <KS-font�le name>< > Set the font for
the character drawing commands, using point type. There
is no default font, so this command is required before any
characters can be drawn.

.drawchar < >
Draw a character at the current draw position and update the

draw position to re�ect the width of the character.

.erasechar Erase a character at the current draw
position and update the draw position by the negative of the
width of the character. (Not currently implemented.)

.drawstring < >
Draw the string at the current draw position and update

the draw position to re�ect the length of the string.

.getcharbox < > <sizex><sizey><orgx><orgy><widx><widy>
Return the bounding box and width of the given character.

.getstringbox < > <sizex><sizey><orgx><orgy><widx><widy>
Return the bounding box and width of the given string.

text < >< >< >< >
Put the lines of text from the string into the screen starting

1 = 0 = 1
1 0 = 2

0 = 3

� /

� /

� /

� /

� /

� /

� /

� /

� /

� /

� /

� /

� /

� /

� /y

n n
n

n

x y
n

x y
n

see comment n

n similar comment

n similar comment

n similar comment

n similar comment

n similar comment

n see comment n
n

c see comment
n

see comment n

s see comment
n s

c
n

s
n

x y d s see comment
n s

JaM Manual 19

at the point . Lines are separated by carriage returns and
are spaced below each other with a left margin at (from
graphics.jam).

.displayoff
Blank out the whole screen including the text window.

.displayon
Reverse the e�ect of the previous command.

.snap <�le name> Creates a press �le of
the speci�ed name containing an Alto- resolution image of the
graphics portion of the Alto screen.

.openpress
Open a press format �le. Graphics commands will now cause

the appropriate instructions to be placed in the press �le (i.e.,
things will not be drawn on the screen). This command and
.closepress start a new display context.

.closepress Close a press format �le.

Run time error handling routines in JaM are user de�nable. When such an error is detected, the
appropriate function (identi�er, whose value is to be executed) is called. The default de�nitions of
these functions are found in the �le errordefs.jam. Not having these defaults loaded will cause
an in�nite string of errors when JaM tries to call the error handling routines. These defaults may
be changed, but typically they stop execution and print the stack after displaying a short message
regarding the type of error.

When writing new error handling routines one must keep in mind that the operand stack and
execution stack must remain intact when the error handling routine is called. One version of these
routines prints the stack using /stk (see) and puts the user in a loop
which reads lines from .mystream (the input stream) and executes them. This terminates when
an empty line is found. Hitting carriage return causes JaM to attempt to continue execution. At
various stages in this routine it is possible to get an additional (nested) error. This could be a little
awkward. In this case it is a good idea to use the .stop command. The error handling routines
are:

.stkundflow Called when there is an attempt to get
something from an empty stack.

.undefkey
Called when an identi�er cannot be found in a dictionary.

.longname
A rare error caused by excessively huge �le names.

.badname
Called when a string which was supposed to be a �le name

cannot be found in the directory.

.typecheck

(,)

� /

� /

� /

� /

� /

Input/Output Commands

� /

� /

� /

� /

� /

y

x y
d x

see comment
n

see comment
n

see comment n

see comment
n

see comment n

16. Error Handling

see comment n

see comment
n

see comment
n

see comment
n

see comment

JaM Manual 20

Called when some argument of a function is of the wrong
type. The o�ending primitive command is left on the stack
along with its other arguments.

.dictfull
Called when an attempt is made to de�ne something into

a full dictionary. This may mean a system utility has tried to
de�ne its own temporary variable into a full user dictionary.

.syntaxerr
Called when the scanner �nds an unmatched ��)’’.

.overflow Arithmetic over�ow.

.stkovrflow
The total number of entries on the operand, execution, and

dictionary stacks cannot exceed .

.rangechk Something out of range, usually in an
array or string manipulation command.

.sizechk
Occurs only in the .cvis and .cvirs commands (see

). Warning � this routine has been neglected in
some versions of the �le errordefs.jam.

This package can help reduce some of the inconvenience of continually having to change a bravo
�le when one is debugging programs in JaM. It is possible to make minor changes in function
de�nitions without having to exit JaM and .run an external �le again. This helps prevent the virtual
memory from being �lled up with garbage and it can save a lot of time. The editor is necessarily
rather primitive, however, and it is desirable for safety to have programs saved on external �les.
For these reasons, this package should not be overused.

To use this package, run edit.jam (see .run under). The
commands are:

/edit < > Tell the editor to edit the value
of the key (usually a function name). < > and its value are
printed in the format of /p (see below). Subsequent calls to
/p and /r refer to .

/p
Print the function de�nition being edited. The format is:

(name)(de�nition).

/r < >< >
The �rst occurance of the string in the de�nition being

edited is replaced by the string . If is not found, a message
is printed and the de�nition is unchanged. To see the e�ect of
your change, use /p.

� /

� /

� /

� /

256

� /

� /
Type

Conversion

Input/Output Commands

� /

� /

� /

n

see comment
n

see comment
n

see comment n

see comment
n

see comment n

see comment
n

17. The Edit Package

k see comment n
k k

k

see comment
n

s r see comment
n s

r s

JaM Manual 21

Because JaM is quite di�erent from other programming languages, it is appropriate to give hints on
how to program and put JaM to good use.

The JaM input language has very little syntax. This attribute is both good and bad. The lack of
syntax is good because a uniform representation is attained. The lack of syntax is bad because the
code is hopelessly unreadable. In JaM it is almost true that any line of code can do anything (given
the appropriate rede�nitions of identi�ers). Because of this property of JaM code, it is desirable to
do several things when programming. First, document each function as it is written (use /def and
/xdef under). Second, use naming conventions for functions
that all belong to a given class (for example, intrinsic commands are started with ��.’’). The latter
convention will allow a person reading the code to tell what category a function is in by its name
and may help him avoid accidentally rede�ning intrinsic functions.

Since JaM is a stack oriented machine, the user must mentally keep track of the contents of the
stack. It is easier to program JaM if each routine performs only one function and is very short.
Normally a JaM routine should be at most one or two lines long. For example, suppose we wish
to use the absolute value of a given number. Then, rather than introduce the code in line, it is
desirable to write an "abs" function and then use that function e.g.

(abs)(the absolute value of a number)(.dup 0 .lt (.neg) .cvx .if) /xdef

Also if complex parameters are being passed to JaM control statements, it is better to name the
parameters rather than have lines and lines full of parentheses.

Dictionary Related Commands

B

This is ��JaMManual.tex’’ of January 12, 1981 9:48 PM

18. Programming and Use of JaM

