LizardCacheImpl.mesa
Copyright © 1984, 1985 by Xerox Corporation. All rights reserved.
Russ Atkinson (RRA) October 11, 1985 3:24:00 pm PDT
DIRECTORY
DragOpsCross USING [Half, TrapIndex, Word, wordsPerPage, ZerosWord],
DragOpsCrossUtils USING [AddDelta, HalfShift, HalfToCard, HalfXor, LowHalf, WordToHalves],
LizardCache USING [CacheBase, CacheBaseRep, CacheFetchProc, CacheStoreProc, SharedBase, SharedBaseRep],
SparseMemory USING [Base, FetchPage, Page];
LizardCacheImpl: CEDAR PROGRAM
IMPORTS DragOpsCrossUtils, SparseMemory
EXPORTS LizardCache
= BEGIN OPEN DragOpsCross, DragOpsCrossUtils, LizardCache;
TrapIndex: TYPE = DragOpsCross.TrapIndex;
Word: TYPE = DragOpsCross.Word;
CacheBase: TYPE = REF CacheBaseRep;
CacheBaseRep: TYPE = RECORD [
sharedBase: SharedBase ← NIL, -- shared base data
private: REFNIL, -- private data to the cache implementation
fetch: CacheFetchProc ← NIL, -- this hook allows the user to intercept cache accesses
store: CacheStoreProc ← NIL, -- this hook allows the user to intercept cache accesses
data: REFNIL, -- private data for clients intercepting fetch & store
stats: CacheStats ← [] -- maintained by the default fetch and store routines
];
SharedBase: TYPE = REF SharedBaseRep;
SharedBaseRep: TYPE = RECORD [
mem: SparseMemory.Base ← NIL,
busyUntil: INT ← 0
];
CacheFetchProc: TYPE = PROC
[base: CacheBase, addr: Word, cycle: INT, noEffect: BOOLFALSE]
RETURNS [data: Word, status: TrapIndex, rejectCycles: INT];
This is the type of routine that is used to fetch words from the cache. If noEffect, then no change will be made to the cache state or statistics (useful for dumping memory).
CacheStoreProc: TYPE = PROC
[base: CacheBase, addr: Word, data: Word, cycle: INT]
RETURNS [status: TrapIndex, rejectCycles: INT];
This is the type of routine that is used to store words into the cache. The old word is returned to facilitate memory tracing.
CacheStats: TYPE = RECORD [
probes: INT ← 0,
misses: INT ← 0,
dirtyWrites: INT ← 0,
rejectCycles: INT ← 0
];
Private types
PageEntry: TYPE = REF PageEntryRep;
PageEntryRep: TYPE = RECORD [
next: PageEntry ← NIL,
pageAddr: Word ← ZerosWord,
useCount: INT ← 0,
readOnly: BOOLFALSE
];
HashEntry: TYPE = REF HashEntryRep;
HashEntryRep: TYPE = RECORD [
next: HashEntry ← NIL,
lineAddr: Word ← ZerosWord,
words: ARRAY [0..wordsPerLine) OF Word ← ALL[ZerosWord],
index: NAT ← 0,
dirty, readOnly, shared: BOOLFALSE
];
CacheData: TYPE = REF CacheDataRep;
CacheDataRep: TYPE = RECORD [
hashVector: HashVector ← NIL,
pageEntryCount: INT ← 0,
pageList: PageEntry ← NIL,
freePageList: PageEntry ← NIL,
victimIndex: CARDINAL ← 0,
lineTable: SEQUENCE linesInCache: NAT OF HashEntry
];
HashVector: TYPE = REF HashVectorRep;
HashVectorRep: TYPE = ARRAY [0..HashLim) OF HashEntry;
HashLim: CARDINAL = 512;
NoTrap: DragOpsCross.TrapIndex = ALUCondFalse;
wordsPerLine: NAT = 4;
wordsPerPage: CARDINAL = DragOpsCross.wordsPerPage;
Cost (in reject cycles) for various operations; these are all estimates
cyclesToArbitrate: NAT ← 3;
cyclesToReadFirst: NAT ← 4;
cyclesToReadRest: NAT ← 3;
cyclesToWriteQuad: NAT ← 6;
cyclesToReadMap: NAT ← 4;
NewBase: PUBLIC PROC [mem: SparseMemory.Base] RETURNS [SharedBase] = {
Creates a new cache on the specified sparse memory.
RETURN [NEW[SharedBaseRep ← [mem, 0]]];
};
NewCache: PUBLIC PROC [shared: SharedBase, lines: [0..4096) ← 0] RETURNS [CacheBase] = {
Creates a new cache on the specified shared memory.
base: CacheBase ← NEW[CacheBaseRep ← [NIL, NIL, LocalFetch, LocalStore, NIL, []]];
private: CacheData ← NEW[CacheDataRep[IF lines = 0 THEN 64 ELSE lines]];
base.private ← private;
base.sharedBase ← shared;
ResetCache[base];
RETURN [base];
};
ResetCache: PUBLIC PROC [cache: CacheBase] = {
Resets the given cache to its initial state (all empty).
private: CacheData = NARROW[cache.private];
private.pageList ← NIL;
private.hashVector ← NEW[HashVectorRep ← ALL[NIL]];
private.victimIndex ← 0;
private.pageEntryCount ← 0;
cache.sharedBase.busyUntil ← 0;
FOR i: NAT IN [0..private.linesInCache) DO
private[i] ← NEW[HashEntryRep ← [index: i]];
ENDLOOP;
};
FlushCache: PUBLIC PROC [cache: CacheBase] = {
Makes the underlying memory agree with the current entry. No stats update.
data: CacheData = NARROW[cache.private];
FOR i: NAT IN [0..data.linesInCache) DO
line: HashEntry = data[i];
IF line.dirty THEN {
mem: SparseMemory.Base = cache.sharedBase.mem;
page: SparseMemory.Page = SparseMemory.FetchPage[mem, line.lineAddr];
indexInPage: CARDINAL = HalfToCard[LowHalf[line.lineAddr]] MOD wordsPerPage;
FOR i: [0..wordsPerLine) IN [0..wordsPerLine) DO
page.words[indexInPage+i] ← line.words[i];
ENDLOOP;
};
ENDLOOP;
};
LocalFetch: CacheFetchProc = {
[base: CacheBase, addr: Word, cycle: INT, noEffect: BOOLFALSE]
RETURNS [data: Word, status: TrapIndex, rejectCycles: INT];
indexInLine: [0..wordsPerLine) = HalfToCard[LowHalf[addr]] MOD wordsPerLine;
hashEntry: HashEntry;
[hashEntry, rejectCycles] ← Access[base, AddDelta[-INT[indexInLine], addr], cycle];
IF hashEntry = NIL THEN RETURN [ZerosWord, EUPageFault, rejectCycles];
RETURN [hashEntry.words[indexInLine], NoTrap, rejectCycles];
};
LocalStore: CacheStoreProc = {
[base: CacheBase, addr: Word, data: Word, cycle: INT]
RETURNS [old: Word, status: TrapIndex, rejectCycles: INT];
indexInLine: [0..wordsPerLine) = HalfToCard[LowHalf[addr]] MOD wordsPerLine;
hashEntry: HashEntry;
[hashEntry, rejectCycles] ← Access[base, AddDelta[-INT[indexInLine], addr], cycle];
IF hashEntry = NIL THEN RETURN [ZerosWord, EUPageFault, rejectCycles];
old ← hashEntry.words[indexInLine];
IF hashEntry.readOnly THEN RETURN [old, EUWriteFault, rejectCycles];
hashEntry.words[indexInLine] ← data;
hashEntry.dirty ← TRUE;
status ← NoTrap;
};
Method: TYPE = {advanceOnMiss, shiftOnHit};
method: Method ← shiftOnHit;
Access: PROC [cache: CacheBase, lineAddr: Word, cycles: INT] RETURNS [hashEntry: HashEntry, rejectCycles: INT ← 0] = {
BumpReject: PROC [n: CARDINAL] = {
rejectCycles ← rejectCycles + n;
busyUntil ← busyUntil + n;
cache.sharedBase.busyUntil ← busyUntil;
};
data: CacheData = NARROW[cache.private];
oldEntry: BOOLTRUE;
victim: CARDINAL ← data.victimIndex;
busyUntil: INT;
hashIndex: CARDINAL;
halfHash: Half ← HalfXor[WordToHalves[lineAddr][0], WordToHalves[lineAddr][1]];
halfHash ← HalfXor[halfHash, HalfShift[halfHash, -8]];
hashIndex ← HalfToCard[halfHash] MOD HashLim;
hashEntry ← data.hashVector[hashIndex];
cache.stats.probes ← cache.stats.probes + 1;
WHILE hashEntry # NIL DO
IF hashEntry.lineAddr = lineAddr THEN {
IF hashEntry.index = victim AND method = shiftOnHit THEN {
We make the victim index point at the next cache entry
victim ← victim + 1;
data.victimIndex ← IF victim = data.linesInCache THEN 0 ELSE victim;
};
RETURN;
};
hashEntry ← hashEntry.next;
ENDLOOP;
busyUntil ← cache.sharedBase.busyUntil;
cache.stats.misses ← cache.stats.misses + 1;
hashEntry ← data.lineTable[victim];
IF busyUntil > cycles THEN {
Allow for bus to become available. Note that we should NOT bump busyUntil, since we are really just trying to get the cycle counter up to busyUntil.
rejectCycles ← busyUntil - cycles;
};
BumpReject[cyclesToArbitrate]; -- allow for bus arbitration cost
{
The victim must be removed from the hash table and page table.
lag: PageEntry ← NIL;
oldLineAddr: Word = hashEntry.lineAddr;
oldIndexInPage: CARDINAL = HalfToCard[LowHalf[oldLineAddr]] MOD wordsPerPage;
oldPageAddr: Word = AddDelta[-INT[oldIndexInPage], oldLineAddr];
IF oldEntry THEN {
headHashEntry: HashEntry;
oldHashIndex: CARDINAL;
oldHalfHash: Half ← HalfXor[
WordToHalves[oldLineAddr][0], WordToHalves[oldLineAddr][1]];
oldHalfHash ← HalfXor[oldHalfHash, HalfShift[oldHalfHash, -8]];
oldHashIndex ← HalfToCard[oldHalfHash] MOD HashLim;
headHashEntry ← data.hashVector[oldHashIndex];
Maintain the hash table by removing the victim from the table. We must be prepared for the entry to not be in the hash table at all if the entry is brand new.
IF headHashEntry = hashEntry
THEN data.hashVector[oldHashIndex] ← hashEntry.next
ELSE WHILE headHashEntry # NIL DO
IF hashEntry = headHashEntry.next THEN {
headHashEntry.next ← hashEntry.next;
EXIT};
headHashEntry ← headHashEntry.next
ENDLOOP;
Now we need to maintain the page table. We must be prepared for the entry to not be in the hash table at all if the entry is brand new.
FOR pageEntry: PageEntry ← data.pageList, pageEntry.next WHILE pageEntry # NIL DO
IF pageEntry.pageAddr = oldPageAddr THEN {
Decrement the use count for this page (if an entry already exists)
IF (pageEntry.useCount ← pageEntry.useCount - 1) <= 0 THEN {
Remove this page entry from the list and put it on the free page list.
IF lag = NIL THEN data.pageList ← pageEntry.next ELSE lag.next ← pageEntry.next;
data.pageEntryCount ← data.pageEntryCount - 1;
pageEntry.next ← data.freePageList;
data.freePageList ← pageEntry;
};
EXIT
};
lag ← pageEntry;
ENDLOOP;
};
IF hashEntry.dirty THEN {
The victim is dirty, so we need to write it back to its home page.
mem: SparseMemory.Base = cache.sharedBase.mem;
oldPage: SparseMemory.Page = SparseMemory.FetchPage[mem, oldPageAddr];
cache.stats.dirtyWrites ← cache.stats.dirtyWrites + 1;
FOR i: [0..wordsPerLine) IN [0..wordsPerLine) DO
oldPage.words[oldIndexInPage+i] ← hashEntry.words[i];
ENDLOOP;
BumpReject[cyclesToWriteQuad];
hashEntry.dirty ← FALSE;
};
};
At this point we need to read in the quad word from the memory.
{
indexInPage: CARDINAL = HalfToCard[LowHalf[lineAddr]] MOD wordsPerPage;
pageAddr: Word = AddDelta[-INT[indexInPage], lineAddr];
mem: SparseMemory.Base = cache.sharedBase.mem;
page: SparseMemory.Page = SparseMemory.FetchPage[mem, lineAddr];
pageEntry: PageEntry ← data.pageList;
IF page = NIL THEN RETURN [NIL, 3];
Maintain the hash table
hashEntry.next ← data.hashVector[hashIndex];
data.hashVector[hashIndex] ← hashEntry;
BumpReject[cyclesToReadFirst];
FOR i: [0..wordsPerLine) IN [0..wordsPerLine) DO
hashEntry.words[i] ← page.words[indexInPage+i];
ENDLOOP;
hashEntry.lineAddr ← lineAddr;
WHILE pageEntry # NIL DO
IF pageEntry.pageAddr = pageAddr THEN {
Increment the use count for this page (if an entry already exists). Then return.
pageEntry.useCount ← pageEntry.useCount + 1;
GO TO oldEntry;
};
pageEntry ← pageEntry.next;
ENDLOOP;
This entry is brand new, so add it to the list and bump the reject cycles to show that we got a map miss. Note that at this point pageEntry = NIL.
data.pageEntryCount ← data.pageEntryCount + 1;
cache.stats.mapMisses ← cache.stats.mapMisses + 1;
pageEntry ← data.freePageList;
IF pageEntry = NIL
THEN pageEntry ← NEW[PageEntryRep]
ELSE data.freePageList ← pageEntry.next;
pageEntry^ ← [next: data.pageList, pageAddr: pageAddr, useCount: 1, readOnly: FALSE];
data.pageList ← pageEntry;
BumpReject[cyclesToReadMap];
EXITS oldEntry => {};
};
Finally, show that the bus is tied up until the read is finished.
cache.sharedBase.busyUntil ← busyUntil + cyclesToReadRest;
At this point we have to advance the victim pointer, since in either method this newly retrieved entry clearly should not be the new victim.
victim ← victim + 1;
data.victimIndex ← IF victim = data.linesInCache THEN 0 ELSE victim;
cache.stats.rejectCycles ← cache.stats.rejectCycles + rejectCycles;
};
END.