CADICP(r,S1,A;A_,s,A#,B#,B_) [Cylindrical algebraic decomposition initial clusters precomputation. r>=2. S1 is a sample point of a cell in @E sup r-1@. A is a (possibly empty) list of integral polynomials in r variables. Let (M,b,I) be the representation of S1. A_==@( A bar sub 1 ,..., A bar sub n )@, n>=0, is a list of those elements @A sub i@ of A such that @A sub i (b,x sub r )@ has positive degree. s==@(s sub 1 ,..., s sub n )@, where @s sub i@==@sign( A bar sub i (b,x sub r ))@. A#==@( monic( A bar sub 1 (b,x sub r )) ,..., monic( A bar sub n (b,x sub r )))@, where @monic( A bar sub i (b,x sub r ))@ is the monic associate of @A bar sub i (b,x sub r )@. B#==@(B sub 1 sup * ,..., B sub m sup * )@, m>=0, is a coarsest squarefree basis for A#. B_==@( B bar sub 1 ,..., B bar sub m )@, where @B bar sub j@ is a list in increasing order of the indices in A# of the elements of A# divisible by @B sub j sup *@.] safe M_,b,I,A',A1,B##,B#1,A##,j,s1. (1) [Screen elements of A.] FIRST3(S1;M_,b,I); M=RPMAIP(1,M_); A'=A; s=(); A#=(); A_=(); while A'~=() do { ADV(A';A1,A'); A#1=IPAFME(r,M,A1,b); if PDEG(A#1)>0 then { s1=AFSIGN(M_,I,PLDCF(A#1)); s=COMP(s1,s); A#=COMP(AFPMON(1,M,A#1),A#); A_=COMP(A1,A_) } }; s=INV(s); A#=INV(A#); A_=INV(A_). (2) [Basis for A#.] B#=AFUPCB(M,A#); B_=(); B##=B#; while B##~=() do { B_1=(); ADV(B##;B#1,B##); A##=A#; j=0; repeat { ADV(A##;A#1,A##); j=j+1; AFPQR(1,M,A#1,B#1;Q,R); if R==0 then B_1=COMP(j,B_1) } until A##==(); B_1=INV(B_1); B_=COMP(B_1,B_) }; B_=INV(B_); return..