
The Grapevine Interface

by Andrew Birrell

Edition 2
January 1982

Abstract: Grapevine is a multi-computer system on the Xerox research internet. It provides

facilities for the delivery of digital messages such as computer mail; for naming people,

machines and services; for authenticating people and machines; and for locating services on

the internet.

This document describes the semantics of the services provided by Grapevine, and the

protocols that allow access to these services over the internet, in sufficient detail for a reader

to program software that will use Grapevine.

Note: Grapevine is the outcome of a research project. The services and protocols described

here are not part of a Xerox product, and are not related to the Xerox Network Systems

protocols.

XEROX
PALO ALTO RESEARCH CENTER
COMPUTER SCIENCE LABORATORY
3333 Coyote Hill Road / Palo Alto / California 94304

THE GRAPEVINE INTERFACE 1

1. Introduction

Grapevine is a distributed system spanning multiple computers, providing distributed and replicated
services to clients on the Xerox research internet. (We use the term client to mean software making
use of some facility, and user to mean human users of software.) The services provided include
message delivery, resource location, authentication and access controls.

The Grapevine system was designed and implemented by Andrew Birrell, Roy Levin, Roger
Needham and Michael Schroeder, with considerable help from several other members of the
Computer Science Laboratory in the Xerox Palo Alto Research Center.

A general description of Grapevine is given in the paper "Grapevine: an Exercise in Distributed
Computing", which was presented at the 8th Symposium on Operating System Principles in
December 1981, and which is to be published in CACM (April 1981). Read that paper thoroughly
before attempting to read this document. Before proceeding with this document, you should also
have some familiarity with the PUP internet environment.

This document specifies the client interfaces to the Grapevine system: it treats the Grapevine system
as a "black box", and defines the semantics that a client of the black box can observe and how a
client may interact with the black box. The intention is to define the semantics and the relevant
communication protocols in sufficient detail that a suitably skilled reader could proceed to program
packages and systems that use Grapevine. There is no attempt here to explain how the inside of
the black box is constructed or operates. The communication protocols allow a client to interact
with particular Grapevine computers, but to take full advantage of Grapevine the client must also
understand how the services provided by Grapevine are distributed and replicated. This document
does not attempt to provide a global view of the Xerox internet message facilities, nor is it intended
as a guide for those who administer Grapevine or other parts of the message system. The
Grapevine system does not include the IFS mail servers, nor user interface programs such as Laurel.

We distinguish between a service and a server which provides an instance of that service. Grapevine
provides several services; various computers within Grapevine provide instances of these services, or
of part of these services. For example, accepting mail for subsequent delivery is a service; each
Grapevine Mail Server provides an instance of that service. Accepting mail for delivery is thus a
replicated service: it is provided by multiple computers, and any of these computers is adequate for
providing the service. A client wishing to submit mail may submit it equally well to any of the
Grapevine mail servers. A more complicated example is the Grapevine Name Registration Service,
which is provided by the Grapevine Registration Servers. As will be seen, no one of the registration
servers provides the entirety of this service, because each registration server knows about only some
subset of the registered names. On the other hand, multiple registration servers know about each
name. Thus the Grapevine name registration service is distributed as well as being replicated.

The services provided by Grapevine come in three major groups. Firstly, the Registration servers
provide a naming database. This database is distributed and replicated. It is organized to allow for
distributed administration of the names. The database provides its clients with a name-to-value
mapping, and the ability to make changes to that mapping. This naming database is intended to be
used for many purposes, including resource location and authentication in connection with the use
of the Grapevine communication protocols. Secondly, the Mail Servers provide a message system.
The facilities provided are the submission of a message together with a list of intended recipients.
The mail servers will forward the message to a site convenient for each recipient, where the message
is buffered until the recipient cares to retrieve the message. Thirdly, the software provided with the
Grapevine servers provides various administrative facilities which are useful in connection with

THE GRAPEVINE INTERFACE 2

running the physical computers on which the servers exist. These administrative facilities are in
addition to the Registration Service facilities for updating the naming database: these administrative
facilities are concerned with running individual computers. The administrative facilities are a log, a
terminal interface to inspect and change the servers’ state, and a terminal display on the physical
computer.

This document proceeds in several parts. Section two describes the names and values contained in
the naming database. Section three describes the message delivery facility provided by the Mail
Servers. Section four specifies the network protocols for accessing individual servers. Section five
discusses algorithms which allow you to provide transparency of replication, distribution and failure.
Lastly, the administrative facilities are described.

THE GRAPEVINE INTERFACE 3

2. The Naming Database

The Grapevine naming database provides several facilities. These include: naming message
recipients, handling distribution lists for messages, naming and locating services and servers,
authenticating users and servers, providing public access control and authentication services, and
configuring the naming database and the message delivery system. This section describes the
naming database; subsequent sections describe how to use the database for these various purposes.

The naming database often is concerned with names or values which are strings of characters. In all
cases, a string is restricted to be no more than 64 characters. The communication protocols consider
an attempt to transmit a string of more than 64 characters to be a protocol violation.

A Name is a string of characters. The string usually contains the character ".". Only the last "." in
the string is interesting. The part of the string after the last "." is known as the registry, and the
part of the string before that "." is known as the simple-name. Thus a Grapevine name may be
considered as

simple-name . registry

In the degenerate case where a name contains no ".", the entire name should be considered to be
the registry. Names which differ only in the case of letters are considered to be equal.

Each name in the database is associated with a value. There are two types of name, each with its
associated form of value; these types are individual and group. The type of a name is specified
when the database entry is created, and may not be changed until the name is deleted.

The following information constitutes the value associated with a name whose type is individual.
The precise bit patterns representing these values are of concern only when we discuss the actual
communication protocols.

A timestamp. Timestamps are used extensively in Grapevine as unique identifiers. They
are formed by concatenating a host identification with a clock value. The timestamp
associated with a database entry has the property that if the value of the entry changes, then
so does the timestamp. The timestamp may also change at other times. The timestamp is
intended to assist a client in maintaining cached information that was derived from the
database; it is also used internally by the registration servers.

A password. Universally within Grapevine, passwords are represented by 64-bit values.
Passwords are used to allow authentication of individuals. They are also intended for use in
encryption-based security protocols, although no such protocols are available at present. By
convention, these values are derived from text strings by the following algorithm. Your
users will probably be displeased if you use any different algorithm. Note that this
algorithm does not preserve the information content of the password text, and so is not
ideal for encryption based protocols.

MakeKey: PROC[text: STRING]
RETURNS[key: PACKED ARRAY [0..8) OF [0..256)] =

BEGIN

key _ ALL[0];
FOR i: CARDINAL IN [0..text.length) DO

j: [0..LENGTH[key]) = i MOD LENGTH[key];
c: [0..128) = LOOPHOLE[LowerCase[text[i]]];
key[j] _ BITXOR[key[j], BITSHIFT[c, 1]];

THE GRAPEVINE INTERFACE 4

ENDLOOP;
END;

A connect-site. A connect-site is a string. Although the registration servers place no
restriction on the contents of the string, it usually represents the address of a computer.

A forwarding-list. This is an ordered list of strings (usually names). The intended semantics
of a forwarding-list are described in section three.

A mailbox-list. This is an ordered list of strings (usually names). The intended semantics
of a mailbox-list are described in section three.

The following information constitutes the value associated with a name whose type is group. The
precise bit patterns representing these values are of concern only when we discuss the actual
communication protocols.

A timestamp. The value and semantics of this timestamp are as for the timestamp
associated with an individual.

A remark. This is a string, which is intended as a human hint about the purpose or
meaning of the group; Grapevine attaches no semantics to the remark.

A member-list. This is an ordered list of strings (usually names).

An owners-list. This is an ordered list of strings (usually names). The owners-list is used
by Grapevine as an access control list for updates to the naming database, to describe the
set of individuals who may make arbitrary modifications to group. Clients may possibly use
this list for other purposes.

A friends-list. This is an ordered list of strings (usually names). The friends-list is used by
Grapevine as an access control list for updates to the naming database, to describe the set
of individuals who may add themselves to the group or remove themselves from the group.
Clients may possibly use this list for other purposes.

In addition to the above values, the database entry for a name contains various values concerned
with the propagation of database updates between servers. These additional values are not generally
useful to clients. The client can observe these extra values only through the "ReadEntry" operation
in the registration server enquiry protocol.

Certain pseudo-names are available, which are accepted by the registration servers when clients make
certain database enquiries, although the names do not correspond to explicit entries in the naming
database. These names may also be used in access control lists. The particular enquiry operations
which accept these names are detailed with the registration server protocol specification. Each of
these names behaves, for the purpose of those enquiry operations or access controls, as if it is a
group. Only the timestamp and member-list of these pseudo-groups are accessible. For any registry
reg, the names Groups.reg and Groups^.reg behave as if the name was a group with a member-list
containing the name of each group in the registry reg. For any registry reg, the names
Individuals.reg and Individuals^.reg behave as if the name was a group with a member-list
containing the name of each individual in the registry reg. For any group of the form x.reg, the
names Owners-x.reg and Owner-x.reg behave as if the name was a group whose member-list
contains the owners-list of the group x.reg (but if that owners-list is empty, then the member-list
contains the friends-list of the group reg.gv). If a string of the form *.reg appears in an access
control list, it is treated as matching any name of the form x.reg. Finally, the string "*" may be

THE GRAPEVINE INTERFACE 5

used in access control lists, to mean that unrestricted access is allowed. As will be seen, these names
allow clients to send mail to the owners-list of a group, to determine the set of names which are
individuals or groups in a particular registry, and to specify more flexible access controls.

Several names are guaranteed to be present in the naming database. Some of these are present to
enable clients to locate appropriate registration servers when the client wishes to perform some
enquiry or update on the naming database. Others are present as part of the message service, to
enable clients to locate mail servers. Appropriate algorithms for using these names are described in
section five. These names are as follows.

Every registration server and every mail server has a name which is registered in the naming
database. Every registration server name is in the "gv" (for Grape vine) registry. These names have
type "individual"; the connect-site of such a name is a string representation of the PUP network
address of that server. Note that the network address of a Grapevine server may change from time
to time.

The naming database also defines which strings are valid registries. For any string reg, the string is
valid as a registry if and only if the group reg.gv exists in the naming database. Thus for a name
such as "foo.baz" to be valid, the group "baz.gv" must exist. Each registration server knows only
about the names in some set of registries; the registration server knows about all the names in
those registries. Typically, any particular registry is known about by several registration servers.
For any valid registry reg, the member-list of the group reg.gv contains precisely the names of the
registration servers which know about names whose registry is reg. Thus, given a name such as
"foo.baz", the member-list of the group "baz.gv" contains the names of the registration servers that
are concerned with the database entry for "foo.baz". All registration servers know about names in
the registry "gv".

Thus, in order to determine the network address of some registration server that is concerned with a
name such as "foo.baz", the client may contact any registration server, then ask it for the member-
list of "baz.gv", then for each name in that member-list determine its connect-site; the client may
then choose from amongst that set of connect-sites. Section five describes how this algorithm may
be made acceptably efficient.

The string "GrapevineRServer" is registered in the Xerox research internet name lookup server
database. This name in that database maps to the network addresses of several computers. Some
(but not necessarily all) of those computers are registration servers. "GrapevineRServer" exists with
the intent of assisting clients in contacting some initial registration server. Clients may also use
other techniques, such as broadcast protocols, to contact an initial registration server. Once the
client has contacted an initial registration server, the naming database should be used to contact
other registration servers.

For example if "Cabernet.gv" and "Zinfandel.gv" are the names of two registration servers, then
those names would be registered as individuals. The connect-site for Cabernet.gv would be a string
such as "3#14#", and the connect-site for Zinfandel.gv would be a string such as "60#354#". If
"pa" was a valid registry, then the group "pa.gv" would exist. If Cabernet.gv and Zinfandel.gv both
know about names in the registry "pa", then "Cabernet.gv" and "Zinfandel.gv" would appear in the
member-list for "pa.gv". Both servers necessarily know about names in the registry "gv". The
name "GrapevineRServer" in the name lookup server database would be likely to contain the
network addresses 3#14# and 60#354#.

THE GRAPEVINE INTERFACE 6

The registry "ms" (for message servers) is a valid registry. The name "MailDrop.ms" is registered
in the naming database as a group; the member-list for that group contains precisely the names of
those mail servers which may be willing to accept mail from clients for delivery. Thus, to
determine the network address of some Grapevine mail server, a client should obtain the member-
list of "MailDrop.ms", and obtain the connect-site of names appearing in the member-list of that
group. Use of "MailDrop.ms" is discussed further in section five.

For example, if the existing mail servers are "Cabernet.ms" and "Zinfandel.ms", then those names
would be registered as individuals with appropriate connect-sites. The member-list for
"MailDrop.ms" would contain those two names.

The name "DeadLetter.ms" is registered in the naming database; the use of this name is described
in section three.

THE GRAPEVINE INTERFACE 7

3. Messages

The Grapevine mail servers will transport messages on behalf of clients. It is the purpose of this
section to describe the content of those messages and the semantics of message delivery.

A message should be thought of as a property list and a body. The property list of a message is
constructed by a mail server when a client successfully submits a message to it for delivery, as
described in the mail submission protocol. The property list contains the name of the sender as
provided by the client, a return-to name for notifying non-delivery of the message, a postmark
specifying the time at which the message was submitted, and a list of names which are the recipients
to whom the client asked the mail server to deliver the message. The precise representation of these
values is defined in the mail retrieval protocol. The body of a message consists of a sequence of
items. Each item consists of a type, a length, and some data. The type is a number in the range
[0..216). The length is a number in the range [0..232). The data consists of a sequence of bytes.
The length specifies the number of bytes in the data.

The message system guarantees that when a client retrieves mail, the property list is as constructed
when the message was submitted, and the message body is identical to that submitted. The message
system is not concerned with the data content of clients’ messages.

The "type" of message body items is a name space that must be managed by convention if the
message system is to be of general utility. If a client wishes to attach a meaning to some type, he
should register the value of that type with the Grapevine message system maintainers. Types in the
range 0 through 777B are reserved for use in representing the property list of messages in the mail
retrieval protocol. The following types are pre-defined, in that their values are used internally by
Grapevine.

10B Postmark in property lists
20B Sender name in property lists
30B Return-to name in property lists
40B Recipient names list in property lists
1010B Human-readable textual message
2000B Registration server database update
2100B Mail server "re-mail" hint
177777B End-of-message item

When a client submits a message to a mail server, the mail server promises that it will deliver the
message. We now define what this delivery means. The mail servers deliver the message (body
plus property list) to each of the recipients. For each recipient, the meaning of delivery is as
follows.

If the recipient name is registered in the naming database as an individual, and the forwarding-list
of that individual is empty, and the mailbox-list of the individual is not empty, then we proceed as
follows. The mailbox-list of an individual contains the names of several Grapevine mail servers.
The names in an individual’s mailbox-list are considered to be an ordered list of the names of the
servers that may be suitable for buffering the individual’s incoming messages. The mail server will
attempt to cause the message to be buffered for the individual in one of those servers; the earlier
names in the mailbox-list are preferred over the later names. Generally this will succeed, and
generally the message will be buffered in the server whose name is first in the mailbox-list. If the
attempt succeeds, the message is buffered for the client in the client’s in-box in that Grapevine mail
server. The property list and message body may subsequently be read from an in-box by a client
using the Grapevine mail retrieval protocol. If the message cannot be delivered to any of the

THE GRAPEVINE INTERFACE 8

servers in the recipient’s mailbox-list within 2 days, or if the recipient name becomes invalid during
the delivery process, then the message is considered to be undeliverable to this recipient and the
mail server will attempt to send an undeliverable notification to the name given as the return-to
name in the message’s property list, as described below.

If the recipient name is registered in the naming database as an individual, and the individual’s
forwarding-list is not empty, then the individual is treated as if it were a group whose member-list
contained the names found in the forwarding-list of the individual.

If the recipient name is registered in the naming database as a group, then the message is delivered
to recipients whose names appear in the member-list of that group. Those recipients may
themselves be groups. If any of those recipients are invalid recipients, then the mail server will
attempt to send an undeliverable notification to the name manufactured by concatenating "Owners-"
with the group name, as described below.

If the recipient name is not registered in the naming database, or if the recipient name is registered
in the naming database as an individual but the individual’s forwarding-list and mailbox-list are
both empty, then the name is considered to be an invalid recipient. In such a case, if the recipient
name was one of those supplied by a client when the message was submitted, then the mail server
will attempt to send an undeliverable notification to the name given as the return-to name in the
message’s property list, as described below; if the recipient name came from a group, then it is
handled as described in connection with delivery to groups.

In order to send an undeliverable notification to some name (either that provided as return-to name
by the originating client, or one representing the owners-list of a group), the mail server proceeds as
follows. The mail server generates a new message whose body is a single item of type "text",
containing a human-readable explanation of the failure that occurred; the mail server attempts to
deliver this message to the appropriate name. If the appropriate name turns out to be an invalid
recipient, then this message is sent to "DeadLetter.ms". The intention is that sending to
"DeadLetter.ms" will cause the notification to be seen by some system administrator. Additionally,
a summary of the undeliverable notification and a copy of the header part of any text item of the
returned message are always sent in a text message to "DeadLetter.ms".

The above describes the delivery semantics as they would be if the Grapevine message system
existed in isolation. However, this is not so and the semantics are actually modified as described
below. The foreign mail systems with which Grapevine cooperates are: the IFS mail servers, the
TENEX system running on MAXC, and the ARPAnet message system (accessed through MAXC). We
use the phrase foreign mail server to indicate a host running one of these systems.

The mailbox-list of an individual may contain not only the names of Grapevine mail servers, but
also names of foreign mail servers. These names are strings representing either the PUP network
address of the host running the foreign mail server or a PUP Name Lookup Server name for that
host. If during the delivery algorithm for an individual recipient the Grapevine mail server
encounters a name from a mailbox-list specifying a foreign mail server, and if the Grapevine mail
server decides that this is the best place for buffering the message, then the Grapevine mail server
will forward the message to that foreign mail server using the MTP protocol. In doing so, the
Grapevine mail server will forward only the first message body item of type text (if any); the
property list and any other message body items are lost. If the chosen foreign mail server rejects
the recipient name, or if the chosen foreign mail server appears not to exist, and if the postmark of
the message is more than 24 hours old, then the recipient is considered to be an invalid recipient.
(The 24 hour delay is to cover transients while the Grapevine database entry for the recipient is

THE GRAPEVINE INTERFACE 9

being modified, because such changes cannot be synchronized with changes to the foreign mail
server.) This facility allows individuals registered in the Grapevine naming database to have
mailboxes on these foreign mail servers; typically, such an individual would have only one name in
their mailbox-list.

If during the delivery algorithm a recipient name is encountered which is not registered in the
naming database, but the recipient name is of the form x.reg and the name reg.Foreign is registered
in the naming database as an individual, then the mail server will treat the recipient name as a
foreign recipient name. If the recipient name does not contain the character "^", then the Grapevine
mail server treats the recipient as if it was an individual whose mailbox-list was that of reg.Foreign.
If the recipient name contains the character "^", then the mail server expects the recipient name to
name a file on the MTP server reg; the mail server will retrieve this file through the FTP protocol to
that server, connecting on socket 7; the mail server will attempt to parse this file as a distribution
list and will deliver the message to the resulting names. This mechanism allows clients of
Grapevine to address individuals and distribution lists which exist on foreign mail servers and are
not registered in the Grapevine database. For example, if "xrcc.foreign" is registered as an
individual with a mailbox-list containing "Aklak", then any name such as "foo.xrcc" is acceptable as
an individual recipient and messages for "foo.xrcc" will be forwarded to the IFS mail server
"Aklak". In particular, the name "ArpaGateway.foreign" is registered as an individual, whose
mailbox-list causes forwarding to a foreign mail server which understands about ARPAnet mail
recipients. To address a text message to an ARPAnet recipient such as "Saltzer@MIT-Multics", one
would include "Saltzer@MIT-Multics.ArpaGateway" amongst the recipients of the message as
presented to the Grapevine mail servers.

A mail server occasionally wishes to use a remote file server to store messages which are being
buffered for clients. It does this to avoid over-filling its local disk with messages for people who do
not read their mail often enough (or are on vacation, etc.). For a mail server whose name is x.ms
the group Archive-x.ms should exist. The member-list of that group should contain path names
indicating the desired remote server and directory. Each of these servers should have a LEAF

protocol server enabled, and should have an account for the name x, with a password that matches
that of x.ms. The mail server will try each of the file servers in that group (if necessary), in order
of closeness on the Internet. For example, if "Cabernet.ms" is a mail server, and the group
"Archive-Cabernet.ms" has members "[Ivy]<DMS>" and "[Ibis]<DMS>"; then the mail server
would store on the server "Ivy" files with titles such as "<DMS>Cabernet.ms>Birrell.pa-19-Jan-81-
23-20-59-PDT!1".

THE GRAPEVINE INTERFACE 10

4. Protocols

This section describes the protocols which may be used to invoke the facilities provided by
individual Grapevine servers. They will also be used to interrogate the Grapevine naming database
in order to find suitable Grapevine servers at various times. In addition to the protocols defined
here, the Grapevine servers implement the following PUP protocols: FTP, MTP, Telnet,
Miscellaneous Services (for Authentication Request and Mail Check Laurel only), Echo.

Each of the following protocols uses some underlying transmission medium. This medium is either
PUP packets, or PUP Byte Stream Protocol streams. In either case, the medium provides
communication to a specified network address, and transports an ordered sequence of 8-bit bytes.
PUP packets provide unreliable (but high probability) uni-directional transmission of small numbers
of bytes with no notification of failure; the Byte Stream Protocol provides reliable bi-directional
transmission of arbitrarily large numbers of bytes, with notification of failure. Values of several
data types occur in the Grapevine protocols. The representation of these values is described here,
in terms of the sequence of bytes provided by the transmission media.

The Grapevine servers are unforgiving of protocol violations. If a client violates the protocol, the
server’s typical response will be to terminate the byte stream or ignore the PUP, as appropriate.

A character is a single byte containing the ASCII value of the character.

A boolean is a single byte containing 1 for TRUE, 0 for FALSE.

An ack is a single byte of undefined value.

A word is a pair of bytes; the first contains the more significant 8 bits.

A number is a word containing the binary representation of an integer in the range [0..216).

A long number is a pair of words representing an integer in the range [0..232), the first word
containing the less significant 16 bits (this is the Mesa representation).

A timestamp is three words. The first word is an uninterpreted bit-pattern (though strikingly similar
to a PUP network address); the second and third constitute a long number. This long number is
approximately the number of seconds since midnight, January 1st, 1901 that had passed at the time
that the timestamp was created.

A password is 8 bytes representing in order the bits of a password value as defined above in
connection with the naming database.

A string is a sequence of bytes as follows. The first two bytes form a number which specifies the
number of characters in the string. The third and fourth bytes are ignored. This header is followed
by the characters of the string. If the number of characters is odd, there follows one extra byte
(with undefined value). This is derived from the Mesa representation of a string. Note that this
representation occupies an even number of bytes. All strings are restricted to be no more than 64
characters. An attempt to transmit more than 64 characters (i.e. 34 words) in one of these values is
a violation of these protocols.

A name, a connect-site, and a remark are each represented by a string (and are therefore restricted
to 64 characters).

THE GRAPEVINE INTERFACE 11

An operation is a number used to specify a command, whose values are specified in the individual
protocols.

A name-type is a byte with values as specified by the following Mesa type constructor:

NameType: TYPE = MACHINE DEPENDENT{
group(0), individual(1), notFound(2), dead(3), (255) };

A code is a byte with values as specified by the following Mesa type constructor:

Code: TYPE = MACHINE DEPENDENT{
done(0), noChange(1), outOfDate(2), NotAllowed(3),
BadOperation(4), BadProtocol(5), BadRName(6), BadPassword(7),
WrongServer(8), AllDown(9), (255) };

A return-code is a code followed by a name-type. In the protocol descriptions, a return-code is
denoted by [a, b] to indicate transmission of the code "a" followed by the name-type "b".

A component is a number, followed by a sequence of words. The number specifies how many
words.

A string-list is a component whose words constitute a sequence of strings. The strings must be in
alphabetic order. The ordering is obtained by converting all upper case letters to lower case, then
sorting by ASCII value of the characters. Note that this implies that the servers will deliver the
various lists of strings (other than mailbox site lists, described later) from database entries to clients
in alphabetic order.

THE GRAPEVINE INTERFACE 12

4.1 Registration Server Protocols

The registration server responds with PUP type "iAmEcho" (type 2) to PUP’s of type "echoMe" (type
1) and length no more than 128 bytes sent to it on socket 52B.

The registration server is usually willing establish a Byte Stream Protocol connection in response to
an RFC packet sent to socket 50B (any unwillingness usually indicates that this server is restarting or
is feeling overloaded). The protocol accepted on such byte streams is as follows. The protocol
consists of a sequence of commands. For each command, the client sends a word representing an
operation, probably followed by some arguments, then the server sends a return-code, possibly
followed by some results. The arguments and results depend on the command. The commands
each operate on the database entry for some name. Unless otherwise specified, that name may not
be one of the pseudo-names ("Owners-foo.reg", et al). The commands have the following
properties in common.

If the registry of the name in question is invalid, then the return-code is [BadRName, notFound]
and there are no other results.

If the registry of the name is valid, but this registration server is not concerned with names in that
registry, then the return-code is [WrongServer, notFound] and there are no other results; in this case
the client should contact some other registration server. This facility allows a client to assume that a
particular registration server knows about a name until the client is told otherwise.

If the registry of the name is valid and this registration server is concerned with that registry, but
the name is not registered in the database, then (except for CreateIndividual, CreateGroup and
NewName!) the return-code is [BadRName, notFound] or [BadRName, dead]. and there are no
other results. The distinction between "notFound" and "dead" is not intended to be useful to
clients, although it may occasionally be useful to a human administrator. The distinction arises
when a name is deleted from the naming database. For about 14 days after the deletion, the name
may appear as "dead" instead of "notFound"; at any time a name may revert from "dead" to
"notFound", at the whim of the registration servers. The distinction is important in the registration
servers’ database update propagation algorithm.

In the descriptions of the commands, the above possible outcomes are implicitly assumed.

The following commands allow clients to read the database.

Expand: operation=1, arguments = [name, timestamp]

If the present timestamp of the database entry equals the given one, then the return-code is
[noChange, group] or [noChange, individual] as appropriate, and there are no other results.

Otherwise, the results are a timestamp and a string-list. The timestamp is the current
timestamp of the database entry. If the name has type group then the return-code is [done,
group] and the string-list contains the group’s member-list; if the name has type individual
and the individual’s forwarding-list is non-empty, then the return-code is [done, group] and
the string-list contains the individual’s forwarding-list; if the name has type individual and
the individual’s forwarding-list is empty, then the return-code is [done, individual] and the
string-list contains the strings (if any) from the individual’s mailbox-list, in chronological
order of when they were added to the mailbox-list (this is used as the order of priority by
mail servers). The argument of this command may be a pseudo-name of the form Owners-

THE GRAPEVINE INTERFACE 13

x.reg or Owner-x.reg, but not one of the form Groups.reg, Groups^.reg, Individuals.reg,
Individuals^.reg, *.reg or "*".

ReadMembers: operation=2, arguments = [name, timestamp]

If the database entry has type individual, then the return-code is [BadRName, individual]
and there are no other results.

If the present timestamp of the database entry equals the given one, then the return-code is
[noChange, group], and there are no other results.

Otherwise, the return-code is [done, group] and the results are a timestamp and a string-list.
The timestamp is the current timestamp of the database entry. The string-list contains the
group’s member-list. The argument of this command may be any pseudo-name other than
.reg or "".

ReadOwners: operation=3, arguments = [name, timestamp]

This is the same as ReadMembers, except that the string-list returned contains the owners-
list of the database entry, and the pseudo-names are not supported.

ReadFriends: operation=4, arguments = [name, timestamp]

This is the same as ReadOwners, except that the string-list returned contains the friends-list
of the database entry.

ReadEntry: operation=5, arguments = [name, timestamp]

The result is a timestamp followed by a number, followed by that number of components.
The timestamp is at present of undefined value. The components are the entire database
entry for the name. If the caller has been authenticated by the IdentifyCaller command (as
for database updates) and is in the "gv" registry, then the components for an individual
include the individual’s password, otherwise the password is represented by zeroes.

CheckStamp: operation=6, arguments = [name, timestamp]

If the present timestamp of the database entry equals the given one, then the return-code is
[noChange, group] or [noChange, individual] as appropriate, and there are no other results.

Otherwise, the return-code is [done, group] or [done, individual] as appropriate and the
result is a timestamp which is the current timestamp of the database entry. The argument
of this command may be any pseudo-name other than *.reg or "*".

ReadConnect: operation = 7, argument = [name]

If the database entry has type group, then the return-code is [BadRName, group] and there
are no other results.

Otherwise the return-code is [done, individual] and the result is the connect-site given in the
database entry.

ReadRemark: operation = 8, argument = [name]

If the database entry has type individual, then the return-code is [BadRName, individual]
and there are no other results.

THE GRAPEVINE INTERFACE 14

Otherwise the return-code is [done, group] and the result is the remark given in the
database entry.

Authenticate: operation = 9, argument = [name, password]

If the database entry has type group, then the return-code is [BadRName, group] and there
are no other results.

If the given password does not equal the password given in the database entry then the
return-code is [BadPassword, individual].

Otherwise the return-code is [done, individual]; there is no further result.

IdentifyCaller: operation = 33, argument = [name, password]

If this registration server does not know about the registry of the given name, then this
server will consult other registration servers as necessary to perform the operation; it will
not give the return-code [WrongServer, name-type]. If the necessary other servers are not
contactable, then the return-code is [AllDown, notFound] and there is no other result.

If the database entry has type group, then the return-code is [BadRName, group] and there
is no other result.

If the given password does not equal the password given in the database entry then the
return-code is [BadPassword, individual].

Otherwise the return-code is [done, individual]; there is no further result.

Use of this command affects the state of the connection, as described with the database
update commands.

The following commands allow clients to perform database enquiries in support of access controls.
For each of them, if the database entry is of type individual, then the return-code is [BadRName,
individual] and there is no other result. For the "closure" commands, the registration server may
need to consult other registration servers; if for some reason it cannot do so, then the return-code
will be [AllDown, group] and there will be no other result. Otherwise, the return-code is [done,
group] and the result is a boolean, TRUE iff the second given name is a member of the appropriate
list(s). The IsInList operation provides access to all the facilities of operations 40 through 45, and
should be used instead of those operations. Operations 40 through 45 are historical.

IsMemberDirect: operation = 40, argument = [name, string]

The result is TRUE if the string is one of the strings in the member-list of the database
entry. Each argument of this command may be any pseudo-name.

IsOwnerDirect: operation = 41, argument = [name, string]

The result is TRUE if the string is one of the strings in the owners-list of the database entry.

IsFriendDirect: operation = 42, argument = [name, string]

The result is TRUE if the string is one of the strings in the friends-list of the database entry.

THE GRAPEVINE INTERFACE 15

IsMemberClosure: operation = 43, argument = [name, string]

The result is TRUE if the string is one of the strings in the member-list of the database
entry, or if this operation would return TRUE when applied to any of the names in that list.
Thus this operation traverses the graph implied by the names in that list, and may involve
communication with other registration servers. Loop detection is applied as necessary. This
operation may be quite expensive. Each argument of this command may be any pseudo-
name.

IsOwnerClosure: operation = 44, argument = [name, string]

As for IsMemberClosure, but starting with the owners-list of the database entry. The name
may not be one of the pseudo-names.

IsFriendClosure: operation = 45, argument = [name, string]

As for IsMemberClosure, but starting with the friends-list of the database entry.

IsInList: operation = 46, argument = [name, string, byte, byte, byte]

This provides a general access control testing operation, and supersedes operations 40
through 45. If the first byte is 1, then instead of testing membership in lists associated with
the name, it tests in lists associated with the name’s registry; that is, if the name is of the
form x.reg, the operation will test membership in lists of the group reg.gv; otherwise the
first byte should be 0. The second byte should be 0 to test membership of the members-
list, 1 to test the owners-list, 2 to test the friends-list. The third byte should be 0 to test
direct membership, 1 to test membership in the closure, and 2 to test membership in the
"up-arrow closure". The "up-arrow" closure is like normal closure, except that the closure
pursues only contained names of the form x^.reg, such as "CSL^.pa" but not "Birrell.pa";
this is very much more efficient than full closure. If any of the bytes does not have one of
the specified values, it is treated as a protocol error.

The algorithms used by the registration servers to propagate updates of the naming database are not
atomic, in the following sense. When a client requests a registration server to perform a database
update, if the registration server is able to perform the update, the client is given an
acknowledgement when the registration server has made the required change to its own copy of the
database. Subsequently, the registration server guarantees to propagate the update to other
registration servers so that all copies of the database will be updated. In the interval after the first
registration server has performed the update but before all other registration servers have performed
the update, clients may observe two copies of the database, one in which the update has occurred
and one where it has not yet occurred. Thus clients may get a transiently inconsistent view of the
naming database, and clients should be prepared to deal with this fact. In all normal cases, the
window for this inconsistency is short (in the region of one minute), but there is no upper bound to
the length of this window.

The following commands allow clients to make updates to the naming database. In all
circumstances, these commands return a return-code and no other result. In addition to the possible
outcomes described above as being in common for all registration server commands, the update
commands have the following properties in common.

THE GRAPEVINE INTERFACE 16

The update commands ask the registration server to change the state of registration of some name
in the naming database; this name is sent as the first argument. The registration server will consult
various access control lists associated with this name to determine whether the requested update
should be permitted. For any given name there are four access control lists that are of interest. We
will call them "owners-acl", "friends-acl", "reg-owners-acl" and "reg-friends-acl". For any group
sn.reg the owners-acl is the owners-list of that group and the friends-acl is the friends-list of that
group. For any group sn.reg, the reg-owners-acl is the owners-list of the group reg.gv and the reg-
friends-acl is the friends-list of reg.gv (the reg-owners-acl and reg-friends-acl are both empty lists if
reg.gv doesn’t exist). If during this connection the command IdentifyCaller has not been made, or if
the last call of that command gave a return-code other than [done, individual], then any of the
following commands will give the return-code [NotAllowed, notFound]. Otherwise, the "caller" is
the name that was given as argument of the last call of IdentifyCaller during this connection. The
registration server consults the access control list indicated for each particular command below, to
determine whether the caller’s name is in that list. This is done using the closure operations
(IsMemberClosure, IsFriendClosure, IsOwnerClosure, as appropriate). If the caller is not in the
indicated list, and the list was the friends-acl, then the registration server applies this algorithm
recursively using the owners-acl. If the caller is not in the indicated list, and the list was the
owners-acl, then the registration server applies this algorithm recursively using the reg-friends-acl. If
the caller is not in the indicated list, and the list was the reg-friends-acl, then the registration server
applies this algorithm recursively using the reg-owners-acl. If the caller is not in the indicated lists,
then the return-code is [NotAllowed, notFound]. These access control checks are typically more
efficient than this algorithm would indicate, but they are still potentially quite expensive. The lists
controlling the various update commands are as follows.

CreateIndividual, DeleteIndividual, CreateGroup, DeleteGroup, NewName, AddMailbox,
RemoveMailbox: the reg-owners-acl.

ChangePassword, ChangeConnect: if the name is the caller’s, then the operation is allowed;
otherwise it is controlled by the reg-friends-acl.

AddForwarding, RemoveForwarding: the reg-friends-acl.

AddMember, RemoveMember: if the string which is the second argument is equal to the caller’s
name, then the operation is treated as AddSelf or RemoveSelf; otherwise if the name is in the "gv"
registry, then the reg-friends-acl; otherwise the owners-acl.

ChangeRemark, AddListOfMembers: if the name is in the "gv" registry, then the reg-friends-acl;
otherwise the owners-acl.

AddSelf, RemoveSelf: if the name is not in the "gv" registry then the operation is controlled by the
friends-acl; if the name is in the "gv" registry then if the caller is in the "gv" registry, then the
operation is allowed otherwise it is controlled by the reg-friends-acl.

AddOwner, RemoveOwner, AddFriend, RemoveFriend: the owner-acl.

If the requested update is such that it would not change the database, then the return-code is
[noChange, name-type]. If the registration server determines that there is contradictory information
in the database that is newer than the requested update, the return-code is [outOfDate, name-type];
this situation is exceedingly unlikely, but is possible. Several of the update commands have
restrictions on the type or existence of some name before the operation may be performed. If these
restrictions are violated, the return-code is [BadRName, name-type], where "name-type" is
individual or group if the name is registered with inappropriate type, and is notFound or dead if

THE GRAPEVINE INTERFACE 17

the name is needed but is not registered.

Otherwise, the update is made and the return-code is [done, name-type].

CreateIndividual: operation = 12, argument = [name, password]

The name must not presently be registered in the database. This registers the name with
type individual, with the given password, with an empty string for connect-site and with
empty forwarding-list and mailbox-list.

DeleteIndividual: operation = 13, argument = [name]

The name must have type individual. This removes the name from the database.

CreateGroup: operation = 14, argument = [name]

The name must not presently be registered in the database. This registers the name with
type group, with an empty string for remark, with an empty member-list and friends-list,
and with an empty owners-list.

DeleteGroup: operation = 15, argument = [name]

The name must have type group. This removes the name from the database.

ChangePassword: operation = 16, argument = [name, password]

The name must have type individual. This sets the individual’s password to be that given.

ChangeConnect: operation = 17, argument = [name, connect-site]

The name must have type individual. This sets the individual’s connect-site to be that
given.

ChangeRemark: operation = 18, argument = [name, remark]

The name must have type group. This sets the group’s remark to be that given.

AddMember: operation = 19, argument = [name, string]

The name must have type group. This adds the string to the members-list of the group.

AddMailbox: operation = 20, argument = [name, string]

The name must have type individual. This adds the string to the mailbox-list of the
individual.

AddForward: operation = 21, argument = [name, string]

The name must have type individual. This adds the string to the forwarding-list of the
individual.

AddOwner: operation = 22, argument = [name, string]

The name must have type group. This adds the string to the owners-list of the group.

AddFriend: operation = 23, argument = [name, string]

THE GRAPEVINE INTERFACE 18

The name must have type group. This adds the string to the friends-list of the group.

RemoveMember: operation = 24, argument = [name, string]

The name must have type group. This removes the string from the members-list of the
group.

RemoveMailbox: operation = 25, argument = [name, string]

The name must have type individual. This removes the string from the mailbox-list of the
individual.

RemoveForward: operation = 26, argument = [name, string]

The name must have type individual. This removes the string from the forwarding-list of
the individual.

RemoveOwner: operation = 27, argument = [name, string]

The name must have type group. This removes the string from the owners-list of the
group.

RemoveFriend: operation = 28, argument = [name, string]

The name must have type group. This removes the string from the friends-list of the
group.

AddSelf: operation = 29, argument = [name]

The name must have type group. This adds the caller to the members-list of the group.
Note that this is equivalent to AddMember[name, caller].

RemoveSelf: operation = 30, argument = [name]

The name must have type group. This removes the caller from the members-list of the
group. Note that this is equivalent to RemoveMember[name, caller].

AddListOfMembers: operation = 31, argument = [name, string-list]

The name must have type group. Note that the string-list must be in alphabetic order (see
the specification of "string-list"); violation of this restriction is a violation of the protocol.
This adds each string in the string-list to the members-list of the group.

NewName: operation = 32, argument = [name, second name]

The first name must not be registered in the database, and the second name must be
registered. The second name must have the same registry as the first name; violation of
this restriction is a violation of the protocol. This registers the first name as a database
entry whose value is initialized from the present value of the second name.

