
The Grapevine Interface

by Andrew Birrell

Edition 2
January 1982

Abstract: Grapevine is a multi-computer system on the Xerox research internet. It provides

facilities for the delivery of digital messages such as computer mail; for naming people,

machines and services; for authenticating people and machines; and for locating services on

the internet.

This document describes the semantics of the services provided by Grapevine, and the

protocols that allow access to these services over the internet, in sufficient detail for a reader

to program software that will use Grapevine.

Note: Grapevine is the outcome of a research project. The services and protocols described

here are not part of a Xerox product, and are not related to the Xerox Network Systems

protocols.

XEROX
PALO ALTO RESEARCH CENTER
COMPUTER SCIENCE LABORATORY
3333 Coyote Hill Road / Palo Alto / California 94304

THE GRAPEVINE INTERFACE 1

1. Introduction

Grapevine is a distributed system spanning multiple computers, providing distributed and replicated
services to clients on the Xerox research internet. (We use the term client to mean software making
use of some facility, and user to mean human users of software.) The services provided include
message delivery, resource location, authentication and access controls.

The Grapevine system was designed and implemented by Andrew Birrell, Roy Levin, Roger
Needham and Michael Schroeder, with considerable help from several other members of the
Computer Science Laboratory in the Xerox Palo Alto Research Center.

A general description of Grapevine is given in the paper "Grapevine: an Exercise in Distributed
Computing", which was presented at the 8th Symposium on Operating System Principles in
December 1981, and which is to be published in CACM (April 1981). Read that paper thoroughly
before attempting to read this document. Before proceeding with this document, you should also
have some familiarity with the PUP internet environment.

This document specifies the client interfaces to the Grapevine system: it treats the Grapevine system
as a "black box", and defines the semantics that a client of the black box can observe and how a
client may interact with the black box. The intention is to define the semantics and the relevant
communication protocols in sufficient detail that a suitably skilled reader could proceed to program
packages and systems that use Grapevine. There is no attempt here to explain how the inside of
the black box is constructed or operates. The communication protocols allow a client to interact
with particular Grapevine computers, but to take full advantage of Grapevine the client must also
understand how the services provided by Grapevine are distributed and replicated. This document
does not attempt to provide a global view of the Xerox internet message facilities, nor is it intended
as a guide for those who administer Grapevine or other parts of the message system. The
Grapevine system does not include the IFS mail servers, nor user interface programs such as Laurel.

We distinguish between a service and a server which provides an instance of that service. Grapevine
provides several services; various computers within Grapevine provide instances of these services, or
of part of these services. For example, accepting mail for subsequent delivery is a service; each
Grapevine Mail Server provides an instance of that service. Accepting mail for delivery is thus a
replicated service: it is provided by multiple computers, and any of these computers is adequate for
providing the service. A client wishing to submit mail may submit it equally well to any of the
Grapevine mail servers. A more complicated example is the Grapevine Name Registration Service,
which is provided by the Grapevine Registration Servers. As will be seen, no one of the registration
servers provides the entirety of this service, because each registration server knows about only some
subset of the registered names. On the other hand, multiple registration servers know about each
name. Thus the Grapevine name registration service is distributed as well as being replicated.

The services provided by Grapevine come in three major groups. Firstly, the Registration servers
provide a naming database. This database is distributed and replicated. It is organized to allow for
distributed administration of the names. The database provides its clients with a name-to-value
mapping, and the ability to make changes to that mapping. This naming database is intended to be
used for many purposes, including resource location and authentication in connection with the use
of the Grapevine communication protocols. Secondly, the Mail Servers provide a message system.
The facilities provided are the submission of a message together with a list of intended recipients.
The mail servers will forward the message to a site convenient for each recipient, where the message
is buffered until the recipient cares to retrieve the message. Thirdly, the software provided with the
Grapevine servers provides various administrative facilities which are useful in connection with

THE GRAPEVINE INTERFACE 2

running the physical computers on which the servers exist. These administrative facilities are in
addition to the Registration Service facilities for updating the naming database: these administrative
facilities are concerned with running individual computers. The administrative facilities are a log, a
terminal interface to inspect and change the servers’ state, and a terminal display on the physical
computer.

This document proceeds in several parts. Section two describes the names and values contained in
the naming database. Section three describes the message delivery facility provided by the Mail
Servers. Section four specifies the network protocols for accessing individual servers. Section five
discusses algorithms which allow you to provide transparency of replication, distribution and failure.
Lastly, the administrative facilities are described.

THE GRAPEVINE INTERFACE 3

2. The Naming Database

The Grapevine naming database is provides several facilities. These include: naming message
recipients, handling distribution lists for messages, naming and locating services and servers,
authenticating users and servers, providing public access control and authentication services, and
configuring the naming database and the message delivery system. This section describes the
naming database; subsequent sections describe how to use the database for these various purposes.

The naming database often is concerned with names or values which are strings of characters. In all
cases, a string is restricted to be no more than 64 characters. The communication protocols consider
an attempt to transmit a string of more than 64 characters to be a protocol violation.

A Name is a string of characters. The string usually contains the character ".". Only the last "." in
the string is interesting. The part of the string after the last "." is known as the registry, and the
part of the string before that "." is known as the simple-name. Thus a Grapevine name may be
considered as

simple-name . registry

In the degenerate case where a name contains no ".", the entire name should be considered to be
the registry. Names which differ only in the case of letters are considered to be equal.

Each name in the database is associated with a value. There are two types of name, each with its
associated form of value; these types are individual and group. The type of a name is specified
when the database entry is created, and may not be changed until the name is deleted.

The following information constitutes the value associated with a name whose type is individual.
The precise bit patterns representing these values are of concern only when we discuss the actual
communication protocols.

A timestamp. Timestamps are used extensively in Grapevine as unique identifiers. They
are formed by concatenating a host identification with a clock value. The timestamp
associated with a database entry has the property that if the value of the entry changes, then
so does the timestamp. The timestamp may also change at other times. The timestamp is
intended to assist a client in maintaining cached information that was derived from the
database; it is also used internally by the registration servers.

A password. Universally within Grapevine, passwords are represented by 64-bit values.
Passwords are used to allow authentication of individuals. They are also intended for use in
encryption-based security protocols, although no such protocols are available at present. By
convention, these values are derived from text strings by the following algorithm. Your
users will probably be displeased if you use any different algorithm.

MakeKey: PROC[text: STRING]
RETURNS[key: PACKED ARRAY [0..8) OF [0..256)] =

BEGIN

key _ ALL[0];
FOR i: CARDINAL IN [0..text.length) DO

j: [0..LENGTH[key]) = i MOD LENGTH[key];
c: [0..128) = LOOPHOLE[LowerCase[text[i]]];
key[j] _ BITXOR[key[j], BITSHIFT[c, 1]];

ENDLOOP;
END;

THE GRAPEVINE INTERFACE 4

A connect-site. A connect-site is a string. Although the registration servers place no
restriction on the contents of the string, it usually represents the address of a computer.

A forwarding-list. This is an ordered list of strings (usually names). The intended semantics
of a forwarding-list are described in section three.

A mailbox-list. This is an ordered list of strings (usually names). The intended semantics
of a mailbox-list are described in section three.

The following information constitutes the value associated with a name whose type is group. The
precise bit patterns representing these values are of concern only when we discuss the actual
communication protocols.

A timestamp. The value and semantics of this timestamp are as for the timestamp
associated with an individual.

A remark. This is a string, which is intended as a human hint about the purpose or
meaning of the group; Grapevine attaches no semantics to the remark.

A member-list. This is an ordered list of strings (usually names).

An owners-list. This is an ordered list of strings (usually names). The owners-list is used
by Grapevine as an access control list for updates to the naming database, to describe the
set of individuals who may make arbitrary modifications to group. Clients may possibly use
this list for other purposes.

A friends-list. This is an ordered list of strings (usually names). The friends-list is used by
Grapevine as an access control list for updates to the naming database, to describe the set
of individuals who may add themselves to the group or remove themselves from the group.
Clients may possibly use this list for other purposes.

In addition to the above values, the database entry for a name contains various values concerned
with the propagation of database updates between servers. These additional values are not generally
useful to clients. The client can observe these extra values only through the "ReadEntry" operation
in the registration server enquiry protocol.

Certain pseudo-names are available, which are accepted by the registration servers when clients make
certain database enquiries, although the names do not correspond to explicit entries in the naming
database. These names may also be used in access control lists. The particular enquiry operations
which accept these names are detailed with the registration server protocol specification. Each of
these names behaves, for the purpose of those enquiry operations or access controls, as if it is a
group. Only the timestamp and member-list of these pseudo-groups are accessible. For any registry
reg, the names Groups.reg and Groups^.reg behave as if the name was a group with a member-list
containing the name of each group in the registry reg. For any registry reg, the names
Individuals.reg and Individuals^.reg behave as if the name was a group with a member-list
containing the name of each individual in the registry reg. For any group of the form x.reg, the
names Owners-x.reg and Owner-x.reg behave as if the name was a group whose member-list
contains the owners-list of the group x.reg (but if that owners-list is empty, then the member-list
contains the friends-list of the group reg.gv). If a string of the form *.reg appears in an access
control list, it is treated as matching any name of the form x.reg. Finally, the string "*" may be
used in access control lists, to mean that unrestricted access is allowed. As will be seen, these names
allow clients to send mail to the owners-list of a group, to determine the set of names which are
individuals or groups in a particular registry, and to specify more flexible access controls.

THE GRAPEVINE INTERFACE 5

Several names are guaranteed to be present in the naming database. Some of these are present to
enable clients to locate appropriate registration servers when the client wishes to perform some
enquiry or update on the naming database. Others are present as part of the message service, to
enable clients to locate mail servers. Appropriate algorithms for using these names are described in
section five. These names are as follows.

Every registration server and every mail server has a name which is registered in the naming
database. Every registration server name is in the "gv" (for Grape vine) registry. These names have
type "individual"; the connect-site of such a name is a string representation of the PUP network
address of that server. Note that the network address of a Grapevine server may change from time
to time.

The naming database also defines which strings are valid registries. For any string reg, the string is
valid as a registry if and only if the group reg.gv exists in the naming database. Thus for a name
such as "foo.baz" to be valid, the group "baz.gv" must exist. Each registration server knows only
about the names in some set of registries; the registration server knows about all the names in
those registries. Typically, any particular registry is known about by several registration servers.
For any valid registry reg, the member-list of the group reg.gv contains precisely the names of the
registration servers which know about names whose registry is reg. Thus, given a name such as
"foo.baz", the member-list of the group "baz.gv" contains the names of the registration servers that
are concerned with the database entry for "foo.baz". All registration servers know about names in
the registry "gv".

Thus, in order to determine the network address of some registration server that is concerned with a
name such as "foo.baz", the client may contact any registration server, then ask it for the member-
list of "baz.gv", then for each name in that member-list determine its connect-site; the client may
then choose from amongst that set of connect-sites. Section five describes how this algorithm may
be made acceptably efficient.

The string "GrapevineRServer" is registered in the Xerox internet name lookup server database.
This name in that database maps to the network addresses of several computers. Some (but not
necessarily all) of those computers are registration servers. "GrapevineRServer" exists with the
intent of assisting clients in contacting some initial registration server. Clients may also use other
techniques, such as broadcast protocols, to contact an initial registration server. Once the client has
contacted an initial registration server, the naming database should be used to contact other
registration servers.

For example if "Cabernet.gv" and "Zinfandel.gv" are the names of two registration servers, then
those names would be registered as individuals. The connect-site for Cabernet.gv would be a string
such as "3#14#", and the connect-site for Zinfandel.gv would be a string such as "60#354#". If
"pa" was a valid registry, then the group "pa.gv" would exist. If Cabernet.gv and Zinfandel.gv both
know about names in the registry "pa", then "Cabernet.gv" and "Zinfandel.gv" would appear in the
member-list for "pa.gv". Both servers necessarily know about names in the registry "gv". The
name "GrapevineRServer" in the name lookup server database would be likely to contain the
network addresses 3#14# and 60#354#.

The registry "ms" (for message sservers) is a valid registry. The name "MailDrop.ms" is registered
in the naming database as a group; the member-list for that group contains precisely the names of
those mail servers which may be willing to accept mail from clients for delivery. Thus, to
determine the network address of some Grapevine mail server, a client should obtain the member-
list of "MailDrop.ms", and obtain the connect-site of names appearing in the member-list of that

THE GRAPEVINE INTERFACE 6

group. Use of "MailDrop.ms" is discussed further in section five.

For example, if the existing mail servers are "Cabernet.ms" and "Zinfandel.ms", then those names
would be registered as individuals with appropriate connect-sites. The member-list for
"MailDrop.ms" would contain those two names.

The name "DeadLetter.ms" is registered in the naming database; the use of this name is described
in section three.

THE GRAPEVINE INTERFACE 7

3. Messages

The Grapevine mail servers will transport messages on behalf of clients. It is the purpose of this
section to describe the content of those messages and the semantics of message delivery.

A message should be thought of as a property list and a body. The property list of a message is
constructed by a mail server when a client successfully submits a message to it for delivery, as
described in the mail submission protocol. The property list contains the name of the sender as
provided by the client, a return-to name for notifying non-delivery of the message, a postmark
specifying the time at which the message was submitted, and a list of names which are the recipients
to whom the client asked the mail server to deliver the message. The precise representation of these
values is defined in the mail retrieval protocol. The body of a message consists of a sequence of
items. Each item consists of a type, a length, and some data. The type is a number in the range
[0..216). The length is a number in the range [0..232). The data consists of a sequence of bytes.
The length specifies the number of bytes in the data.

The message system guarantees that when a client retrieves mail, the property list is as constructed
when the message was submitted, and the message body is identical to that submitted. The message
system is not concerned with the data content of clients’ messages.

The "type" of message body items is a name space that must be managed by convention if the
message system is to be of general utility. If a client wishes to attach a meaning to some type, he
should register the value of that type with the Grapevine message system maintainers. Types in the
range 0 through 777B are reserved for use in representing the property list of messages in the mail
retrieval protocol. The following types are pre-defined, in that their values are used internally by
Grapevine.

10B Postmark in property lists
20B Sender name in property lists
30B Return-to name in property lists
40B Recipient names list in property lists
1010B Human-readable textual message
2000B Registration server database update
2100B Mail server "re-mail" hint
177777B End-of-message item

When a client submits a message to a mail server, the mail server promises that it will deliver the
message. We now define what this delivery means. The mail servers deliver the message (body
plus property list) to each of the recipients. For each recipient, the meaning of delivery is as
follows.

If the recipient name is registered in the naming database as an individual, and the forwarding-list
of that individual is empty, and the mailbox-list of the individual is not empty, then we proceed as
follows. The mailbox-list of an individual contains the names of several Grapevine mail servers.
The names in an individual’s mailbox-list are considered to be an ordered list of the names of the
servers that may be suitable for buffering the individual’s incoming messages. The mail server will
attempt to cause the message to be buffered for the individual in one of those servers; the earlier
names in the mailbox-list are preferred over the later names. Generally this will succeed, and
generally the message will be buffered in the server whose name is first in the mailbox-list. If the
attempt succeeds, the message is buffered for the client in the client’s in-box in that Grapevine mail
server. The property list and message body may subsequently be read from an in-box by a client
using the Grapevine mail retrieval protocol. If the message cannot be delivered to any of the

THE GRAPEVINE INTERFACE 8

servers in the recipient’s mailbox-list within 2 days, or if the recipient name becomes invalid during
the delivery process, then the message is considered to be undeliverable to this recipient and the
mail server will attempt to send an undeliverable notification to the name given as the return-to
name in the message’s property list, as described below.

If the recipient name is registered in the naming database as an individual, and the individual’s
forwarding-list is not empty, then the individual is treated as if it were a group whose member-list
contained the names found in the forwarding-list of the individual.

If the recipient name is registered in the naming database as a group, then the message is delivered
to recipients whose names appear in the member-list of that group. If any of those recipients are
invalid recipients, then the mail server will attempt to send an undeliverable notification to the name
manufactured by concatenating "Owners-" with the group name, as described below.

If the recipient name is not registered in the naming database, or if the recipient name is registered
in the naming database as an individual but the individual’s forwarding-list and mailbox-list are
both empty, then the name is considered to be an invalid recipient. In such a case, if the recipient
name was one of those supplied by a client when the message was submitted, then the mail server
will attempt to send an undeliverable notification to the name given as the return-to name in the
message’s property list, as described below; if the recipient name came from a group, then it is
handled as described in connection with delivery to groups.

In order to send an undeliverable notification to some name (either that provided as return-to name
by the originating client, or one representing the owners-list of a group), the mail server proceeds as
follows. The mail server generates a new message whose body is a single item of type "text",
containing a human-readable explanation of the failure that occurred; the mail server attempts to
deliver this message to the appropriate name. If the appropriate name turns out to be an invalid
recipient, then this message is sent to "DeadLetter.ms". The intention is that sending to
"DeadLetter.ms" will cause the notification to be seen by some system administrator. Additionally,
a summary of the undeliverable notification and a copy of the header part of any text item of the
returned message are always sent in a text message to "DeadLetter.ms".

The above describes the delivery semantics as they would be if the Grapevine message system
existed in isolation. However, this is not so and the semantics are actually modified as described
below. The foreign mail systems with which Grapevine cooperates are: the IFS mail servers, the
TENEX system running on MAXC, and the ARPAnet message system (accessed through MAXC). We
use the phrase foreign mail server to indicate a host running one of these systems.

The mailbox-list of an individual may contain not only the names of Grapevine mail servers, but
also names of foreign mail servers. These names are strings representing either the PUP network
address of the host running the foreign mail server or a PUP Name Lookup Server name for that
host. If during the delivery algorithm for an individual recipient the Grapevine mail server
encounters a name from a mailbox-list specifying a foreign mail server, and if the Grapevine mail
server decides that this is the best place for buffering the message, then the Grapevine mail server
will forward the message to that foreign mail server using the MTP protocol. In doing so, the
Grapevine mail server will forward only the first message body item of type text (if any); the
property list and any other message body items are lost. If the chosen foreign mail server rejects
the recipient name, or if the chosen foreign mail server appears not to exist, and if the postmark of
the message is more than 24 hours old, then the recipient is considered to be an invalid recipient.
(The 24 hour delay is to cover transients while the Grapevine database entry for the recipient is
being modified, because such changes cannot be synchronized with changes to the foreing mail

THE GRAPEVINE INTERFACE 9

server.) This facility allows individuals registered in the Grapevine naming database to have
mailboxes on these foreign mail servers; typically, such an individual would have only one name in
their mailbox-list.

If during the delivery algorithm a recipient name is encountered which is not registered in the
naming database, but the recipient name is of the form x.reg and the name reg.Foreign is registered
in the naming database as an individual, then the mail server will treat the recipient name as a
foreign recipient name. If the recipient name does not contain the character "^", then the Grapevine
mail server treats the recipient as if it was an individual whose mailbox-list was that of reg.Foreign.
If the recipient name contains the character "^", then the mail server expects the recipient name to
name a file on the MTP server reg; the mail server will retrieve this file through the FTP protocol to
that server, connecting on socket 7; the mail server will attempt to parse this file as a distribution
list and will deliver the message to the resulting names. This mechanism allows clients of
Grapevine to address individuals and distribution lists which exist on foreign mail servers and are
not registered in the Grapevine database. For example, if "xrcc.foreign" is registered as an
individual with a mailbox-list containing "Aklak", then any name such as "foo.xrcc" is acceptable as
an individual recipient and messages for "foo.xrcc" will be forwarded to the IFS mail server
"Aklak". In particular, the name "ArpaGateway.foreign" is registered as an individual, whose
mailbox-list causes forwarding to a foreign mail server which understands about ARPAnet mail
recipients. To address a text message to an ARPAnet recipient such as "Saltzer@MIT-Multics", one
would include "Saltzer@MIT-Multics.ArpaGateway" amongst the recipients of the message as
presented to the Grapevine mail servers.

A mail server occasionally wishes to use a remote file server to store messages which are being
buffered for clients. It does this to avoid over-filling its local disk with messages for people who do
not read their mail often enough (or are on vacation, etc.). For a mail server whose name is x.ms
the group Archive-x.ms should exist. The member-list of that group should contain path names
indicating the desired remote server and directory. Each of these servers should have a LEAF

protocol server enabled, and should have an account for the name x, with a password that matches
that of x.ms. The mail server will try each of the file servers in that group (if necessary), in order
of closeness on the Internet. For example, if "Cabernet.ms" is a mail server, and the group
"Archive-Cabernet.ms" has members "[Ivy]<DMS>" and "[Ibis]<DMS>"; then the mail server
would store on the server "Ivy" files with titles such as "<DMS>Cabernet.ms>Birrell.pa-19-Jan-81-
23-20-59-PDT!1".

THE GRAPEVINE INTERFACE 10

4. Protocols

This section describes the protocols which may be used to invoke the facilities provided by
individual Grapevine servers. They will also be used to interrogate the Grapevine naming database
in order to find suitable Grapevine servers at various times. In addition to the protocols defined
here, the Grapevine servers implement the following PUP protocols: FTP, MTP, Telnet,
Miscellaneous Services (for Authentication Request and Mail Check Laurel only), Echo.

Each of the following protocols uses some underlying transmission medium. This medium is either
PUP packets, or PUP Byte Stream Protocol streams. In either case, the medium provides
communication to a specified network address, and transports an ordered sequence of 8-bit bytes.
PUP packets provide unreliable (but high probability) uni-directional transmission of small numbers
of bytes with no notification of failure; the Byte Stream Protocol provides reliable bi-directional
transmission of arbitrarily large numbers of bytes, with notification of failure. Values of several
data types occur in the Grapevine protocols. The representation of these values is described here,
in terms of the sequence of bytes provided by the transmission media.

The Grapevine servers are unforgiving of protocol violations. If a client violates the protocol, the
server’s typical response will be to terminate the byte stream or ignore the PUP, as appropriate.

A character is a single byte containing the ASCII value of the character.

A boolean is a single byte containing 1 for TRUE, 0 for FALSE.

An ack is a single byte of undefined value.

A word is a pair of bytes; the first contains the more significant 8 bits.

A number is a word containing the binary representation of an integer in the range [0..216).

A long number is a pair of words representing an integer in the range [0..232), the first word
containing the less significant 16 bits (this is the Mesa representation).

A timestamp is three words. The first word is an uninterpreted bit-pattern (though strikingly similar
to a PUP network address); the second and third constitute a long number. This long number is
approximately the number of seconds since midnight, January 1st, 1901 that had passed at the time
that the timestamp was created.

A password is 8 bytes representing in order the bits of a password value as defined above in
connection with the naming database.

A string is a sequence of bytes as follows. The first two bytes form a number which specifies the
number of characters in the string. The third and fourth bytes are ignored. This header is followed
by the characters of the string. If the number of characters is odd, there follows one extra byte
(with undefined value). This is derived from the Mesa representation of a string. Note that this
representation occupies an even number of bytes. All strings are restricted to be no more than 64
characters. An attempt to transmit more than 64 characters (i.e. 34 words) in one of these values is
a violation of these protocols.

A name, a connect-site, and a remark are each represented by a string (and are therefore restricted
to 64 characters).

THE GRAPEVINE INTERFACE 11

An operation is a number used to specify a command, whose values are specified in the individual
protocols.

A name-type is a byte with values as specified by the following Mesa type constructor:

NameType: TYPE = MACHINE DEPENDENT{
group(0), individual(1), notFound(2), dead(3), (255) };

A code is a byte with values as specified by the following Mesa type constructor:

Code: TYPE = MACHINE DEPENDENT{
done(0), noChange(1), outOfDate(2), NotAllowed(3),
BadOperation(4), BadProtocol(5), BadRName(6), BadPassword(7),
WrongServer(8), AllDown(9), (255) };

A return-code is a code followed by a name-type. In the protocol descriptions, a return-code is
denoted by [a, b] to indicate transmission of the code "a" followed by the name-type "b".

A component is a number, followed by a sequence of words. The number specifies how many
words.

A string-list is a component whose words constitute a sequence of strings. The strings must be in
alphabetic order. The ordering is obtained by converting all upper case letters to lower case, then
sorting by ASCII value of the characters. Note that this implies that the servers will deliver the
various lists of strings from database entries to clients in alphabetic order.

THE GRAPEVINE INTERFACE 12

4.1 Registration Server Protocols

The registration server responds with PUP type "iAmEcho" (type 2) to PUP’s of type "echoMe" (type
1) and length no more than 128 bytes sent to it on socket 52B.

The registration server is usually willing establish a Byte Stream Protocol connection in response to
an RFC packet sent to socket 50B (any unwillingness usually indicates that this server is feeling
overloaded). The protocol accepted on such byte streams is as follows. The protocol consists of a
sequence of commands. For each command, the client sends a word representing an operation,
probably followed by some arguments, then the server sends a return-code, possibly followed by
some results. The arguments and results depend on the command. The commands each operate on
the database entry for some name. Unless otherwise specified, that name may not be one of the
pseudo-names ("Owners-foo.reg", et al). The commands have the following properties in common.

If the registry of the name in question is invalid, then the return-code is [BadRName, notFound]
and there are no other results.

If the registry of the name is valid, but this registration server is not concerned with names in that
registry, then the return-code is [WrongServer, notFound] and there are no other results; in this case
the client should contact some other registration server. This facility allows a client to assume that a
particular registration server knows about a name until the client is told otherwise.

If the registry of the name is valid and this registration server is concerned with that registry, but
the name is not registered in the database, then (except for CreateIndividual, CreateGroup and
NewName!) the return-code is [BadRName, notFound] or [BadRName, dead]. and there are no
other results. The distinction between "notFound" and "dead" is not intended to be useful to
clients, although it may occasionally be useful to a human administrator. The distinction arises
when a name is deleted from the naming database. For some time after the deletion, the name may
appear as "dead" instead of "notFound"; at any time a name may revert from "dead" to
"notFound", at the whim of the registration servers. The distinction is important in the registration
servers’ database update propagation algorithm.

In the descriptions of the commands, the above possible outcomes are implicitly assumed.

The following commands allow clients to read the database.

Expand: operation=1, arguments = [name, timestamp]

If the present timestamp of the database entry equals the given one, then the return-code is
[noChange, group] or [noChange, individual] as appropriate, and there are no other results.

Otherwise, the results are a timestamp and a string-list. The timestamp is the current
timestamp of the database entry. If the name has type group then the return-code is [done,
group] and the string-list contains the group’s member-list; if the name has type individual
and the individual’s forwarding-list is non-empty, then the return-code is [done, group] and
the string-list contains the individual’s forwarding-list; if the name has type individual and
the individual’s forwarding-list is empty, then the return-code is [done, individual] and the
string-list contains the strings (if any) from the individual’s mailbox-list, in chronological
order of when they were added to the mailbox-list (this is used as the order of priority by
mail servers). The argument of this command may be a pseudo-name of the form Owners-
x.reg or Owner-x.reg, but not one of the form Groups.reg, Groups^.reg, Individuals.reg,

THE GRAPEVINE INTERFACE 13

Individuals^.reg, *.reg or "*".

ReadMembers: operation=2, arguments = [name, timestamp]

If the database entry has type individual, then the return-code is [BadRName, individual]
and there are no other results.

If the present timestamp of the database entry equals the given one, then the return-code is
[noChange, group], and there are no other results.

Otherwise, the return-code is [done, group] and the results are a timestamp and a string-list.
The timestamp is the current timestamp of the database entry. The string-list contains the
group’s member-list. The argument of this command may be any pseudo-name other than
.reg or "".

ReadOwners: operation=3, arguments = [name, timestamp]

This is the same as ReadMembers, except that the string-list returned contains the owners-
list of the database entry, and the pseudo-names are not supported.

ReadFriends: operation=4, arguments = [name, timestamp]

This is the same as ReadOwners, except that the string-list returned contains the friends-list
of the database entry.

ReadEntry: operation=5, arguments = [name, timestamp]

The result is a timestamp followed by a number, followed by that number of components.
The timestamp is at present of undefined value. The components are the entire database
entry for the name. If the caller has been authenticated by the IdentifyCaller command (as
for database updates) and is in the "gv" registry, then the components for an individual
include the individual’s password, otherwise the password is represented by zeroes.

CheckStamp: operation=6, arguments = [name, timestamp]

If the present timestamp of the database entry equals the given one, then the return-code is
[noChange, group] or [noChange, individual] as appropriate, and there are no other results.

Otherwise, the return-code is [done, group] or [done, individual] as appropriate and the
result is a timestamp which is the current timestamp of the database entry. The argument
of this command may be any pseudo-name other than *.reg or "*".

ReadConnect: operation = 7, argument = [name]

If the database entry has type group, then the return-code is [BadRName, group] and there
are no other results.

Otherwise the return-code is [done, individual] and the result is the connect-site given in the
database entry.

ReadRemark: operation = 8, argument = [name]

If the database entry has type individual, then the return-code is [BadRName, individual]
and there are no other results.

THE GRAPEVINE INTERFACE 14

Otherwise the return-code is [done, group] and the result is the remark given in the
database entry.

Authenticate: operation = 9, argument = [name, password]

If the database entry has type group, then the return-code is [BadRName, group] and there
are no other results.

If the given password does not equal the password given in the database entry then the
return-code is [BadPassword, individual].

Otherwise the return-code is [done, individual]; there is no further result.

IdentifyCaller: operation = 33, argument = [name, password]

If this registration server does not know about the registry of the given name, then this
server will consult other registration servers as necessary to perform the operation; it will
not give the return-code [WrongServer, name-type]. If the necessary other servers are not
contactable, then the return-code is [AllDown, notFound] and there is no other result.

If the database entry has type group, then the return-code is [BadRName, group] and there
is no other result.

If the given password does not equal the password given in the database entry then the
return-code is [BadPassword, individual].

Otherwise the return-code is [done, individual]; there is no further result.

Use of this command affects the state of the connection, as described with the database
update commands.

The following commands allow clients to perform database enquiries in support of access controls.
For each of them, if the database entry is of type individual, then the return-code is [BadRName,
individual] and there is no other result. For the "closure" commands, the registration server may
need to consult other registration servers; if for some reason it cannot do so, then the return-code
will be [AllDown, group] and there will be no other result. Otherwise, the return-code is [done,
group] and the result is a boolean, TRUE iff the second given name is a member of the appropriate
list(s). The IsInList operation provides access to all the facilities of operations 40 through 45, and
should be used instead of those operations. Operations 40 through 45 are historical.

IsMemberDirect: operation = 40, argument = [name, string]

The result is TRUE if the string is one of the strings in the member-list of the database
entry. Each argument of this command may be any pseudo-name.

IsOwnerDirect: operation = 41, argument = [name, string]

The result is TRUE if the string is one of the strings in the owners-list of the database entry.

IsFriendDirect: operation = 42, argument = [name, string]

The result is TRUE if the string is one of the strings in the friends-list of the database entry.

THE GRAPEVINE INTERFACE 15

IsMemberClosure: operation = 43, argument = [name, string]

The result is TRUE if the string is one of the strings in the member-list of the database
entry, or if this operation would return TRUE when applied to any of the names in that list.
Thus this operation traverses the graph implied by the names in that list, and may involve
communication with other registration servers. Loop detection is applied as necessary. This
operation may be quite expensive. Each argument of this command may be any pseudo-
name.

IsOwnerClosure: operation = 44, argument = [name, string]

As for IsMemberClosure, but starting with the owners-list of the database entry. The name
may not be one of the pseudo-names.

IsFriendClosure: operation = 45, argument = [name, string]

As for IsMemberClosure, but starting with the friends-list of the database entry.

IsInList: operation = 46, argument = [name, string, byte, byte, byte]

This provides a general access control testting operation, and supersedes operations 40
through 45. If the first byte is 1, then instead of testing membership in lists associated with
the name, it tests in lists associated with the name’s registry; that is, if the name is of the
form x.reg, the operation will test membership in lists of the group reg.gv; otherwise the
first byte should be 0. The second byte should be 0 to test membership of the members-
list, 1 to test the owners-list, 2 to test the friends-list. The third byte should be 0 to test
direct membership, 1 to test membership in the closure, and 2 to test membership in the
"up-arrow closure". The "up-arow" closure is like normal closure, except that the closure
pursues only contained names of the form x^.reg, such as "CSL^.pa" but not "Birrell.pa";
this is very much more efficient than full closure. If any of the bytes does not have one of
the specified values, it is treated as a protocol error.

The algorithms used by the registration servers to propagate updates of the naming database are not
atomic, in the following sense. When a client requests a registration server to perform a database
update, if the registration server is able to perform the update, the client is given an
acknowledgement when the registration server has made the required change to its own copy of the
database. Subsequently, the registration server guarantees to propagate the update to other
registration servers so that all copies of the database will be updated. In the interval after the first
registration server has performed the update but before all other registration servers have performed
the update, clients may observe two copies of the database, one in which the update has occurred
and one where it has not yet occurred. Thus clients may get a transiently inconsistent view of the
naming database, and clients should be prepared to deal with this fact. In all normal cases, the
window for this inconsistency is short (in the region of one minute), but there is no upper bound to
the length of this window.

The following commands allow clients to make updates to the naming database. In all
circumstances, these commands return a return-code and no other result. In addition to the possible
outcomes described above as being in common for all registration server commands, the update
commands have the following properties in common.

THE GRAPEVINE INTERFACE 16

The update commands ask the registration server to change the state of registration of some name
in the naming database; this name is sent as the first argument. The registration server will consult
various access control lists associated with this name to determine whether the requested update
should be permitted. For any given name there are four access control lists that are of interest. We
will call them "owners-acl", "friends-acl", "reg-owners-acl" and "reg-friends-acl". For any group
sn.reg the owners-acl is the owners-list of that group and the friends-acl is the friends-list of that
group. For any group sn.reg, the reg-owners-acl is the owners-list of the group reg.gv and the reg-
friends-acl is the friends-list of reg.gv (the reg-owners-acl and reg-friends-acl are both empty lists if
reg.gv doesn’t exist). If during this connection the command IdentifyCaller has not been made, or if
the last call of that command gave a return-code other than [done, individual], then any of the
following commands will give the return-code [NotAllowed, notFound]. Otherwise, the "caller" is
the name that was given as argument of the last call of IdentifyCaller during this connection. The
registration server consults the access control list indicated for each particular command below, to
determine whether the caller’s name is in that list. This is done using the closure operations
(IsMemberClosure, IsFriendClosure, IsOwnerClosure, as appropriate). If the caller is not in the
indicated list, and the list was the friends-acl, then the registration server applies this algorithm
recursively using the owners-acl. If the caller is not in the indicated list, and the list was the
owners-acl, then the registration server applies this algorithm recursively using the reg-friends-acl. If
the caller is not in the indicated list, and the list was the reg-friends-acl, then the registration server
applies this algorithm recursively using the reg-owners-acl. If the caller is not in the indicated lists,
then the return-code is [NotAllowed, notFound]. These access control checks are typically more
efficient than this algorithm would indicate, but they are still potentially quite expensive. The lists
controlling the various update commands are as follows.

CreateIndividual, DeleteIndividual, CreateGroup, DeleteGroup, NewName, AddMailbox,
RemoveMailbox: the reg-owners-acl.

ChangePassword, ChangeConnect: if the name is the caller’s, then the operation is allowed;
otherwise it is controlled by the reg-friends-acl.

AddForwarding, RemoveForwarding: the reg-friends-acl.

AddMember, RemoveMember: if the string which is the second argument is equal to the caller’s
name, then the operation is treated as AddSelf or RemoveSelf; otherwise if the name is in the "gv"
registry, then the reg-friends-acl; otherwise the owners-acl.

ChangeRemark, AddListOfMembers: if the name is in the "gv" registry, then the reg-friends-acl;
otherwise the owners-acl.

AddSelf, RemoveSelf: if the name is not in the "gv" registry then the operation is controlled by the
friends-acl; if the name is in the "gv" registry then if the caller is in the "gv" registry, then the
operation is allowed otherwise it is controlled by the reg-friends-acl.

AddOwner, RemoveOwner, AddFriend, RemoveFriend: the owner-acl.

If the requested update is such that it would not change the database, then the return-code is
[noChange, name-type]. If the registration server determines that there is contradictory information
in the database that is newer than the requested update, the return-code is [outOfDate, name-type];
this situation is exceedingly unlikely, but is possible. Several of the update commands have
restrictions on the type or existence of some name before the operation may be performed. If these
restrictions are violated, the return-code is [BadRName, name-type], where "name-type" is
individual or group if the name is registered with inappropriate type, and is notFound or dead if

THE GRAPEVINE INTERFACE 17

the name is needed but is not registered.

Otherwise, the update is made and the return-code is [done, name-type].

CreateIndividual: operation = 12, argument = [name, password]

The name must not presently be registered in the database. This registers the name with
type individual, with the given password, with an empty string for connect-site and with
empty forwarding-list and mailbox-list.

DeleteIndividual: operation = 13, argument = [name]

The name must have type individual. This removes the name from the database.

CreateGroup: operation = 14, argument = [name]

The name must not presently be registered in the database. This registers the name with
type group, with an empty string for remark, with an empty member-list and friends-list,
and with an empty owners-list.

DeleteGroup: operation = 15, argument = [name]

The name must have type group. This removes the name from the database.

ChangePassword: operation = 16, argument = [name, password]

The name must have type individual. This sets the individual’s password to be that given.

ChangeConnect: operation = 17, argument = [name, connect-site]

The name must have type individual. This sets the individual’s connect-site to be that
given.

ChangeRemark: operation = 18, argument = [name, remark]

The name must have type group. This sets the group’s remark to be that given.

AddMember: operation = 19, argument = [name, string]

The name must have type group. This adds the string to the members-list of the group.

AddMailbox: operation = 20, argument = [name, string]

The name must have type individual. This adds the string to the mailbox-list of the
individual.

AddForward: operation = 21, argument = [name, string]

The name must have type individual. This adds the string to the forwarding-list of the
individual.

AddOwner: operation = 22, argument = [name, string]

The name must have type group. This adds the string to the owners-list of the group.

AddFriend: operation = 23, argument = [name, string]

THE GRAPEVINE INTERFACE 18

The name must have type group. This adds the string to the friends-list of the group.

RemoveMember: operation = 24, argument = [name, string]

The name must have type group. This removes the string from the members-list of the
group.

RemoveMailbox: operation = 25, argument = [name, string]

The name must have type individual. This removes the string from the mailbox-list of the
individual.

RemoveForward: operation = 26, argument = [name, string]

The name must have type individual. This removes the string from the forwarding-list of
the individual.

RemoveOwner: operation = 27, argument = [name, string]

The name must have type group. This removes the string from the owners-list of the
group.

RemoveFriend: operation = 28, argument = [name, string]

The name must have type group. This removes the string from the friends-list of the
group.

AddSelf: operation = 29, argument = [name]

The name must have type group. This adds the caller to the members-list of the group.
Note that this is equivalent to AddMember[name, caller].

RemoveSelf: operation = 30, argument = [name]

The name must have type group. This removes the caller from the members-list of the
group. Note that this is equivalent to RemoveMember[name, caller].

AddListOfMembers: operation = 31, argument = [name, string-list]

The name must have type group. Note that the string-list must be in alphabetic order (see
the specification of "string-list"); violation of this restriction is a violation of the protocol.
This adds each string in the string-list to the members-list of the group.

NewName: operation = 32, argument = [name, second name]

The first name must not be registered in the database, and the second name must be
registered. The second name must have the same registry as the first name; violation of
this restriction is a violation of the protocol. This registers the first name as a database
entry having the same value as the present value of the second name.

THE GRAPEVINE INTERFACE 19

4.2 Mail Server Protocols

The mail server responds with PUP type "iAmEcho" (type 2) to PUP’s of type "echoMe" (type 1)
and length no more than 128 bytes sent to it on socket 54B.

Any Grapevine mail server will accept messages submitted to it by the following protocol, and will
deliver them to the specified recipients, according to the delivery semantics defined in section three.
This mail submission protocol allows a sequence of commands on a Byte Stream Protocol connection.
The mail server is usually willing to establish such a connection in response to an RFC packet sent
to the mail server on socket 56B. The commands each consist of the client sending a word
representing an operation, probably followed by some arguments, then the server generally sends
some results. Not all commands are allowed at any time. The restrictions on the order of the
commands are described in terms of the state of the stream; violation of these restrictions is a
protocol violation. The state may be idle, started, noItem, or inItem. The state is initially "idle".

StartSend: operation = 20, arguments = [sender name, password, return-to name, boolean]

This command is allowed only if the state is "idle". The password should be that of the
sender. At present, the server ignores the password, but checks that the sender name would
be valid as a recipient name; we reserve the right to start checking the sender password
some time in the future, without notice. The server checks that the return-to name would
be valid as a recipient. The boolean should be TRUE iff the client wishes the server to
validate the recipient names during the connection. The result is a byte, with the following
values. 0 means everything is ok. 1 means the sender password is incorrect (not checked at
present). 2 means the sender name is invalid. 3 means the return-to name is invalid. 4
means that the server could not validate some name because of communication problems.
If this byte is 0, then the state of the connection becomes "started".

AddRecipient: operation = 21, arguments = [name]

This command is allowed only if the state is "started". The name is added to the list of
recipients for this message; there is no result.

CheckValidity: operation = 22, no arguments.

This command is allowed only if the state is "started". If the boolean argument of the
StartSend command was TRUE, then for each recipient which appears to be invalid the
server sends a number specifying which recipient it was (counting the calls of AddRecipient,
from 1) followed by the name of the invalid recipient, and these recipients are removed
from the recipient list of the message. Then (regardless of the value of the boolean) the
server sends the number 0 followed by a number indicating how many names remain in the
message’s recipient list. The state of the stream becomes "noItem".

StartItem: operation = 23, arguments = [word]

If the state of the stream is "inItem", then the current message body item is terminated and
its length calculated and the state of the stream becomes "noItem". The state of the stream
must now be "noItem". The word specifies the type of a message body item, and the state
of the stream becomes "inItem". The acceptable types of message body item have been
described in section three, in connection with the message delivery semantics. There is no
result.

THE GRAPEVINE INTERFACE 20

AddToItem: operation = 24, arguments = [number, sequence of bytes]

This command is allowed only if the state is "inItem". The number specifies how many
bytes are in the sequence. The bytes are appended to the current message body item.
There is no result.

Send: operation = 26, no arguments.

This command is allowed only if the state is "inItem". The current message body item is
terminated (as in StartItem), and all the data associated with the message is recorded in
stable storage. The server commits to deliver the message. The result is an ack. The state
of the stream becomes "idle".

Expand: operation = 27, argument = [name]

This command is allowed at any time and does not affect the state of the stream. If the
name would be treated by the mail servers as a distribution list during the delivery
algorithm (including a foreign distribution list) then for each name in that list, the server
sends a boolean TRUE followed by the name. Then a boolean FALSE is sent. Then a byte
is sent. The value of this byte is: 0 if the name was treated as a distribution list, 1 if the
name would be an invalid recipient, 2 if the name would be an individual recipient
(including foreign mail system recipients), 3 if the mail server could not decide because of
communication failures. The intent of this command is to allow a client to show a user the
potential contents of a distribution list.

The following protocols allow a client to inspect and modify the state of an in-box on a mail server.
Mail arrives in an in-box as the major effect of the mail server delivery algorithm. Note that an
individual may have several in-boxes, defined by the individual’s mailbox-list in the naming
database, and any mail retrieval package should arrange to inspect all of the individual’s in-boxes.
The in-box mechanism is complicated by facilities (TOC entries and deleted messages) which are
designed to assist a dumb terminal system to provide a user with temporary access to mail in the
user’s in-boxes. The intent is that a user should retrieve all messages from the in-box and flush the
in-box when software with secondary storage is available to the user. Keeping substantial amounts
of mail in an in-box for substantial periods of time will degrade the performance of the mail
servers. The TOC mechanism allows a client to associate a TOC entry (represented by a remark, i.e. a
string of up to 64 characters) with each message in an in-box. Provision is also made for a client to
delete individual messages from an in-box; a deleted message still occupies a place in the in-box
until the in-box is flushed, but deleting the message frees the resources used by the message body
and property list. No TOC entry may be associated with a deleted message. If there is no in-box on
this server for an individual, then the protocol provides the illusion that there is an in-box
containing no messages.

The mail server accepts PUP’s of type "mailCheckLaurel" (type 214B) and length no more than 128
bytes on socket 54B. If the PUP contains the characters of a name, and this mail server has a non-
empty in-box containing messages for a recipient of that name (even if they are all deleted
messages, see below), then the mail server replies with a PUP of type "mailIsNew" (type 211B);
otherwise it replies with a PUP of type "mailNotNew" (type 212B). Note that the server does not
respond to PUP’s of type "mailCheck" (type 210B). Note that the server does not check whether the
naming database presently indicates that this server is in the user’s mailbox-list. This polling
protocol is intended to allow a client to inspect the state of an individual’s in-box without going to

THE GRAPEVINE INTERFACE 21

the expense of establishing a Byte Stream Protocol connection.

An in-box may be accessed after establishing a Byte Stream Protocol connection in response to an
RFC packet sent to a mail server on socket 57B. The state of this stream is described as one of idle,
open, or inMessage, and there are restrictions on which commands may be used depending on the
state. Violation of these restrictions is a violation of the protocol. The state is initially "idle". Each
command consists of the client sending a word representing an operation, possibly followed by some
arguments, then the server sending some results. The commands allow the client to open a
mailbox, then sequentially inspect or modify the messages in it; the order of the messages is
approximately that in which they were sent, and the order does not change between sessions;
messages are not added to an in-box while a client has it open; only one client may have a
particular in-box open at one time. A client, having opened an in-box, may flush it: this causes
the in-box to be empty. If a client wishes to close an in-box without flushing it, the client must
terminate the connection.

A mail server may occasionally use a remote file server for storing contents of in-boxes; if this has
been done and the file server is unavailable, the mail server will close the client’s mail retrieval
connection arbitrarily (sorry!). The location of such a remote file server is of no concern to a client
of the mail retrieval protocol, but has been described in section three.

OpenInBox: operation = 0, arguments = [name, password]

The state must be "idle". The result is a byte with the following values: 1 if the name is
for a group, 2 if the name is for an individual and the password is correct, 3 if the name is
not registered in the naming database, 4 if the name could not be checked because of
communication failures, 5 if the password is incorrect. If this byte has the value 2, then the
state becomes "open". The byte is followed by a word, which should be ignored.

NextMessage: operation = 1, no arguments.

If the state is "inMessage", it becomes "open". The state must now be "open". The result
is a sequence of three booleans. The first is TRUE iff there is another message in the in-
box, and this becomes the current message; if this boolean is FALSE the others are
undefined. The second is TRUE iff the message is archived; this is a hint to the client that
access to the message may involve access to a remote file server; we recommend that you
indicate this fact to your user. The third is TRUE iff the message is deleted. If the message
is not deleted, then the state becomes "inMessage".

ReadTOC: operation = 2, no arguments.

The state must be "inMessage". If there is a TOC entry associated with this message, the
result is a remark. Otherwise the result is an empty string.

ReadMessage: operation = 3, no arguments.

The state must be "inMessage". The result is a sequence of message body items,
representing the message’s property list followed by the message body. Each item has the
following format: a number, which is the item’s type, followed by a long number, which is
the item’s length, followed by that number of bytes, followed by an extra byte if the length
was odd (thus each item occupies an even number of bytes). The items sent are: an item
of type "postmark" (whose bytes are the timestamp of the message’s property list), an item
of type "sender" (whose bytes are the sender name of the message’s property list), an item
of type "return-to" (whose bytes are the return-to name of the message’s property list), an

THE GRAPEVINE INTERFACE 22

item of type "recipients" (whose bytes are the recipient names of the message’s property
list), the items that constitute the message body in the order provided by the submitting
client, and an item of type 177777B. The item of type 177777B is of length 0. The items
are followed by a Byte Stream Protocol mark byte. The value and meaning of the property
list item types is given earlier in the description of the message delivery semantics.

WriteTOC: operation = 4, argument = [remark]

The state must be "inMessage". The remark is associated with the message as a TOC entry,
(replacing any earlier TOC entry for this message); if the remark is the empty string, no
TOC entry is associated. The result is an ack.

DeleteMessage: operation = 5, no arguments.

The state must be "inMessage". The current message is permanently deleted from this in-
box (as is any associated TOC entry). The result is an ack. The state becomes "open".

Flush: operation = 6, no arguments.

The state must not be "idle". The in-box is emptied. The result is an ack. The state is
now "idle".

THE GRAPEVINE INTERFACE 23

5. The Mesa Grapevine client interface

This section describes informally the interface provided to clients programming in Mesa by the
Mesa GrapevineUser package. The purpose of this section is not primarily to document that
package for its clients, but to indicate how the Grapevine naming database may be used to provide
an interface that makes transparent such network effects as the replication and distribution of
services, and the failure of particular instances of services. If the reader is intending only to be a
client of the Mesa package, then this section should be read briefly; precise specification of the
package is in the public definitions files for the package. If the reader intends to implement an
equivalent package (in Mesa or another language), then I strongly recommend perusal of the source
files of both the definitions and implementations of this package. All files concerned with this
package are available on [Indigo]<Grapevine>User>*.mesa and *.bcd. The BCD’s there are, at the
time of writing, suitable for use with Alto/Mesa 6.0. They are source compatible with the
Mokelumne and Rubicon releases of the Pilot operating system.

GrapevineUser provides several public interfaces. These are named NameInfoDefs, SendDefs, and
RetrieveDefs. The NameInfoDefs interface provides access to most of the naming database enquiry
operations; SendDefs provides for submission of messages; RetrieveDefs allows a client to read
messages from in-boxes. At present the package makes no provision for updates to the naming
database. Each of these interfaces uses the naming database to provide an interface that is
independent of particular computers or network addresses. A client of GrapevineUser never is
concerned with such things as host names.

In the following descriptions, the precise declarations found in the definitions files are not repeated:
the reader should look in the sources of those definitions files.

The NameInfoDefs interface provides for database enquiries. The results of these enquiries are a
return code, represented by some subset of the enumerated type NameType, and in some cases a list
of names, represented by a value of type RListHandle. Each enquiry may give a return code
"allDown", to indicate that because of communication failures the requested enquiry could not be
performed; this indicates that after its best efforts to contact any of the multiple suitable registration
servers, the package had failed. None of the enquiries raises a SIGNAL. If the enquiry is such as to
deliver an RListHandle, and the enquiry succeeds, then the client may enumerate the names
represented by the RListHandle (as often as desired), then should close the RListHandle. The RListHandle

mechanism is implemented, in the default released package, by buffering the names in main
memory but this is implemented by one very simple module which a client is welcome to replace if
other buffering strategies are more appropriate to his application. (See the interface "RListDefs"
and the module "FSPRList" if you are interested in this.) The enquiries each have an obvious
mapping into the commands described in the registration server protocol.

The transparency provided by the NameInfoDefs interface is achieved as follows. Generally, the
NameInfo implementation caches a stream to some registration server. When it is asked to perform
an enquiry about some name, the implementation uses the cached stream to attempt the enquiry. If
this stream fails (because that registration server is now unavailable), or if this enquiry gives a
"WrongServer" return-code, then the implementation attempts to locate a suitable registration
server. It does this by using a resource location interface (described below) to find a network
address of some server which knows about the name in question. That is, if the name in question is
of the form x.reg, the implementation tries to locate a server in the group named reg.gv. If this
succeeds, such a server should be able to answer the enquiry; if this fails because reg.gv" is not a
group, then the name is invalid; if this fails because none of those servers is available then the
return code given is "allDown".

THE GRAPEVINE INTERFACE 24

The SendDefs interface implementation proceeds in a similar manner. Each of its procedures has a
straightforward mapping into a command specified in the mail submission protocol. The SendDefs
implementation attempts to cache the network address of a suitable mail server, but if this fails (or
initially) the implementation uses the resource location interface to locate a server in the group
"MailDrop.ms". Only if this resource location fails is mail submission not possible.

The RetrieveDefs interface is more complicated, because it provides a client with access to all of the
client’s in-boxes. The implementation determines the sites of a client’s in-boxes by using the
Expand database enquiry. The interface also uses the single PUP polling protocol to obtain hints
about the state of the in-boxes. When a client wishes to inspect mail, the implementation
establishes connections only to those in-boxes which have indicated they are non-empty during the
polling protocol; this is important to minimize the connection load on the mail servers, since a
client’s secondary in-boxes will almost always be empty. The RetrieveDefs interface will also
provide clients with access to their mailbox on a foreign mail server (using the MTP protocol), and
will function satisfactorily in an environment where there are no Grapevine servers, only IFS mail
servers. To determine whether it is in a non-Grapevine environment, the RetrieveDefs
implementation considers whether the client’s registry is registered in the PUP Name Lookup Server
database; if the registry is registered there and maps to precisely one network address, then the
registry is assumed to be implemented on an IFS mail server (at that network address) with no aid
from Grapevine; otherwise the Grapevine servers are used.

The GrapevineUser package uses the following algorithm to perform resource location. The
resource location interface is provided with the name of a group in the naming database. It reads
the members of this group, giving it a list of names of potential servers. For each of these, it reads
their connect-site from the database. The implementation then sends a PUP of type "echoMe" to
each of these servers. For each server which replies with an "iAmEcho" PUP, the implementation
calls back to its caller, offering the network address of that server. In this manner, the caller of this
interface is provided with network addresses of potential instances of the service named by the
given group, and the caller can attempt to establish a connection with these, in turn, until a
satisfactory one is found. The "echoMe" mechanism is intended for efficiency: the servers are
tried in order of their responsiveness, and each one tried is responding to PUP’s, so an attempt to
connect will be resolved rapidly.

There are several optimizations used within the GrapevineUser implementation, and the potential
implementor is strongly recommended to inspect the GrapevineUser implementations.

THE GRAPEVINE INTERFACE 25

6. Administrative Facilities

The major administrative facility in Grapevine is the naming database. Most system administration
can be done by performing updates to that database, and an interactive program, called Maintain, is
available to perform these updates. Maintain is documented (partially, at the present time)
elsewhere.

In addition, there are some facilities provided by Grapevine to monitor and affect the state of the
computers which constitute Grapevine. These facilities change from release to release of the
software, so this section is likely to be slightly incorreect at any time. These facilities are defined
precisely only by their implementation. The facilities in question are: a local terminal interface, an
FTP server, a Telnet server, and a log file.

The local display shows various statistics about the state of the servers. These statistics are the same
as those available through the Telnet server "Display Statistics" command. There is also a short
typescript, which is of use only to wizards. When the local keyboard and mouse have not been
touched for a minute, the display reverts to plain white, with a cursor slowly traversing near the top
of the screen; moving a key or the mouse causes the statistics to reappear.

The local keyboard is used only when a server is initialized or restarted. When a server is
initialized for the first time, it will determine its own name, ask you to type its password, and
arrange to fetch copies of the appropriate database entries. When a server is restarted, it will verify
its password (asking for it to be re-typed only if this verification fails), and if necessary will alter its
connect-site in the naming database. Note that registration servers and mail servers cohabiting a
single machine must have distinct names (typically, the same simple-name, with registries "gv" and
"ms"). The case of initializing the first server in the world is necessarily special - consult an expert
for details.

Each Grapevine server provides an FTP server which allows access to files on the Grapevine server’s
local disk filing system. Clients of this FTP server must provide credentials corresponding to a valid
name and password of an individual in the Grapevine database. The files which support the
naming database and message buffering are not accessible. To be permitted to write files, the client
must be a member of the group "Transport.ms". The FTP server supports enumeration of files, with
the string "*" meaning all files.

The log file contains single-line entries recording various events as they occur in the server. The
file is named "GV.log" and is 120 Alto pages long. The file is used as a circular buffer. Each cycle
round this buffer may also be written to backing files on an IFS file server. For a server whose mail
server has a name of the form x.ms, the individual Log-x.ms should have a connect-site whose value
is a string of the form [host]<path>. This will cause the log files to be written cyclically to 40 files
with names of the form <path>x-00!1 through <path>x-39!1 on the file server host using the FTP

protocol. For example, if "Cabernet.ms" is a mail server and the individual "Log-Cabernet.ms"
exists and has connect-site "[Ivy]<DMS>Log>", then files such as "<DMS>Log>Cabernet-09!1" will
be stored on the file server "Ivy". If the required Log-x.ms individual does not exist, no attempt
will be made to write the log files to a file server; the individual is examined only when the server
is restarting, and is not revisited during normal running.

The Telnet server (known as the "Viticulturists’ Entrance") provides various facilites to a remote
terminal user. Some of these facilities are privileged: they are allowed only to an individual who
has logged in, and who is a member of the group "Transport.ms" or whose name is "Wizard.gv"
and they are only available after using the "Enable" command. Most commands can be stopped by
typing DEL. The facilities change frequently, but at present are as follows.

THE GRAPEVINE INTERFACE 26

Display Histograms:

Types histograms of various events. At present only mail retrieval delays.

Display Inboxes:

Types a summary of the state of clients’ in-boxes on this server.

Display Other-Servers:

Types this server’s view of the availability of other servers that it knows about.

Display Policy-Controls:

Types information about the various internal server controls on operations. This includes
whether the operation is presently "allowed", how many instances of the operation are
allowed simultaneously, the highest number that have occurred simultaneously, and the total
number that have occurred.

Display Queues:

Types a summary of the queues of not-yet-delivered messages maintained by the mail
server.

Display Statistics:

Types various statistics kept by the server, including server version and uptime.

Enable:

Allows use of the privileged commands if the logged in user is "Wizard.gv" or is a member
of the group "Transport.ms".

Force Archive:

Forces transfer of the contents of an in-box to a backing file server. The choice of backing
file server is described below.

Force Background-Process:

Forces immediate activation of one of the periodic processes in the server. The "Archiver"
process scans inboxes looking for ones which should be written out to a remote file server
(this normally hapens about 11 p.m. each the evening); the "ReadPending" process
considers those messages which are on the pending queue because there was nowhere to
deliver them (this normally happens every 15 minutes); the "RegPurger" process scans the
naming database looking for information representing dead entries or removed members of
lists which is more than 14 days old and can be removed from the disk (this normally
hapens about 11 p.m. each the evening).

Force MSMail-Login:

Causes the process that reads mail server internal mail to login to GrapevineUser afresh,
causing it to reconsider the location of its inboxes.

THE GRAPEVINE INTERFACE 27

Force RSMail-Login:

Causes the process that reads registration server internal mail to login to GrapevineUser
afresh, causing it to reconsider the location of its inboxes.

Force Purge:

Asks for an R-Name. If this R-Name corresponds to a dead entry in the naming database,
removes that entry immediately (without waiting for the normal 14 day timeout). This
allows immediat re-use of that name, but is incorrect unless all copies of the appropriate
registry throughout Grapevine know that the entry was dead.

Login:

Asks for name and password, and attempts to authenticate the name by use of the naming
database.

Maintain:

Enters the Maintain program, which allows maintenance of the naming database.

Quit:

Terminates this connection.

Restart:

Asks for a line to place in the local file "Rem.cm", asks for a comment to write in the log,
asks for more confirmation, then stops the server.

Set Archive-Days:

Alters the timeout used by the in-box archiver process. This alteration applies only to the
next run of the archiver, then the timeout reverts to its default 7 days.

Set Policy-Control:

Alters the state of various internal server controls from "allowed" to "not allowed", or vice
versa. Setting the control to be "not allowed" prevents the operation in question from
being started subsequently; it does not affect operations currently in progress. The controls
form a hierarchy; all appropriate levels in the hierarchy must be "allowed" for an operation
to be permitted. The controls in question are:

Work: must be allowed for any operation to be allowed
Connection: controls incoming connections other than the Viticulturists’ Entrance:

ClientInput: controls mail submission connections
ServerInput: controls mail forwarding connections from other Grapevine servers
ReadMail: controls mail retrieval connections.
RegExpand: controls registration server enquiry connections.
Lily: controls Telnet server connections to any local Lily server.
MTP: controls MTP server connections from clients.
FTP: controls FTP server connections from clients.

Telnet: controls Viticulturists’ Entrance connections.
MainLine: controls the following four operations:

ReadInput: controls processing messages queued for delivery.

THE GRAPEVINE INTERFACE 28

ReadPending: controls processing messages from the "pending" queue.
ReadForward: controls forwarding message to other servers.
Remailing: controls remailing of messages from inboxes.

Background: controls the following operations:
RSReadMail: controls reading registration server database update messages
MSReadMail: controls reading mail server in-box re-mail requests.
Archiver: controls the transfer of in-boxes to remote file servers.
RegPurger: controls the nightly clean-up of the naming database.

Wait-until-idle:

Waits until the only activity in the server is this Telnet connection. This wait may also be
terminated by typing DEL.

THE GRAPEVINE INTERFACE 29

Appendix: The Mesa Grapevine Interfaces

This appendix contains those interfaces of the Mesa Grapevine client interface which were referred
to earlier in this document.

-- Transport mechanism: Client reading of R-Server database

-- [Juniper]<Grapevine>User>NameInfoDefs.mesa

-- Andrew Birrell 27-Oct-80 15:39:10

DIRECTORY

BodyDefs USING[Connect, oldestTime, Password, Remark, RName, Timestamp];

NameInfoDefs: DEFINITIONS =

BEGIN

NameType: TYPE = { noChange,

 group, individual, notFound, allDown,

 badPwd };

-- represents the result states of enquiries --

-- "RLists" are sequences of R-Names returned from the server --

RListHandle: TYPE[SIZE[POINTER]];

Enumerate: PROC[list: RListHandle,

 work: PROC[BodyDefs.RName]RETURNS[done: BOOLEAN]];

Close: PROC[list: RListHandle];

-- "Expand" returns mailbox site names for individuals, membership list

-- for groups. If the old stamp is still current, returns "noChange". Will

-- not return "noChange" if the old stamp is defaulted. --

ExpandInfo: TYPE = RECORD[SELECT type: NameType[noChange..allDown] FROM

noChange => NULL,

group => [members: RListHandle,

 stamp: BodyDefs.Timestamp],

individual => [sites: RListHandle,

 stamp: BodyDefs.Timestamp],

notFound => NULL,

allDown => NULL,

ENDCASE];

Expand: PROC[name: BodyDefs.RName,

 oldStamp: BodyDefs.Timestamp _ BodyDefs.oldestTime]

RETURNS[ExpandInfo];

-- "GetMembers" returns the membership list for a group. If the old stamp

-- is still current, returns "noChange". Will not return "noChange" if

-- the old stamp is defaulted. --

MemberInfo: TYPE = RECORD[SELECT type: NameType[noChange..allDown] FROM

THE GRAPEVINE INTERFACE 30

noChange => NULL,

group => [members: RListHandle,

 stamp: BodyDefs.Timestamp],

individual => NULL,

notFound => NULL,

allDown => NULL,

ENDCASE];

GetMembers: PROC[name: BodyDefs.RName,

 oldStamp: BodyDefs.Timestamp _ BodyDefs.oldestTime]

RETURNS[MemberInfo];

GetOwners: PROC[name: BodyDefs.RName,

 oldStamp: BodyDefs.Timestamp _ BodyDefs.oldestTime]

RETURNS[MemberInfo];

GetFriends: PROC[name: BodyDefs.RName,

 oldStamp: BodyDefs.Timestamp _ BodyDefs.oldestTime]

RETURNS[MemberInfo];

-- "CheckStamp" performs basic name validation, also telling the caller the

-- name type. If the old stamp is still current, returns "noChange". Will

-- not return "noChange" if the old stamp is defaulted. --

StampInfo: TYPE = NameType[noChange..allDown];

CheckStamp: PROC[name: BodyDefs.RName,

 oldStamp: BodyDefs.Timestamp _ BodyDefs.oldestTime]

RETURNS[StampInfo];

-- "GetConnect" returns the connect-site for an individual. "connect" is

-- undisturbed if the result is not "individual". The connect-site is

-- either an NLS name or a net-address. "connect.maxlength" should equal

-- "BodyDefs.maxConnectLength". --

ConnectInfo: TYPE = NameType[group..allDown];

GetConnect: PROC[name: BodyDefs.RName, connect: BodyDefs.Connect]

RETURNS[ConnectInfo];

-- "GetRemark" returns the remark for a group. "remark" is

-- undisturbed if the result is not "group". The remark is a human readable

-- string. "remark.maxlength" should equal "BodyDefs.maxRemarkLength". --

RemarkInfo: TYPE = NameType[group..allDown];

GetRemark: PROC[name: BodyDefs.RName, remark: BodyDefs.Remark]

RETURNS[RemarkInfo];

-- "Authenticate" checks a user name and password. --

AuthenticateInfo: TYPE = NameType[group..badPwd];

Authenticate: PROC[name: BodyDefs.RName, password: STRING]

RETURNS[AuthenticateInfo];

THE GRAPEVINE INTERFACE 31

AuthenticateKey:PROC[name: BodyDefs.RName, key: BodyDefs.Password]

RETURNS[AuthenticateInfo];

-- Access control primitives --

Membership: TYPE = { yes, no, notGroup, allDown };

IsMemberDirect: PROC[name: BodyDefs.RName, member: BodyDefs.RName]

RETURNS[Membership];

IsOwnerDirect: PROC[name: BodyDefs.RName, owner: BodyDefs.RName]

RETURNS[Membership];

IsFriendDirect: PROC[name: BodyDefs.RName, friend: BodyDefs.RName]

RETURNS[Membership];

IsMemberClosure:PROC[name: BodyDefs.RName, member: BodyDefs.RName]

RETURNS[Membership];

IsOwnerClosure: PROC[name: BodyDefs.RName, owner: BodyDefs.RName]

RETURNS[Membership];

IsFriendClosure:PROC[name: BodyDefs.RName, friend: BodyDefs.RName]

RETURNS[Membership];

END.

THE GRAPEVINE INTERFACE 32

-- Transport Mechanism - DEFS for client sending mail --

-- [Juniper]<Grapevine>User>SendDefs.mesa

-- Andrew Birrell 23-Jan-81 11:00:14 --

DIRECTORY

BodyDefs USING[ItemType, Password, RName];

SendDefs: DEFINITIONS = BEGIN

-- These defs allow clients to inject messages into the mail system. They

-- are designed so that they can be used by multiple processes creating

-- different messages; the state of creation of a single message is

-- represented by a "Handle". The interface is also designed so that it

-- may be implemented either by transmission over the network to a remote

-- mail server, or by calls on a local mail server. --

Handle: TYPE[SIZE[POINTER]];

Create: PROCEDURE RETURNS[handle: Handle];

Destroy: PROCEDURE[handle: Handle];

-- For any one Handle, the following calls must be made in the order:

-- StartSend,

-- AddRecipient, AddRecipient, AddRecipient, . . .

-- CheckValidity {iff "validate=TRUE" when "StartSend" was called},

-- StartItem, (AddToItem, AddToItem, . . .), StartItem, (...), . . .

-- Send

-- Abort may be called at any point to abandon the sequence.

SendFailed: ERROR[notDelivered: BOOLEAN];

 -- "StartSend" raises no signals that may be caught by the client.

 -- The ERROR "SendFailed" may be raised by any of AddRecipient,

 -- CheckValidity, StartItem, AddToItem, or Send if some communication

 -- failure occurs. If it is raised, the client should generally catch

 -- it, go back to the start of the message, and re-call "StartSend".

 -- "StartSend" will then attempt to find a better mail server to talk

 -- to. Only when "StartSend" returns "allDown" is it not possible to

 -- send the message. The client may want to inform the user if this

 -- re-try mechanism has been invoked.

StartSendInfo: TYPE = { ok, badPwd, badSender, badReturnTo, allDown };

StartSend: PROC[handle: Handle,

 senderPwd: STRING,

 sender: BodyDefs.RName,

 returnTo: BodyDefs.RName _ NIL,

 validate: BOOLEAN]

RETURNS[StartSendInfo];

 -- Starts a message. If "returnTo" is NIL, the sender name is used as

 -- return-to name. "validate" says whether recipient names should be

 -- validated during the communication with the mail server. --

SendFromClient: PROC[handle: Handle,

 fromNet: [0..256),

THE GRAPEVINE INTERFACE 33

 fromHost: [0..256),

 senderKey: BodyDefs.Password,

 sender: BodyDefs.RName,

 returnTo: BodyDefs.RName,

 validate: BOOLEAN]

RETURNS[StartSendInfo];

 -- Note: this procedure is intended for use only by the remote server.

 -- Starts a message. "fromNet" and "fromHost" are ignored if the mail

 -- server is remote. "validate" says whether recipient names should be

 -- validated during the communication with the mail server. --

AddRecipient: PROC[handle: Handle, recipient: BodyDefs.RName];

 -- Adds to the recipient list. --

CheckValidity: PROC[handle: Handle,

 notify: PROCEDURE[CARDINAL,BodyDefs.RName]]

RETURNS[ok: CARDINAL];

 -- Must be called after all the recipients have been given, iff the

 -- "validate" argument to "StartSend" was TRUE. Calls "notify" for each

 -- bad recipient. The arguments to "notify" are the recipient number

 -- (counting from 1) and name of an illegal recipient. Returns the

 -- number of valid recipients. If any recipients were invalid, delivery

 -- of the message is still allowed.

StartItem: PROC[handle: Handle, type: BodyDefs.ItemType];

 -- Start a message body item. The type must not be "Postmark",

 -- "Sender", "ReturnTo", or "Recipients". --

StartText: PROC[handle: Handle] = INLINE{ StartItem[handle,Text] };

AddToItem: PROC[handle: Handle,

 buffer: DESCRIPTOR FOR PACKED ARRAY OF CHARACTER];

 -- Add the data to the current message body item. --

Send: PROC[handle: Handle];

 -- Commit to sending the message; returns only when the mail server has

 -- commited to delivering the message. --

Abort: PROC[handle: Handle];

 -- Abandon the message. May be called at any time. --

ExpandInfo: TYPE = { ok, notFound, individual, allDown};

ExpandFailed: ERROR;

Expand: PROC[name: BodyDefs.RName, work: PROC[BodyDefs.RName]]

RETURNS[ExpandInfo];

 -- If the name will be interpreted by the mail server as a distribution

 -- list, enumerates the names which are direct members of that list.

 -- This is intended for use only if the user wants to inspect the

 -- contents. Note that the contents may change, or the name may become

THE GRAPEVINE INTERFACE 34

 -- invalid, before delivery of any message. "Expand" works even if the

 -- list has to be read from an MTP server. May raise "ExpandFailed".

 -- If ExpandFailed is raised, some communication error has occurred;

 -- you should re-call Expand, which will try another server. Note that

 -- failure of Expand may be caused by failure of some remote server;

 -- you may still be able to send a message successfully.

 -- "notFound" means the name is invalid; "individual" means the name

 -- specifies an individual; "allDown" means either all mail servers

 -- are inaccessible, or some other server (possibly MTP) needed for the

 -- expansion is inaccessible.

END.

THE GRAPEVINE INTERFACE 35

-- Transport Mechanism - DEFS for retrieval of new mail from GV Servers --

-- [Juniper]<Grapevine>User>RetrieveDefs.mesa

-- M. D. Schroeder February 20, 1980 5:05 PM --

-- Andrew Birrell 21-Jan-81 17:13:34 --

DIRECTORY

BodyDefs USING[ItemHeader, RName, Timestamp];

RetrieveDefs: DEFINITIONS = BEGIN

-- No procedures in this interface other than the "AccessProcs" returned by

-- "NextServer" ever raise a SIGNAL or ERROR.

Handle: TYPE[SIZE[POINTER]];

 -- This interface is intended to be able to be used by multiple clients.

 -- They are distinquished by a "handle", created by "Create" and

 -- destroyed by "Destroy" --

Create: PROC[pollingInterval: CARDINAL,

 reportChanges: PROCEDURE[MBXState] _ NIL]

RETURNS[Handle];

 -- Must be called before any other entries in this interface. Can be

 -- called many times. "pollingInterval" is the interval in seconds to

 -- wait between successive inbox checks and "reportChanges" (if

 -- provided) is called whenever the state of the user’s authentication

 -- or mailboxes changes; "reportChanges" will not be called if the

 -- state changes to "unknown" or "userOK".

Destroy: PROC[Handle];

 -- Terminates use of this handle, releasing all resources used by it. --

-- AUTHENTICATION AND MAILBOX POLLING --

NewUser: PROC[handle: Handle, user: BodyDefs.RName,

 password: STRING];

 -- Provides new user name and password, and starts authentication and

 -- mailbox checking.

MBXState: TYPE = { unknown, badName, badPwd, cantAuth, userOK,

 allDown, someEmpty, allEmpty, notEmpty };

 -- Records current state of the user’s mailboxes. Initially "unknown".

 -- Set to "badName", "badPwd", "cantAuth" or "userOK" after

 -- authentication check. Set to "allDown", "someEmpty", "allEmpty", or

 -- "notEmpty" after mail polling is complete. "someEmpty" means not all

 -- servers replied and none had mail; "allEmpty" means all replied and

 -- none had mail; "notEmpty" means at least one has mail; "allDown"

 -- means none replied.

MailboxState: PROC[handle: Handle] RETURNS[state: MBXState];

 -- Returns the current mailbox state. Will not return "unknown" or

 -- "userOK" (These change to "cantAuth" or "allDown" after suitable

 -- timeouts if necessary.)

THE GRAPEVINE INTERFACE 36

WaitForMail: PROC[handle: Handle];

 -- returns only when there is likely to be mail for the user --

 -- Possible ERRORS: none

SetMTPRetrieveDefault: PROC[host, reg: STRING];

 -- records "host" and "reg", and subsequently if the user name is such

 -- that its registry is an MTP registry, and its registry equals "reg",

 -- then the retrieve host is forced to be "host".

 -- NB: This is a temporary facility for the benefit of Laurel.

-- ACCESS TO MAILBOXES --

-- The intended use is as follows.

-- The user has a number of mailboxes, each of which is on an MTP server or

-- on a Grapevine server. To access all of a client’s mail, call

-- "NextServer" repeatedly until it returns noMore=TRUE. For each

-- successful call of "NextServer", use the AccessProcs to read the mail in

-- the mailbox.

-- For either type of server, call "nextMessage" until it returns

-- msgExists=FALSE. The first call of "nextMessage" for each server will

-- attempt to create a stream to the server (signalling if it fails).

-- While accessing a mailbox, "Failed" may be signalled at any time if the

-- communication system fails (because of network or server error). If

-- "Failed" is signalled, no further operations on this mailbox are allowed

-- If "nextMessage" returns deleted=TRUE it indicates that the message is

-- really just a placeholder and has been removed from the mailbox; you

-- should not attempt to access the message. Returning archived=TRUE

-- indicates that the message has been spilled to some file server, and

-- accessing it is likely to be much slower. For each message that exists

-- and is not deleted, the message may be manipulated by the other

-- procedures provided.

-- If the server type is GV, "readTOC" may be used to read any TOC entry

-- for the message (giving length=0 if there is no TOC entry), then

-- "startMessage" may be called to read the guaranteed properties of the

-- message; these are not available for MTP servers; these may not be

-- called after you have called "nextItem" for this message.

-- For either type of server, "nextItem" may be called to access in

-- sequence the items which are the contents of the message body. Note

-- that the ItemHeader contains the item type and length in bytes. For an

-- MTP server, the only item will be of type "text". For a GV server, the

-- first item will be the guaranteed recipient list. For all servers, the

-- message body is followed by an item of type "LastItem". Within an item,

-- use "nextBlock" to access the data of the item. Each call of

-- "nextBlock" within an item will fill its buffer if the data exists; the

-- end of the item is indicated by "nextBlock" returning 0.

-- If the server is GV, you may call "writeTOC" to change or create a TOC

-- entry for the message, or you may call "deleteMessage" to remove this

-- single message from the mailbox; "readTOC", "startMessage", "nextItem"

THE GRAPEVINE INTERFACE 37

-- or "nextBlock" may not be called after calling "writeTOC" or

-- "deleteMessage" for this message.

-- At any time within an item, you may call "nextItem" to skip the

-- remainder of the item; at any time within a message, you may call

-- "nextMessage" to skip the remainder of this message.

-- At any time within a mailbox, you may call "accept". This

-- terminates reading the mailbox and deletes all messages from

-- the mailbox. Calling "accept" will not delete any messages which you

-- haven’t been given a chance to read. No other operations on the mailbox

-- are allowed after calling "accept". If you call "NextServer" without

-- having called "accept", the mailbox is closed (if necessary) without

-- deleting the messages (except those which were deleted by calling

-- "deleteMessage").

ServerType: TYPE = { MTP, GV };

ServerState: TYPE = { unknown, empty, notEmpty };

 -- "unknown" means the server didn’t reply to mail check packets.

AccessProcs: TYPE = RECORD[-- procedures to access mailbox --

nextMessage: PROC[handle: Handle]

RETURNS[msgExists, archived, deleted: BOOLEAN],

nextItem: PROC[handle: Handle]

RETURNS[BodyDefs.ItemHeader],

nextBlock: PROC[handle: Handle,

 buffer: DESCRIPTOR FOR PACKED ARRAY OF CHARACTER]

RETURNS[bytes: CARDINAL],

accept: PROC[handle: Handle],

extra: SELECT type: ServerType FROM

 MTP => NULL,

 GV => [

readTOC: PROC[handle: Handle, text: STRING],

startMessage: PROC[handle: Handle,

 postmark: POINTER TO BodyDefs.Timestamp _ NIL,

 sender: BodyDefs.RName _ NIL,

 returnTo: BodyDefs.RName _ NIL],

writeTOC: PROC[handle: Handle, text: STRING],

deleteMessage: PROC[handle: Handle]],

 ENDCASE

];

NextServer: PROCEDURE[handle: Handle]

 RETURNS[noMore: BOOLEAN,

 state: ServerState,

 procs: AccessProcs];

 -- Returns information about the next server in the mailbox site list of

 -- the user, and that server becomes the "current server". If there is

 -- no such server, noMore=TRUE, in which case the next call to

 -- "NextServer" will start a new sequence of mail retrieval. If the

 -- state is "unknown", attempting to access the mailbox is inadvisable,

 -- as the server is probably down. If the state is "empty", there may

 -- in fact be mail, as the state is only a hint obtained by polling.

ServerName: PROC[handle: Handle,

THE GRAPEVINE INTERFACE 38

 serverName: BodyDefs.RName];

 -- Provides the name of the current server. For MTP registries, this

 -- will be equivalent to the registry name.

FailureReason: TYPE = { communicationFailure, -- server or network down --

 noSuchServer, -- server name incorrect --

 connectionRejected, -- server full, mbx busy, etc --

 badCredentials, -- name/pwd rejected --

 unknownFailure -- protocol violation

 -- or unknown MTP error:

 -- likely to be permanent --

};

Failed: ERROR[why: FailureReason];

 -- May be signalled by any of the "AcceptProcs" returned by "NextServer"

END.

THE GRAPEVINE INTERFACE 39

-- Transport Mechanism - DEFS for location of server by client --

-- [Juniper]<Grapevine>User>LocateDefs.mesa

-- Andrew Birrell 14-Aug-80 12:06:21 --

DIRECTORY

BodyDefs USING[RName],

PupDefs USING[PupAddress];

LocateDefs: DEFINITIONS = BEGIN

FoundState: TYPE = { allDown, notFound, found };

FoundServerInfo: TYPE = RECORD[SELECT t: FoundState FROM

allDown => NULL,

notFound => NULL,

found => [where: PupDefs.PupAddress],

ENDCASE];

FindNearestServer: PROCEDURE[list: BodyDefs.RName,

 accept: PROCEDURE[PupDefs.PupAddress]RETURNS[BOOLEAN]]

 RETURNS[FoundServerInfo];

FindLocalServer: PROCEDURE[list, local: BodyDefs.RName]

 RETURNS[FoundState];

FindRegServer: PROCEDURE[who: BodyDefs.RName,

 accept: PROCEDURE[PupDefs.PupAddress]RETURNS[BOOLEAN]]

 RETURNS[FoundServerInfo];

AcceptFirst: PROC[PupDefs.PupAddress]RETURNS[BOOLEAN];

-- returns TRUE --

END.

THE GRAPEVINE INTERFACE 40

-- Transport Mechanism: DEFS for message body layout --

-- [Juniper]<Grapevine>User>BodyDefs.mesa

-- Andrew Birrell 14-Aug-80 10:31:53 --

BodyDefs: DEFINITIONS =

BEGIN

-- Note that incompatible changes to these definitions may require the

-- cooperation of all mail servers and their clients, and the flushing of

-- the mail server filestores. --

-- The following types are basic to the transport mechanism.

-- "Connect", "Password" and "Remark" don’t really occur in message bodies,

-- but this is the most stable defs file for them. They are used by public

-- clients of the transport mechanism.

-- An R-Name (Recipient-name) is the basic name within the transport

-- mechanism. It is of the form SN.Reg (Simple-Name . Registry). The

-- representation is as a string of up to maxRNameLength characters.

-- In message bodies, R-Names occupy an integral number of words.

RName: TYPE = STRING;

maxRNameLength: CARDINAL = 64;

RNameSize: PROC[name: RName] RETURNS[CARDINAL] = INLINE

 { RETURN[SIZE[StringBody[name.length]]] };

-- "Connect" is the representation of a connect-site for an individual

-- (typically a server). It is a string which is either an NLS name

-- or a PUP address.

Connect: TYPE = STRING;

maxConnectLength: CARDINAL = 64;

-- "Remark" is the representation of a remark associated with a group,

-- or of a TOC entry in a mailbox. It is a human readable string.

Remark: TYPE = STRING;

maxRemarkLength: CARDINAL = 64;

-- "Password" is the representation of an individual’s encryption key.

-- It is intended to be used with the DES encryption algorithm.

Password: TYPE = ARRAY[0..3] OF CARDINAL;

-- The following definitions are concerned with the layout of "message bodies". A message

body is the internal representation of a message within and between mail servers. It is

also sent to the client when he retrieves his mail. A message body contains a number of

"items". Items are used to represent such things as postmark, recipients, sender, as well

THE GRAPEVINE INTERFACE 41

as the message text (if any), or other content of the message such as audio or

capabilities. Some items are mandatory and always occur precisely once, others may occur

any number of times (including zero). Each Item has a header, followed by the number of

bytes of data specified by the header, followed by an extra byte if its length is odd.

Thus items always start at a word boundary. A complete message body consists of the

mandatory items followed by the optional ones. --

-- Time stamps --

Timestamp: TYPE = MACHINE DEPENDENT RECORD[

 net: [0..256), -- the PUP net number --

 host: [0..256), -- the PUP host number --

 time: PackedTime];

PackedTime: TYPE = LONG CARDINAL;

 -- the number of seconds since midnight, January 1,

 -- 1901 GMT --

oldestTime: Timestamp = [net:0, host:0, time:0];

-- Layout of items --

ItemHeader: TYPE = MACHINE DEPENDENT RECORD[

 type: ItemType,

 length: ItemLength];

 -- Each item consists of an ItemHeader followed by a

 -- variable length array, containing the number of

 -- bytes specified by the length. The item is

 -- followed by an extra byte if its length is odd. --

Item: TYPE = POINTER TO ItemHeader;

ItemLength: TYPE = LONG CARDINAL;

 -- Number of data bytes in the item, excluding header--

ItemType: TYPE = MACHINE DEPENDENT {

--- Mandatory items --

-- In each message body, each of these items occurs precisely once, and they occur in the

order given here --

PostMark(10B), -- the item contains a timestamp giving the

-- originating host and approximate time at which the

-- message was given to the transport mechanism. --

Sender(20B), -- the item contains precisely one R-Name, being that

-- of the sender of this message --

ReturnTo(30B), -- the item contains precisely one R-Name, being that

-- of the client to whom non-delivery of the message

-- should be notified --

Recipients(40B), -- the item contains a sequence of R-Names, being the

-- intended recipients of this message, as provided by

-- the sender --

THE GRAPEVINE INTERFACE 42

-- Items used solely by clients --

Text(1010B), -- the item contains a sequence of characters forming

-- a textual message --

Capability(1020B), -- the item contains a capability --

Audio(1030B), -- the item is an audio message --

-- Items used in registration server internal mail --

updateItem(2000B), -- the item contains a registration server entry --

reMail(2100B), -- the item is internal mail to a mail server,

-- containing precisely one R-Name, indicating that

-- the corresponding mailbox should be re-mailed --

-- Mandatory last item --

LastItem(LAST[CARDINAL]) -- the item contains no data, and always occurs

-- as the last item in a message body --

};

END.

THE GRAPEVINE INTERFACE 43

-- Transport mechanism: DEFS for lists of R-Names

-- [Juniper]<Grapevine>User>RListDefs.mesa

-- Andrew Birrell 4-Aug-80 16:14:17

DIRECTORY

BodyDefs USING[RName],

ProtocolDefs USING[Handle];

RListDefs: DEFINITIONS =

BEGIN

-- These defs are intended to be implemented on the disk heap in the server

-- and in main memory in the GV-User package --

RListHandle: TYPE[SIZE[POINTER]];

Receive: PROC[str: ProtocolDefs.Handle]

RETURNS[RListHandle];

-- may raise ProtocolDefs.Failed --

Enumerate: PROC[list: RListHandle,

 work: PROC[BodyDefs.RName]RETURNS[done:BOOLEAN]];

Close: PROC[list: RListHandle];

END.

