
The Memory System of a 
High-Performance Personal Computer

by Douglas W. Clark1, Butler W. Lampson, and Kenneth A. Pier

January 1981

ABSTRACT

The memory system of the Dorado, a compact high-performance personal computer, has
very high I/O bandwidth, a large paged virtual memory, a cache, and heavily pipelined
control; this paper discusses all of these in detail.  Relatively low-speed I/O devices transfer
single words to or from the cache; fast devices, such as a color video display, transfer
directly to or from main storage while the processor uses the cache.  Virtual addresses are
used in the cache and for all I/O transfers.  The memory is controlled by a seven-stage
pipeline, which can deliver a peak main-storage bandwidth of 530 million bits per second to
service fast I/O devices and cache misses.  Interesting problems of synchronization and
scheduling in this pipeline are discussed.  The paper concludes with some performance
measurements that show, among other things, that the cache hit rate is over 99 percent.
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1. Introduction

This paper describes the memory system of the Dorado, a high-performance compact personal
computer.  This section explains the design goals for the Dorado, sketches its overall architecture,
and describes the organization of the memory system.  Later sections discuss in detail the cache (¶
2), the main storage (¶ 3), interactions between the two (¶ 4), and synchronization of the various
parallel activities in the system (¶ 5).  The paper concludes with a description of the physical
implementation (¶ 6), and some performance measurements (¶ 7).

1.1 Goals

A high-performance successor to the Alto computer [18], the Dorado is intended to provide the
hardware base for the next generation of computer system research at the Xerox Palo Alto Research
Center.  The Dorado is a powerful but personal computing system supporting a single user within a
programming system that extends from the microinstruction level to an integrated programming
environment for a high-level language.  It is physically small and quiet enough to occupy space near
its users in an office or laboratory setting, and inexpensive enough to be acquired in considerable
numbers.  These constraints on size, noise, and cost have had a major effect on the design.

The Dorado is designed to rapidly execute programs compiled into a stream of byte codes [16]; the
microcode that does this is called an emulator.  Byte code compilers and emulators exist for Mesa
[6, 13], Interlisp [4, 17], and Smalltalk [7].  An instruction fetch unit (IFU) in the Dorado fetches
bytes from such a stream, decodes them as instructions and operands, and provides the necessary
control and data information to the emulator microcode in the processor; it is described in another
paper [9].  Further support for fast execution comes from a very fast microcycle, and a
microinstruction set powerful enough to allow interpretation of a simple byte code in a single
microcycle; these are described in a paper on the Dorado processor [10].  There is also a cache [2,
11] which has a latency of two cycles, and which can deliver a 16-bit word every cycle.

Another major goal is to support high-bandwidth input/output.  In particular, color monitors, raster
scanned printers, and high speed communications are all part of the computer research activities;
these devices typically have bandwidths of 20 to 400 million bits per second.  Fast devices must not
excessively degrade program execution, even though the two functions compete for many of the
same resources.  Relatively slow devices, such as a keyboard or an Ethernet interface [12], must also
be supported cheaply, without tying up the high-bandwidth I/O system.  These considerations
clearly suggest that I/O activity and program execution should proceed in parallel as much as
possible.  The memory system therefore allows parallel execution of cache accesses and main storage
references.  Its pipeline is fully segmented: a cache reference can start in every microinstruction
cycle, and a main storage reference can start in every main storage cycle.

1.2 Gross structure of the Dorado

Figure 1 is a simplified block diagram of the Dorado.  Aside from I/O, the machine consists of the
processor, the IFU, and the memory system, which in turn contains a cache, a hardware virtual-to-
real address map, and main storage.  Both the processor and the IFU can make memory references
and transfer data to and from the memory through the cache.  Slow, or low-bandwidth I/O devices
communicate with the processor, which in turn transfers their data to and from the cache.  Fast, or
high-bandwidth devices communicate directly with storage, bypassing the cache most of the time.

For the most part, data is handled sixteen bits at a time.  The relatively narrow busses, registers,
data paths, and memories which result from this choice help to keep the machine compact.  This is
especially important for the memory, which has a large number of busses.  Packaging, however, is
not the only consideration.  Speed dictates a heavily pipelined structure in any case, and this
parallelism in the time domain tends to compensate for the lack of parallelism in the space domain.
Keeping the machine physically small also improves the speed, since physical distance (i.e., wire
length) accounts for a considerable fraction of the basic cycle time.  Finally, performance is often
limited by the cache hit rate, which cannot be improved, and may be reduced, by wider data paths
(if the number of bits in the cache is fixed).
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Rather than putting processing capability in each I/O controller and using a shared bus or a switch
to access the memory, the Dorado shares the processor among all the I/O devices and the emulator.
This idea, originally tried in the TX-2 computer [5] and also used in the Alto [18], works for two
main reasons.  First, unless a system has both multiple memory busses (i.e., multi-ported memories)
and multiple memory modules that can cycle independently, the main factor governing processor
throughput is memory contention.  Put simply, when I/O devices make memory references, the
emulator ends up waiting for the memory.  In this situation the processor might as well be working
for the I/O device.  Second, complex device interfaces can be implemented with relatively little
dedicated hardware, since the full power of the processor is available to each device.

This processor sharing is accomplished with 16 hardware-scheduled microcode processes, called
tasks.  Tasks have fixed priority.  Most tasks serve a single I/O device, which raises a request line
when it wants service from its task.  Hardware schedules the processor so as to serve the highest
priority request; control can switch from one task to another on every microinstruction, without any
cost in time.  When no device is requesting service, the lowest priority task runs and does high-level
language emulation.  To eliminate the time cost of multiplexing the processor among the tasks in
this way, a number of the machine’s working registers are task-specific, i.e., there is a copy for each
task.  The implementation typically involves a single physical register, and a 16-element memory
which is addressed by the current task number and whose output is held in the register.

Many design decisions were based on the need for speed.  Raw circuit speed certainly comes first.
Thus, the Dorado is implemented using the fastest commercially available technology that has a
reasonable level of integration and is not too hard to package.  When our design was started in
1976, the obvious choice was the ECL (Emitter-Coupled Logic) 10K family of integrated circuits.
These circuits make it possible for the Dorado to execute a microinstruction in 60 ns; this is the
basic cycle time of the machine.  Second, there are several pipelines, and they are generally able to
start a new operation every cycle.  The memory, for instance, has two pipelines, the processor two,
the instruction fetch unit another.  Third, there are many independent busses: eight in the memory,
half a dozen in the processor, three in the IFU.  These busses increase bandwidth and simplify
scheduling, as will be seen in later sections of the paper.

1.3 Memory architecture

The paged virtual memory of the Dorado is designed to accommodate evolving memory chip
technology in both the address map and main storage.  Possible configurations range from the
current 22-bit virtual address with 16K 256-word pages and up to one million words of storage
(using 16K chips in both map and storage) to the ultimate 28-bit virtual address with 256K 1024-
word pages and 16 million words of storage (using 256K chips).  All address busses are wired for
their maximum size, so that configuration changes can be made with chip replacement only.

Instruction

Processor
Cache

Storage

Slow input/output

Fast input/output

EthernetDiskDisplayKeyboard

Fetch Unit

8K-32K
bytes

265 MBits/sec
16 bits/60 ns

265 MBits/sec
16 bits/60 ns

120 ns access

530 MBits/sec
256 bits/480 ns

1.7 us access

Figure  1: Dorado block diagram
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Memory references specify a 16 or 28 bit displacement, and one of 32 base registers of 28 bits; the
virtual address is the sum of the displacement and the base.  Virtual address translation, or mapping,
is implemented by table lookup in a dedicated memory.  Main storage is the permanent home of
data stored by the memory system.  The storage is necessarily slow (i.e., it has long latency, which
means that it takes a long time to respond to a request), because of its implementation in cheap but
slow dynamic MOS RAMs (random access memories).  To make up for being slow, storage is big,
and it also has high bandwidth, which is more important than latency for sequential references.  In
addition, there is a cache which services non-sequential references with high speed (low latency),
but is inferior to main storage in its other parameters.  The relative values of these parameters are
shown in Table 1.

Cache Storage

Latency-1 15 1
Bandwidth 1 2
Capacity 1 250

Table 1: Parameters of the cache relative to storage

With one exception (the IFU), all memory references are initiated by the processor, which thus acts
as a multiplexor controlling access to the memory (see ¶ 1.2 and [10]), and is the sole source of
addresses.  Once started, however, a reference proceeds independently of the processor.  Each one
carries with it the number of its originating task, which serves to identify the source or sink of any
data transfer associated with the reference.   The actual transfer may take place much later, and
each source or sink must be continually ready to deliver or accept data on demand.  It is possible
for a task to have several references outstanding, but order is preserved within each type of
reference, so that the task number plus some careful hardware bookkeeping is sufficient to match
up data with references. 

Table 2 lists the types of memory references executable by microcode.  Figure 2, a picture of the
memory system’s main data paths, should clarify the sources and destinations of data transferred by
these references (parts of Figure 2 will be explained in more detail later).  All references, including
fast I/O references, specify virtual, not real addresses.  Although a microinstruction actually specifies
a displacement and a base register which together form the virtual address, for convenience we will
suppress this fact and write, for example, Fetch(a) to mean a fetch from virtual address a.

A Fetch from the cache delivers data to a register called FetchReg, from which it can be retrieved at
any later time; since FetchReg is task-specific, separate tasks can make their cache references
independently.  An I/ORead reference delivers a 16-word block of data from storage to the
FastOutBus (by way of the error corrector, as shown in Figure 2), tagged with the identity of the
requesting task; the associated output device is expected to monitor this bus and grab the data
when it appears.   Similarly, the processor can Store one word of data into the cache, or do an
I/OWrite reference which demands a block of data from an input device and sends it to storage (by
way of the check-bit generator).  There is also a Prefetch reference, which brings a block into the
cache.  Fetch, Store and Prefetch are called cache references.  There are special references to flush
data from the cache and to allow a map entries to be read and written; these will be discussed later.

The instruction fetch unit is the only device that can make a reference independently of the
processor.  It uses a single base register, and is treated almost exactly like a processor cache fetch,
except that the IFU has its own set of registers for receiving memory data (see [9] for details).  In
general we ignore IFU references from now on, since they add little complexity to the memory
system.
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Reference Task Effect                             �

Fetch(a) any task fetches one word of data from virtual address a in the cache
and delivers it to FetchReg register

Store(d, a) any task stores data word d at virtual address a in the cache

I/ORead(a) I/O task only reads block at virtual address a in storage and delivers it to a
fast output device

I/OWrite(a) I/O task only takes a block from a fast input device and writes it at virtual
address a in storage

Prefetch(a) any task forces the block at virtual address a into the cache

Flush(a) emulator only removes from the cache (re-writing to storage if necessary)
the block at virtual address a

MapRead(a) emulator only reads the map entry addressed by virtual address a

MapWrite(d, a) emulator only writes d into the map entry addressed by virtual address a

DummyRef(a) any task makes a pseudo-reference guaranteed not to reference storage
or alter the cache (useful for diagnostics)

Table 2: Memory-reference instructions available to microcode

A cache reference usually hits; i.e., it finds the referenced word in the cache.  If it misses (does not
find the word), a main storage operation must be done to bring the block containing the requested
word into the cache.  In addition, I/O references always do storage operations.  There are two kinds
of storage operations, read and write, and we will generally use these words only for storage
operations in order to distinguish them from the references made by the processor.  The former
transfers a block out of storage to the cache or I/O system; the latter transfers a block into storage
from the cache or I/O system.

1.4 Implementation for high performance

Two major forms of concurrency make it possible to implement the memory system’s functions with
high performance: 

Physical: the cache (8K-32K bytes) and the main storage (.5M-32M bytes) are almost
independent.  Normally, programs execute from the cache, and fast I/O devices transfer to
and from the storage.  Of course, there must be some coupling when a program refers to
data that is not in the cache, or when I/O touches data that is; this is the subject of ¶ 4.

Temporal: both cache and storage are implemented by fully segmented pipelines.  Each can
accept a new operation once per cycle of the memory involved: every machine cycle (60 ns)
for the cache, and every eight machine cycles (480 ns) for the storage.

To support this concurrency, the memory has independent busses for cache and main storage
addressing (2), data into and out of the cache (2) and main storage (2), and fast input and output
(2).  The data busses, but not the address busses, are visible in Figure 2.  It is possible for all eight
busses to be active in a single cycle, and under peak load the average utilization is about 75%.  In
general, there are enough busses that an operation never has to wait for a bus; thus the problems of
concurrently scheduling complex operations that share many resources are simplified by reducing
the number of shared resources to the unavoidable minimum of the storage devices themselves.
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All busses are 16 bits wide; blocks of data are transferred to and from storage at the rate of 16 bits
every half cycle (30 ns).  This means that 256 bits can be transferred in 8 cycles or 480 ns., which is
somewhat more than the 375 ns cycle time of the RAM chips that implement main storage.  Thus a
block size of 256 bits provides a fairly good match between bus and chip bandwidths; it is also a
comfortable unit to store in the cache.  The narrow busses increase the latency of a storage transfer
somewhat, but they have little effect on the bandwidth.  A few hundred nanoseconds of latency is
of little importance either for sequential I/O transfers or for delivery of data to a properly
functioning cache.

Various measures are taken to maximize the performance of the cache.  Data stored there is not
written back to main storage until the cache space is needed for some other purpose (the write-back
rather than the more common write-through discipline [1, 14]); this make it possible to use memory
locations much like registers in an interpreted instruction set, without incurring the penalty of main
storage accesses.  Virtual rather than real addresses are stored in the cache, so that the speed of
memory mapping does not affect the speed of cache references.  (Translation buffers [15, 20] are
another way to accomplish this.)  This would create problems if there were multiple address spaces.
Although these problems can be solved, in a single-user environment with a single address space
they do not even need to be considered.

Another important technique for speeding up data manipulation in general, and cache references in
particular, is called bypassing.  Bypassing is one of the speed-up techniques used in the Common
Data Bus of the IBM 360/91 [19].  Sequences of instructions having the form

(1) register _ computation1
(2) computation2 involving the register

are very common.  Usually the execution of the first instruction takes more than one cycle and is
pipelined.  As a result, however, the register is not loaded at the end of the first cycle, and
therefore is not ready at the beginning of the second instruction.  The idea of bypassing is to avoid
waiting for the register to be loaded, by routing the results of the first computation directly to the
inputs of the second one.  The effective latency of the cache is thus reduced from two cycles to one
in many cases (see ¶ 2.3).

The implementation of the Dorado memory reflects a balance among competing demands:

for simplicity, so that it can be made to work initially, and maintained when components
fail; 

for speed, so that the performance will be well-matched to the rest of the machine;

for space, since cost and packaging considerations limit the number of components and
edgepins that can be used.

None of these demands is absolute, but all have thresholds that are costly to cross.  In the Dorado
we set a somewhat arbitrary speed requirement for the whole machine, and generally tried to save
space by adding complexity, pushing ever closer to the simplicity threshold.  Although many of the
complications in the memory system are unavoidable consequences of the speed requirements, some
of them could have been eliminated by adding hardware.

2. The cache

The memory system is organized into two kinds of building blocks: pipeline stages, which provide
the control (their names are in SMALL CAPITALS), and resources, which provide the data paths and
memories.  Figure 3 shows the various stages and their arrangement into two pipelines.  One,
consisting of the ADDRESS and HITDATA stages, handles cache references and is the subject of this
section; the other, containing MAP, WRITETR, STORAGE, READTR1 and READTR2, takes care of
storage references and is dealt with in ¶ 3 and 4.  References start out either in PROC, the processor,
or in the IFU.



 THE MEMORY SYSTEM OF A HIGH-PERFORMANCE PERSONAL COMPUTER58

The cache pipeline’s two resources, CacheA and CacheD, correspond roughly to its two stages,
although each is also used by other stages in the storage pipeline.  CacheA stores addresses and
associated flags, and contains the comparators which decide whether a given address is currently in
the cache.  CacheD stores cache data.  Figure 4 shows the data paths and memories of these
resources.  The numbers on the left side of the figure indicate the time at which a reference reaches
each point in the pipeline, relative to the start of the microinstruction making the reference.

Every reference is first handled by the ADDRESS stage, whether or not it involves a cache data
transfer.  The stage calculates the virtual address and checks to see whether the associated data is in
the cache.  If it is (a hit), and the reference is a Fetch or Store, ADDRESS starts HITDATA, which is
responsible for the one-word data transfer.  On a cache reference that misses, and on any I/O
reference, ADDRESS starts MAP as described in ¶ 3. 

HITDATA obtains the cache address of the word being referenced from ADDRESS, sends this address
to CacheD, which stores the cache data, and either fetches a word into the FetchReg register of the
task that made the reference, or stores the data delivered by the processor via the StoreReg register.

2.1 Cache addressing

Each reference begins by adding the contents of a base register to a displacement provided by the
processor (or IFU).  A task-specific register holds a 5-bit pointer to a task’s current base register.
These pointers, as well as the base registers themselves, can be changed by microcode.

Normally the displacement is 16 bits, but by using both its busses the processor can supply a full
28-bit displacement.  The resulting sum is the virtual address for the reference.  It is divided into a
16-bit key, an 8-bit row number, and a 4-bit word number; Figure 4 illustrates.  This division
reflects the physical structure of the cache, which consists of 256 rows, each capable of holding four
independent 16-word blocks of data, one in each of four columns.  A given address determines a
row (based on its 8 row bits), and it must appear in some column of that row if it is in the cache at
all.  For each row, CacheA stores the keys of the four blocks currently in that row, together with
four flag bits for each block.  The Dorado cache is therefore set-associative [3]; rows correspond to
sets and columns to the elements of a set.
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Given this organization, it is simple to determine whether an address is in the cache.  Its row bits
are used to select a row, and the four keys stored there are compared with the given address.  If
one of them matches, there is a hit and the address has been located in the cache.  The number of
the column that matched, together with the row bits, identifies the block completely, and the four
word bits of the address select one of the 16 words within that block.  If no key matches, there is a
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miss: the address is not present in the cache.  During normal operation, it is not possible for more
than one column to match.  The entire matching process can be seen in Figure 4, between 60 and
90 ns after the start of the reference.  The cache address latched at 90 contains the row, word and
column; these 14 bits address a single word in CacheD.  Of course, only the top 16 key bits of the
address need be matched, since the row bits are used to select the row, and all the words of a block
are present or absent together.

Four flag bits are stored with each cache entry to keep track of its status.  We defer discussion of
these flags until ¶ 4.

2.2 Cache data

The CacheD resource stores the data for the blocks whose addresses appear in CacheA; closely
associated with it are the StoreReg and task-specific FetchReg registers which allow the processor to
deliver and retrieve its data independently of the memory system’s detailed timing.  CacheD is quite
simple, and would consist of nothing but a 16K by 16 bit memory were it not for the bandwidth of
the storage.  To keep up with storage the cache must be able to accept a word every half cycle (30
ns.).  Since its memory chips cannot cycle this fast, CacheD is organized in two banks which run a
half-cycle out of phase when transferring data to or from the storage.  On a hit, however, both
banks are cycled together and CacheD behaves like an 8K by 32 bit memory.  A multiplexor selects
the proper half to deliver into FetchReg.  All this is shown in Figure 4.

Figure 4 does not, however,  show how FetchReg is made task-specific.  In fact, there is a 16-word
memory FetchRegRAM in addition to the register shown.  The register holds the data value for the
currently executing task.  When a Fetch reference completes, the word from CacheD is always
loaded into the RAM entry for the task that made the reference; it is also loaded into FetchReg if
that task is the one currently running.  Whenever the processor switches tasks, the FetchRegRAM
entry for the new task is read out and loaded into FetchReg.  Matters are further complicated by
the bypassing scheme described in the next subsection.

StoreReg is not task-specific.  The reason for this choice and the problem it causes are explained in
¶ 5.1.

2.3 Cache pipelining

From the beginning of a cache reference, it takes two and a half cycles before the data is ready in
FetchReg, even if it hits and there are no delays.  However, because of the latches in the pipeline
(some of which are omitted from Figure 4), a new reference can be started every cycle, and if there
are no misses the pipeline will never clog up, but will continue to deliver a word every 60 ns.  This
works because nothing in later stages of the pipeline affects anything that happens in an earlier
stage.

The exception to this principle is delivery of data to the processor itself.  When the processor uses
data that has been fetched, it depends on the later stages of the pipeline.  In general this
dependency is unavoidable, but in the case of the cache the bypassing technique described in ¶ 1.4
is used to reduce the latency.  A cache reference logically delivers its data to the FetchReg register
at the end of the cycle following the reference cycle (actually halfway through the second cycle, at
150 in Figure 4).  Often the data is then sent to a register in the processor, with a (microcode)
sequence such as

(1) Fetch(address)
(2) register _ FetchReg
(3) computation involving register.  

The register is not actually loaded until cycle (3); hence the data, which is ready in the middle of
cycle (3), arrives in time, and instruction (2) does not have to wait.  The data is supplied to the
computation in cycle (3) by bypassing.  The effective latency of the cache is thus only one cycle in
this situation.
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Unfortunately this sleight-of-hand does not always work.  The sequence

(1) Fetch(address)
(2) computation involving FetchReg  

actually needs the data during cycle (2), which will therefore have to wait for one cycle (see ¶ 5.1).
Data retrieved in cycle (1) would be the old value of FetchReg; this allows a sequence of fetches

(1) Fetch(address1)
(2) register1 _ FetchReg, Fetch(address2)
(3) register2 _ FetchReg, Fetch(address3)
(4) register3 _ FetchReg, Fetch(address4)

. . .

to proceed at full speed.

3. The storage pipeline

Cache misses and fast I/O references use the storage portion of the pipeline, shown in Figure 3.  In
this section we first describe the operation of the individual pipeline stages, then explain how fast
I/O references use them, and finally discuss how memory faults are handled.  Using I/O references
to expose the workings of the pipeline allows us to postpone until ¶ 4 a close examination of the
more complicated references involving both cache and storage.

3.1 Pipeline stages

Each of the pipeline stages is implemented by a simple finite-state automaton that can change state
on every microinstruction cycle.  Resources used by a stage are controlled by signals that its
automaton produces.  Each stage owns some resources, and some stages share resources with others.
Control is passed from one stage to the next when the first produces a start signal for the second;
this signal forces the second automaton into its initial state.  Necessary information about the
reference type is also passed along when one stage starts another.

3.1.1 The ADDRESS stage

As we saw in ¶ 2, the ADDRESS stage computes a reference’s virtual address and looks it up in
CacheA.  If it hits, and is not I/ORead or I/OWrite, control is passed to HITDATA.  Otherwise, control
is passed to MAP, starting a storage cycle.  In the simplest case a reference spends just one
microinstruction cycle in ADDRESS, but it can be delayed for various reasons discussed in ¶ 5.

3.1.2 The MAP stage

The MAP stage translates a virtual address into a real address by looking it up in a hardware table
called the MapRAM, and then starts the STORAGE stage.  Figure 5 illustrates the straightforward
conversion of a virtual page number into a real page number.  The low-order bits are not mapped;
they point to a single word on the page.

Three flag bits are stored in MapRAM for each virtual page:

ref, set automatically by any reference to the page;

dirty, set automatically by any write into the page;

writeProtect, set by memory-management software (using the MapWrite reference).  

A virtual page not in use is marked as vacant by setting both writeProtect and dirty, an otherwise
nonsensical combination.  A reference is aborted by the hardware if it touches a vacant page,
attempts to write a write-protected page, or causes a parity error in the MapRAM.  All three kinds
of map fault are passed down the pipeline to READTR2 for reporting; see ¶ 3.1.5.
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MAP takes eight cycles to complete.  MapRAM outputs are available for the STORAGE stage in the
fifth cycle; the last three cycles are used to re-write the flags.

MapRAM entries (including flags) are written by the MapWrite reference.  They are read by the
MapRead reference in a slightly devious way explained in ¶ 3.3.

3.1.3 The STORAGE stage

The Dorado’s main storage, a resource called StorageRAM, is controlled by the STORAGE stage.
STORAGE is started by MAP, which supplies the real storage address and the operation type�read or
write.  StorageRAM is organized into 16-word blocks, and the transfer of a block is called a
transport.  All references to storage involve an entire block.  Transports into or out of the
StorageRAM take place on word-sized busses called ReadBus and WriteBus.  Block-sized shift
registers called ReadReg and WriteReg lie between these busses and  StorageRAM.  When storage is
read, an entire block (256 bits plus 32 error-correction bits) is loaded into ReadReg all at once, and
then transported to the cache or to a fast output device by shifting words sequentially out of
ReadReg at the rate of one word every half-cycle (30 ns.).  On a write, the block is shifted a word
at a time into WriteReg, and when the transport is finished, the 288 storage chips involved in that
block are written all at once.  Figure 6 shows one bit-slice of WriteReg, StorageRAM, and ReadReg
(neglecting the error correction bits); sixteen such bit-slices comprise one storage module, of which
there can be up to four.  Figure 2 puts Figure 6 in context.

WriteReg and ReadReg are not owned by STORAGE, and it is therefore possible to overlap
consecutive storage operations.  Furthermore, because the eight-cycle (480 ns) duration of a
transport closely matches the 375 ns. cycle time of the 16K MOS RAM chips, it is possible to keep
StorageRAM busy most of the time.  The resulting bandwidth is one block every eight cycles, or 530
million bits per second.  ReadReg is shared between STORAGE, which loads it, and READTR1/2,
which shift it.  Similarly, WriteReg is shared between WRITETR, which loads it, and STORAGE,
which clocks the data into the RAM chips and releases it when their hold time has expired.
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Each storage module has a capacity of 256K, 1M, or 4M 16-bit words, depending on whether 16K,
64K, or (hypothetical) 256K RAM chips are used.  The two high-order bits of the real address select
the module (see Figure 5); modules do not run in parallel.  A standard Hamming error-correcting
code is used, capable of correcting single errors and detecting double errors in four-word groups.
Eight check bits, therefore, are stored with each quadword; in what follows we will often ignore
these bits.

3.1.4 The WRITETR stage

The WRITETR stage transports a block into WriteReg, either from CacheD or from an input device.
It owns ECGen, the Hamming check bit generator, and WriteBus, and shares WriteReg with
STORAGE.  It is started by ADDRESS on every write, and synchronizes with STORAGE as explained in
¶ 5.3.1.  It runs for eleven cycles on an I/OWrite, and for twelve cycles on a cache write.  As Figure
3 shows, it starts no subsequent stages itself.

3.1.5 The READTR1 and READTR2 stages

Once ReadReg is loaded by STORAGE, the block is ready for transport to CacheD or to a fast
output device.  Because it must pass through the error corrector EcCor, the first word appears on
ReadBus three cycles before the first corrected word appears at the input to CacheD or on the
FastOut bus (see Figure 2).  Thus there are at least eleven cycles of activity related to read
transport, and controlling the entire transport with a single stage would limit the rate at which read
transports could be done to one every eleven cycles.  No such limit is imposed by the data paths,
since the error corrector is itself pipelined and does not require any wait between quadwords or
blocks.  To match the storage, bus, and error corrector bandwidths, read transport must be
controlled by two eight-cycle stages in series; they are called READTR1 and READTR2.

In fact, these stages run on every storage operation, not just on reads.  There are several reasons for
this.  First, READTR2 reports faults (page faults, map parity errors, error corrections) and wakes up
the fault-handling microtask if necessary (see ¶ 3.3); this must be done for a write as well as for a
read.  Second, hardware is saved by making all operations flow through the pipeline in the same
way.  Third, storage latency is in any case limited by the transport time and the StorageRAM’s cycle
time.  Finishing a write sooner would not reduce the latency of a read, and nothing ever waits for a
write to complete.

On a read, STORAGE starts READTR1 just as it parallel-loads ReadReg with a block to be
transported. READTR1 starts shifting words out of ReadReg and through the error corrector.  On a
write, READTR1 is started at the same point, but no transport is done.  READTR1 starts READTR2,
which shares with it responsibility for controlling the transport and the error corrector.  READTR2
reports faults (¶ 3.3) and completes cache read operations either by delivering the requested word
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into FetchReg (for a fetch), or by storing the contents of StoreReg into the newly-loaded block in
the cache (for a store).

3.2 Fast I/O references

We now look in detail at simple cases of the fast I/O references I/ORead and I/OWrite.  These
references proceed almost independently of the cache, and are therefore easier to understand than
fetch and store references, which may involve both the cache and storage.

The reference I/ORead(x) delivers a block of data from virtual location x to a fast output device.
Figure 7 shows its progress through the memory system; time divisions on the horizontal axis
correspond to microinstruction cycles (60 ns.).  At the top is the flow of the reference through the
pipeline; in the middle is a time line annotated with the major events of the reference; at the
bottom is a block diagram of the resources used.  The same time scale is used in all three parts, so
that a vertical section shows the stages, the major events, and the resources in use at a particular
time.  Most of the stages pass through eight states, labelled 0 through 7 in the figure.

The I/ORead spends one cycle in the processor and then one in ADDRESS, during which x is
computed and looked up in CacheA.  We assume for the moment that x misses; what happens if it
hits is the subject of ¶ 4.4.  ADDRESS starts MAP, passing it x.  MAP translates x into the real address
r, and starts STORAGE, passing it r; MAP then spends three more cycles rewriting the flags as
appropriate and completing the MapRAM cycle (¶ 3.1.2).  STORAGE does a StorageRAM access and
loads the 16-word block of data (together with its check bits) into ReadReg.  It then starts READTR1
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and completes the StorageRAM cycle (¶ 3.1.3).  READTR1 and READTR2 transport the data, control
the error corrector, and deliver the data to FastOutBus (¶ 3.1.5).  Fault reporting, if necessary, is
done by READTR2 as soon as the condition of the last quadword in the block is known (¶ 3.3).

It is clear from Figure 7 that an I/ORead can be started every eight machine cycles, since this is the
longest period of activity of any stage.  This would result in 530 million bits per second of
bandwidth, the maximum supportable by the memory system.  The inner loop of a fast I/O task can
be written in two microinstructions, so if a new I/ORead is launched every eight cycles, one-fourth
of the processor capacity will be used.  Because ADDRESS is used for only one cycle per I/ORead,
other tasks�notably the emulator�may continue to hit in the cache when the I/O task is not
running.

I/OWrite(x) writes into virtual location x a block of data delivered by a fast input device, together
with appropriate Hamming code check bits.  The data always goes to storage, never to the cache,
but if address x happens to hit in the cache, the entry is invalidated by setting a flag (¶ 4).  Figure
8 shows that an I/OWrite proceeds through the pipeline very much like an I/ORead.  The difference,
of course, is that the WRITETR stage runs, and the READTR1 and READTR2 stages, although they run,
do not transport data.  Note that the write transport, from FastInBus to WriteBus, proceeds in
parallel with mapping.  Once the block has been loaded into WriteReg, STORAGE issues a write
signal to StorageRAM.  All that remains is to run READTR1 and READTR2, as explained above.  If a
map fault occurs during address translation, the write signal is blocked and the fault is passed along
to be reported by READTR2.
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Figure 8 shows a delay in the MAP stage’s handling of I/OWrite.  MAP remains in state 3 for two
extra cycles, which are labelled with asterisks, rather than state numbers, in Figure 8.  This delay
allows the write transport to finish before the write signal is issued to StorageRAM.  This
synchronization and others are detailed in ¶ 5.

Because WRITETR takes eleven cycles to run, I/OWrites can only run at the rate of one every eleven
cycles, yielding a maximum bandwidth for fast input devices of 390 million bits per second.  At that
rate, two of every eleven cycles would go to the I/O task’s inner loop, consuming 18 percent of the
processor capacity.  But again, other tasks could hit in the cache in the remaining nine cycles.

3.3 History and fault reporting

There are two kinds of memory system faults: map and storage.  A map fault is a MapRAM parity
error, a reference to a page marked vacant, or a write operation to a write-protected page.  A
storage fault is either a single or a double error (within a quadword) detected during a read.  In
what follows we do not always distinguish between the two types.

Consider how a page fault might be handled.  MAP has read the MapRAM entry for a reference and
found the virtual page marked vacant.  At this point there may be another reference in ADDRESS
waiting for MAP, and one more in the processor waiting for ADDRESS.  An earlier reference may be
in READTR1, perhaps about to cause a storage fault.  The processor is probably several instructions
beyond the one that issued the faulting reference, perhaps in another task.  What to do?  It would
be quite cumbersome at this point to halt the memory system, deal with the fault, and restart the
memory system in such a way that the fault was transparent to the interrupted tasks.  Instead, the
Dorado allows the reference to complete, while blunting any destructive consequences it might
have.  A page fault, for example, forces the cache’s vacant flag to be set when the read transport is
done.  At the very end of the pipeline READTR2 wakes up the Dorado’s highest-priority microtask,
the fault task, which must deal appropriately with the fault, perhaps with the help of memory-
management software.

Because the fault may be reported well after it happened, a record of the reference must be kept
which is complete enough that the fault task can sort out what has happened.  Furthermore,
because later references in the pipeline may cause additional faults, this record must be able to
encompass several faulting references.  The necessary  information associated with each reference,
about 80 bits, is recorded in a 16-element memory called History.  Table 3 gives the contents of
History and shows which stage is responsible for writing each part.  History is managed as a ring
buffer and is addressed by a 4-bit Storage Reference Number or SRN, which is passed along with
the reference through the various pipeline stages.  When a reference is passed to the MAP stage, a
counter containing the next available SRN is incremented.  A hit writes the address portion of
History (useful for diagnostic purposes; see below), without incrementing the SRN counter.

Entry Written by

Virtual address, reference type, task number, cache column ADDRESS

Real page number, MapRAM flags, map fault MAP

Storage fault, bit corrected (for single errors) READTR2

Table 3: Contents of the History memory

Two hardware registers accessible to the processor help the fault task interpret History: FaultCount
is incremented every time a fault occurs; FirstFault holds the SRN of the first faulting reference.
The fault task is awakened whenever FaultCount is non-zero; it can read both registers and clear
FaultCount in a single atomic operation.  It then handles FaultCount faults, reading successive
elements of History starting with History[FirstFault], and then yields control of the processor to the
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other tasks.  If more faults have occurred in the meantime, FaultCount will have been incremented
again and the fault task will be reawakened.

The fault task does different things in response to the different types of fault.  Single bit errors,
which are corrected, are not reported at all unless a special control bit in the hardware is set.  With
this bit set, the fault task can collect statistics on failing storage chips; if too many failures are
occurring, the bit can be cleared and the machine can continue to run.  Double bit errors may be
dealt with by re-trying the reference; a recurrence of the error must be reported to the operating
system, which may stop using the failing memory, and may be able to reread the data from the disk
if the page is not dirty, or determine which computation must be aborted.  Page faults are the most
likely reason to awaken the fault task, and together with write-protect faults are dealt with by
yielding to memory-management software.  MapRAM parity errors may disappear if the reference is
re-tried; if they do not, the operating system can probably recover the necessary information.

Microinstructions that read the various parts of History are provided, but only the emulator and the
fault task may use them.  These instructions use an alternate addressing path to History which does
not interfere with the SRN addressing used by references in the pipeline.  Reading base registers,
the MapRAM, and CacheA can be done only by using these microinstructions.

This brings us to a serious difficulty with treating History as a pure ring buffer.  To read a
MapRAM entry, for example, the emulator must first issue a reference to that entry (normally a
MapRead), and then read the appropriate part of History when the reference completes; similarly, a
DummyRef (see Table 3) is used to read a base register.  But because other tasks may run and issue
their own references between the start of the emulator’s reference and its reading of History, the
emulator cannot be sure that its History entry will remain valid.  Sixteen references by I/O tasks, for
example, will destroy it.

To solve this problem, we designate History[0] as the emulator’s "private" entry: MapRead,
MapWrite, and DummyRef references use it, and it is excluded from the ring buffer.  Because the
fault task may want to make references of its own without disturbing History, another private entry
is reserved for it.  The ring buffer proper, then, is a 14-element memory used by all references
except MapRead, MapWrite, and DummyRef in the emulator and fault task.  For historical reasons,
Fetch, Store and Flush references in the emulator and fault task also use the private entries; the tag
mechanism (¶ 4.1) ensures that the entries will not be reused too soon.

In one case History is read, rather than written, by a pipeline stage.  This happens during a read
transport, when READTR1 gets from History the cache address (row and column) it needs for writing
the new data and the cache flags.  This is done instead of piping this address along from ADDRESS
to READTR1.

4. Cache-storage interactions

The preceding sections describe the normal case in which the cache and main storage function
independently.  Here we consider the relatively rare interactions between them.  These can happen
for a variety of reasons:

Processor references that miss in the cache must fetch their data from storage.

A dirty block in the cache must be re-written in storage when its entry is needed.

Prefetch and flush operations explicitly transfer data between cache and storage.

I/O references that hit in the cache must be handled correctly.

Cache-storage interactions are aided by the four flag bits that are stored with each cache entry to
keep track of its status (see Figure 4).  The vacant flag indicates that an entry should never match; it
is set by software during system initialization, and by hardware when the normal procedure for
loading the cache fails, e.g., because of a page fault.  The dirty flag is set when the data in the entry
is different from the data in storage because the processor did a store; this means that the entry
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must be written back to storage before it is used for another block.  The writeProtected flag is a copy
of the corresponding bit in the map.  It causes a store into the block to miss and set vacant; the
resulting storage reference reports a write-protect fault (¶ 3.3).  The beingLoaded flag is set for about 
15 cycles while the entry is in the course of being loaded from storage; whenever the ADDRESS
stage attempts to examine an entry, it waits until the entry is not beingLoaded, to ensure that the
entry and its contents are not used while in this ambiguous state.

When a cache reference misses, the block being referenced must be brought into the cache.  In
order to make room for it, some other block in the row must be displaced; this unfortunate is
called the victim.  CacheA implements an approximate least-recently-used rule for selecting the
victim.  With each row, the current candidate for victim and the next candidate, called next victim,
are kept.  The victim and next victim are the top two elements of an LRU stack for that row;
keeping only these two is what makes the replacement rule only approximately LRU.  On a miss, the
next victim is promoted to be the new victim and a pseudo-random choice between the remaining
two columns is promoted to be the new next victim.  On each hit, the victim and next victim are
updated in the obvious way, depending on whether they themselves were hit.

The flow of data in cache-storage interactions is shown in Figure 2.  For example, a Fetch that
misses will read an entire block from storage via the ReadBus, load the error-corrected block into
CacheD, and then make a one-word reference as if it had hit.

What follows is a discussion of the four kinds of cache-storage interaction listed above.

4.1 Clean miss

When the processor or IFU references a word w that is not in the cache, and the location chosen as
victim is vacant or holds data that is unchanged since it was read from storage (i.e., its dirty flag is
not set), a clean miss has occurred.  The victim need not be written back, but a storage read must
be done to load into the cache the block containing w.  At the end of the read, w can be fetched
from the cache.  A clean miss is much like an I/ORead, which was discussed in the previous section.
The chief difference is that the block from storage is sent not over the FastOutBus to an output
device, but to the CacheD memory.  Figure 9 illustrates a clean miss.

All cache loads require a special cycle, controlled by READTR1, in which they get the correct cache
address from History and write the cache flags for the entry being loaded; the data paths of
CacheA are used to read this address and write the flags.  This RThasA cycle takes priority over all
other uses of CacheA and History, and can occur at any time with respect to ADDRESS, which also
needs access to these resources.  Thus all control signals sent from ADDRESS are inhibited by
RThasA, and ADDRESS is forced to idle during this cycle.  Figure 9 shows that the RThasA cycle
occurs just before the first word of the new block is written into CacheD.  (For simplicity and
clarity we will not show RThasA cycles in the figures that follow.)  During RThasA, the beingLoaded
flag is cleared (it was set when the reference was in ADDRESS) and the writeProtected flag is copied
from the writeProtected bit in MapRAM.  As soon as the transport into CacheD is finished, the word
reference that started the miss can be made, much as though it had hit in the first place.  If the
reference was a Fetch, the appropriate word is sent to FetchReg in the processor (and loaded into
FetchRegRAM); if a Store, the contents of StoreReg are stored into the new block in the cache.

If the processor tries to use data it has fetched, it is prevented from proceeding, or held until the
word reference has occurred (see ¶ 5.1).  Each fetch is assigned a sequence number called its tag,
which is logically part of the reference; actually it is written into History, and read when needed by
READTR1.  Tags increase monotonically.  The tag of the last Fetch started by each task is kept in
StartedTag (it is written there when the reference is made), and the tag of the last Fetch completed
by the memory is kept in DoneTag (it is written there as the Fetch is completed); these are task-
specific registers.  Since tags are assigned monotonically, and fetches always complete in order
within a task,  both registers increase monotonically.   If StartedTag=DoneTag,  all the fetches that
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have been started are done, otherwise not; this condition is therefore sufficient to decide whether
the processor should be held when it tries to use FetchReg.  Because there is only one FetchReg
register per task, it is not useful to start another Fetch until the preceding one is done and its word
has been retrieved.  The tags are therefore used to hold up a Fetch until the preceding one is done,
and thus can be kept modulo 2, so that one bit suffices to represent a tag.  Store references also use
the tag mechanism, although this is not logically necessary.

(Instead of a sequence number on each reference, we might have counted the outstanding
references for each task.  This idea was rejected for the following rather subtle reason.  In a single
machine cycle three accesses to the counter may be required: the currently running task must read
the counter to decide whether a reference is possible, and write back an incremented value; in
addition, READTR2 may need to write a decremented value for a different task as a reference
completes.  Time allows only two references in a single cycle to the RAM in which such task-specific
information must be kept.  The use of sequence numbers allows the processor to read both
StartedTag and DoneTag from separate RAMs, and then the processor and the memory to
independently write the RAMs; thus four references are made to two RAMs in one cycle, or two to
each.)

Other tasks may start references or use data freely while one task has a Fetch outstanding.  Cache
hits, for example, will not be held up, except during the RThasA cycle and while CacheD is busy
with the transport.  These and other inter-reference conflicts are discussed in more detail in ¶ 5.
Furthermore, the same task may do other references, such as Prefetches, which are not affected by
the tags.  The IFU has two FetchReg registers of its own, and can therefore have two fetches
outstanding.  Hence it cannot use the standard tag mechanism, and instead implements this function
with special hardware of its own. 
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4.2 Dirty miss

When a processor or IFU reference misses, and the victim has been changed by a store since
arriving in the cache, a dirty miss has occurred, and the victim must be re-written in storage.  A
dirty miss gives rise to two storage operations: the write that re-writes the victim’s dirty block from
cache to storage, and the read that loads CacheD with the new block from storage.  The actual data
transports from and to the cache are done in this order (as they must be), but the storage
operations are done in reverse order, as illustrated by a fetch with dirty victim in Figure 10.  The
figure shows that the victim reference spends eight cycles in ADDRESS waiting for the fetch to finish
with MAP (recall that the asterisks mean no change of state for the stage).  During this time the
victim’s transport is done by WRITETR.

There are several reasons for this arrangement.  As we saw in ¶ 3, data transport to and from
storage is not done in lockstep with the corresponding storage cycle; only the proper order of events
is enforced.  The existence of ReadReg and WriteReg permits this.  Furthermore, there is a 12-cycle
wait between the start of a read in ADDRESS and the latching of the data in ReadReg.  These two
considerations allow us to interleave the read and victim write operations in the manner shown in
Figure 10.  The read is started, and while it proceeds�during the 12-cycle window�the write
transport for the victim is done.  The data read is latched in ReadReg, and then transported into
the cache while the victim data is written into storage.

Doing things this way means that the latency of a miss, from initiation of a fetch to arrival of the
data, is the same regardless of whether the victim is dirty.  The opposite order is worse for several
reasons, notably because the delivery of the new data, which is what holds up the processor, would
be delayed by twelve cycles.

4.3 Prefetch and flush

Prefetch is just like Fetch, except that there is no word reference.  Also, because it is treated strictly
as a hint, map-fault reporting is suppressed and the tags are not involved, so later references are not
delayed.  A Prefetch that hits, therefore, finishes in ADDRESS without entering MAP.  A Prefetch that
misses will load the referenced block into the cache, and cause a dirty victim write if necessary.
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A Flush explicitly removes the block containing the addressed location from the cache, rewriting it
in storage if it is dirty.  Flush is used to remove a virtual page’s blocks from the cache so that its
MapRAM entry can be changed safely.  If a Flush misses, nothing happens.  If it hits, the hit
location must be marked vacant, and if it is dirty, the block must be written to storage.  To simplify
the hardware implementation, this write operation is made to look like a victim write.  A dirty Flush
is converted into a FlushFetch reference, which is treated almost exactly like a Prefetch.  Thus, when
a Flush in ADDRESS hits, three things happen:

the victim for the selected row of CacheA is changed to point to the hit column;

the vacant flag is set;

if the dirty flag for that column is set, the Flush is converted into a FlushFetch.  

Proceeding like a Prefetch, this does a useless read (which is harmless because the vacant flag has
been set), and then a write of the dirty victim.  Figure 11 shows a dirty Flush.  The FlushFetch
spends two cycles in ADDRESS, instead of the usual one, because of an uninteresting implementation
problem.

4.4 Dirty I/ORead

If an I/ORead reference hits in a column with dirty set, the data must come from the cache rather
than from storage.  This is made as similar as possible to a clean I/ORead, since otherwise the bus
scheduling would be drastically different.  Hence a full storage read is done, but at the last minute
data from the cache is put on FastOutBus in place of the data coming from storage, which is
ignored.   Figure 12 illustrates a dirty I/ORead followed by two clean ones.  Note that CacheD is
active at the same time as for a standard read, but that it is unloaded rather than loaded.  This
simplifies the scheduling of CacheD, at the expense of tying up FastOutBus for one extra cycle.
Since many operations use CacheD, but only I/ORead uses FastOutBus, this is a worthwhile
simplification (see ¶ 5.3.4).
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5. Traffic control

Thus far we have considered memory operations only in isolation from each other.  Because the
system is pipelined, however, several different operations can be active at once.  Measures must be
taken to prevent concurrent references from interfering with each other, and to prevent new
operations from starting if the system is not ready to accept them.  In this section we discuss those
measures.

Table 4 lists the resources used by each pipeline stage in three categories: private resources, which
are used only by one stage; handoff resources, which are passed from one stage to another in an
orderly way guaranteed not to result in conflicts; and complex resources, which are shared among
several stages in ways that may conflict with each other.  These conflicts are resolved in three ways:

If the memory system cannot accept a new reference from the processor, it rejects it, and
notifies the processor by asserting the Hold signal.

A reference, once started, waits in ADDRESS until its immediate resource requirements (i.e.,
those it needs in the very next cycle) can be met; it then proceeds to MAP or to HITDATA,
as shown in Figure 3.

All remaining conflicts are dealt with in a single state of the MAP stage.

We will consider the three methods in turn.
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PROC ADDRESS HITDATA MAP WRITETR STORAGE READTR1 READTR2

Private MapRAM WriteBus StorageRAM
Resources EcGen

FastInBus

Handoff WriteReg WriteReg
Resources ReadReg ReadReg

ReadBus ReadBus
EcCor EcCor
FastOutBus FastOutBus

Complex CacheA CacheA
Resources FetchReg FetchReg FetchReg

StoreReg StoreReg StoreReg
CacheD CacheD CacheD CacheD

History History History History History

Table 4: Pipeline resources

5.1 Hold

Hold is the signal generated by the memory system in response to a processor request that cannot
yet be satisfied.  Its effect is to convert the microinstruction containing the request into a jump-to-
self; one cycle is thus lost.  As long as the same task is running in the processor and the condition
causing Hold is still present, that instruction will be held repeatedly.  However, the processor may
switch to a higher priority task which can perhaps make more progress.

There are four reasons for the memory system to generate Hold.

Data requested before it is ready.  Probably the most common type of Hold occurs after a
Fetch, when the data is requested before it has arrived in FetchReg.  For a hit that is not
delayed in ADDRESS (see below), Hold only happens if the data is used early in the very
next cycle (i.e., if the instruction after the Fetch sends the data to the processor’s ALU rather
than just into a register).  If the data is used late in the next cycle it bypasses FetchReg and
comes directly from CacheD (¶ 2.3); if it is used in any later cycle it comes from FetchReg.
In either case there will be no Hold.  If the Fetch misses, however, the matching FetchReg
operation will be held (by the tag mechanism) until the missing block has been loaded into
the cache, and the required word fetched into FetchReg.

ADDRESS busy.  A reference can be held up in ADDRESS for a variety of reasons, e.g.,
because it must proceed to MAP, and MAP is busy with a previous reference.  Other reasons
are discussed in ¶ 5.2 below.  Every reference needs to spend at least one cycle in ADDRESS,
so new references will be held as long as ADDRESS is busy.  A reference needs the data
paths of CacheA in order to load its address into ADDRESS, and these are busy during the
RThasA cycle discussed above (¶ 4.1); hence a reference in the cycle before RThasA is held.

StoreReg busy.  When a Store enters ADDRESS, the data supplied by the processor is loaded
into StoreReg.  If the Store hits and there is no conflict for CacheD, StoreReg is written
into CacheD in the next cycle, as Figure 4 shows.  If it misses, StoreReg must be
maintained until the missing block arrives in CacheD, and so new stores must be held
during this time because StoreReg is not task-specific.  Even on a hit, CacheD may be busy
with another operation.  Of course new stores by the same task would be held by the tag
mechanism anyway, so StoreReg busy will only hold a Store in other tasks.  A task-specific
StoreReg would have prevented this kind of Hold, but the hardware implementation was
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too expensive to do this, and we observed that stores are rare compared to fetches in any
case.

History busy.  As discussed in ¶ 3.3, a reference uses various parts of the History memory at
various times as it makes its way through the pipeline.  Microinstructions for reading
History are provided, and they must be held if they will conflict with any other use.

The memory system must generate Hold for precisely the above reasons.  It turns out, however, that
there are several situations in which hardware or time can be saved if Hold is generated when it is
not strictly needed.  This was done only in cases that we expect to occur rarely, so the performance
penalty should be small.  An extra Hold has no logical effect, since it only converts the current
microinstruction into a jump-to-self.  One example of this situation is that a reference in the cycle
after a miss is always held, even though it must be held only if the miss’ victim is dirty or the map
is busy; the reason is that the miss itself is detected barely in time to generate Hold, and there is no
time for additional logic.  Another example: uses of FetchReg are held while ADDRESS is busy,
although they need not be, since they do not use it.

5.2 Waiting in ADDRESS

A reference in ADDRESS normally proceeds either to HITDATA (in the case of a hit) or to MAP (for a
miss, a victim write or an I/O reference) after one cycle.  If HITDATA or MAP is busy, it will wait in
ADDRESS, causing subsequent references to be held because ADDRESS is busy, as discussed above.

HITDATA uses CacheD, and therefore cannot be started when CacheD is busy.  A reference that hits
must therefore wait in ADDRESS while CacheD is busy, i.e., during transports to and from storage,
and during single-word transfers resulting from previous fetches and stores.  Some additional
hardware would have enabled a reference to be passed to HITDATA and wait there, instead of in
ADDRESS, for CacheD to become free; ADDRESS would then be free to accept another reference.
This performance improvement was judged not worth the requisite hardware.

When MAP is busy with an earlier reference, a reference in ADDRESS will wait if it needs MAP.  An
example of this is shown in Figure 10, where the victim write waits while MAP handles the read.
However, even if MAP is free, a write must wait in ADDRESS until it can start WRITETR; since
WRITETR always takes longer than MAP, there is no point in starting MAP first, and the
implementation is simplified by the rule that starting MAP always frees ADDRESS.  Figure 13 shows
two back-to-back I/OWrites, the second of which waits one extra cycle in ADDRESS before starting
both WRITETR and MAP.

The last reason for waiting in ADDRESS has to do with the beingLoaded flag in the cache.  If
ADDRESS finds that beingLoaded is set anywhere in the row it touches, it waits until the flag is
cleared (this is done by READTR1 during the RThasA cycle).  A better implementation would wait
only if the flag is set in the column in which it hits, but this was too slow and would also require
special logic to ensure that an entry being loaded is not chosen as a victim.  Of course it would be
much better to Hold a reference to a row being loaded before it ever gets into ADDRESS, but
unfortunately the reference must be in ADDRESS to read the flags in the first place.

5.3 Waiting in MAP

The traffic control techniques discussed thus far, namely, Hold and waiting in ADDRESS, are not
sufficient to prevent all the conflicts shown in Table 4.  In particular, neither deals with conflicts
downstream in the pipeline.  Such conflicts could be resolved by delaying a reference in ADDRESS
until it was certain that no further conflicts with earlier references could occur.  This is not a good
idea because references that hit, which is to say most references, must be held when ADDRESS is
busy.  If conflicts are resolved in MAP or later, hits can proceed unimpeded, since they do not use
later sections of the pipeline.
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At the other extreme, the rule could be that a stage waits only if it cannot acquire the resources it
will need in the very next cycle.  This would be quite feasible for our system, and the proper choice
of priorities for the various stages can clearly prevent deadlock.  However, each stage that may be
forced to wait requires logic for detecting this situation, and the cost of this logic is significant.
Furthermore, in a long pipeline gathering all the information and calculating which stages can
proceed can take a long time, especially since in general each stage’s decision depends on the
decision made by the next one in the pipe.

For these reasons we adopted a different strategy in the Dorado.  There is one point, early in the
pipeline but after ADDRESS, at which all remaining conflicts are resolved.  A reference is not
allowed to proceed beyond that point without a guarantee that no conflicts with earlier references
will occur; thus no later stage ever needs to wait.  The point used for this purpose is state 3 of the
MAP stage, written as MAP.3.  No shared resources are used in states 0-3, and STORAGE is not started
until state 4.  Because there is just one wait state in the pipeline, the exact timing of resource
demands by later stages is known and can be used to decide whether conflicts are possible.  We
now discuss the details.

5.3.1 STORAGE and WRITETR

In a write operation, WRITETR runs in parallel but not in lockstep with MAP; see, for example,
Figure 10.  Synchronization of the data transport with the storage reference itself is accomplished
by two things.

MAP.3 waits for WRITETR to signal that the transport is far enough along that the data will
arrive at the StorageRAM chips no later than the write signal generated by STORAGE.  This
condition must be met for correct functioning of the chips.  Figure 13 shows MAP waiting
during an I/OWrite.

WRITETR will wait in its next-to-last state for STORAGE to signal that the data hold time of
the chips with respect to the write signal has elapsed; again, the chips will not work if the
data in WriteReg is changed before this point.  Figure 10 shows WRITETR waiting during a
victim write.  The wait shown in the figure is actually more conservative than it needs to
be, since WRITETR does not change WriteReg immediately when it is started.
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5.3.2 CacheD: consecutive cache loads

Loading a block into CacheD takes 9 cycles, as explained in ¶ 4.1, and a word reference takes one
more.  Therefore, although the pipeline stages proper are 8 cycles long, cache loads must be spaced
either 9 or 10 cycles apart to avoid conflict in CacheD.  After a Fetch or Store, the next cache load
must wait for 10 cycles, since these references tie up CacheD for 10 cycles.  After a Prefetch,
FlushFetch or dirty I/ORead, the next cache load must wait for 9 cycles.  STORAGE sends MAP a
signal that causes MAP.3 to wait for one or two extra cycles, as appropriate.  Figure 14 shows a Fetch
followed by a Prefetch, followed by a Store, and illustrates how CacheD conflict is avoided by extra
cycles spent in MAP.3  Note that the Prefetch waits two extra cycles, while the Store only waits one
extra.

5.3.3 CacheD: load and unload

The other source of conflict for CacheD is between loading it in a miss read and unloading it in a
victim write.  This conflict does not arise between a miss read and its own victim, because the
victim is finished with CacheD before the read needs it; Figure 10 illustrates this.  There is a
potential conflict, however, between a miss read and the next reference’s victim.  CacheD is loaded
quite late in a read, but unloaded quite early in a write, as the figure shows, so the pipeline by
itself will not prevent a conflict.  Instead, the following interlock is used.  If a miss is followed by
another miss with a dirty victim:

ADDRESS waits to start WRITETR for the victim transport until the danger of CacheD
conflict with the first miss is past.

MAP.3 waits while processing the read for the second miss (not its victim write) until
WRITETR has been started.  This ensures that the second read will not get ahead of its
victim write enough to cause a CacheD conflict.  Actually, to save hardware we used the
same signal to control both waits, which causes MAP.3 to wait two cycles longer than
necessary.
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Figure 15 shows a Store with clean victim followed by a Fetch with dirty victim and illustrates this
interlock.  ADDRESS waits until cycle 26 to start WRITETR.  Also, the fetch waits in MAP.3 until the
same cycle, thus spending 13 extra cycles there, which forces the fetch victim to spend 13 extra
cycles in ADDRESS.  The two-cycle gap in the use of CacheD shows that the fetch could have left
MAP.3 in cycle 24.

5.3.4 FastOutBus conflicts

The final reason for waiting in MAP.3 is a conflict over the FastOutBus, used by I/ORead references.
A dirty I/ORead uses FastOutBus one cycle later than an ordinary I/ORead, so that it can use
CacheD with the same timing as a cache load; see ¶ 4.4.  The potential FastOutBus conflict is
prevented by delaying an I/ORead immediately after a dirty I/ORead by one extra cycle in MAP.3.
Figure 12 illustrates this, and also shows how a clean I/ORead can start every eight cycles and
encounter no delay. 

6. Physical implementation

A primary design goal of the Dorado as a personal computer is compactness.  The whole machine
(except the storage) is implemented on a single type of logic board, which is 14 inches square, and
can hold 288 16-pin integrated circuits and 144 8-pin packages containing terminating resistors.

Boards slide into zero-insertion-force connectors mounted in two sideplanes, one on each side of the
board, which have both bus wiring and interboard point-to-point wiring.  Interboard spacing is
0.625 inch, so that the chassis stack of twenty-four board slots is 15 inches high.  The entire
machine, including cooling and power, occupies about .14 m 3 (4.5 ft3).  There are 192 pins on each
side of the board; 8 are used for power connections, and the remainder in pairs for grounds and
signals.  Thus 184 signals can enter or leave the board.
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Main storage boards are the same size as logic boards but are designed to hold an array of MOS
RAMs instead of random ECL logic.  A pair of storage boards make up a module, which holds 512K
bytes (plus error correction) when populated with 16K RAMs, 2M bytes with 64K RAMs, or 8M
bytes with (hypothetical) 256K RAMs.  There is room for four modules, and space not used for
storage modules can hold I/O boards. Within a module, one board stores all the words with even
addresses, the other those with odd addresses. The boards are identical, and are differentiated by
sideplane wiring.

A standard Dorado contains, in addition to its storage boards, eleven logic boards, including disk,
display, and network controllers.  Extra board positions can hold additional I/O controllers.  Three
boards implement the memory system (in about 800 chips); they are called ADDRESS, PIPE, and
DATA, names which reflect the functional partition of the system.  ADDRESS contains the
processor interface, base registers and virtual address computation, CacheA (implemented in 256 by
4 RAMs) and its comparators, and the LRU computation.  It also generates Hold, addresses DATA on
hits, and sends storage references to PIPE.

DATA houses CacheD, which is implemented with 1K by 1 or 4K by 1 ECL RAMs, and holds 8K or
32K bytes respectively.  DATA is also the source for FastOutBus and WriteBus, and the sink for
FastInBus and ReadBus, and it holds the Hamming code generator-checker-corrector.  PIPE
implements MapRAM, all of the pipeline stage automata (except ADDRESS and HITDATA) and their
interlocks, and the fault reporting, destination bookkeeping, and refresh control for the MapRAM
and StorageRAM chips. The History memory is distributed across the boards: addresses on
ADDRESS, control information on PIPE, and data errors on DATA.

Although our several prototype Dorados can run at a 50 nanosecond microcycle, most of the
machines run instead at 60 nanoseconds.  This is due mainly to a change in board technology from
a relatively expensive point-to-point wire-routing method to a cheaper Manhattan routing method. 

7. Performance

The memory system’s performance is best characterized by two key quantities: the cache hit rate
and the percentage of cycles lost due to Hold (¶ 5.1).  In fact, Hold by itself measures the cache hit
rate indirectly, since misses usually cause many cycles of Hold.  Also interesting are the frequencies
of stores and of dirty victim writes, which affect performance by increasing the frequency of Hold
and by consuming storage bandwidth.  We measured these quantities with hardware event-counters,
together with a small amount of microcode that runs very rarely and makes no memory references
itself.  The measurement process, therefore, perturbs the measured programs only trivially.

We measured three Mesa programs: two VLSI design-automation programs, called Beads and Placer;
and an implementation of Knuth’s TEX [8].  All three were run for several minutes (several billion
Dorado cycles).  The cache size was 4K 16-bit words.

Percent of cycles: Percent of references: Percent of misses:
References Hold Hits Stores Dirty victims                   

Beads 36.4 8.14 99.27 10.5 16.3
Placer 42.9 4.89 99.82 18.7 65.5
TEX 38.4 6.33 99.55 15.2 34.9

Table 5: Memory system performance

Table 5 shows the results.  The first column shows the percentage of cycles that contained cache
references (by either the processor or the IFU), and the second, how many cycles were lost because
they were held.  Hold, happily, is fairly rare.  The hit rates shown in column three are gratifyingly



SEC. 7 PERFORMANCE 79

large�all over 99 percent.  This is one reason that the number of held cycles is small: a miss can
cause the processor to be held for about thirty cycles while a reference completes.  In fact, the table
shows that Hold and hit are inversely related over the programs measured.  Beads has the lowest hit
rate and the highest Hold rate; Placer has the highest hit rate and the lowest Hold rate.

The percentage of Store references is interesting because stores eventually give rise to dirty victim
write operations, which consume storage bandwidth and cause extra occurrences of Hold by tying up
the ADDRESS section of the pipeline.  Furthermore, one of the reasons that the StoreReg register
was not made task-specific was the assumption that stores would be relatively rare (see the
discussion of StoreReg in ¶ 5.1).  Table 5 shows that stores accounted for between 10 and 19
percent of all references to the cache.

Comparing the number of hits to the number of stores shows that the write-back discipline used in
the cache was a good choice.  Even if every miss had a dirty victim, the number of victim writes
would still be much less than under the write-through discipline, when every Store would cause a
write.  In fact, not all misses have dirty victims, as shown in the last column of the table.  The
percentage of misses with dirty victims varies widely from program to program.  Placer, which had
the highest frequency of stores and the lowest frequency of misses, naturally has the highest
frequency of dirty victims.  Beads, with the most misses but the fewest stores, has the lowest.  The
last three columns of the table show that write operations would increase about a hundredfold if
write-through were used instead of write-back.
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