
An Instruction Fetch Unit for a
High-Performance Personal Computer

by Butler W. Lampson, Gene A. McDaniel and Severo M. Ornstein

January 1981

ABSTRACT

The instruction fetch unit (IFU) of the Dorado personal computer speeds up the emulation of
instructions by pre-fetching, decoding, and preparing later instructions in parallel with the
execution of earlier ones. It dispatches the machine’s microcoded processor to the proper
starting address for each instruction, and passes the instruction’s fields to the processor on
demand. A writeable decoding memory allows the IFU to be specialized to a particular
instruction set, as long as the instructions are an integral number of bytes long. There are
implementations of specialized instruction sets for the Mesa, Lisp, and Smalltalk languages.
The IFU is implemented with a six-stage pipeline, and can decode an instruction every 60 ns.
Under favorable conditions the Dorado can execute instructions at this peak rate (16 mips).

This paper has been submitted for publication.

CR CATEGORIES

6.34, 6.21

KEY WORDS AND PHRASES

cache, emulation, instruction fetch, microcode, pipeline.

c Copyright 1981 by Xerox Corporation.

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

AN INSTRUCTION FETCH UNIT FOR A HIGH-PERFORMANCE PERSONAL COMPUTER22

1. Introduction

This paper describes the instruction fetch unit (IFU) for the Dorado, a powerful personal computer
designed to meet the needs of computing researchers at the Xerox Palo Alto Research Center.
These people work in many areas of computer science: programming environments, automated
office systems, electronic filing and communication, page composition and computer graphics, VLSI
design aids, distributed computing, etc. There is heavy emphasis on building working prototypes.
The Dorado preserves the important properties of an earlier personal computer, the Alto [13], while
removing the space and speed bottlenecks imposed by that machine’s 1973 design. The history,
design goals, and general characteristics of the Dorado are discussed in a companion paper [8],
which also describes its microprogrammed processor. A second paper [1] describes the memory
system.

The Dorado is built out of ECL 10K circuits. It has 16-bit data paths, 28 bit virtual addresses, 4K-
16K words of high-speed cache memory, writeable microcode, and an I/O bandwidth of 530
Mbits/sec. Figure 1 shows a block diagram of the machine. The microcoded processor can execute
a microinstruction every 60 ns. An instruction of some high level language is performed by
executing a suitable succession of these microinstructions; this process is called emulation.

The purpose of the IFU is to speed up emulation by pre-fetching, decoding, and preparing later
instructions in parallel with the execution of earlier ones. It dispatches the machine’s microcoded
processor to the proper starting address for each instruction, supplies the processor with an
assortment of other useful information derived from the instruction, and passes the instruction’s
various fields to the processor on demand. A writeable decoding memory allows the IFU to be
specialized to a particular instruction set; there is room for four of these, each with 256 instructions.

There are implementations of specialized instruction sets for the Mesa [9], Lisp [12], and Smalltalk
[5] languages, as well as an Alto [13] emulator. The IFU can decode an instruction every 60 ns, and
under favorable conditions the Dorado can execute instructions at this peak rate (16 MIPS).

Following this introduction, we discuss the problem of instruction execution in general terms and
outline the space of possible solutions (¶ 2). We then describe the architecture of the Dorado’s IFU
(¶ 3) and its interactions with the processor which actually executes the instructions (¶ 4); the reader
who likes to see concrete details might wish to read these sections in parallel with ¶ 2. The next
section deals with the internals of the IFU, describing how to program it and the details of its
pipelined implementation (¶ 5). A final section tells how large and how fast it is, and gives some
information about the effectiveness of its various mechanisms for improving performance (¶ 6).

Instruction

Processor
Cache

Storage

Slow input/output

Fast input/output

EthernetDiskDisplayKeyboard

Fetch Unit

8K-32K
bytes

265 MBits/sec
16 bits/60 ns

265 MBits/sec
16 bits/60 ns

120 ns access

530 MBits/sec
256 bits/480 ns

1.7 us access

Figure 1: Dorado block diagram

512K-16M bytes

SEC. 2 THE PROBLEM 23

2. The problem

It has long been recognized that the algorithm for executing an object program can be most easily
described by another program, called an interpreter, which treats both the instructions and the data
of the object program as its own data. The simplest microprogrammed computers actually do
execution in just this way; the microinstructions can specify only general-purpose data manipula-
tions, and all the knowledge about the instructions being emulated is expressed in the micro-
program.

We illustrate this point with the following fragment of an emulator for a stack-based instruction set.
The fragment includes the basic instruction fetch operation and code for two instructions:
PushConstant, which pushes the next instruction byte onto the stack, and PushLocalVar, which pushes
the contents of the local variable addressed by the next byte (relative to a pointer in the register
localData). The notation is self-explanatory for the most part. Microinstructions are separated by
semicolons, and parallel operations in the same microinstruction by commas. This code uses no
special-purpose operations, except that we have compressed the details of the stack manipulation
into a Push operation.

Registers: PC, localData, opcode, temp

GetInstruction: -- Top of the microcode instruction emulation loop.
Fetch[PC]; -- Start a memory fetch from address in PC; data arrives later.
PC _PC+1; -- Increment PC register for next instruction.
if interruptPending then goto processInterrupt
opcode _ memoryData; -- Use the memory data we previously fetched
goto opcode; -- The opcode value is the starting microcode address.

PushConstant: -- Dispatch address for the PushConstant instruction.
Fetch[PC]; -- PC points to the next instruction byte.
PC _ PC+1; -- Increment PC register for next instruction.
Push[memoryData], goto GetInstruction;

PushLocalVar: -- Dispatch address for the PushLocalVar instruction.
Fetch[PC]; -- Fetch the next instruction byte, which is the index in the local data for the

variable to be pushed.
PC _ PC+1;
temp _ memoryData;
temp _ temp+localData; -- Now temp is the address of the local variable.
Fetch[temp];
Push[memoryData], goto GetInstruction;

In order to make this emulator run faster (given a fixed time for each primitive operation,
presumably established by circuit speeds), it is necessary to do more of the operations concurrently.
One possibility is to enhance the processor, so that it can do several operations in a single micro-
instruction. For instance, the first two microinstructions might be replaced by

Fetch[PC], PC _ PC+1; -- Start a memory fetch from address in PC; data arrives later. Increment PC

for next instruction.

This approach is fine as far as it goes, but it is limited to combining independent operations. A
Fetch and the following retrieval of data, for example, cannot be combined without making the
microinstruction slower, since the memory takes time to respond.

A second approach is to make several copies of the entire processor, and let them work on several
instructions at once. With n copies, this would run n times as fast if there were no synchronization
problems; it would also be very simple to implement (though perhaps not cheap). Unfortunately, a
program written in a conventional language and encoded into a conventional instruction set
typically has a great deal of interaction between the successive instructions. For instance, consider
the instruction sequence PushConstant, PushLocalVar, Add. We see from the microcode above that all
three instructions need to reference the stack; this is contention for the same resource.
Furthermore, the Add instruction needs the contents of the stack after both the previous instructions
are finished; this is not only contention, but dependency of one instruction on the results of another.

AN INSTRUCTION FETCH UNIT FOR A HIGH-PERFORMANCE PERSONAL COMPUTER24

In spite of these problems. this approach can be made to work, especially for numeric
computations, and in conjunction with a sympathetic compiler. Indeed, it is used in high-
performance machines such as the CDC 6600 [14] and 7600, the IBM 360/91 [16], the MU5 [4], and
the Cray-1 [10]; typically only part of the processor is duplicated, often into specialized devices
called functional units. However, with 1977 technology this approach is too expensive for a
personal machine, and hence was not considered for the Dorado.

A third possibility (often combined with the second) is to pipeline the execution of an instruction by
dividing it into parts, each one to be performed by a separate processor or stage. Different stages
can operate concurrently on successive instructions. In this example, we might have one stage for
fetching the instruction (GetInstruction), and another for executing it (PushConstant and PushLocalVar).
Successive instructions can then execute as follows (where each line represents a "major cycle").

GetInstruction[1]
Execute[1] GetInstruction[2]

Execute[2] GetInstruction[3]
Execute[3] GetInstruction[4] . . .

Each instruction spends the same amount of time executing as before, but the throughput is
doubled.

2.1 About pipelines

An ideal pipeline has no communication between the stages except when work is passed from one
stage to its successor. The unit of work which is passed between stages is called an item. The
crucial problems in designing a pipeline are:

hand-off of items from one stage to the next;

buffering of items within a stage;

contention among stages for resources (a form of communication);

dependency of one stage on the activity of another (also a form of communication).
Particularly troublesome is backward dependency, in which an early stage depends on the
results of a later one (e.g., a conditional branch);

irregularity in the flow of items through the pipe. This can arise from variations in the rate
of:

processing items in the different stages (e.g., memory fetches may be slow, or
variable in rate, or both);

input (e.g., fetch requests to a memory pipe);

output (e.g., decoded instructions from an IFU pipe).

The main performance parameters of a pipeline are:

throughput or bandwidth � the rate at which items are processed to completion when there
are no dependencies (let t be the time to complete one item);

latency � the time for one item to traverse the entire pipeline when it is otherwise empty
(let l be the latency);

elasticity � the ability of the pipe to deliver results at full bandwidth in spite of
irregularity. More buffering means more elasticity, more bits of storage in the pipe, and
perhaps more latency.

A synchronous, uniform pipeline is one in which each stage takes the same amount of time. With n
stages we have l=nt, where t is the time of each stage. With many small stages, t can be made
small and the throughput high, at the expense of the latency. The only absolute limit to this
process is the cost of synchronization between stages (which is a lower bound on t; in a
synchronous pipeline this is the time to pass through a register).

SEC. 2 THE PROBLEM 25

The minimum time to do the smallest indivisible piece of work (e.g., to read from an internal RAM)
tends to be a practical limit also. This limit can be evaded, however (at some cost), by making n
copies of the hardware, assigning the work to them in round-robin fashion, and selecting the results
by the same round-robin rule. If a single stage has t=s, such a duplicated stage has t=s/n plus the
time for multiplexing the results. When this method is used, the copies are usually called functional
units.

Usually the main goal is to maximize the throughput; in the absence of dependencies latency is
unimportant. As dependencies increase, however, latency becomes more important. To see why
this is true, consider the backward dependency caused by a conditional branch. Strictly speaking,
when a branch instruction is encountered, fetching cannot proceed until the result of the branch is
known. When it is, the target instruction of the branch must traverse the pipe before any more
instructions can be completed. If w is the fraction of branch instructions, the average completion
time will be t+wl. Thus if l=5t (a five stage uniform pipe), a w of 20% will halve the throughput.
In this example, of course, it is sensible to make a guess and follow one path, so that w is the
fraction of instructions for which a wrong guess is made; note that w=20% is fairly accurate
prediction. Following a guessed path is easy because there are no forward dependencies (program
state is never changed by instruction fetching), so that a wrong path can be abandoned with no ill
effects. However, no such shortcut is possible in the case of the Add instruction mentioned earlier,
because it isn’t practical to guess the result of the PushLocalVar.

2.2 Pipelining instruction execution

Let us now see how to apply these ideas to instruction execution. Following many earlier designs
(e.g., [4, 16]), we can divide this task into four stages:

instruction fetching and preparation;

operand preparation: address calculation, fetching and reformatting;

computation;

result storage.

Each of these in turn may be divided into sub-stages. We observe that in any conventional
architecture there are many dependencies among the last three stages, because results are constantly
being stored into memory or register locations from which operands are fetched. Furthermore, if
every store operation is regarded as a dependency, there could never be much concurrency. Hence
it is necessary to compare the address of each location modified by a store with all the addresses
referenced by earlier stages. Even these dependencies are common enough to be painful; hence
provision is usually made in such a pipeline for modifying the actions of earlier stages when
operands are changed by stores. As a result of all this, pipelining the last three stages of instruction
is a complex and expensive business. A fast multi-port cache inside the processor makes the
problem much easier, but is not feasible with this technology. An interesting but untried idea is to
impose programming restrictions which forbid harmful dependencies; if all the code is generated by
compilers this is quite feasible.

Hardly any of these problems arise, however, in separating instruction fetching from the rest. If we
assume that execution cannot modify the code being executed, there are no dependencies except
those arising from branches. If this assumption is unacceptable, then checks must be made for such
modifications, but since they are rare in practice, the checks can be at a very coarse grain, and fairly
drastic resetting actions can be taken. The absence of forward dependencies means that instruction
fetching activities can be abandoned without any communication to other parts of the machine.

The function of an instruction fetching and preparation stage or IFU, then, is to hand off to the rest
of the machine the relevant information for each instruction, conveniently formatted for later use.
Whether the rest of the machine is a single microcoded processor, an operand preparation stage in a
pipeline, or a collection of functional units which can operate concurrently is unimportant to the
IFU, except as it affects the meaning of "conveniently formatted." We will call this part of the
machine the execution unit or EU, and will not be much concerned with its internal structure.

AN INSTRUCTION FETCH UNIT FOR A HIGH-PERFORMANCE PERSONAL COMPUTER26

The EU demands instructions from the IFU at an irregular rate, depending on how fast it is able to
absorb the previous ones. A simple machine must completely process an instruction before
demanding the next one. In a machine with multiple functional units, on the other hand, the first
stage in the EU waits until the basic resources required by the instruction (adders, result registers,
etc.) are available, and then hands it off to a functional unit for execution. Beyond this point the
operation cannot be described by a single pipeline, and complete execution of the instruction may
be long delayed, but even in this complicated situation the IFU still sees the EU as a single consumer
of instructions, and is unaware of the concurrency which lies beyond.

Under this umbrella definition for an IFU, a lot can be sheltered. To illustrate the way an IFU can
accommodate specific language features, we draw an example from Smalltalk [5]. In this language,
the basic executable operation is applying a function f (called a method) to an object o: f(o, . . .).
The address of the code for the function is not determined solely by the static program, but
depends on a property of the object called its class. There are many implementation techniques for
finding the class and then the function from the object. One possibility is to represent a class as a
hash table which maps function names (previously converted by a compiler into numbers) into code
addresses, and to store the address of this table in the first word of the object. The rather complex
operation of obtaining the hash table address and searching the table for the code address
associated with f, is in the proper domain of an IFU, and removes a significant amount of
computation from the processor. No such specialization is present in the Dorado’s IFU, however.

2.3 Pipelining instruction fetches

For the sake of definiteness, we will assume henceforth that

the smallest addressable unit in the code is a byte;

the memory delivers data in units called words, which are larger than bytes;

an instruction (and its addresses, immediate operands, and other fields) may occupy one or
more bytes, and the first byte determines its essential properties (length, number of fields,
etc.).

Matters are somewhat simplified if the addresssable unit is the unit delivered by the memory or if
instructions are all the same length, and somewhat complicated if instructions may be any number
of bits long. However, these variations are inessential and distracting.

The operation of instruction fetching divides naturally into four stages:

Generating addresses of instruction words in the code, typically by sequentially advancing a
program counter, one memory word at a time.

Fetching data from the code at these addresses. This requires interactions with the
machine’s memory in general, although recently used code may be cached within the IFU.
Such a cache looks much like main memory to the rest of the IFU.

Decoding instructions to determine their length and internal structure, and perhaps whether
they are branches which the IFU should execute. Decoding changes the representation of
the instruction, from one which is compact and convenient for the compiler, to one which
is convenient for the EU and IFU.

Formatting the fields of each instruction (addresses, immediate operands, register numbers,
mode control fields, or whatever) for the convenience of the EU; e.g., extracting fields onto
the EU’s data busses.

Buffering may be introduced between any pair of these stages, either the minimum of one item
required to separate the stages, or a larger amount to increase the elasticity. Note that an item must
be a word early in the pipe (at the interface to the memory), must be an instruction late in the pipe
(at the interface to the EU), and may need to be a byte in the middle.

There are three sources of irregularity (see ¶ 2.1) in the pipeline, even when no wrong branches are
taken:

SEC. 2 THE PROBLEM 27

The instruction length is irregular, as noted in the previous paragraph; hence a uniform
flow of instructions to the EU implies an irregular flow of bytes into the decoder, and vice
versa.

The memory takes an irregular amount of time to fetch data; if it contains a cache, the
amount of time may vary by more than an order of magnitude.

The EU demands instructions at an irregular rate.

These considerations imply that considerable elasticity is needed in order to meet the EU’s demands
without introducing delays.

2.4 Hand-off to the EU

From the IFU’s viewpoint, handing-off an instruction to the EU is a simple producer-consumer
relationship. The EU demands a new instruction. If one is ready, the IFU delivers it as a pile of
suitably formatted bits, and forgets about the instruction. Otherwise the IFU notifies the EU that it
is not ready; in this case the EU will presumably repeat the request until it is satisfied. Thus at this
level of abstraction, hand-off is a synchronized transfer of one data item (a decoded instruction)
from one process (the IFU) to another (the EU).

Usually the data in the decoded instruction can be divided into two parts: information about what
to do, and parameters. If the EU is a microprogrammed processor, for example, what to do can
conveniently be encoded as the address of a microinstruction to which control should go (a dispatch
address), and indeed this is done in the Dorado. Since microinstructions can contain immediate
constants, and in general can do arbitrary computations, it is possible in principle to encode all the
information in the instruction into a microinstruction address; thus the instructions PushConstant(3)
and PushConstant(4356) could send control to different microinstructions. In fact, however, micro-
instructions are expensive, and it is impractical to have more than a few hundred, or at most a few
thousand of them. Hence we want to use the same microcode for as many instructions as possible,
representing the differences in parameters which are treated as data by the microcode. These
parameters are presented to the EU on some set of data busses; ¶ 4 has several examples.

Half of the IFU-EU synchronization can also be encoded in the dispatch address: when the IFU is
not ready, it can dispatch the EU to a special NotReady location. Here the microcode can do any
background processing it might have, and then repeat the demand for another instruction. The
same method can be used to communicate other exceptional conditions to the EU, such as a page
fault encountered in fetching an instruction, or an interrupt signal from an I/O device. The
Dorado’s IFU uses this method (see ¶ 3.4).

Measurements of typical programs [7, 11] reveal that most of the instructions executed are simple,
and hence can be handled quickly by the EU. As a result, it is important to keep the cost of hand-
off low, since otherwise it can easily dominate the execution time for such instructions. As the EU
gets faster, this point gets more important; there are many instructions which the Dorado, for
instance, can execute in one cycle, so that one cycle of hand-off overhead would be 50%. This
point is discussed further in ¶ 3 and 4.

2.5 Autonomy

Perhaps the most important parameter in the design of an IFU is the extent to which it functions
independently of the execution unit, which is the master in their relationship. At one extreme we
can have an IFU which is entirely independent of the EU after it is initialized with a code address (it
might also receive information about the outcome of branches); this initialization would only occur
on a process switch, complex procedure call, or indexed or indirect jump. At the other extreme is
an IFU which simply buffers one word of code and delivers successive bytes to the EU; when the
buffer is empty, the IFU dispatches the EU to a piece of microcode which fetches another memory
word’s worth of code into the buffer. The first IFU must decode instruction lengths, follow jumps,
and provide the program counter for each instruction to the EU (e.g., so that it can be saved as a

AN INSTRUCTION FETCH UNIT FOR A HIGH-PERFORMANCE PERSONAL COMPUTER28

return link). The second leaves all these functions to the EU, except perhaps for keeping track of
which byte of the word it is delivering. One might think that the second IFU cannot help
performance much, but in fact when working with a microcoded EU it can probably provide half
the performance improvement of the first one, at one-tenth the cost in hardware. The reason can
be seen by examining the interpreter fragment at the beginning of ¶ 2; half a dozen micro-
instructions are typically consumed in the clumsy GetInstruction operation, and things get worse
when instructions do not coincide with memory words.

When deciding what trade-offs to make, one important parameter is the speed of the EU. It is
pointless to be able to execute most instructions in one or two cycles, if several cycles are consumed
in GetInstruction. Hence a fast EU must have an autonomous IFU. An important special case is the
speed of the memory relative to the microinstruction time. If several microinstructions can be
executed in the time required to fetch the next instruction from memory, the processor can use this
time to hold the IFU’s hand, or to perform the GetInstruction itself. On the Dorado, the cache
ensures that memory data arrives almost immediately, so there is no free time for handholding.

An autonomous IFU must do more than simply transforming instructions into a convenient form for
the EU. There are two natural ways in which its internal operation may be affected by the instruc-
tion stream: decoding instruction lengths, and following branches. Any IFU which handles more
than one instruction without processor intervention must calculate instruction lengths. Following
branches is desirable because it avoids the cost of a start-up latency at every branch instruction
(typically every fifth instruction is a branch). However, it does introduce potential complications
because a conditional branch must be processed without accurate information (perhaps without any
information) about the actual value of the condition; indeed, often this value is not determined
until the processor has executed the preceding instruction. A straightforward design decides
whether to branch based on the opcode alone, and the processor restarts the IFU at the correct
address if the decision turns out to be wrong.

The branch decision may be based on other historical information. The S-1 [17], for instance, keeps
in its instruction cache one bit for each instruction, which records whether the instruction branched
last time it was executed. This small amount of partial history reduces the fraction of incorrect
branch decisions to 5% [Forest Baskett, personal communication]. The MU5 [4] remembers the
addresses of the last eight instructions which branched; such a small history leaves 35% of the
branches predicted wrongly, but the scheme allows the prediction to be made before the instruction
is fetched. More elaborate designs [16] follow both branch paths, discarding the wrong one when
the processor makes the branch decision. Each path may of course encounter further branches,
which in turn may be followed both ways until the capacity of the IFU is exhausted. If each path is
truly followed in parallel, then following n paths will in general require n times as much hardware
and n times as much memory bandwidth as following one path. Alternatively, part or all of the
IFU’s resources may be multiplexed between paths to reduce this cost at the expense of bandwidth.

2.6 Buffering

As we saw in ¶ 2.2, a pipeline with any irregularities must have buffering to provide elasticity, or its
performance at each instant will approximate the performance of the slowest stage at that instant;
this maximizing of the worst performance is highly undesirable. From the enumeration in ¶ 2.3 of
irregularities in the IFU, we can see that to serve the EU smoothly, there should be a buffer between
the EU and any sources of irregularity, as shown in Figure 2. Similarly, to receive words from the
irregular memory, there should be a buffer between the memory and any sources of irregularity.
Because of the irregularity caused by variable length instructions, a single buffer cannot serve both
functions. Note that additional regular stages (some are shown in the figure) have no effect one
way or the other.

SEC. 2 THE PROBLEM 29

The cost of introducing a buffer (in the ECL 10K MSI technology) is the RAM storage to implement
it, a multiplexor to bypass it when it is empty, and its control; see Figure 6 for details. The bypass
ensures that the buffer does not increase the latency. In addition, there is typically a very minor
performance penalty: when the pipe is reset, any external resources (the memory in the case of the
IFU) which have been used to fill the buffers are wasted. If some other processor could make
better use of the resources, something has been lost.

asASDFdf

dfDFASas

Fetch

...p__p _p_p.

asASDFdf

dfDFASas

asASDFdf
Address

Decode

asASDFdf

EU

pipe stage

single-item
buffer

multi-item
buffer

...

...

Figure 2: Sources of irregularity in an IFU pipeline

regular

irregular
outputs

compensating
buffer

regular

regular

irregular
inputs

irregular
throughput

buffer
compensating

. p_p_p__p

...

AN INSTRUCTION FETCH UNIT FOR A HIGH-PERFORMANCE PERSONAL COMPUTER30

3. Architecture of the Dorado IFU

We now turn from our discussion of general principles to the actual IFU of the Dorado. Its
structure follows from the principles of the previous section, though we must admit that the design
in fact proceeded less from general principles than from the goal of delivering one decoded
instruction per microcycle. This performance requirement dictates an autonomous IFU, and it also
requires careful attention to the details of IFU-EU hand-off. In the Dorado the EU is a microcoded
processor with a number of data paths, and a pipelined implementation which allows it to execute a
microinstruction every 60 ns; in order to remind the reader of this implementation, we use the word
"processor" to denote the Dorado’s EU. The processor does not have any significant concurrency
visible to the microprogram, however. In particular, all the work done in a given cycle is specified
directly by the microinstruction executed in that cycle, although memory references are done by an
autonomous unit which in fact is shared with the IFU; see Figure 1.

The processor gives the IFU an initial program counter (PC), and subsequently receives a sequence
of decoded instructions, which are from sequential bytes except where the IFU has followed a
branch. This sequence continues until the processor resets the IFU with another PC, unless a fault
or interrupt is detected. For each instruction the IFU supplies a microcode dispatch address (into
which NotReady and all other exceptions are encoded), some bits of initial state for the processor, a
sequence of field data values, and the PC value for the first byte of the instruction. The uses made
of this information are described in ¶ 4.

3.1 Byte codes

The IFU’s interpretation of the code is based on a definite model of how instructions are encoded.
Although this model is not specialized to the details of a particular instruction set, good
performance depends on adherence to certain rules. The IFU deals only with instructions encoded
as variable length byte sequences � byte codes [3, 11]. Variable length instructions provide code
compaction, since frequent instructions can be small. There is also a performance payoff in cache
and virtual memory systems, since the compaction enhances locality and thus reduces cache misses
and page faulting. Our experience has shown that byte codes provide a flexible format for different
languages without favoring a particular one. The choice of eight bits as the grain is a compromise
among optimum encoding, the desire to keep code addresses short, and simplicity of the hardware.
A larger grain is highly undesirable, both because more than half the instructions can fit into one
byte, and because table lookup as a decoding technique is not feasible for units much larger than
eight bits. A finer grain improves code compactness somewhat at the expense of more complex
length calculation and word disassembly.

The first byte of each instruction, called the opcode, is decoded by full table lookup. It may be
followed by as many as two optional data bytes (known as alpha and beta respectively) that are
passed to the processor with only slight reformatting. Of course the processor is free to interpret
these bytes as it wishes, but the IFU can only do complex decoding operations on the opcode byte.
The limitation to three byte instructions reduces hardware complexity at a considerable cost in
speed for longer instructions; bytes after the third must be fetched explicitly by the processor,
which also must restart the IFU at the proper point.

3.2 The decoding table

The IFU decodes an instruction by looking up its first byte in a 1024 word RAM called the decoding
table. The additional two bits of address come from an instruction-set register. The 27-bit contents
of the table describe the instruction in sufficient detail for the IFU and the processor to do their
jobs, and the opcode byte itself is not passed to the processor. Thus the table lookup does most of
the transformation of the instruction; it also governs some minor transformations of the data bytes
such as sign extension.

This method of instruction decoding has a number of advantages. It makes the decoder completely
programmable in a very simple and economical way. It also allows any substructure of the opcode

SEC. 3 ARCHITECTURE OF THE DORADO IFU 31

(e.g., register or mode fields) to be extracted with complete flexibility. Indeed, it is not necessary
for such fields to exist explicitly. If single-byte PushConstant instructions for values 0-4 are desired,
any five opcode values can be assigned for this purpose, and the table can produce the values 0-4.
Furthermore, no sharp distinction is needed between "control" and "data" in the instruction
encoding, since both control information and data values are produced by the same table lookup.

Of course nothing is perfect. This scheme may fail when an instruction has many small fields,
especially if they cross byte boundaries. The PDP-11 and Nova instruction sets are interesting
borderline cases: it works quite well to look up the first byte and use the result to select either a
second lookup in an alternate table lookup, or treatment of the next byte as data. A convenient
way to describe this is to have the first byte specify either a two byte instruction, or a one byte
instruction which switches the "instruction set" temporarily for decoding the next byte.

This facility of modifying the instruction set register on the fly is not implemented in the Dorado,
since it is not very useful for the instruction sets we actually use. It is simple, however, and could
easily be added; the only delicate point is that the instruction set register must be saved on an
exception, or else exceptions must be prohibited before instructions which are decoded with an
alternate table. Currently only the processor can change the instruction set, and it normally does so
only when switching from one language to another. This facility is used in the Interlisp implemen-
tation, for example, since the nucleus of this system is written in BCPL and compiled into a different
instruction set than the one used for Lisp.

Multiple decoding tables have other uses. In fact, the IFU can be viewed as a rather general byte-
stream processor. For example, consider the problem of generating halftone values for a grey scale
image: The task is to transform a sequence of grey pixels (p

g
 bits each, at a resolution of r

g

pixels/inch), into a sequence of binary pixels (one bit each, at a resolution of r
b
 pixels/inch). Both

sets of pixels are packed into words, 16/p
g
 per word and 16 per word respectively. Thus as each

binary pixel is generated, it is necessary to keep track of whether a new binary word must be
started (once every 16 binary pixels), and whether a new grey pixel is needed (once every r

b
/r

g

binary pixels); in the latter case, a new grey word may be needed. Typical algorithms use a single
scan-line buffer containing an error value which must be compensated at each binary pixel. The
IFU can be used to fetch values from this buffer in parallel with the processor. Special pseudo-
opcode values can be used to mark the points which require one or more of the special actions
above. The decoding table will dispatch the processor to the special code for these functions
without any processor overhead. A trial implementation using this idea was about twice as fast as
one without the IFU.

3.3 Pipeline stages and buffering

Figure 3 shows the pipeline stages in the IFU. An item varies in size, but all stages except one
operate in a single 60 ns cycle. For the most part all state is held in the buffers between the stages,
which themselves are purely functional or combinatorial.

At the beginning of the pipe, PC values are generated and put on the memory address bus
(ADDRESS), and the corresponding 16-bit words are returned from the memory (MEMORY), at a peak
rate of one per cycle. If there are no cache misses and no collisions with the processor, the memory
can accept an address in every cycle and return data words at the same rate two cycles later. Thus
under these ideal conditions the memory is not irregular. A double-rate (30 ns) stage (BYTES)
delivers bytes to the decoder (DECODE), which can accept one opcode byte and one operand byte in
a single cycle, though it requires a full cycle to process an instruction. This arrangement allows
two-byte instructions to pass through the pipe at the rate of one per cycle; longer instructions
require two cycles, but are rare. Because DECODE requires a full cycle, the peak rate for one byte
instructions is still one per cycle. Note that the processor cannot demand instructions faster than
this anyway.

AN INSTRUCTION FETCH UNIT FOR A HIGH-PERFORMANCE PERSONAL COMPUTER32

From DECODE on, an item is an instruction; one of these items is held in a buffer from which it is
handed off to the processor (DISPATCH). It turns out that the processor proper requires some of the
decoded instruction before it executes the first microinstruction (the dispatch address and other
initial state; see ¶ 4.2), but consumes the field data later, one byte at a time. The physical IFU also
contains a logical extension of the processor (EXECUTE), which holds this deferred information and
doles it out on demand.

asASDFdf

dfDFASas
asASDFdf

dfDFASas

asASDFdf

asASDFdf

pipe stage

single-item
buffer

buffer

regular

irregular
outputs

regular

irregular
inputs

irregular
throughput

ADDRESS

MEMORY

BYTES

DECODE

DISPATCH

EXECUTE

two-item

double-rate

item=word

item=word

item=byte

item=instruction

item=instruction

Figure 3: Pipeline stages in the Dorado IFU

SEC. 3 ARCHITECTURE OF THE DORADO IFU 33

There are two words of buffering after MEMORY, but there is no other buffering except for the
minimum single item between stages, contrary to the arguments of ¶ 2.6. This design was adopted
partly to save space, and partly because we did not fully understand the issues in maintaining peak
bandwidth. Fortunately the peak bandwidth of the IFU is substantially greater than what the
processor is likely to demand for more than a very short interval (see ¶ 6), so that not much useful
throughput is lost because of the inadequate buffering.

3.4 Exceptions

Exception conditions are handled by extending the space of values stored in an item and handed
off from one stage to the next, rather than by establishing separate communication paths. Thus, for
example, a page fault from the memory is indicated by a status bit returned along with the data
word; the resulting "page fault value" is propagated through the pipe and decoded into a page fault
dispatch address which is handed to the processor like any ordinary instruction. Each exception has
its own dispatch address. Interrupts cause a slight complication. The IFU accepts a signal called
Reschedule which means "cause an interrupt;" this signal is actually generated by I/O microcode in
the processor, but it could come from separate hardware. The next item leaving DECODE is
modified to have a reschedule dispatch address. The microcode at this address examines registers to
find out what interrupt condition has occurred. Since the reschedule item replaces one of the
instructions in the code, it has a PC value, which is the address of the next instruction to be
executed. After the interrupt has been dealt with, the IFU will be restarted at that point.

The exceptions may be divided into three classes:

1) the IFU has not (yet) finished decoding the next instruction, and hence is not ready to
respond to a processor demand;

2) it is necessary to do something different (to handle an interrupt or a page fault);

3) there has been a hardware problem�it is not wise to proceed.

Since more than one exception condition may obtain at a time, they are arranged in a fixed priority
order. Exceptions are communicated only by a dispatch; hence, all exceptions having to do with a
particular opcode must be detected before it is handed off. Thus all the bytes of an instruction
must have been fetched from memory and be available within the IFU before it is handed off.

3.5 Contention and dependencies

There is no contention for resources within the IFU, and the only contention with the rest of the
Dorado is for access to the memory. The IFU shares with the processor a single address bus to the
Dorado’s cache, but has its own bus for retrieving data. The processor has highest priority for the
address bus, which can handle one request per cycle. Thus under worst-case conditions the IFU can
be locked out completely; eventually, of course, the processor will demand an instruction which is
not ready and stop using the bus. Actual address bus conflicts are not a major factor (see ¶ 6.3).

Although ideally the MEMORY stage is regular, in fact collisions with the processor can happen;
these irregularities are partially compensated by the two words of buffering after MEMORY. In
addition cache misses, though very rare, cost about 30 cycles when they do occur.

There is only one dependency on the rest of the execution pipeline: starting the IFU at a new PC.
Since no attempt is made to detect modifications of code being executed, or to execute branches
which depend on the values of variables, the only IFU-processor communication is hand-off
synchronization and resetting of the PC, and these are also the only communication between the IFU
stages. The IFU is completely reset when it gets a new PC; no attempt is made to follow more than
one branch path, or to cache information about the code within the IFU. The shortage of buffering
makes the implementation of synchronization rather tricky; see ¶ 5 .

The IFU takes complete responsibility for keeping track of the PC. Every item in the pipe carries its
PC value with it, so that when an instruction is delivered to the processor, the PC is delivered at the

AN INSTRUCTION FETCH UNIT FOR A HIGH-PERFORMANCE PERSONAL COMPUTER34

same time. The processor actually has access to all the information needed to maintain its own PC,
but the time required to do this in microcode would be prohibitive (at least one cycle per
instruction).

The IFU can also follow branches, provided they are PC-relative, have displacements specified
entirely in the instruction, and are encoded in certain limited ways. These restrictions ensure that
only information from the code (plus the current PC value) is needed to compute the branch
address, so that no external dependencies are introduced. It would be possible to handle absolute
as well as PC-relative branches, but this did not seem useful, since none of the target instruction sets
use absolute branches. The decoding table specifies for each opcode whether it branches and how
to obtain the displacement. On a branch, DECODE resets the earlier stages of the pipe and passes
the branch PC back to ADDRESS. The branch instruction is also passed on to the processor. If it is
actually a conditional branch which should not have been taken, the processor will reset the IFU to
continue with the next instruction; the work done in following the branch is wasted. If the branch
is likely not to be taken, then the decoding table should be set up so that it is treated as an
ordinary instruction by the IFU, and if the branch is taken after all, the processor will reset the IFU
to continue with the branch path; in this case the work done in following the sequential path is
wasted. Even unconditional jumps are pased on to the processor, partly to avoid another case in
the IFU, and partly to prevent infinite loops in the IFU without any processor intervention.

 4. IFU-processor hand-off

With a microcoded execution unit like the Dorado’s processor, efficient emulation depends on
smooth interaction between the IFU and the processor, and on the right kind of concurrency in the
processor itself. These considerations are less critical in a low-performance machine, where many
microcycles are used to execute each instruction, and the loss of a few is not disastrous. A high-
performance machine, however, executes many instructions in one or two microcycles. Adding one
or two more cycles because of a poorly chosen interface with the IFU, or because a very common
pair of operations cannot be expressed in a single microinstruction, slows the emulator down by 50-
200%. The common operations are not very complex, and require only a modest amount of
hardware for an efficient implementation. The examples in this section illustrate these points.

Good performance depends on two things:

An adequate set of data busses, so that it is physically possible to perform the frequent
combinations of independent data transfers in a single cycle. We shall be mainly concerned
with the busses which connect the IFU and the processor, rather than with the internal
details of the latter. These are summarized in Figure 4.

A microinstruction encoding which makes it possible to specify these transfers in a single
microinstruction. A horizontal encoding does this automatically; a vertical one requires
greater care to ensure that all the important combinations can still be specified.

We shall use the term folding for the combination of several independent operations in a single
microinstruction. Usually folding is done by the microprogrammer, who surveys the operations to
be done and the resources of the processor, and arranges the operations in the fewest possible
number of microinstructions.

SEC. 4 IFU-PROCESSOR HAND-OFF 35

asASDFdf
dfDFASas

asASDFdf
asASDFdf

ADDRESS

BYTES

DISPATCH

EXECUTE

...

...

IFUData
Dispatch
addressmmmm

91 310

Reg-
base

Mem-
baseB

Memory data

Memory address

Processor Memory

memory
data

IFU

m
8

16-bit bus

Narrower bus

Figure 4: Busses between the IFU and the processor/memory

IFU

Reg-
isters

isters
Reg-

B

ALU

A

.
,

W

WWWW

W

>>
MEMORY

output
buffer

......
...

AN INSTRUCTION FETCH UNIT FOR A HIGH-PERFORMANCE PERSONAL COMPUTER36

4.1 How the processor sees the IFU

The processor has four main operations for dealing with the IFU. Two are extremely frequent:

IFUJump: The address of the next microinstruction is taken from the IFU; a ten bit bus passes the
dispatch address to the processor’s control section. In addition, parts of the processor state are
initialized from the IFU, and other parts are initialized to standard values (see ¶ 4.2). IFUJump
causes the IFU to hand off an instruction to the processor if it has one ready. Otherwise the IFU
dispatches the processor to the NotReady location. The microcode may issue another IFUJump at that
point, in which case the processor will loop at NotReady until the IFU has prepared the next instruc-
tion. An IFUJump is coded in the branch control field of the microinstruction, and hence can be
done concurrently with any data manipulation operation.

IFUData: The IFU delivers the next field datum on the IFUData bus, which is nine bits wide (eight
data bits plus a sign). Successive IFUData’s during emulation of an instruction produce a fixed
sequence of values determined by the decoding table entry for the opcode, and chosen from:

a small constant N in the decoding table entry;
the alpha byte, possibly sign extended;
either half of the alpha byte;
the beta byte;
the instruction length.

IFUData is usually delivered to the A bus, one of the processor’s two main input busses, from which
it can be sent through the ALU, or used as a displacement in a memory reference. In this case it is
encoded in the microinstruction field which controls the contents of this bus, and hence can be
done concurrently with all the other operations of the processor. IFUData can also be delivered to B,
the other main input bus, from which it can be shifted, stored, sent to the other ALU input, or
output. This operation is encoded in the special function field, where it excludes a large number of
relatively infrequent operations as well as immediate constants and long jumps, all of which also use
this field. For the details of the processor and its microinstructions, see [8].

The other two IFU-related operations are less frequent, and are also coded in the special function
field of the microinstruction:

PC: The IFU delivers the PC for the currently executing instruction to the B bus.

PC_: resets the IFU and supplies a new PC value from the B bus. The IFU immediately starts
fetching instructions from the location addressed by the new PC.

In addition there are a number of operations that support initialization and testing of the hardware.

Strictly speaking, the IFUData and PC operations do not interact with the IFU. All the information
the IFU has about the instruction is handed off at the IFUJump, including the field data and the PC
(about 40 bits). However, these bits are physically stored with the IFU, and sent to the processor
busses incrementally, in order to reduce the width of the busses needed (to 9 bits, plus a 16 bit bus
multiplexed with many other functions). From the microprogrammer’s viewpoint, therefore, the
description we have given is natural.

We illustrate the use of these operations with some examples. First, here is the actual microcode
for the PushConstant instruction introduced in ¶ 2.

PushConstantByte:
Push[IFUData], IFUJump; -- Reduced from 9 microinstructions to 1!

To push a 16 bit constant, we need a three byte instruction; alpha contains the left eight bits of the
constant and beta the right eight bits.

SEC. 4 IFU-PROCESSOR HAND-OFF 37

PushConstantWord:
temp _ LeftShift[IFUData, 8]; -- put alpha into the left half of temp
Push[temp or IFUData], IFuJump; -- or in beta, push the result on the stack, and dispatch to the next instruction

Notice that the first microinstruction uses the IFU to acquire data from the code stream. Then the
second microinstruction simultaneously retrieves the second data byte and dispatches to the next
instruction. These examples illustrate several points.

Any number of microinstructions can be executed to emulate an instruction, i.e., between
IFUJumps.

Within an instruction, any number of IFUData requests are possible; see Table 3 for a
summary of the data delivered to successive requests.

IFUJump and IFUData may be done concurrently. The IFUData will reference the current
instruction’s data, and then the IFUJump will dispatch the processor to the first microinstruc-
tion of the next instruction (or to NotReady).

Suppose analysis of programs indicates that the most common PushConstant instruction pushes the
constant 0. Suppose further that 1 is the next most common constant, and 2 the next beyond that,
and that all other constants occur much less frequently. A lot of code space can probably be saved
by dedicating three one-byte opcodes to the most frequent PushConstant instructions, and using a
two-byte instruction for the less frequent cases, as in the PushConstantByte example above, where the
opcode byte designates a PushConstantByte opcode and alpha specifies the constant. A third opcode,
PushConstantWord, provides for 16-bit constants, and still others are possible.

Pursuing this idea, we define five instructions to push constants onto the stack: PushC0, PushC1,
PushC2, PushCB, PushCW. Any five distinct values can be assigned for the opcode bytes of these
instructions, since the meaning of an opcode is completely defined by its decoding table entry. The
entries for these instructions are as follows: (N is a constant encoded in the opcode, Length is the
instruction length in bytes, and Dispatch is the microcode dispatch address; for details, see ¶ 5.4).

Opcode Partial decoding table contents -- Remarks

PushC0 Dispatch_PushC, N_0, Length_1 -- push 0 onto the stack
PushC1 Dispatch_PushC, N_1, Length_1 -- push 1 onto the stack
PushC2 Dispatch_PushC, N_2, Length_1 -- push 2 onto the stack
PushCB Dispatch_PushC, Length_2 -- push alpha onto the stack
PushCW Dispatch_PushCWord, Length_3 -- push the concatenation of alpha and beta onto the stack

Here is the microcode to implement these instructions; we have seen it before:

PushC: -- PushC0/1/2, (ifuData=N), PushCB, (ifuData=alpha)
Push[IFUData], IFUJump;

PushCWord: -- PushCW,
temp _ Lshift[IFUData, 8]; -- (IFUData=alpha here)
Push[temp or IFUData], IFUJump; -- (IFUData=beta here)

Observe that the same, single line of microcode (at the label PushC) implements four different
opcodes, for both one and two byte instructions. Only PushConstantWord requires two separate
microinstructions.

4.2 Initializing state

A standard method for reducing the size and increasing the usefulness of an instruction is to
parameterize it. For example, we may consider an instruction with a base register field to be
parameterized by that register: the "meaning" of the instruction depends on the contents of the
register. Thus the same instruction can perform different functions, and also perhaps can get by
with a smaller address field. This idea is also applicable to microcode, and is used in the Dorado.
For example, there are 32 memory base registers. A microinstruction referencing memory does not
specify one of these explicitly; instead, there is a MemBase register, loadable by the microcode,
which tells which base register to use. Provided the choice of register changes infrequently, this is
an economical scheme.

AN INSTRUCTION FETCH UNIT FOR A HIGH-PERFORMANCE PERSONAL COMPUTER38

For emulation it presents some problems, however. Consider the microcode to push a local
variable; the address of the variable is given by the alpha byte plus the contents of the base register
localData, whose number is localDataRegNo:

PushLocalVar:
MemBase _ localDataRegNo; -- Make memory references relative to the local data.
Fetch[IFUData]; -- Use contents of PC+1 as offset.
Push[memoryData], IFUJump; -- Push variable onto stack, begin next instruction

This takes three cycles, one of which does nothing but initialize MemBase. The point is clear: such
parametric state should be set from the IFU at the start of an instruction, using information in the
decoding table. This is in fact done on the Dorado. The decoding table entry for PushLocalVar
specifies localData as the initial value for MemBase, and the microcode becomes:

PushVar:
Fetch[IFUData]; -- IFU initializes MemBase to the local data
Push[memoryData], IFUJump; -- Push variable onto stack, begin next instruction

One microinstruction is saved. Furthermore, the same microcode can be used for a PushGlobalVar
instruction, with a decoder entry which specifies the same dispatch address, but globalData as the
initial value of MemBase. Thus there are two ways in which parameterization saves space over
specifying everything in the microinstruction: each microinstruction can be shorter, and fewer are
needed. The need for initialization, however, makes the idea somewhat less attractive, since it
complicates both the IFU and the EU, and increases the size of the decoding table.

A major reduction in the size of the decoding table can be had by using the opcode itself as the
dispatch address. This has a substantial cost in microcode, since typically the number of distinct
dispatch addresses is about one-third of the 256 opcodes. If this price is paid and parameterization
eliminated, however, the IFU can be considerably simplified, since not only the decoding table space
is saved, but also the buffers and busses needed to hand off the parameters to the processor, and
the parameterization mechanism in the processor itself. On the Dorado, the advantages of
parameterization were judged to be worth the price, but the decision is a fairly close one. The
current memory base register and the current group of processor registers are parameters of the
microinstruction which are initialized from the IFU. The IFU also supplies the dispatch address at
the same time. The remainder of the information in the decoding table describes the data fields
and instruction length; it is buffered in EXECUTE and passed to the processor on demand.

4.3 Forwarding

Earlier we mentioned folding of independent operations into the same microinstruction as an
important technique for speeding up a microprogram. Often, however, we would like to fold the
emulation of two successive instructions, deferring some of the work required to finish emulation of
one instruction into the execution of its successor, where we hope for unused resources. This
cannot be done in the usual way, since we have no a priori information about what instruction
comes next. However, there is a simple trick (due to Ed Fiala) which makes it possible in many
common cases.

We define for an entire instruction set a small number n of cleanup actions which may be forwarded
to the next instruction for completion; on the Dorado up to four are possible, but one must usually
be the null action. For each dispatch address we had before, we now define n separate ones, one
for each cleanup action. Thus if there were D addresses to which an IFUJump might dispatch, there
are now nD. At each one, there must be microcode to do the proper cleanup action in addition to
the work required to emulate the current instruction. The choice of cleanup action is specified by
the microcode for the previous instruction; to make this convenient, the Dorado actually has four
kinds of IFUJump operations (written IFUJump[i] for i=0, 1, 2, 3), instead of the one described
above. The two bits thus supplied are ORed with the dispatch address supplied by the IFU to
determine the microinstruction to which control should go. To avoid any assumptions about which
pairs of successive instructions can occur, all instructions in the same instruction set must use the
same cleanup actions and must be prepared to handle all the cleanup actions. In spite of this
limitation, measurements show that forwarding saves about 8% of the execution time in straight-line
code (see ¶ 6.4); since the cost is very small, this is a bargain.

SEC. 4 IFU-PROCESSOR HAND-OFF 39

We illustrate this feature by modifying the implementation of PushLocalVar given above, to show
how one instruction’s memory fetch operation can be finished by its successor, reducing the cost of
a PushLocalVar from two microinstructions to one. We use two cleanup actions. One is null (action
0), but the other (action 2) finds the top of the stack not on the hardware stack but in the
memoryData register. Thus, any instruction can leave the top of stack in memoryData and do an
IFUJump[2]. Now the microcode looks like this:

PushLocalVar[0]:
Fetch[IFUData], IFUJump[2]; -- this entry point assumes normal stack, and leaves top of stack in

memoryData.

PushLocalVar[2]:
Push[memoryData], Fetch[IFUData], IFUJump[2]; -- this entry point assumes top of stack is in memoryData and leaves it there.

In both cases, the microcode executes IFUJump[2], since the top of stack is left in the memoryData
register, rather than on the stack as it should be. In the case of PushLocalVar[2], the previous instruc-
tion has done the same thing. Thus, the microcode at this entry point must move that data into the
stack at the same time it makes the memory reference for the next stack value. The reader can see
that successive Push instructions will do the right thing. Of course there is a payoff only because
the first microinstruction of PushLocalVar[0] is not using all the resources of the processor.

It is instructive to look at the code for Add with this forwarding convention:

Add[0]:
temp _ Pop[]; -- this entry point assumes and leaves normal stack
StackTop _ StackTop+temp, IFUJump[0];

Add[2]:
StackTop _ StackTop+memoryData, IFUJump[0]; -- this entry point assumes top of stack is in memoryData, leaves normal

stack.

This example shows that the folding enabled by forwarding can actually eliminate data transfers
which are necessary in the unfolded code. At Add[2] the second operand of the Add is not put on
the stack and then taken off again, but is sent directly to the adder. The common data bus of the
360/91 [15] obtains similar, but more sweeping, effects at considerably greater cost. It is also
possible to do a cleanup after a NotReady dispatch; this allows some useful work to be done in an
otherwise wasted cycle.

4.4 Conditional branches

We conclude our discussion of IFU-processor interactions, and give another example of forwarding,
with the example of a conditional branch instruction. Suppose that there is a BranchNotZero
instruction that takes the branch if the current top of the stack is not zero. Assume that its
decoding table entry tells the IFU to follow the branch, and specifies the instruction length as the
first IFUData value. Straightforward microcode for the instruction is:

BranchNotZero: -- IFU jumps come here. IFU assumed result#0.
if stack=0 then goto InsFromIFUData, Pop; -- Test result in this microinstruction.
IFUJump; -- Result was non-zero, IFU did right thing.

InsFromIFUData: -- Result was zero. Do the instruction at PC+IFUData.
temp _PC+IFUData; -- PC should be PC+Instruction length.
PC _ temp; -- Redirect the IFU

IFUJump; -- This will be dispatched to NotReady, where the code will loop until the IFU

refills starting at the new location.

The most likely case (the top of the stack non-zero) simply makes the test specified by the
instruction and does an IFUJump (two cycles). If the value is zero (the IFU took the wrong path),
the microcode computes the correct value for the new PC and redirects the IFU accordingly (four
cycles, plus the IFU’s latency of five cycles; guessing wrong is painful). If we think that
BranchNotZero will usually fail to take the branch, we can program the decoding table to treat it as

AN INSTRUCTION FETCH UNIT FOR A HIGH-PERFORMANCE PERSONAL COMPUTER40

an ordinary instruction and deliver the branch displacement as IFUData, and reverse the sense of the
test.

A slight modification of the forwarding trick allows further improvement. We introduce a cleanup
action (say action 1) to do the job of InsFromIFUData above (it must be action 1 or 3, since a
successful test in the Dorado ors a 1 into the next microinstruction address). Now we write the
microcode (including for completeness the action 2 of ¶ 4.3):

BranchNotZero[0]: -- IFU jumps come here. Expect result#0.
Test[stack=0], Pop, IFUJump[0]; -- Test result in this microinstruction; if the test succeeds, we do IFUJump[1].

BranchNotZero[2]:
Test[memoryData=0], IFUJump[0];

EveryInstruction[1]: -- Branch was wrong. Do the instruction at PC+IFUData.
temp _PC+IFUData;
PC _ temp; -- Redirect the IFU

IFUJump[0]; -- This will be dispatched to NotReady, where the code will loop until the IFU

refills starting at the new location.

Now a branch which was predicted correctly takes only one microinstruction. For this to work, the
processor must keep the IFU from advancing to the next instruction if there is a successful test in
the IFUJump cycle. Otherwise, the PC and IFUData of the branch instruction would be lost, and the
cleanup action could not do its job. Note that the first line at EveryInstruction[1] must be repeated
for each distinct dispatch address; all these can jump to a common second line, however.

5. Implementation

In this section we describe the implementation of the Dorado IFU in some detail. The primary
focus of attention is the pipeline structure, discussed within the framework established in ¶ 2 and ¶
3.3, but in addition we give (in ¶ 5.4) the format of the decoding table, which defines how the IFU
can be specialized to the needs of a particular instruction set. Figure 3 gives the big picture of the
pipeline. Table 1 summarizes the characteristics of each stage; succeeding subsections discuss each
row of the table in turn. The first row gives the properties of an ideal stage, and the rest of the
table describes departures from this ideal. This information is expanded in the remainder of this
section; the reader may wish to use the table to compare the behavior of the different stages.

The entire pipe is synchronous, running on a two-phase clock which defines a 60 ns cycle; some
parts of the pipe use both phases and hence are clocked every 30 ns. An "ideal" stage is described
by the first line of the table. There is a buffer following each stage which can hold one item
(b=1), and may be empty (represented by an empty flag); this is also the input buffer for the next
stage. The stage takes an item from its input buffer every cycle (t

input
=1) and delivers an item to

its output buffer every cycle (t
output

=1); the item taken is the one delivered (l=1). The buffer is

loaded on the clock edge which defines the end of one cycle and the start of the next. The stage
handles an item if and only if there is space in the output buffer for the output at the end of the
cycle; hence if the entire pipe is full and an item is taken by the processor, every stage will process
an item in that cycle. This means that information about available buffer space must propagate all
the way through the pipe in one cycle. Furthermore, this propagation cannot start until it is known
that the processor is accepting the item, and it must take account of the various irregularities which
allow a stage to accept an item without delivering one or vice versa. Thus, the pipe has global
control. Note that a stage delivers an output item whether or not its input buffer is empty; if it is,
the special empty item is delivered. Thus the space bookkeeping is done entirely by counting empty
items.

Implementing global control within the available time turned out to be hard. It was considered
crucial because of the minimal buffering between stages. The alternative, much easier approach is
local control: deliver an item to the buffer only if there is space for it there at the start of the cycle.
This decouples the different stages completely within a cycle, but it means that if the pipe is full
(best case) and the processor suddenly starts to demand one instruction per cycle (worst case), the
pipe can only deliver at half this rate, even though each stage is capable of running at the full rate;

SEC. 5 IMPLEMENTATION 41

Stage Size Input Output Reset Remarks

"ideal" t=1; takes one t=l=1; delivers one Clears buffer All state is in the buffer
item if output item if buffer will to empty on after the stage.
is possible be empty; b=1 PC_ . . .

ADDRESS word No input Not if paused, MAR and jump; Pass PC by incrementing;
contention, or mem also accepts a source, hence has
busy; OK if space in new PCvalue state (PC).
any later buffer.

MEMORY word Internal l>2; output is and jump; Must enforce FIFO;
complications unconditional; b=2 discards out- not really part of IFU;

put of fetches has state of 0-2
in progress fetches in progress

BYTES byte t=.5 t=l=.5 and jump Break byte feature.

DECODE instr t>.5; rate de- only Recycling to vary rate;
pends on ins- splits beta byte; encodes
truction length exceptions; does jumps.

DISPATCH instr On IFUJump only NotReady is default delay;
 IFUHold is panic delay.

EXECUTE byte On IFUData No output buffer Reset unnecessary

Table 1: Summary of the pipeline stages

ADDRESS buffer

MEMORY buffer

BYTES buffer

DECODE buffer

processor has

4

3

2

1

processor has

DECODE buffer

BYTES buffer

MEMORY buffer

ADDRESS buffer 7,8

5,6

3,4

1,2

4

3

2

1

4

3

2

4

3

2

4

3

5

4

3

5

4

6

5

4

3,4

5,6

7,8 7,8

5,6

7,8

-,2

1

-,4

-,3

2

-,6

-,5

-,4

3

-,8

-,7

-,6

-,5

4

-,6

-,7

-,8

-,9

-,9

-,8

-,7

-,10

-,10

-,8

-,9

765

-,11

Figure 5a: Cogging with local control and one item buffering

Figure 5b: Smooth operation with local control and two item buffering

AN INSTRUCTION FETCH UNIT FOR A HIGH-PERFORMANCE PERSONAL COMPUTER42

Figure 5a illustrates this cogging. Figure 5b shows that with two items of buffering after each stage,
local control does not cause cogging. The Dorado has small buffers and global control partly
because buffers are fairly costly in components (see below), and partly because this issue was not
fully understood during the design. Note that it is easy to implement global control over a group
of consecutive stages which have no irregularities, since every stage can safely advance if there is
room in the buffer of the last stage. In this IFU, alas, there are no two consecutive regular stages.

Unfortunately, the cost of buffering is not linear in the number of items. A two item buffer costs
more than three times as much as a one item buffer; this is because the latter is simply a register,
while the former requires two registers plus a multiplexor to bypass the second register when the
buffer is empty, as shown in Figure 6. Without the bypass a larger buffer increases the latency of
the pipe, which is highly undesirable since it slows down every jump which the IFU doesn’t predict
successfully. Once the cost of bypassing is paid, however, a multi-item buffer costs only a little
more, since a RAM can be used in place of the second register. Although there are no such buffers
in the Dorado, it is interesting to see how they are made.

The RAM requires two counters to act as read and write pointers, and a third to keep track of the
number of items in the buffer. In addition, it must be effectively two-ported, since in a single cycle
it is necessary to write one item and read an earlier one. In the Dorado two-port RAMs are used in
many places; since no such part is available, they are implemented by running an ordinary RAM at
twice the machine cycle (both 16x4 and 256x4 RAMs are available which can be read or written in
10 ns), and using a multiplexor to supply the read address in one half-cycle and the write address in
the other. Figure 6 shows this arrangement in a slightly simplified form.

A normal stage has no state which changes as instructions are executed; all the state is represented
in the items as they are stored in the inter-stage buffers. As a consequence, resetting the pipe is
done simply by filling all the buffers with empty items.

Every item carries with it a PC, which is the address in the code from which its first byte was
fetched. It is the IFU’s handling of jumps which makes this necessary; otherwise it would suffice to
remember the initial PC at the end of the pipe, and to increment it by the instruction length as each
instruction goes by. Since no jumps can be executed between the ADDRESS and BYTES states, this
method is in fact used there. It is especially convenient because BYTES handles one byte at a time,
so that the PC can be held in a counter which is incremented once per item; later in the pipe an

WW

RAM WW
Ad

Read ptr Write ptr Count

0=empty
carry=full

one item two items
with bypassno bypass

many items
with RAM and bypass WW

Multiplexor

Register

WW
Multiplexor/
register

WW
Figure 6: One, two and many item buffers with bypassing

w
w

ww<
Read in half-cycle when data is delivered
Write in the other half-cycle

SEC. 5 IMPLEMENTATION 43

adder would be needed to handle the variable instruction lengths, and it would cost about four
times as much.

Every item also carries a status field, which is used to represent various values that do not
correspond to ordinary instructions: empty, page fault, memory error. These are converted into
unique dispatch addresses when the item is passed to the processor, as discussed in ¶ 3.4.

5.1. ADDRESS stage

This stage generates the addresses of memory words which contain the successive bytes of code.
Unlike the other stages, it has no ordinary input, but instead contains a PC which it increments by
two (there are two bytes per memory word) for each successive reference. The PC can also take on
a pause value which prevents any further memory references until the processor resupplies ADDRESS
with an ordinary PC value. This pause state plays the same role for ADDRESS that an empty input
buffer plays for the other stages; hence it is entered whenever this stage is reset. That happens
either because of a processor Reset operation (which resets the entire IFU pipe, and is not done
during normal execution), or because of a Pause signal from DECODE. Correspondingly, a new PC
can be supplied either by a processor PC_ operation, or by a Jump signal from DECODE when it sees
a jump instruction. Any of these operations resets the pipe between ADDRESS and DECODE; the
processor operations reset the later stages also.

ADDRESS makes a memory reference if the memory is willing to accept the reference; this
corresponds to finding space in the buffer between ADDRESS and MEMORY, although the
implementation is quite different because the memory is not physically part of the IFU. In addition,
ADDRESS contends with the processor for the memory address bus; since the IFU has lowest priority,
it waits until this bus is not being used by the processor. Finally, it is necessary to worry about
space for the resulting memory word: the memory, unlike ordinary IFU stages, delivers its result
unconditionally, and hence must not be started unless there is a place to put the result. ADDRESS
surveys the buffering in the rest of the pipe, and waits until there are at least two free bytes
guaranteed; it isn’t necessary for these bytes to be in the MEMORY output buffer, since data in that
buffer will advance into later buffers before the memory delivers the data. It is, however, necessary
to make the most pessimistic assumptions about instruction length and processor demands. On this
basis, there are seven bytes of buffering altogether: four after MEMORY, two after BYTES, and one
after DECODE.

5.2 MEMORY stage

This stage has several peculiarities. Some arise from the fact that most of it is not logically or
physically a part of the IFU, but instead is shared with the processor and I/O system. As we saw in
the previous section, the memory delivers results unconditionally, rather than waiting for buffer
space to be available; ADDRESS allows for this in starting MEMORY. Furthermore, the memory has
considerable internal state and cannot be reset, so additional logic is required to discard items which
are inside the memory when the stage is reset.

Other problems arise from the fact that the memory’s latency is more than one cycle; in fact, it
ranges from two to about 30 cycles (the latter when there is a cache miss). To maintain full
bandwidth, the IFU must therefore have more than one item in the MEMORY stage at a time; since
l=2 when the cache hits, and this is the normal case, there is provision for up to two items in
MEMORY. A basic principle of pipeline stages is that items emerge in the order they are supplied.
A stage with fixed latency, or one which holds only one item, does this automatically, but MEMORY
has neither of these properties. Furthermore, its basic function is random access, with no sequential
relationship between successive references. Hence if one reference misses and the next one hits, the
memory is happy to deliver the second result first. To prevent this from happening, the IFU
notifies the memory that it has a reference outstanding when it makes the second one, and the
memory rejects the second reference unless the first one is about to complete.

AN INSTRUCTION FETCH UNIT FOR A HIGH-PERFORMANCE PERSONAL COMPUTER44

The irregularity of the memory also demands more than one word of buffering for its output, and
in fact two are provided. They are physically packaged with the cache data memory, as is the
BYTES stage multiplexing required to produce individual bytes. As a result, a one-byte bus suffices
to deliver memory data to the IFU.

5.3 BYTES stage

This is a very simple stage, which consists only of the multiplexors just mentioned. It does,
however, run twice as fast as the other stages, so that it can deliver two-byte instructions at the full
rate of one per cycle. This means that the multiplexors must look at both words of the MEMORY
output buffer, which runs only at the normal rate.

BYTES also includes a provision for replacing the first byte coming from memory with a byte taken
from a substitute register within the stage. This feature makes it convenient to proceed after a
breakpoint without removing the one-byte breakpoint instruction from the code; instead the opcode
byte displaced by the breakpoint is loaded into the substitute register (by the microcode) and
substituted for the break instruction. Since the substitution is done only once, the break is executed
normally when control returns to it. The substitute register is also a convenient way to address the
decoding table for loading and testing it.

5.4 DECODE stage

The main complications in this stage are the decoding table, the variable number of bytes required
to make up an instruction, the encoding of exceptions, and the execution of jumps.

The decoding table is implemented with 1kx1 RAMs, which provide room for four instruction sets
with 256 opcodes each. It takes about two-thirds of a cycle to read these RAMs, with consequences
which are described below. The form of an entry is outlined in Table 2; parity is also stored. Most
of this information is passed on directly to the DECODE buffer. The last three fields, however,
affect the IFU’s handling of subsequent instructions.

Name Size Function

Dispatch 10 The starting microcode address for the instruction
MemBase 3 Selects one of eight memory base registers.
RBase 1 Selects one of two processor register groups.

SplitAlpha 1 Split the first data byte into two four-bit data items.
N 4 Encoded constant.
Sign 1 Extend sign of the first datum provided to the processor.

Length 2 The length of the instruction; also supplied as a datum.
Jump 1 Indicates a jump; DECODE computes a new PC from PC plus N (if length=1)

or alpha (if length=2).
Pause 1 Indicates that ADDRESS should be reset.

Table 2: Fields of a decoding table entry.

The instruction length determines the treament of both this and later instructions; the fact that it
isn’t known until late in the DECODE cycle causes serious problems. A simple implementation of
DECODE addresses the decoding table directly from the input buffer. If the instruction turns out to
be one byte long, it is delivered to the output buffer in the normal way. If it is longer, the decoded
output is latched and additional bytes are taken from BYTES until the complete instruction is in
DECODE ready to be delivered; see Figure 7a. Unfortunately, the length must be known before the
middle of the cycle to handle two-byte instructions at full speed. Figure 7b shows how this

SEC. 5 IMPLEMENTATION 45

problem can be attacked by introducing a sub-stage within DECODE; unfortunately, this delays the
reading of the decode table by half a cycle, so that its output is not available together with the
alpha byte. To solve the problem it is necessary to provide a second output buffer for BYTES, and
to feed back its contents into the main buffer if the instruction turns out to be only one byte long,
as in Figure 7c. Some care must be taken to keep the PCs straight. This ugly backward
dependency seems to be an unavoidable consequence of the variable-width items.

In fact, a three-byte instruction is not handled exactly as shown in Figure 7. Since the bandwidth
of BYTES prevents it from being done in one cycle anyway, space is saved by breaking it into two
sub-instructions, each two bytes long; for this purpose a dummy opcode byte is supplied between
alpha and beta. Each sub-instruction is treated as an instruction item. The second one contains
beta and is slightly special: DECODE ignores its dummy opcode byte and treats it as a two-byte
instruction, and DISPATCH passes it on to EXECUTE after the alpha byte has been delivered.

Ad

RAM
Decoding

from BYTES stage

decoded opcode alpha beta

latch latch

DECODE
output
buffer

betaalphadecoded opcode

from BYTES stage

Decoding
RAM

Ad

opcode register

Ad

RAM
Decoding

from BYTES stage

decoded opcode alpha beta

latch latch

Sub-stage

instruction byte instruction byte
buffer
output
BYTES BYTES

output
buffer

BYTES
output
buffer

instruction byte

DECODE
output
buffer

alpha bufferWW

Figure 7b: Substage implementation of DECODE

Figure 7c: Recycling implementation of DECODE

w ww ww w wwww

w w

w

w

w

w w

w
<<

<

Figure 7a: Simple implementation of DECODE

AN INSTRUCTION FETCH UNIT FOR A HIGH-PERFORMANCE PERSONAL COMPUTER46

DECODE replaces the dispatch address from the table with an exception address if necessary. In
order to obey the rule that exceptions must all be captured in the dispatch address, the exception
values of all the instruction bytes are merged into its computation. For three-byte instructions, this
requires looking back into BYTES for the state of the beta byte. If any of the bytes is empty,
DECODE keeps the partial instruction item when it delivers an empty item with a NotReady dispatch
into its output buffer. If a Reschedule is pending, it is treated like any other exception, by
converting the dispatch address of the next instruction item into Reschedule. Thus there is always a
meaningful PC associated with the exception.

If the Jump field is set, DECODE computes a new program counter by adding an offset to the PC of
the instruction. This offset comes from the alpha byte if there is one, otherwise from N and
SplitAlpha; it is sign-extended if Sign is true. The new PC is sent back to ADDRESS, as described in ¶
5.1, where Pause is also explained. Jump instructions in which the displacement is not encoded in
this way cannot be executed by the IFU, but must be handled by the processor.

5.5 DISPATCH stage

The interesting work of this stage is done by the processor, which takes the dispatch address,
together with the state initialization discussed in ¶ 4.2, from the DECODE output buffer when it
executes an IFUJump. Because empty is encoded into a NotReady dispatch, the processor takes no
account of whether the buffer is empty. There are some ugly cases, however, in which DECODE is
unable to encode an exception quickly enough. In these cases DISPATCH asserts a signal called Hold
which causes the processor to skip an instruction cycle; this mechanism is rather expensive to
implement, and is present only because it was essential for synchronization between the processor
and the memory [1]. Once implemented, however, it is quite cheap for the IFU to use. The
NotReady dispatch is still preferable, because it gives the microcode an opportunity to do some
useful work while waiting.

5.6. EXECUTE stage

This stage implements the IFUData function; as we have already seen, it is logically part of the
processor. The sequence of data items delivered in response to IFUData is controlled by Jump,
Length, N, and SplitAlpha according to Table 3; in addition, alpha is sign-extended if Sign is true.
EXECUTE also provides the processor with the value of the PC in response to a different function.

Jump Length N SplitAlpha IFUData

Yes � � � Length, . . .

No 1 No � Length, . . .
No 1 Yes � N, Length, . . .

No 2 No No alpha, Length, . . .
No 2 No Yes alphaHigh, alphaLow, Length, . . .
No 2 Yes No N, alpha, Length, . . .
No 2 Yes Yes N, alphaHigh, alphaLow, Length, . . .

No 3 No No alpha, beta, Length, . . .
No 3 No Yes alphaHigh, alphaLow, beta, Length, . . .
No 3 Yes No N, alpha, beta, Length, . . .
No 3 Yes Yes N, alphaHigh, alphaLow, beta, Length, . . .

Table 3: Data items provided to IFUData

SEC. 6 PERFORMANCE 47

6. Performance

The value of an instruction fetch unit depends on the fraction of total emulation time that it saves
(over doing instruction fetching entirely in microcode). This in turn clearly depends on the amount
of time spent in executng each instruction. For a language like Smalltalk-76 [5], a typical
instruction requires 30-40 cycles for emulation, so that the half-dozen cycles saved by the IFU are
not very significant. At the other extreme, an implementation language like Mesa [9, 11] is
compiled into instructions which can often be executed in a single cycle; except for function calls
and block transfers, no Mesa instruction requires more than half a dozen cycles. For this reason,
we give performance data only for the Mesa emulator.

The measurements reported were made on the execution of the Mesa compiler, translating a
program of moderate size; data from a variety of other programs is very similar. All the operating
system functions provided in this single-user system are included. Disk wait time is excluded, since
it would tend to bias the statistics. Some adjustments to the raw data have been made to remove
artifacts caused by compatibility with an old Mesa instruction set. Time spent in the procedure call
and return instructions (about 15%) has been excluded; these instructions take about 10 times as
long to execute as ordinary instructions, and hence put very little demand on the IFU.

The Dorado has a pair of counters which can record events at any rate up to one per machine
cycle. Together with supporting microcode, these counters provide sufficient precision that overflow
requires days of execution. It is possible to count a variety of interesting events; some are
permanently connected, and others can be accessed through a set of multiplexors which provide
access to several thousand signals in the machine, independently of normal microprogram execution.

6.1 Performance limits

The maximum performance that the IFU can deliver is limited by certain aspects of its
implementation; these limitations are intrinsic, and do not depend on the microcode of the
emulator or on the program being executed. The consequences of a particular limitation, of course,
depend on how frequently it is encountered in actual execution.

Latency: after the microcode supplies the IFU with a new PC value, an IFUJump will go to NotReady
until the fifth following cycle (in a few cases, until the sixth cycle). Thus there are at least five
cycles of latency before the first microinstruction of the new instruction can be executed. Of
course, it may be possible to do useful work in these cycles. This latency is quite important, since
every instruction for which the IFU cannot compute the next PC will pay it; these are wrongly
guessed conditional branches, indexed branches, subroutine calls and returns, and a few others of
negligible importance.

A branch correctly executed by the IFU causes a three-cycle gap in the pipeline. Hence if the
processor spends one cycle executing it and each of its two predecessors, it will see three NotReady
cycles on the next IFUJump. Additional time spent in any of these three instructions, however, will
reduce this latency, so it is much less important than the other.

Bandwidth: In addition to these minimum latencies, the IFU is also limited in its maximum
throughput by memory bandwidth and its limited buffering. A stream of one-byte instructions can
be handled at one per cycle, even with some processor references to memory. A stream of two-byte
instructions, however (which would consume all the memory bandwidth if handled at full speed),
results in 33% NotReady even if the processor makes no memory references. The reason is that the
IFU cannot make a reference in every cycle, because its buffering is insufficient to absorb
irregularity in the processor’s demand for instructions. As we shall see, these limitations are of
small practical importance.

AN INSTRUCTION FETCH UNIT FOR A HIGH-PERFORMANCE PERSONAL COMPUTER48

6.2 NotReady dispatches

Our measurements show that the average instruction takes 3.1 cycles to execute (including all IFU
delays). Jumps are 26% of all instructions, and incorrectly predicted jumps (40% of all conditional
jumps) are 10%. The average non-jump instruction takes 2.5 cycles.

The performance of the IFU must be judged primarily on the frequency with which it fails to satisfy
the processor’s demand for an instruction, i.e., the frequency of NotReady dispatches. It is
instructive to separate these by their causes:

latency,

cache misses by the IFU,

dearth of memory bandwidth,

insufficient buffering in the IFU.

The first dominates with 16% of all cycles, which is not surprising in view of the large number of
incorrectly predicted jumps. Note that since these NotReady cycles are predictable, unlike all the
others, they can be used to do any background tasks which may be around.

Although the IFU’s hit rate is 99.7%, the 25 cycle cost of a miss means that 2.5% of all cycles are
NotReady dispatches from this cause. This is computed as follows: one cycle in three is a dispatch,
and .3% of these must wait for a miss to complete. The average wait is near the maximum,
unfortunately, since most misses are caused by resetting the IFU’s PC, This yields 33% of .3%, or .1%,
times 25, or 2.5%.

The other causes of NotReady account for only 1%. This is also predictable, since more than half
the instructions are one byte, and the average instruction makes only one memory reference in three
cycles. Thus the average memory bandwidth available to the IFU is two words, or three
instructions, per instruction processed, or about three times what is needed. Furthermore, straight-
line instructions are demanded at less than half the peak rate on the average, and jumps are so
frequent that when the first instruction after a jump is dispatched, the pipe usually contains half the
instructions that will be executed before the next jump.

6.3 Memory bandwidth

As we have seen, there is no shortage of memory bandwidth, in spite of the narrow data path
between the processor and the IFU. Measurements show that the processor obtains a word from the
memory in 16% of the cycles, and the IFU obtains a word in 32% of the cycles. Thus data is
supplied by the memory in about half the cycles. The processor actually shuts out the IFU by
making its own reference about 20% of the time, since some of its references are rejected by the
memory and must be retried. The IFU makes a reference for each word transferred, and makes
unsuccessful references during its misses, for a total of 35%. There is no memory reference about
45% of the time.

6.4 Forwarding

The forwarding trick saves a cycle in about 25% of the straight-line instructions, and hence speeds
up straight-line execution by 8%. Jumps take longer and benefit less, so the speed-up within a
procedure is 5%. Like the IFU itself, forwarding pays off only when instructions are executed very
quickly, since it can save at most one cycle per instruction.

SEC. 6 PERFORMANCE 49

6.5 Size

A Dorado board can hold 288 standard 16-pin chips. The IFU occupies about 85% of a board;
these 240 chips are devoted to the various stages as shown in Table 4.

Function Chips %

ADDRESS-BYTES 40 17
DECODE 86 35
DISPATCH 24 10
EXECUTE 18 8
Processor interface 27 11
Clocks 18 8
Testing 27 11

Table 4: Size of various parts of the IFU

In addition, about 25 chips on another board are part of MEMORY and BYTES. The early stages are
mostly devoted to handling several PC values. DECODE is large because of the decoding table (27
RAM chips) and its address drivers and data registers, as well as the branch address calculation.

Table 5 shows the amount of microcode in the various emulators, and in some functions common
to all of them. In addition, each emulator uses one quarter of the decode table. Of course they are
not all resident at once.

System Words Comments

Mesa 1300
Smalltalk 1150
Lisp 1500
Alto BCPL 700
I/O 1000 Disk, keyboard, regular and color display, Ethernet
Floating point 300 IEEE standard; there is no special hardware support
Bit block transfer 270

Table 5: Size of various emulators

Acknowledgements

The preliminary design of the Dorado IFU was done by Tom Chang, Butler Lampson and Chuck
Thacker. Final design and checkout were done by Will Crowther and the authors. Ed Fiala
reviewed the design, did the microassembler and debugger software, and wrote the manual. The
emulators mentioned were written by Peter Deutsch, Willie-Sue Haugeland, Nori Suzuki and Ed
Taft.

AN INSTRUCTION FETCH UNIT FOR A HIGH-PERFORMANCE PERSONAL COMPUTER50

References

1. Clark, D.W. et. al. The memory system of a high performance personal computer. Technical Report CSL-81-1, Xerox Palo
Alto Research Center, January 1981. Revised version to appear in IEEE Transactions on Computers.

2. Connors, W.D. et. al. The IBM 3033: An inside look. Datamation, May 1979, 198-218.
3. Deutsch, L.P. A Lisp machine with very compact programs. Proc 3rd Int. Joint Conf. Artificial Intelligence, Stanford, 1973,

687-703.
4. Ibbett, R.N. and Capon, P.C. The development of the MU5 computer system. Comm. ACM 21, 1, Jan. 1978, 13-24.
5. Ingalls, D.H. The Smalltalk-76 programming system: Design and implementation. 5th ACM Symp. Principles of

Programming Languages, Tucson, Jan. 1978, 9-16.
6. Intel Corp. MCS-86 User’s Manual, Feb. 1979.
7. Knuth, D.E. An empirical study of Fortran programs. Software�Practice and Experience 1, 1971, 105-133.
8. Lampson, B.W. and Pier, K.A. A processor for a high performance personal computer. Proc 7th Int. Symp. Computer

Architecture, SigArch/IEEE, La Baule, May 1980, 146-160. Also in Technical Report CSL-81-1, Xerox Palo Alto Research
Center, Jan. 1981.

9. Mitchell, J.G. et. al. Mesa Language Manual. Technical Report CSL-79-3, Xerox Palo Alto Research Center, April 1979.
10. Russell, R.M. The CRAY-1 computer system. Comm. ACM 21, 1, Jan. 1978, 63-72.
11. Tanenbaum, A.S. Implications of structured programming for machine architecture. Comm. ACM 21, 3, March 1978, 237-

246.
12. Teitelman, W. Interlisp Reference Manual. Xerox Palo Alto Research Center, Oct. 1978.
13. Thacker, C.P, et. al. Alto: A personal computer. In Computer Structures: Readings and Examples, 2nd edition, Sieworek,

Bell and Newell, eds., McGraw-Hill, 1981. Also in Technical Report CSL-79-11, Xerox Palo Alto Research Center, August
1979.

14. Thornton, J.E. The Control Data 6600, Scott, Foresman & Co., New York, 1970.
15. Tomasulo, R.M. An efficient algorithm for exploiting multiple arithmetic units, IBM J. R&D 11, 1, Jan. 1967, 25-33.
16. Anderson, D.W. et. al. The System/360 Model 91: Machine philosophy and instruction handling. IBM J. R&D 11, 8, Jan.

1967, 8-24.
17. Widdoes, L. C. The S-1 project: Developing high performance digital computers. Proc. IEEE Compcon, San Francisco, Feb.

1980, 282-291.

