GenBasics.mesa
Copyright © 1984, 1985, 1986 by Xerox Corporation. All rights reserved.
Russ Atkinson (RRA) March 19, 1986 10:43:54 pm PST
McCreight, January 8, 1986 4:52:12 pm PST
GenBasics provides the following utilities:
Register initialization at processor reset.
Basics.SetVectorConstant [addr: PTR, len: INT, word: CARD]
Basics.MoveVector [src: PTR, len: INT, dst: PTR]
Basics.AllocVector [len: INT]
Basics.AllocVector [len: INT]
Basics.MixedMultiply [X: CARD, Y: INT] RETURNS [INT]
Basics.IntMultiply [X,Y: INT] RETURNS [INT]
Basics.FatCardMultiply [X,Y: CARD] RETURNS [hi,lo: CARD]
Basics.CardMultiply [X,Y: CARD] RETURNS [hi,lo: CARD]
Basics.CardDivide [X,Y: CARD] RETURNS [CARD]
DIRECTORY
DragOpsCross,
DragOpsCrossUtils,
HandCoding,
HandCodingPseudos,
HandCodingSupport;
GenBasics: CEDAR PROGRAM
IMPORTS DragOpsCrossUtils, HandCoding, HandCodingPseudos, HandCodingSupport
= BEGIN OPEN DragOpsCrossUtils, HandCoding, HandCodingPseudos, HandCodingSupport;
Word: TYPE = DragOpsCross.Word;
ZerosWord: Word = DragOpsCross.ZerosWord;
bytesPerWord: CARDINAL = DragOpsCross.bytesPerWord;
wordsPerPage: CARDINAL = DragOpsCross.wordsPerPage;
globalBase: LONG CARDINAL;
globalBaseWord: Word;
initialPages: INT ← 64;
gAllocPtr: NAT = 2;
All: PROC = {
FillTrap: PROC [tx: DragOpsCross.TrapIndex, dest: Label] = {
oldPC: LONG CARDINAL = GetOutputPC[area];
SetOutputPC[DragOpsCrossUtils.TrapIndexToBytePC[tx]];
drJDB[UseLabel16[dest]];
SetOutputPC[oldPC];
};
FillXop: PROC [inst: DragOpsCross.Inst, dest: Label] = {
oldPC: LONG CARDINAL = GetOutputPC[area];
SetOutputPC[DragOpsCrossUtils.XopToBytePC[inst]];
drJDB[UseLabel16[dest]];
SetOutputPC[oldPC];
};
area: Area = GetCurrentArea[];
start: Label = GenLabel[];
dummy: Label = GenLabel[];
startUser: Label = GenLabel[];
initL: Label = GenLabel[];
procSetVectorConstant: Label = GenLabel[];
procMoveVector: Label = GenLabel[];
procAllocVector: Label = GenLabel[];
globalBase ← ReserveData[initialPages*wordsPerPage] / bytesPerWord;
globalBaseWord ← CardToWord[globalBase];
SetLabel[start];
This is the location where Reset comes to. The registers need initialization.
N.B. const0 is a ROM containing a 0. The IFU needs a literal 0 for several operations, and the consequences of const0 being non-zero are simply too horrible to contemplate. Ergo, we made it impossible.
drLIB[1]; drROR[c: const1, a: const0, b: popSrc];
drRVADD[c: const2, a: const1, b: const1];
drRVADD[c: const3, a: const2, b: const1];
drRVADD[c: const4, a: const3, b: const1];
drRVSUB[c: constN2, a: const0, b: const2];
drRVSUB[c: constN1, a: const0, b: const1];
drLIDB[100000B]; drROR[c: constNSI, a: const0, b: popSrc];
drLC1[]; drSHL[FieldDescriptorToCard[[insert: FALSE, mask: 32, shift: 31]]];
drROR[c: constNI, a: const0, b: popSrc];
drLIQB[globalBaseWord];
drROR[c: global, a: const0, b: topSrc]; -- the base of global data
drDUP[];
drADDDB[wordsPerPage]; -- don't allocate in the first page
drWSB[gAllocPtr];  -- set the allocation pointer
FOR i: NAT IN [1..15] DO
drROR[c: [aux[i]], a: const0, b: const0];
ENDLOOP;
drLFC[UseLabel16[initL]];
We use this method to initialize L to 1
drASL[255];
When there is nothing on the stack, S should be at L-1
drLIB[16]; drLFC[UseLabel16[procAllocVector]]; drROR[process, const0, popSrc];
Allocate a dummy (non-NIL) process object
drLIB[16]; drLFC[UseLabel16[procAllocVector]]; drROR[processor, const0, popSrc];
Allocate a dummy (non-NIL) processor object
drJDB[UseLabel16[startUser]];
GenSetVectorConstant[procSetVectorConstant];
GenMoveVector[procMoveVector];
GenAllocVector[procAllocVector];
GenMultiply[];
GenDivide[];
ProcedureEntry[initL, 0];
drLC1[];
SetYoungestL[]; -- L ← 1 on return
drLIB[128-16-1]; -- spLimit is set with room for 17 overflow words (just in case)
SetSPLimit[];
ProcedureExit[0];
WordAlign[area];
SetLabel[startUser];
Control flow falls through to the next file that gets generated. Typically, GenStack follows GenBasics, and other programs follow GenStack. Note that there should be no frames on the IFU stack when we fall through.
MakeLabelGlobal["Basics.ExitToGenStack", startUser];
FillTrap[ResetTrap, start];
};
GenSetVectorConstant: PROC [entryLabel: Label] = {
addrLocal: RegSpec = reg0;
lenLocal: RegSpec = reg1;
wordLocal: RegSpec = reg2;
finishLabel: Label = GenLabel[];
ProcedureEntry[entryLabel, 3];
MakeLabelGlobal["Basics.SetVectorConstant", entryLabel];
drLRn[lenLocal];
drRJLBJ[left: topSrc, right: const4, dist: UseLabel8B[finishLabel]];
{loopLabel: Label = GenLabelHere[];
exitLabel: Label = GenLabel[];
drSUBB[4];
drWRI[wordLocal, addrLocal, 0];
drWRI[wordLocal, addrLocal, 1];
drWRI[wordLocal, addrLocal, 2];
drWRI[wordLocal, addrLocal, 3];
drRVADD[c: addrLocal, a: addrLocal, b: const4];
drRJGEBJ[left: topSrc, right: const4, dist: UseLabel8B[loopLabel]];
SetLabel[finishLabel];
drRJLEB[left: topSrc, right: const0, dist: UseLabel8B[exitLabel]];
drWRI[wordLocal, addrLocal, 0];
drRJLEB[left: topSrc, right: const1, dist: UseLabel8B[exitLabel]];
drWRI[wordLocal, addrLocal, 1];
drRJLEB[left: topSrc, right: const2, dist: UseLabel8B[exitLabel]];
drWRI[wordLocal, addrLocal, 2];
SetLabel[exitLabel];
};
ProcedureExit[0];
};
GenMoveVector: PROC [entryLabel: Label] = {
srcLocal: RegSpec = reg0;
lenLocal: RegSpec = reg1;
dstLocal: RegSpec = reg2;
finishLabel: Label = GenLabel[];
ProcedureEntry[entryLabel, 3];
MakeLabelGlobal["Basics.MoveVector", entryLabel];
drLRn[lenLocal];
drRJLBJ[left: topSrc, right: const4, dist: UseLabel8B[finishLabel]];
{loopLabel: Label = GenLabelHere[];
exitLabel: Label = GenLabel[];
drSUBB[4];
drLRIn[srcLocal, 0];
drLRIn[srcLocal, 1];
drLRIn[srcLocal, 2];
drLRIn[srcLocal, 3];
drRVADD[c: srcLocal, a: srcLocal, b: const4];
drSRIn[dstLocal, 3];
drSRIn[dstLocal, 2];
drSRIn[dstLocal, 1];
drSRIn[dstLocal, 0];
drRVADD[c: dstLocal, a: dstLocal, b: const4];
drRJGEBJ[left: topSrc, right: const4, dist: UseLabel8B[loopLabel]];
SetLabel[finishLabel];
drRJLEB[left: topSrc, right: const0, dist: UseLabel8B[exitLabel]];
drLRIn[srcLocal, 0];
drSRIn[dstLocal, 0];
drRJLEB[left: topSrc, right: const1, dist: UseLabel8B[exitLabel]];
drLRIn[srcLocal, 1];
drSRIn[dstLocal, 1];
drRJLEB[left: topSrc, right: const2, dist: UseLabel8B[exitLabel]];
drLRIn[srcLocal, 2];
drSRIn[dstLocal, 2];
SetLabel[exitLabel];
};
ProcedureExit[0];
};
GenAllocVector: PROC [entryLabel: Label] = {
lenLocal: RegSpec = reg0;
G: RegSpec = reg1;
ProcedureEntry[entryLabel, 1];
MakeLabelGlobal["Basics.AllocVector", entryLabel];
drLIQB[globalBaseWord];
drLRIn[G, gAllocPtr];
drRVADD[pushDst, lenLocal, topSrc];
drSRIn[G, gAllocPtr];
drSRn[lenLocal];
ProcedureExit[1];
};
Multiply & Divide routines
GenMultiply: PROC [] = {
accum: RegSpec = reg0; -- initially holds X, will hold return value
entryLabel: Label = GenLabel[];
exitLabel: Label = GenLabel[];
exit0Label: Label = GenLabel[];
positiveLabel: Label = GenLabel[];
ProcedureEntry[entryLabel, 2];
MakeLabelGlobal["Basics.MixedMultiply", entryLabel];
MixedMultiply: PROC [X: CARD, Y: INT] RETURNS [INT];
SetLabel[positiveLabel];
drLIB[17B];
drLIB[3*15+1];
drLRn[accum];
drROR[accum, const0, const0];
{
localY: RegSpec = reg1; -- holds Y
mask: RegSpec = reg2; -- holds 17B as a mask
width: RegSpec = reg3; -- holds 3*15+1 as the table width
localX: RegSpec = reg4; -- holds X
loopEntry: Label = GenLabel[];
loopTop: Label = GenLabel[];
drJB[UseLabel8A[loopEntry]];
SetLabel[loopTop];
drRADD[localY, localY, localY];
drRADD[localY, localY, localY];
drRADD[localY, localY, localY];
drRADD[localY, localY, localY];
SetLabel[loopEntry];
drRAND[pushDst, mask, localX];
drRSUB[pushDst, width, topSrc];
drQSUB[topAtop, belowSrc];
drRSUB[belowDst, popSrc, belowSrc];
drJS[];
THROUGH [0..15) DO
drRADD[accum, accum, localY];
ENDLOOP;
ExtractField[first: 0, bits: 32-4];
drRJNEBJ[left: topSrc, right: const0, dist: UseLabel8B[loopTop]];
ProcedureExit[1];
};
{
This is the routine for full signed multiply. For non-negative X we just join the HalfSignedMultiply routine. For negative X > FIRST[INT] we negate X, multiply, and negate the result. For X = FIRST[INT] we test for Y = 0 (return 0) and Y = 1 (return X), otherwise we always overflow. NOTE: we also make sure that if both numbers are positive that we place the smaller number in X and the larger number in Y.
otherLabel: Label = GenLabel[];
specialLabel: Label = GenLabel[];
negateLabel: Label = GenLabel[];
negXlabel: Label = GenLabel[];
ProcedureEntry[otherLabel, 2];
MakeLabelGlobal["Basics.IntMultiply", otherLabel];
IntMultiply: PROC [X: INT, Y: INT] RETURNS [INT];
drRJGB[left: const0, right: reg0, dist: UseLabel8B[negXlabel]];
For X < 0, go handle it the hard way
drRJGB[left: const0, right: reg1, dist: UseLabel8B[positiveLabel]];
For X >= 0 & Y < 0, just branch to the positive entry
drRJGEB[left: topSrc, right: belowSrc, dist: UseLabel8B[positiveLabel]];
For X >= 0 & Y >= 0 & X <= Y, just branch to the positive entry
Exchange X and Y, then branch to the positive entry
drRXOR[topDst, topSrc, belowSrc];
drRXOR[belowDst, topSrc, belowSrc];
drRXOR[topDst, topSrc, belowSrc];
drJB[UseLabel8A[positiveLabel]];
SetLabel[negXlabel];
drLRn[reg0];
drRJEB[left: popSrc, right: constNI, dist: UseLabel8B[specialLabel]];
For special X (FIRST[INT]), go do some more tests
drRSUB[reg0, const0, reg0];
negate X to get a positive number
drLFC[UseLabel16[entryLabel]];
Call the multiply routine with -X and Y
SetLabel[negateLabel];
drRSUB[reg0, const0, reg0];
Negate (may get overflow) the result
ProcedureExit[1];
SetLabel[specialLabel];
At this point we know that X = LAST[INT], so the only thing that can't overflow is Y = 0 or Y = 1. Note that Y is on top of the stack, which makes testing easier.
drRJEB[left: topSrc, right: const1, dist: UseLabel8B[exitLabel]];
Y = 1 => the identity
drRJNEB[left: topSrc, right: const0, dist: UseLabel8B[negateLabel]];
Y # 0 => negate (to get overflow) & return
};
SetLabel[exit0Label];
drROR[reg0, const0, const0];
Return 0
SetLabel[exitLabel];
ProcedureExit[1];
{
thinCardLabel: Label = GenLabel[];
fatCardLabel: Label = GenLabel[];
lo: RegSpec = reg0; -- holds lo-order result word
hi: RegSpec = reg1; -- holds hi-order result word
yLo: RegSpec = reg2; -- holds lo-order part of Y
yHi: RegSpec = reg3; -- holds hi-order part of Y
localX: RegSpec = reg4; -- holds X
ProcedureEntry[fatCardLabel, 2];
MakeLabelGlobal["Basics.FatCardMultiply", fatCardLabel];
FatCardMultiply: PROC [X: CARD, Y: CARD] RETURNS [hi,lo: CARD];
drLRn[reg1];  -- push Y
drLC0[];   -- init hi-order part of Y
drLRn[reg0];  -- push X
drROR[hi, const0, const0];
drROR[lo, const0, const0];
{
loopEntry: Label = GenLabel[];
loopTop: Label = GenLabel[];
noAddLabel: Label = GenLabel[];
drRJNEBJ[left: topSrc, right: const0, dist: UseLabel8B[loopEntry]];
ProcedureExit[1];
SetLabel[loopTop];
drRUADD[yLo, yLo, yLo];
drRUADD[yHi, yHi, yHi];
SetLabel[loopEntry];
drQAND[pushA1, localX];
drJEBB[0, UseLabel8B[noAddLabel]];
drRUADD[lo, lo, yLo];
drRUADD[hi, hi, yHi];
SetLabel[noAddLabel];
ExtractField[first: 0, bits: 31];
drRJNEBJ[left: topSrc, right: const0, dist: UseLabel8B[loopTop]];
};
ProcedureExit[2];
CardMultiply: PROC [X: CARD, Y: CARD] RETURNS [CARD];
ProcedureEntry[thinCardLabel, 2];
MakeLabelGlobal["Basics.CardMultiply", thinCardLabel];
drLFC[UseLabel16[fatCardLabel]];
drRJEBJ[left: topSrc, right: const0, dist: UseLabel8B[exitLabel]];
Test for overflow by testing the high-order word
At this point we have an overflow, so force the trap
drRADD[pushDst, constNI, constNI];
ProcedureExit[1];
};
};
GenDivide: PROC = {
CardDivide: PROC [x: CARD, y: CARD] RETURNS [quotient: CARD]
entryLabel: Label = GenLabel[];
exitLabel: Label = GenLabel[];
faultLabel: Label = GenLabel[];
quotient: RegSpec = reg0; -- initially holds X, will hold return value
localY: RegSpec = reg1;
localX: RegSpec = reg2;
compY: RegSpec = reg3;
temp: RegSpec = reg4;
mask: RegSpec = reg5;
ProcedureEntry[entryLabel, 2];
MakeLabelGlobal["Basics.CardDivide", entryLabel];
Quick tests for Y=0 & Y=1
drRJEB[left: topSrc, right: const0, dist: UseLabel8B[faultLabel]];
drRJEB[left: topSrc, right: const1, dist: UseLabel8B[exitLabel]];
Push X into the "right" position and init the other variables
drLRn[quotient];
drROR[quotient, const0, const0];
drRXOR[pushDst, localY, constNI];
drRXOR[pushDst, localX, constNI];
drRJLB[left: popSrc, right: belowSrc, dist: UseLabel8B[exitLabel]];
Quick exit for X < Y
drLC1[];
drRXOR[pushDst, const0, constNI];
{
Scan over the zero bits in X by 4 bits, adjusting the mask appropriately.
WHILE x <= LAST[CARD]/16 DO
mask ← mask/16;
x ← x * 16;
ENDLOOP;
label0: Label = GenLabel[];
label1: Label = GenLabel[];
drJB[UseLabel8A[label1]];
SetLabel[label0];
ExtractField[first: 0, bits: 32-4];
drRVADD[localX, localX, localX];
drRVADD[localX, localX, localX];
drRVADD[localX, localX, localX];
drRVADD[localX, localX, localX];
SetLabel[label1];
drLRn[localX];
ExtractField[first: 0, bits: 4];
drJEBBJ[0, UseLabel8B[label0]];
};
{
Scan over the zero bits in X, adjusting the mask appropriately.
DO
mask ← mask/2;
carry ← (x/hiBit); x ← x + x;
IF carry = 1 THEN EXIT;
ENDLOOP;
setupLabel: Label = GenLabelHere[];
ExtractField[first: 0, bits: 31];
drRUADD[localX, localX, localX];
drRUADD[pushDst, const0, const0];
drJEBB[0, UseLabel8B[setupLabel]];
};
{
Perform division step.
DO
temp ← temp + temp + (x/hiBit);
x ← x + x;
IF temp >= y THEN {
temp ← temp - y;
quotient ← quotient + mask;
};
mask ← mask/2;
IF mask = 0 THEN EXIT;
ENDLOOP;
noSubLabel: Label = GenLabel[];
loopLabel: Label = GenLabelHere[];
drRUADD[localX, localX, localX];
drRUADD[temp, temp, temp];
drRXOR[pushDst, temp, constNI];
drRJLB[left: popSrc, right: compY, dist: UseLabel8B[noSubLabel]];
drRVSUB[temp, temp, localY];
drRVADD[quotient, quotient, mask];
SetLabel[noSubLabel];
ExtractField[first: 0, bits: 31];
drRJNEBJ[left: topSrc, right: const0, dist: UseLabel8B[loopLabel]];
};
SetLabel[exitLabel];
ProcedureExit[1];
SetLabel[faultLabel];
Halt[277B];
ProcedureExit[1];
};
END.