Directory Rope, DragOpsCross, LizardRosemary; TranslationNeeds Dragon; Imports Atom, Basics, ClusterParams, DragonRosemary, DragonRoseExtras, IO, BitOps, RoseEvents, RoseRun, RoseTypes, RoseVectors, DragOpsCrossUtils, ViewerIO; Cedar fieldAdr: INTEGER = DragOpsCross.ProcessorRegister[euField].ORD; marAdr: INTEGER = DragOpsCross.ProcessorRegister[euMAR].ORD; Remark: PROC [ message: Rope.ROPE ] = {RoseRun.DisableableStop[Remark, message]}; FieldOp: PROC[aluLeft, aluRight, fieldDesc: Dragon.HexWord] RETURNS [result:Dragon.HexWord] = BEGIN OPEN DragOpsCross, DragOpsCrossUtils; fd: FieldDescriptor = CardToFieldDescriptor[fieldDesc MOD 65536]; Left: Word = CardToWord[aluLeft]; Right: Word = CardToWord[aluRight]; out: Word; shifter: Word = DoubleWordShiftLeft[Left, Right, fd.shift]; mask: Word _ SingleWordShiftRight[OnesWord, 32-fd.mask]; IF fd.insert THEN mask _ DragAnd[mask, SingleWordShiftLeft[OnesWord, fd.shift]]; out _ DragAnd[mask, shifter]; IF fd.insert THEN out _ DragOr[out, DragAnd[DragNot[mask], Right]]; result _ WordToCard[out]; END; DoubleADD: PROC[al, bl: Dragon.HexWord, carry: BOOL] RETURNS [sl: Dragon.HexWord, c32: BOOL] = { Xor: PROC[x, y: BOOL] RETURNS [z: BOOL] = {RETURN[(x AND NOT y) OR (y AND NOT x)]}; ai, bi: BOOL; s: BOOL _ FALSE; c: BOOL _ carry; i: INTEGER; sum: BitOps.BitDWord _ [0,0]; FOR i IN [1..32] DO ai _ EBFL[al, 32-i]; bi _ EBFL[bl, 32-i]; s _ Xor[ai, Xor[bi, c]]; c _ (ai AND bi) OR (bi AND c) OR (ai AND c); sum _ BitOps.IBID[s, sum, 32, 32-i]; ENDLOOP; RETURN[DragonRoseExtras.LFD[sum], c]}; DoubleNOT: PROC[a: Dragon.HexWord] RETURNS [c: Dragon.HexWord] = { c _ LOOPHOLE[Basics.DoubleNot[LOOPHOLE[a]]] }; WordOp: PROC[op:{or, and, xor}, left, right:Dragon.HexWord _ 0] RETURNS[result:Dragon.HexWord] = { RETURN[DragonRoseExtras.LFD[SELECT op FROM or => BitOps.DOR [DragonRoseExtras.LTD[left], DragonRoseExtras.LTD[right]], and => BitOps.DAND [DragonRoseExtras.LTD[left], DragonRoseExtras.LTD[right]], xor => BitOps.DXOR [DragonRoseExtras.LTD[left], DragonRoseExtras.LTD[right]], ENDCASE => ERROR]] }; ELispFL: PROC[word: Dragon.HexWord] RETURNS[[0..7]] = { RETURN[ BitOps.ECFD[DragonRoseExtras.LTD[word], 32, 0, 3]] }; EBFL: PROC[word: Dragon.HexWord, index: CARDINAL] RETURNS[BOOL] = { RETURN[ BitOps.EBFD[DragonRoseExtras.LTD[word], 32, index]] }; DblShiftRt: PROC[msb: BOOL, ltIn, rtIn: Dragon.HexWord] RETURNS[ltOut, rtOut: Dragon.HexWord] = {rtOut _ ShiftRt[EBFL[ltIn, 31], rtIn]; ltOut _ ShiftRt[msb, ltIn]}; ShiftRt: PROC[msb: BOOL, w: Dragon.HexWord] RETURNS[r: Dragon.HexWord] = {r_DragonRoseExtras.LFD[BitOps.IBID[msb, BitOps.MDTD[DragonRoseExtras.LTD[w],32,0,31,[0,0],32,1,31],32,0]]}; DblShiftLt: PROC[ltIn, rtIn: Dragon.HexWord, lsb: BOOL] RETURNS[cry: BOOL, ltOut, rtOut: Dragon.HexWord] = {cry _ EBFL[ltIn,0]; ltOut _ ShiftLt[ltIn, EBFL[rtIn, 0]]; rtOut _ ShiftLt[rtIn, lsb]}; ShiftLt: PROC[w: Dragon.HexWord, lsb: BOOL] RETURNS[r: Dragon.HexWord] = {r_DragonRoseExtras.LFD[BitOps.IBID[lsb, BitOps.MDTD[DragonRoseExtras.LTD[w],32,1,31,[0,0],32,0,31],32,31]]}; vectorStream: IO.STREAM _ NIL; SeeSettle: PROC [event: ATOM, watched, watcherData, arg: REF ANY] --RoseEvents.NotifyProc-- = { cell: RoseTypes.Cell = NARROW[watcherData]; IF ClusterParams.clusterPanel.enaEULog THEN { IF vectorStream = NIL THEN { vectorStream _ ViewerIO.CreateViewerStreams["EU Vectors"].out; RoseVectors.WriteHeader[vectorStream, cell]; }; RoseVectors.WriteVector[vectorStream, cell]; } }; ; CELLTYPE "EUCompute" PORTS [ DPData=INT[32], -- address/data to cache/FP during PhA, data to/from cache/FP during PhB DPRejectB BOOL, DShiftAB < BOOL, -- shift the shift register by 1 bit if ~DNSelectAB DExecuteAB < BOOL, -- interpret the content of the shift register if ~DNSelectAB DNSelectAB < BOOL, -- if high, hold but don't Execute or Shift DHoldAB < BOOL, -- must be high before testing DDataInAB < BOOL, -- sampled 1 full cycle after a PhB that DShiftAB is Asserted DDataOutAB = BOOL, -- changes in PhA after a PhB that DShiftAB is Asserted CBusResult3BA > INT[32], ALULeft2AB > INT[32], ALURight2AB > INT[32], Store2AB > INT[32] ] Initializer RoseEvents.AddWatcher[ event: $Settled, watcher: [SeeSettle, cell], watched: cell.sim]; State aluLeft, aluRight, aluOut: Dragon.HexWord, result2BA, result3AB, cBusResult3BA: Dragon.HexWord, store2AB, store2BA, store3AB: Dragon.HexWord, aAdr, bAdr, cAdr: Dragon.HexByte, cIsField: BOOL, EUAluLeftSrc1BA: Dragon.ALULeftSources, EUAluRightSrc1BA: Dragon.ALURightSources, EUStore2ASrc1BA: Dragon.Store2ASources, ram: ARRAY Dragon.HexByte OF Dragon.HexWord, field: Dragon.HexWord, -- a copy is kept as RAM[fieldAdr], another copy is in the field unit. Any write is performed to both physical locations, any read is from the most convenient location. carryAB, carryBA: BOOL, -- carryBA is the output of the adder modified by the opcode of the previous operation and latched if no trap; carryAB is a copy of carryBA if there is no reject or trap. conditionB: BOOL, rejectBA: BOOL -- a copy of DPRejectB stable during PhiA EvalSimple drive[DPData] _ ignore; drive[KBus] _ ignore; IF PhA THEN { cReg: DragOpsCross.ProcessorRegister; DragonRosemary.Assert[aAdr>=0 AND aAdr<164]; IF NOT (rejectBA OR EUCondition2B) THEN {carryAB _ carryBA}; IF NOT rejectBA THEN { SELECT EUAluLeftSrc1BA FROM aBus => aluLeft _ (SELECT aAdr FROM DragOpsCross.ProcessorRegister[euConstant].ORD => 0, ENDCASE => ram[aAdr] -- watch out for illegal addresses ); rBus => aluLeft _ result2BA; cBus => aluLeft _ cBusResult3BA; ENDCASE => DragonRosemary.Assert[FALSE]; SELECT EUAluRightSrc1BA FROM bBus => aluRight _ (SELECT bAdr FROM DragOpsCross.ProcessorRegister[euConstant].ORD => 0, ENDCASE => ram[bAdr] -- watch out for illegal addresses ); rBus => aluRight _ result2BA; cBus => aluRight _ cBusResult3BA; kBus => aluRight _ DragonRoseExtras.LFD[KBus]; fCtlReg => aluRight _ field; ENDCASE => DragonRosemary.Assert[FALSE]; SELECT EUStore2ASrc1BA FROM bBus => store2AB _ (SELECT bAdr FROM DragOpsCross.ProcessorRegister[euConstant].ORD => 0, ENDCASE => ram[bAdr] -- watch out for illegal addresses ); cBus => store2AB _ cBusResult3BA; rBus => store2AB _ result2BA; ENDCASE => DragonRosemary.Assert[FALSE]; result3AB _ result2BA; drive[DPData] _ drive; DPData _ DragonRoseExtras.LTD[result2BA]; store3AB _ SELECT EUSt3AisCBus2BA FROM TRUE => cBusResult3BA, ENDCASE => store2BA; IF NOT rejectBA AND cIsField THEN field _ cBusResult3BA; ALULeft2AB _ DragonRoseExtras.LTD[aluLeft]; ALURight2AB _ DragonRoseExtras.LTD[aluRight]; Store2AB _ DragonRoseExtras.LTD[store2AB]; }; SELECT (cReg _ VAL[cAdr]) FROM IN [euStack .. euJunk), euMAR, IN [euField .. euBogus) => ram[cAdr] _ cBusResult3BA; euJunk => NULL; euToKBus => { -- don't mind reject??? drive[KBus] _ drive; KBus _ DragonRoseExtras.LTD[cBusResult3BA]; }; ENDCASE => DragonRosemary.Assert[FALSE, "EU cAdr out of range"]; }; IF PhB THEN { c32, cx: BOOL; rejectBA _ DPRejectB; aAdr _ BitOps.ECFD[KBus, 32, Dragon.aRegKBusPos, 8]; bAdr _ BitOps.ECFD[KBus, 32, Dragon.bRegKBusPos, 8]; cAdr _ IF rejectBA THEN DragOpsCross.ProcessorRegister[euMAR].ORD ELSE BitOps.ECFD[KBus, 32, Dragon.cRegKBusPos, 8]; cIsField _ BitOps.EBFD[KBus, 32, 24]; EUAluLeftSrc1BA _ VAL[BitOps.ECFD[KBus, 32, 25, 2]]; EUAluRightSrc1BA _ VAL[BitOps.ECFD[KBus, 32, 27, 3]]; EUStore2ASrc1BA _ VAL[BitOps.ECFD[KBus, 32, 30, 2]]; DragonRosemary.Assert[NOT (EUWriteToPBus3AB AND EURes3BisPBus3AB)]; SELECT TRUE FROM EUWriteToPBus3AB => { -- store in progress drive[DPData] _ drive; DPData _ DragonRoseExtras.LTD[store3AB]; -- send data to Cache (Store) cBusResult3BA _ result3AB}; ENDCASE => { -- either a fetch, an op, or a move in progress IF rejectBA -- Fetch with reject => save address in cBusResult3BA and don't listen to IFU THEN cBusResult3BA _ result3AB ELSE -- Fetch without reject -- IF EURes3BisPBus3AB THEN { cBusResult3BA _ DragonRoseExtras.LFD[DPData];} ELSE cBusResult3BA _ result3AB}; -- op or move ; store2BA _ store2AB; carryBA _ carryAB; SELECT EUAluOp2AB FROM SAdd => { [aluOut, c32] _ DoubleADD[aluLeft, aluRight, carryAB]; result2BA _ aluOut; carryBA _ FALSE}; SSub => { [aluOut, cx] _ DoubleADD[aluLeft, DoubleNOT[aluRight], NOT carryAB]; c32 _ NOT cx; result2BA _ aluOut; carryBA _ FALSE}; UAdd => { [aluOut, c32] _ DoubleADD[aluLeft, aluRight, carryAB]; result2BA _ aluOut; carryBA _ c32}; USub => { [aluOut, cx] _ DoubleADD[aluLeft, DoubleNOT[aluRight], NOT carryAB]; c32 _ NOT cx; result2BA _ aluOut; carryBA _ c32}; VAdd, VAdd2 => { [aluOut, c32] _ DoubleADD[aluLeft, aluRight, FALSE]; result2BA _ aluOut}; VSub => { [aluOut, cx] _ DoubleADD[aluLeft, DoubleNOT[aluRight], TRUE]; c32 _ NOT cx; result2BA _ aluOut}; LAdd => { [aluOut, c32] _ DoubleADD[aluLeft, aluRight, FALSE]; result2BA _ aluOut; carryBA _ FALSE}; LSub => { [aluOut, cx] _ DoubleADD[aluLeft, DoubleNOT[aluRight], TRUE]; c32 _ NOT cx; result2BA _ aluOut; carryBA _ FALSE}; FOP => { result2BA _ aluOut _ FieldOp[aluLeft, store2AB, aluRight]}; And => { result2BA _ aluOut _ WordOp[and, aluLeft, aluRight]}; Or => { result2BA _ aluOut _ WordOp[or, aluLeft, aluRight]}; Xor => { result2BA _ aluOut _ WordOp[xor, aluLeft, aluRight]}; BndChk => { [aluOut, cx] _ DoubleADD[aluLeft, DoubleNOT[aluRight], TRUE]; c32 _ NOT cx; result2BA _ aluLeft}; ENDCASE => ERROR Stop["Invalid ALU Operation"]; conditionB _ SELECT EUCondSel2AB FROM False => FALSE, EZ => aluOut=0, -- aluOut=0 LZ => (c32 # (EBFL[aluLeft, 0] # EBFL[aluRight, 0])), -- VSub<0 LE => (aluOut=0) OR (c32 # (EBFL[aluLeft, 0] # EBFL[aluRight, 0])), -- VSub<=0, AddressCheckFault => aluOut < DragOpsCross.KernalLimit, NE => aluOut#0, -- aluOut#0 GE => NOT (c32 # (EBFL[aluLeft, 0] # EBFL[aluRight, 0])), -- VSub>=0 GZ => NOT ((aluOut=0) OR (c32 # (EBFL[aluLeft, 0] # EBFL[aluRight, 0]))), -- VSub>0 OvFl => ((c32 # EBFL[aluOut, 0]) # (EBFL[aluLeft, 0] # EBFL[aluRight, 0])), BC => NOT c32, IL => (ELispFL[aluLeft] IN (0..7) ) OR (ELispFL[aluRight] IN (0..7) ) OR (ELispFL[aluOut] IN (0..7) ), NotBC => c32, NotIL => NOT ((ELispFL[aluLeft] IN (0..7) ) OR (ELispFL[aluRight] IN (0..7) ) OR (ELispFL[aluOut] IN (0..7) )), ModeFault => TRUE, ENDCASE => ERROR Stop["Invalid EUCondition2B Code"]; EUCondition2B _ conditionB; CBusResult3BA _ DragonRoseExtras.LTD[cBusResult3BA]; }; ENDCELLTYPE; EULogger: LAMBDA [logRef: |REF IO.STREAM|] RETURN CELLTYPE AutoName PORTS [ KBus < INT[32], ALULeft2AB < INT[32], ALURight2AB < INT[32], Store2AB < INT[32], CBusResult3BA < INT[32], DPRejectB < BOOL, ResetAB < BOOL, PhA, PhB < BOOL ] State phALast: BOOL, cAdr3BA: DragOpsCross.ProcessorRegister EvalSimple IF ResetAB THEN Atom.PutProp[$Cluster, $RegStores, NIL]; IF PhA AND NOT phALast THEN { phALast _ TRUE; SELECT cAdr3BA FROM euJunk, euBogus => NULL; ENDCASE => Atom.PutProp[$Cluster, $RegStores, CONS[ NEW[LizardRosemary.RegStoreRec _ [ instr: ClusterParams.clusterPanel.instrCount, reg: cAdr3BA, data: DragonRoseExtras.LFD[CBusResult3BA]]], NARROW[Atom.GetProp[$Cluster, $RegStores], LIST OF REF ANY]]]; }; IF PhB THEN { phALast _ FALSE; cAdr3BA _ IF DPRejectB THEN euBogus ELSE VAL[BitOps.ECFD[KBus, 32, Dragon.cRegKBusPos, 8]]; }; ENDCELLTYPE; EU: LAMBDA [logRef: |REF IO.STREAM|] RETURN CELLTYPE AutoName PORTS [ DPData=INT[32], -- address/data to cache/FP during PhA, data to/from cache/FP during PhB DPRejectB BOOL, -- latched to hide precharge in the carry propagator etc DShiftAB < BOOL, -- shift the shift register by 1 bit if ~DNSelectAB DExecuteAB < BOOL, -- interpret the content of the shift register if ~DNSelectAB DNSelectAB < BOOL, -- if high, hold but don't Execute or Shift DHoldAB < BOOL, -- must be high before testing DDataInAB < BOOL, -- sampled 1 full cycle after a PhB that DShiftAB is Asserted DDataOutAB = BOOL -- changes in PhA after a PhB that DShiftAB is Asserted ] Expand ALULeft2AB : INT[32]; ALURight2AB : INT[32]; Store2AB : INT[32]; CBusResult3BA : INT[32]; compute: EUCompute[]; logger: EULogger[logRef: logRef][] ENDCELLTYPE EU.rose Copyright c 1984 by Xerox Corporation. All rights reserved. Last edited by: Monier, May 10, 1984 7:23:23 pm PDT Last edited by: McCreight, March 11, 1986 12:22:37 pm PST Last edited by: Curry, September 5, 1985 11:21:43 pm PDT Last edited by: Herrmann, September 5, 1985 2:50:49 pm PDT Louis Monier January 28, 1986 12:22:46 pm PST ??? shows something that has to be discussed and fixed From here on, the code is copied from LizardHeartImpl, which in turn purports to be identical to the manual. The shifter output has the input double word shifted left by fd.shift bits The default mask has fd.mask 1s right-justified in the word fd.insert => clear rightmost fd.shift bits of the mask 1 bits in the mask select the shifter output fd.backR => 0 bits in the mask select bits from Right to OR in to the result Returns a+b+carry and c32, where a and b are considered to be signed numbers Signal names obey the following convention: If a signal x is computed during PhA and remains valid throughout the following PhB, it is denoted as xAB. If x is computed during PhA and can change during the following PhB (as, for example, in precharged logic), it is denoted as xA. In this latter case, a client wanting to use x during PhB must receive it in his own latch open during PhA. xBA and xB are defined symmetrically. Positive logic is assumed (dragon.Asserted = TRUE = 1 = more positive logic voltage); negative-logic signals have an extra "N" at or very near the beginning of the signal name (e.g., DPNPErrorB for PBus Negative-TRUE Parity Error). P Interface Timing and housekeeping interface ResetAB IFU iff cAdr = euToKBus during the previous PhiB, otherwise IFU may be using bus to pass data to EU or control to FP. The following signals change during 1B and are stable during 2A. EUAluLeftSrc1BA < EnumType["Dragon.ALULeftSources"], EUAluRightSrc1BA < EnumType["Dragon.ALURightSources"], EUStore2ASrc1BA < EnumType["Dragon.Store2ASources"], Serial debugging interface All the following signals change during PhA and PhB, giving an entire clock cycle for them to change, are sampled during PhB, and are applied to the data path during the following PhA. All signals are not used !!! JH Extra signals to the logger Pipeline registers RAM, RAM addresses and various aliased registers The RAM is organised as follows (Ref DragOpsCross): registers 0 through 127 constitute the stack 128: euJunk i.e. no write 129: euToKBus, write result to KBus 130: euMAR 131: euField 132 through 143 are constants registers 144 through 159 are auxilliary registers Any aAdr larger than 160 is illegal Bits and pieces for the ALU and the Field Unit Other pieces from the Control pipeline PhiA phase. Note that rejectBA alone inhibits almost any state change during PhiA No simultaneous bypass control signals on Always send address to Cache during PhiA -- On every PhA with RejectBA the faulty address is saved in ram[euMAR]; the EU generates the appropriate cAdr when RejectBA is sensed, so the rule is: we always write into the register file! (Q: what about euToKBus? LMM) PhiB phase. Most of the computations take place during PhiB DPRejectB is valid at the end of PhiB but bogus during PhiA, so it must be latched at the end of PhiB. A current problem is that the source for cBusResult3BA depends upon DPRejectB, and the choice is made during the same PhiB as it is received. So this statement has to be first. Updating the RAM addresses PBus: notice that in case of reject during a store, we keep sending the data even though it is useless save the address in cBusResult3BA, done normally since NOT EURes3BisPBus3AB; Data pipe Alu and Field Unit computation Set Default values of state Condition and trap generation P Interface DPFaultB IFU iff cAdr in [ifuXBus..ifuLast] during the previous PhiB, otherwise IFU may be using bus to pass data to EU or control to FP. The following signals change during 1B and are stable during 2A. EUAluLeftSrc1BA < EnumType["Dragon.ALULeftSources"], EUAluRightSrc1BA < EnumType["Dragon.ALURightSources"], EUStore2ASrc1BA < EnumType["Dragon.Store2ASources"], Serial debugging interface All the following signals change during PhA and PhB, giving an entire clock cycle for them to change, are sampled during PhB, and are applied to the data path during the following PhA. All signals are not used !!! JH Κ ˜šΠbl™Jšœ Οmœ1™J˜—š  œŸœŸœ˜7šŸœ!˜(JšœŸœ/˜D——š œŸœŸœŸœ˜IJš œŸœŸœ ŸœŸœ#˜l—J˜š‘ œŸœ"Ÿœ˜7JšŸœŸœ!˜2JšœŸœ Ÿœ(˜W—š‘œŸœŸœŸœ˜HJš œŸœŸœ ŸœŸœ$˜m—J˜JšœŸœŸœŸœ˜J˜š   œŸœ ŸœŸœŸœΟcœ˜_KšœŸœ˜+šŸœ%Ÿœ˜-šŸœŸœŸœ˜Kšœ>˜>Kšœ,˜,K˜—Kšœ,˜,K˜—K˜——J˜J˜J˜šŸœ œ˜JšŸœ˜J™Jšœ–™–J™šœ ™ JšœŸœ£H˜XJšœ Ÿœ£˜&—J˜šœ!™!Jšœ Ÿœ˜JšœŸœ™%JšœŸœ˜—J˜™ J˜šœŸœ˜JšœΈ™ΈJšœ+£œ^™‘—J™šœ@™@Jšœ4™4Jšœ6™6Jšœ4™4JšœŸœ£"˜:JšœŸœ£'˜@JšœŸœ£r˜‹Jšœ)˜)Jšœ/˜/JšœŸœ˜——J™šœ™™ΨJšœ Ÿœ£3˜EJšœ Ÿœ£=˜PJšœ Ÿœ£+˜>Jšœ Ÿœ£˜/Jšœ Ÿœ£>˜PJšœ Ÿœ£;˜OJ˜—™JšœŸœ˜JšœŸœ˜JšœŸœ˜Jšœ Ÿœ˜——Jšœ˜J˜šΟb ˜ ˜K˜K˜K˜——š˜J™Jšœ™Jšœ*˜*Jšœ4˜4Jšœ-˜-J™Jšœ0™0šœ3™3Jšœ,™,Jšœ™Jšœ£™#Jšœ ™ Jšœ ™ Jšœ'™'Jšœ(™(Jšœ#™#—Jšœ!˜!Jšœ Ÿœ˜Jšœ'˜'Jšœ)˜)Jšœ'˜'J˜JšœŸœŸœ˜,Jšœ£¨˜ΏJ™J™JšœŸœ™.JšœŸœ£ͺ˜ΒJšœ Ÿœ˜J˜Jšœ&™&Jšœ Ÿœ£)˜8J˜—š ˜ J˜Jšœ˜Jšœ˜J˜JšœQ™QJ™šŸœŸœ˜ Jšœ%˜%JšœŸœ ˜,J˜Jšœ)™)J™JšŸœŸœ ŸœŸœ˜———J˜J˜—šŸœŸœ˜ Jšœ Ÿœ˜Jš œ Ÿœ Ÿœ ŸœŸœŸœ#˜[J˜——J˜JšŸ œ˜ J˜J˜—šΡbklœŸœ ŸœŸœŸœŸœŸœ ˜=š₯œ˜šœ ™ JšœŸœ£H˜XJšœ Ÿœ£˜&Jšœ(£Ϊ™‚—J˜šœ!™!Jšœ Ÿœ˜JšœŸœ˜ JšœŸœ˜—J˜™ J˜šœŸœ˜JšœΈ™ΈJšœœ™œ—J™šœ@™@Jšœ4™4Jšœ6™6Jšœ4™4JšœŸœ£"˜:JšœŸœ£'˜@JšœŸœ££˜ΌJšœ)˜)Jšœ/˜/JšœŸœ£8˜N——J™šœ™™ΨJšœ Ÿœ£3˜EJšœ Ÿœ£=˜PJšœ Ÿœ£+˜>Jšœ Ÿœ£˜/Jšœ Ÿœ£>˜PJšœ Ÿœ£;˜NJ˜——J˜J˜—š˜J˜JšœŸœ˜JšœŸœ˜Jšœ Ÿœ˜JšœŸœ˜J˜J˜Jšœ"˜"J˜J˜—JšŸ ˜ —J˜—…—2ήWν