EU2ArithImpl.mesa
Copyright © 1985 by Xerox Corporation. All rights reserved.
Louis Monier April 1, 1986 2:00:01 pm PST
McCreight, April 1, 1986 11:21:51 am PST
EU2ArithImpl:
CEDAR PROGRAM
IMPORTS Basics, DragOpsCrossUtils, EU2Utils
EXPORTS EU2Arith =
BEGIN OPEN EU2Arith, EU2Utils;
-- Field extractions: bit 0 is the high-order bit
EBFLC:
PUBLIC PROC [c:
CARD, index: [0..32)]
RETURNS [
BOOL] = {
w: Word ← DragOpsCrossUtils.CardToWord[c];
RETURN[w[index]]};
EBFLC: PUBLIC PROC [c: CARD, index: [0..32)] RETURNS [BOOL] = {
RETURN [BitHacks.XthBitOfN[32-index, c]]};
EByteFLC:
PUBLIC PROC [c:
CARD, index: [0..4)]
RETURNS[
CARDINAL] = {
b: Byte ← DragOpsCrossUtils.WordToBytes[CToW[c]][index];
RETURN [DragOpsCrossUtils.ByteToCard[b]]};
-- Mask generation: mask[i] has "i" ones in the low-order bits region
mask:
ARRAY [0..32]
OF CARD = [
0B,
1B, 3B, 7B,
17B, 37B, 77B,
177B, 377B, 777B,
1777B, 3777B, 7777B,
17777B, 37777B, 77777B,
177777B, 377777B, 777777B,
1777777B, 3777777B, 7777777B,
17777777B, 37777777B, 77777777B,
177777777B, 377777777B, 777777777B,
1777777777B, 3777777777B, 7777777777B,
17777777777B, 37777777777B];
-- Logical operations: order of bits is irrelevant
LC: PROC [n: Basics.LongNumber] RETURNS[CARD] ~ {RETURN[n.lc]};
LN: PROC [n: CARD] RETURNS[Basics.LongNumber] ~ {RETURN[[lc[n]]]};
WordNot:
PUBLIC PROC [c:
CARD]
RETURNS [
CARD] ~ {
RETURN [LC[Basics.DoubleNot[LN[c]]]]};
WordAnd:
PUBLIC PROC [a, b:
CARD]
RETURNS [
CARD] ~ {
RETURN [LC[Basics.DoubleAnd[LN[a], LN[b]]]]};
WordOr:
PUBLIC PROC [a, b:
CARD]
RETURNS [
CARD] ~ {
RETURN [LC[Basics.DoubleOr[LN[a], LN[b]]]]};
WordXor:
PUBLIC PROC [a, b:
CARD]
RETURNS [
CARD] ~ {
RETURN [LC[Basics.DoubleXor[LN[a], LN[b]]]]};
-- Arithmetical operations on signed numbers
-- Returns a+b+carry and c32, where a and b are considered to be signed numbers
LispTest: PUBLIC PROC [c: CARD] RETURNS [bogus: BOOL] ~ {
bogus ← HighHalf[c]/8192 IN [1..6];
};
LowHalf: PROC [a: CARD] RETURNS [CARD] ~ {RETURN [a MOD 65536]};
HighHalf: PROC [a: CARD] RETURNS [CARD] ~ {RETURN [a / 65536]};
DoubleADD:
PUBLIC PROC [a, b:
CARD, carry:
BOOL]
RETURNS [s:
CARD, c32:
BOOL] = {
ls: CARD ← LowHalf[a]+LowHalf[b]+(IF carry THEN 1 ELSE 0);
c: CARD ← HighHalf[ls]; -- half-carry
hs: CARD ← HighHalf[a]+HighHalf[b]+c;
IF c>1 THEN ERROR;
c32 ← HighHalf[hs]>0;
s ← 65536*LowHalf[hs]+LowHalf[ls];
};
-- Returns a-b-carry and c32, implemented as a+(~b)+1+(~carry)
DoubleSUB: PROC [a, b: CARD, carry: BOOL] RETURNS [dif: CARD, c32: BOOL] = {
[dif, c32] ← DoubleADD[a, WordNot[b], NOT carry]};
-- This proc mimics the hardware; it is also easier to understand
FieldOp:
PUBLIC PROC [left, right, fieldDesc:
CARD]
RETURNS [result:
CARD] = {
fd: DragOpsCross.FieldDescriptor ← DragOpsCrossUtils.CardToFieldDescriptor[fieldDesc MOD 65536];
shiftout, mask1, mask2, maskWithHole, background: CARD;
-- Assert[(fd.shift < 33) AND (fd.mask < 33)];
mask1 ← mask[fd.mask]; -- fd.mask ones on the low-order side
mask2 ← mask[fd.shift]; -- fd.shift ones on the low-order side
SELECT fd.shift
FROM
0 => shiftout ← left; -- no shift
32 => shiftout ← right; -- full shift
ENDCASE => {
-- Make shiftout with the 32-fd.shift low bits of aluLeft (high) and the fd.shift high bits of aluRight (low)
shiftout ← MLCtoLC[left, shiftout, fd.shift, 0, 32-fd.shift];
shiftout ← MLCtoLC[right, shiftout, 0, 32-fd.shift, fd.shift]
};
maskWithHole ← IF fd.insert THEN WordXor[mask1, mask2] ELSE mask1;
background ← IF fd.insert THEN right ELSE 0;
result ← WordOr[
WordAnd[shiftout, maskWithHole], -- central portion
WordAnd[background, WordNot[maskWithHole]] -- both sides
];
};
-- Behaviour of pieces
ApplyAluOp:
PUBLIC PROC [op: ALUOpcode, a, b:
CARD, carryIn:
BOOL]
RETURNS [res:
CARD, c32:
BOOL] ~ {
SELECT op
FROM
add => [res, c32] ← DoubleADD[a, b, carryIn];
and => {res ← WordAnd[a, b]; c32 ← carryIn};
or => {res ← WordOr[a, b]; c32 ← carryIn};
xor => {res ← WordXor[a, b]; c32 ← carryIn};
ENDCASE => ERROR;
};
OpToResult: PUBLIC PROC [op: Dragon.ALUOps, a, b: CARD, carryIn: BOOL] RETURNS [res: CARD, c32: BOOL] ~ {
IF aluOps[op].invertB THEN {b ← WordNot[b]; carryIn ← NOT carryIn};
[res, c32] ← ApplyAluOp[aluOps[op].op, a, b, carryIn];
};
OpToCarryOut:
PUBLIC PROC [op: Dragon.ALUOps, computedC, prevC:
BOOL]
RETURNS [nextC:
BOOL] ~ {
nextC
← SELECT aluOps[op].cOut
FROM
prev => prevC,
zero => FALSE,
comp => computedC,
ncomp => ~computedC,
ENDCASE => ERROR;
};
OpToCarryIn:
PUBLIC PROC [op: Dragon.ALUOps, c:
BOOL]
RETURNS [
BOOL] ~ {
RETURN [
SELECT aluOps[op].cIn
FROM
zero => FALSE,
one => TRUE,
prev => c,
nprev => ~c,
ENDCASE => ERROR]
};
-- Mimicks the behaviour of the ALU
ALUOperation:
PUBLIC PROC [aluOp: Dragon.ALUOps, a, b:
CARD, prevC:
BOOL]
RETURNS [res:
CARD, c32, nextC:
BOOL] ~ {
carryIn: BOOL ← OpToCarryIn[aluOp, prevC];
IF aluOps[aluOp].invertB THEN b ← WordNot[b];
[res, c32] ← ApplyAluOp[aluOps[aluOp].op, a, b, carryIn];
nextC ← OpToCarryOut[aluOp, c32, prevC];
IF aluOps[aluOp].invertB THEN c32 ← NOT c32;
};
-- Explodes a 32-bit word in ram addresses and control bits; check format with IFU
ExplodeKReg:
PUBLIC PROC [k:
CARD]
RETURNS
[a, b, c: CARD, st3AIsC: BOOL, lSrc, rSrc, stSrc: NAT] ~ {
n: CARDINAL;
a ← EByteFLC[k, 0];
b ← EByteFLC[k, 1];
c ← EByteFLC[k, 2];
n ← EByteFLC[k, 3];
stSrc ← n MOD 4; n ← n/4;
rSrc ← n MOD 8; n ← n/8;
lSrc ← n MOD 4; n ← n/4;
st3AIsC ← n#0;
};