A Processor for a
Hi gh- Per f or mance Personal Conputer

by Butler W Lanpson and Kenneth A Pier

January 1981

ABSTRACT

Thi s paper describes the design goals, nicroarchitecture, and inplenentation of the

m croprogramred processor for a conpact high perfornance personal conputer. This
machi ne supports a range of high |evel |anguage environments and hi gh bandwi dth 1/0
devices. It also has a cache, a nenory map, main storage, and an instruction fetch unit
these are described in other papers. The processor can be shared anong 16 m crocoded
tasks, performing microcode context switches on denmand with essentially no overhead.
Condi tional branches are done w thout any | ookahead or delay. Mcroinstructions are fa
tightly encoded, and use an interesting variant on control field sharing. The processor
i npl enents a | arge nunber of internal registers, hardware stacks, a cyclic shifter/nmske
and an arithnmetic-logic unit, together with external data paths for instruction fetching
menory interface, and 1/0 in a conpact, pipelined organization

The machi ne has a 60 ns mcrocycle, and can execute a sinple macroinstruction in one
cycle; the 1/o bandwidth is 530 negabits/sec. The entire machine, including disk, displ:
and network interfaces, is inplenented with approxi mately 3000 mMsl conponents, nostly EC
10K; the processor is about 35%of this. |In addition there are up to 4 storage nodul es,
wi th about 300 16K or 64K ravs and 200 msl conponents, for a maxi mum of 8 negabytes.

The total volume, including power and cooling, is about .14 m? (4.5 ft3). A nunber of
machi nes are currently running.

A version of this paper appeared in Proc. 7th Synposium on Conputer Architecture,
Si gArch/ 1EEE, La Baul e, May 1980, 146-160.

CR CATEGORI ES

6.34, 6.21

KEY WORDS AND PHRASES
architecture, controller, emulation, input/output, mcroprogram pipeline, processor

C Copyright 1981 by Xerox Corporation. XEROX

PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

2 A PROCESSCR FOR A HI G+ PERFORVANCE PERSONAL COVPUTER

1. I nt roducti on

The machi ne described in this paper, called the Dorado, was designed by and for the Conp
Sci ence Laboratory (csL) of the Xerox Palo Alto Research Center. csL has approxi mately f
peopl e doing research in nost areas of computer science, including vLsl design, communica
programm ng systens, graphics and inmaging, office automation, artificial intelligence, c
linguistics, and analysis of algorithns. There is a heavy enphasis on building usable p
systens, and many such systens, both hardware and software, have been devel oped over the
seven years. Most are part of a personal conputing environment which is |oosely coupl ed
such environnments, and to service facilities for storage and printing, by a high bandw d
communi cation network [8].

The Dorado provides the hardware base for the next generation of systemresearch in csL.
machi nes have limtations on virtual address size, real nmenory size, nenory bandwi dth, a
processor speed that severely hanper our work. The size and speed of the Dorado mnimz
limtations.

The paper has six sections. W begin by sketching the history of the machine’s devel opn
Then we discuss the design goals for the Dorado (f 3), and explain how these goals and t
avail abl e technol ogy determ ne the high | evel processor architecture (f 4). Next, we pr
nost inportant details of the processor architecture (f 5) and sone interesting aspects

i mpl enentation (f 6). A final section describes the machine's performance (1 7).

2. History

The Dorado is a descendant of a snall personal conputer called the Alto, which was desig
built as an experinental machine in csL during 1973 [8]. The Alto was a fairly sinple ne
it had several features which turned out to be inportant:

e a mcroprogranmed processor that is efficiently shared anong all the device contro
wel |l as the virtual machine interpreter

e« a fairly high resolution display systemthat uses a full bitmap stored in the Alto
nenory;

e a device for pointing at inages on the display;

e an interface to a high bandw dth comuni cati on network.

The m croarchitecture allows all the device controllers to share the full power of the p
rat her than havi ng i ndependent access to the nenory. As a result, controllers can be sn
the 1/ointerface provided to prograns can be powerful. This concept of processor sharit
fundanental to the Dorado as well, and is nore fully explained in ¥ 4.

Al t hough there are now many hundreds of Altos at work within Xerox and el sewhere, and th
formed the hardware base for csL until md-1980, it was clear by 1976 that a |arge and re
i ncreasi ng amount of effort was going into surnmounting the Alto’s limtations of space a
rather than trying out research ideas in experinmental systens. csL therefore began to de
machi ne ained at relieving these burdens. During 1976 and 1977, design work on the Dora
proceeded in csL and the System Devel opnent Departnent. Requirenents and contributions f
parts of Xerox outside of csL affected the design considerably, as did the tendency towar
grandiosity well known in second systens. The nmenory bandw dth and processor throughput
substantially increased.

In 1977, inplenentation of the |aboratory prototype for the Dorado began. The prototype
packagi ng and a desi gn automati on system had al ready been inplenmented, and were used for
constructing and debuggi ng Dorado Model 0. A small team of people worked steadily on a
aspects of the Dorado systemuntil sunmmer of 1978, when the prototype successfully ran a
Alto software. During the summer and fall of 1978 we used the | essons |earned in debugg

SEC. 2 H STORY 3

m crocodi ng the Mbdel 0, together with the significant inprovenents in nmenory technol ogy
the Model O design was frozen, to redesign and rei npl enent nearly every section of the D
W fixed sone serious design errors and a nunber of annoyances to the nicrocoder, substa
expanded all the nenories of the machi ne, and speeded up the basic cycle tinme. Dorado N
cane up in the spring of 1979

During the next year several copies of this machine were built in the stitchweld techno
the prototypes. Stitchwelding worked very well for prototypes, but is too expensive for
nodest quantities. |ts najor advantages are packagi ng density and signal propagation ch
very simlar to those of the production technol ogy, very rapid turnaround during devel op
(three days for a conplete 300-chip board, a few hours for a nodest change), and conpl et
conpatibility with our design autonmation system

At the same tine, the design was transferred to multiwire circuit boards; the Manhattan
routing and | ower inpedance of this technol ogy sl owed the machi ne down by about 15% Do
are now assenbled with very little in-house |abor, since boards and backpanel s are nmanuf
and | oaded by subcontractors. W do 100%continuity testing of the boards both before a
they are | oaded with conmponents and sol dered. Checkout of an assenbl ed machine is stil
trivial, but is a fairly predictable operation done entirely by technicians.

3. Coals

This section of the paper describes the overall design goals for the Dorado. The high |
architecture of the processor, described in the next section, follows fromthese goals a
characteristics of the avail able technol ogy.

The Dorado is intended to be a powerful but personal conputing system It supports a s
within a programm ng system which nmay extend fromthe mcroinstruction level to a fully
i ntegrated progranm ng environnment for a high-level |anguage; progranming at all |evels

relatively easy. The nmachi ne nust be physically small and qui et enough to occupy space
users in an office or |aboratory setting, and cheap enough to be acquired in considerab
These constraints on size, noise, and cost have a mmjor effect on the design

In order for the Dorado to quickly become useful in the existing csL environment, it had
conpatible with the Alto software base. High-performance Alto enmulation is not a requir
however; since the existing software is al so obsol escent and due to be replaced, the Dor
needs to run it somewhat faster than the Alto can

Instead, the Dorado is optimzed for the execution of |anguages that are conpiled into a
byte codes; this execution is called emulation. Such byte code conpilers exist for Mesa
Interlisp [2, 7] and Smalltalk [4]. An instruction fetch unit (1FU) in the Dorado fetche
such a stream decodes themas instructions and operands, and provi des the necessary con
data information to the processor; it is described in another paper [5]. Further suppor
cones froma very fast mcrocycle, and a mcroinstruction powerful enough to allow inter
of a sinple macroinstruction in a single mcroinstruction. There is also a cache which

of two cycles, and can deliver a word every cycle. The goal of fast execution affects t
i npl enent ati on technol ogy, mcrostore organi zation, and pipeline organization. It also

nunber of specific features, for exanple, stacks built with high speed nenory, and hardw
regi sters for addressing software contexts.

Anot her maj or goal for the Dorado is to support high-bandw dth input/output. |In particu
nmoni tors, raster scanned printers, and high speed communi cations are all part of the res
activities within csL; one of these devices typically has a bandwi dth of 20 to 400 nmegab
Fast devi ces should not slow down the enul ator too nuch, even though the two functions c
for many of the sane resources. Relatively slow devices nust al so be supported, without
the high bandwidth 1/0 system These considerations clearly suggest that 1/o activity an
shoul d proceed in parallel as nuch as possible. Also, it nust be possible to integrate

4 A PROCESSCR FOR A HI G+ PERFORVANCE PERSONAL COVPUTER

undefined device controllers into the Dorado systemin a relatively straightforward way.
menory system supports these requirenents by allow ng cache accesses and nain storage re
to proceed in parallel, and by fully segnmented pipelining which allows a cache reference
every cycle, and a storage reference to start in every storage cycle; this systemis des
anot her paper [1].

Any system for experinmental research should provide adequate resources at many | evels.
processor, this neans plenty of high speed internal storage as well as anple speed. Har
support for handling arbitrary bit strings, both large and snmall, is also necessary.

4. High level architecture

W now proceed to consider the major design decisions which shaped the Dorado processor
the nost part these were guided by the goals set out above, the avail abl e inpl enentation
technol ogy, and our past experience. 1In this section we stay at a high level, reserving
the architecture for the next.

The Dorado fits into a very conpact package, illustrated in Figure la; Figure 1b is a hi
bl ock diagram CGircuits are nounted on large, high density |ogic boards (288 16-pin DP
packages plus 144 8-pin sip resistor packages per board). The boards slide horizontally
i nsertion-force connectors nounted in dual backpanels ("sidepanels"); they are .625 inch
This density nakes it possible to reconcile the goals of size and capability. Certain s
made, however. For exanple, it is not possible to access every signal with a scope prob
debuggi ng and mai ntenance. W nake up for this by providing sophisticated debuggi ng fac
di agnostics, and the ability to increnentally assenble and test a Dorado fromthe botton

The entire machi ne, including disk, display and network interfaces, is inplemented with
approxi mately 3000 msi components, nostly ec. 10K; the processor is about 35%of this. 1]
addition there are up to 4 storage nodul es, each with about 300 16K or 64K ravs and 200
conponents, for a maxi num of 8 megabytes. The total volune, including power and cooling
about .14 nm’ (4.5 ft%;: this is without any enclosing cabinet, however, and the open mact
noi sy. Including an 80 negabyte renovable disk, it requires about 2.5 Kw of AC power.

Most data paths are sixteen bits wide. The relatively small busses, registers, data pat
menories which result help to keep the machi ne conpact. Packagi ng, however, is not the

consideration. csL has a large class of applications where doubling the data path width

performance only a little, because sone of the bits contain type codes, flags or whateve
be examni ned before an entire datum can be processed. Speed dictates a heavily pipelined
in any case, and this parallelismin the tine domain tends to conpensate for the | ack of
in the space domain. Keeping the machi ne physically small al so i nproves the speed, sinc
di stance accounts for a considerable fraction of the basic cycle time. Finally, perforn
limted by the cache hit rate, which cannot be inproved, and may be reduced, by wi der da
(if the nunber of bits in the cache is fixed).

Rat her than putting processing capability in each 1/o controller and using a shared bus
to access the nenory, the Dorado shares the processor anong all the 1/0 devices and the e
Thi s fundanental concept of the architecture, which notivates much of the processor des
first tried inthe Alto. It works for two main reasons.

e First, unless a systemhas both nultiple menory busses (i.e., nmulti-ported nmenorie
mul tiple menory nodul es which can cycl e i ndependently, the nmain factor governing
processor throughput is nenory contention. Put sinply, when 1/o interfaces make m
references, the ermulator ends up waiting for the menory. |In this situation the pr
m ght as well be working for the 1/0 device.

SEC. 4 H GH LEVEL ARCH TECTURE

<==<Pr ocFi gl. press<

6 A PROCESSCR FOR A HI G+ PERFORVANCE PERSONAL COVPUTER

e Second, when the processor is available to each device, conplex device interfaces
i mpl enented with relatively little dedicated hardware, since nost of the control d
have to be duplicated in each interface. For |ow bandw dth devices, the force of
argument is reduced by the availability of Lsl controller chips, but for data rates
nmegabi t/ second no such chips exist as yet.

O course, to make this sharing feasible, switching the processor nust be nearly free of
and devices nust be able to make qui ck use of the processor resources available to them

Many design decisions are based on the need for speed. Raw circuit speed is a beginning
the Dorado is inplenmented using the fastest comercially avail abl e technol ogy whi ch has
reasonabl e | evel of integration and is not too hard to package. |In 1976, the obvious ch
ECL 10K family of circuits; probably it still is. Secondly, the processor is organized &
pipelines. One allows a microinstruction to be started in each cycle, though it takes t
conpl ete execution. Another allows a processor context switch in each cycle, though it
cycles to occur. Thirdly, independent busses conmunicate with the nmenory, IFy, and 1/0 s
so that the processor can both control and service themw th mnimal overhead.

Finally, the design makes the processor both accessible and flexible for users at the m
so that when new needs arise for fast primtives, they can easily be nmet by new m crocod
particular, the hardware elim nates constraints on nicrocode operations and sequenci ng o
in less powerful designs, e.g., delay in the delivery of internediate results to registe
cal cul ati ng and using branch conditions, or pipeline delays that require padding of mcr
sequences without useful work. W also included an anple supply of resources: 256 gener
regi sters, four hardware stacks, a fast barrel shifter, and fully witeable mcrostore,
Dorado reasonably easy to m crocode.

5. Low |l evel architecture

This section describes in sone detail the key ideas of the architecture. |Inplenentation
and details are for the nost part deferred to the next section; readers nmay want to junp
see the application of these ideas in the processor. Along with each key idea is a refe
pl aces in the processor where it is used.

5.1 Tasks

There are 16 priority levels associated with mcrocode execution. These |evels are cal

or sinply tasks. Each task is normally associated with sone hardware and microcode whic
toget her inplenent a device controller. The tasks have a fixed priority, fromtask 0 (I
15 (highest). Device hardware can request that the processor be switched to the associa
such a wakeup request will be honored when no requests of higher priority are outstandin
of wakeup requests is arbitrated within the processor, and a task switch fromone task t
occurs on denand, typically every ten or twenty mcrocycles when a hi gh-speed device is

When a device acquires the processor (that is, the processor is running at the requested
| evel and executing the microcode for that task), the device will presunably receive ser
m crocode. Eventually the mcrocode will block, thus relinquishing the processor to | owe
tasks until it next requires service. Wile a given task is running, it has the exclus

the processor. This arrangment is simlar in many ways to a conventional priority inter
An inportant difference is that the tasks are |like coroutines or processes, rather than

when a task is awakened, it continues execution at the point where it blocked, rather th
at a fixed point. This ability to capture part of the state in the programcounter is v

Task 0 is not associated with a device controller; its mcrocode inplenents the emnul ator
resident in the Dorado. Task O requests service fromthe processor at all times, but wi
priority.

SEC. 5 LOW LEVEL ARCHI TECTURE 7

5.2 Task scheduling

Whenever resources (in this case, the processor) are nultiplexed, context sw tching nust
happen when the state being tenporarily abandoned can be restored. |In nost multiplexed
nm crocoded systens, this requires the nmicrocode itself to explicitly poll for requests,
restore state, and initiate context switches. A certain anmount of overhead results. Fu
the presence of a cache introduces |arge and unpredi ctable delays in the execution of m
(because of misses). A polling systemwould | eave the processor idle during these del ay
t hough the work of another task can usually proceed in parallel. To avoid these costs,
does task switching on demand of a higher priority device, much Iike a conventional inte
system That is, if a lower priority task is executing and a higher priority device req
the lower priority task will be preenpted; the higher priority device will be serviced w
consent or even the know edge of the currently active task. The polling overhead is abs
t he hardware, which al so becones responsible for resum ng a preenpted task once the proc
relinqui shed by the higher priority device.

A controller will continue to request a wakeup until notified by the processor that it
receive service; it then renoves the request, unless it needs nore than one unit of serv
the microcode is done, it executes an operation called Block which rel eases the processor
effect is that requesting service is done explicitly by device controllers, but schedul
task is invisible to the mcrocode (and nearly invisible to the device hardware).

5.3 Task specific state

In order to allow the i medi ate task swi tching described above, the processor nmust be ab
and restore state within one nmicrocycle. This is acconplished by keeping the vital stat
t hroughout the processor not in a single rank of registers but in task specific register
actually inplenmented with high speed nenory that is addressed by a task nunber. Exanple
task specific registers are the nmicrocode programcounter, the branch condition register
m crocode subroutine link register, the nenory data register, and a tenporary storage re
each task. The nunber of the task which will execute in the next mcrocycle is broadcas
t hr oughout the processor and used to address the task specific registers. Thus, data ca
fromthe high speed task specific nenories and be available for use in the next cycle.

Not all registers are task specific. For exanple, count and Q are nornally used only by -
However, they can be used by other tasks if their contents are explicitly saved and rest

5.4 Pipelining

There are two distinct pipelines in the Dorado processor. The nmain one fetches and exec
m croi nstructions. The other handles task switching, arbitrates wakeup requests and bro
next task nunber to the rest of the Dorado. Each structure is synchronous, and there is
bet ween st ages.

The instruction pipeline, illustrated in Figure 2, requires three cycles (divided into s
conpl etely execute a microinstruction. The first cycle is used to fetch it from microst

ty). The result of the fetch is |oaded into the mcroinstruction register MR at t,. The

is split; inthe first half, operand fetches (as dictated by the contents of MR) are per

results latched at t, in two registers (A and B) which forminputs to the next stage. In

hal f cycle, the ALu operation is begun. It is conpleted in the first half cycle of cycle
result is latched in register ResuT (at t;). The second half of cycle three (t; tot,) it

results from RESULT into operand registers.

8 A PROCESSCR FOR A HI G+ PERFORVANCE PERSONAL COVPUTER

<==<Pr ocFi g2. press<

<==<Pr ocFi g3. press<

The figure al so shows how t he pipeline overlapping is achieved. A new mcroinstruction
every cycle time. The operand registers are used in the first half cycle of every cycle
operands for the current instruction (during t, t). The second half of every cycle is u

results for the previous instruction (during t, t,).

Figure 3 shows the task arbitration pipeline. This pipeline is tw stages |long, and als
cycle per stage. At the beginning of the pipeline (t)), wakeup requests from device cont

llatched into the waewp register. During the first half cycle (t, t;), arbitration is per
the highest priority task determned. During the second half cycle (t, t,), the mcropro

address for the highest priority task is fetched fromthe task specific program counter
nunber, its TPC, and the command to switch tasks (if the highest priority task is higher
currently executing task) are loaded into registers at t,. In the second pipe cycle, the

fetch the next mcroinstruction fromthe mcrostore, the entire processor uses the selec

SEC. 5 LOW LEVEL ARCHI TECTURE 9

nunber to fetch the appropriate task specific information, and device controllers are to
wi Il have the processor next. Finally, at t, the task switch is conplete, and the new t:

control of the processor; this tinme corresponds to t, of the first mcroinstruction exect
new t ask.

5.5 Mcroinstruction fornat

One of the key decisions made in the design of any mcroprogramed processor is the fornm
semantics of the mcroinstruction. The Dorado’s demand for conpactness and power are at
this case. Conpactness dictates that an essentially vertical structure be used, with en
speci fying many functions in a few bits. The details of the nicroinstruction format app
The major features of interest here are the choice of successor instruction encoding, an
specification of a |large nunmber of functions which may be executed by the processor.

In a classical mcroprogramed processor, each instruction carries with it the address o
successor, NeXTPC; this address is latched with the rest of the instruction, and then use
address the mcrostore for fetching the next instruction. NextPc may be nodified by stat
t he processor during execution, but the basic idea is that enough bits nust be present i
mcroword to address the whole microstore. This results in a uniformstructure for addr
allows the next instruction fetch to proceed wi thout any delay for decoding; it has the

of increasing the size and cost (and reducing the speed) of the mcrostore. The |ack of
decoding tinme also nmakes it inpossible to specify a subroutine return or other major cha
sequencing, and have it take effect inmediately (branches can still use the schene descr

The alternative, used in the Dorado, is to divide the microstore into pages, use a fewb
a next address within the current page, and have a type field which can specify branches
returns, transfers to another page, or whatever. At the start of a mcrocycle, the proc
the type field and accesses other infornmation (such as the current page nunber or the re
to compute NexTPC. | n addition, sone types cause side effects such as the loading the re
The net result is substantially fewer bits to control mcrosequencing than a horizontal
require (in the Dorado, 8 bits instead of about 16). The di sadvantages are, of course,
time for decoding this field, and the additional conplexity of an assenbler which can fi
i nstructions onto pages appropriately.

Condi tional branching is always a problemwi th pipelined instruction execution. Mst de
one of the following two schemes, and tolerate its drawbacks. The first requires that a
specified one (or nore) instructions before it is taken. Although this sinplifies and s
hardware, it inmposes severe constraints on the microcode organization, and often forces
instructions to be executed. The second schene detects the branch and inserts asynchron
or an extra cycle to allowtinme for the newinstruction to be fetched. This obviously s
t he machi ne.

Condi tional branching in the Dorado is handl ed by allow ng one of eight branch condition
nodi fy the |l ow order bit of Nextpc. This nodification (Boolean or into the | ow order bit’
pl ace about half way into the instruction fetch cycle. The microstore is organized so t
does not change the chip address, but instead selects a different chip froma set of chi
outputs are tied directly together. Since access tinme fromthe chip select is considera
fromthe address, the late arriving branch condition does not increase the total cycle t
to work, the assenbler nmust place each fal se branch target at an even address, and the
correspondi ng true branch target at the next higher odd address. An annoyi ng consequenc
several conditional branches cannot have same target; when this case arises the target n
duplicated. Everything has its price.

Anot her tradeoff occurs in the nmechanismfor controlling the functions of the processor
m crocycle. The Dorado encodes nobst of its operations (other than register selection, A
operations, storing results, and nmenory references) in an eight bit function field calle

10 A PROCESSCR FOR A HI G+ PERFORVANCE PERSONAL COVPUTER

qui ckl'y decoded at the beginning of every mcroinstruction execution cycle (during t,-t,)

used to invoke all of the less frequently used operations that the processor can do: con
I/ 0 busses, reading and setting state in the menory and I1FuU, extracting an arbitrary fiel
word, reading and | oadi ng nost registers, non-standard carry and shift operations, and |
values into snmall registers. FF can also serve as an eight bit constant or as part of a
address. This encoding saves many bits in the mcroinstruction, at the expense of allow
FF-specified operation to be done in each cycle, even though the data paths exist for do
such operations in parall el

5.6 Data bypassing

Recall that a microinstruction is initiated at the begi nning of every cycle, but takes o
instruction fetch and two cycles for execution. |If an instruction uses a result generat
i medi ate predecessor, it needs to get that result from an operand register before the p
has actually delivered the result to that register. Rather than forbiddi ng such use of

del ayi ng execution until the register has been | oaded, we solved this problemwith a tec
cal |l ed bypassing. The hardware detects that an operand specified in the current instruc
actually the result of the previous instruction. Rather than obtaining the operand fron
source in a RAM, the processor takes it directly fromthe input to the rRay which is the

previous instruction. Figure 4 illustrates the schenme. This costs extra hardware for nu
bypass detection logic, but the result is much snaller and faster microcode in many conn
In the Model O Dorado, we omtted bypassing logic in a few places, and required the mcr
avoi d these cases. The result was a nunmber of subtle bugs and a significant |oss of per

<==<Pr ocFi g4. press<

5.7 Menory del ays

Pi pelining and bypassing are effective ways to reduce delay and increase throughput with
processor. Interactions with the nenory, however, pose different problens. Once a neno
ref erence has been nade, there nust be sonme way to tell when the nmenory system has deliv
the requested data. Two sinple techniques are to wait a fixed (unfortunately, naxinmn
time before using the data, or to explicitly poll the menory system Neither is satisfa
hi gh performance machine. First, the difference between the best case (cache hit) and t
(cache m ss plus nenory systemresource contention) is nore than an order of magnitude.
useful work can often be perfornmed by a given task before it uses the requested nenory d
Third, even if a given task nust wait for nenory data before it can proceed, higher prio
may very well be able to do useful work in the meantinme.

The Dorado manages this problem by naking the nmenory keep track of when data is ready, a
all owi ng the processor to keep executing instructions. Only instructions which use nmenp

SEC. 5 LOW LEVEL ARCHI TECTURE 11

start nmenory references can be affected by the state of the nenory. Wen such an instru
executed, the nmenory checks to see whether it can be allowed to proceed. |If so, no acti
But if the nenory is busy, or the data being used is not ready, the nenory responds by a
the signal Hold. The effect of Hold is to stop any state changes specified by the curren
However, all the clocks in the systemkeep running. This is inportant, because task sw
not be inhibited during nenory delays. |In effect, Hold converts the currently executing
into a "no operation, junp to self" instruction. |If no task switch occurs, the instruct
again, and a new calculation is nmade to see whether it can proceed. Meanwhile, the neno
pi peline is running, and sooner or later, the need for Hold will be gone as the pipeline

Note that if a task switch occurs while an instruction is held, the state is such that t
instruction may sinply be restarted when the |lower priority task is resuned by the proce
Cycl es which woul d otherwi se be dead tinme are consuned i nstead by higher priority tasks

usef ul work

5.8 Separate external interfaces

I f nbst macroinstructions (byte codes) are to execute in a snmall nunmber of cycles, hardw
be provided to make communi cati on anbng processor, IFU, and menory very quick in the conr
cases. The Dorado provides a number of data paths and control structures for this purpo
detailed in the block diagrans, Figures 5 and 6. Al the busses are a full word w de an
accessed in one cycle or less. The Binput to the ALUis extended to the renmi nder of th
(except 1/ 0 devices, which have their own busses) for the transfer of status and contro

processor and the other subsystens. The menory address bus is a copy of the A side ALU i
Mermory data cones directly into the processor and is routed to a variety of destinations
si mul t aneously, to nmake such operations as field manipul ati ons and indirect addressing f
IFU can directly supply operand data to the processor, and any mcroinstructi on can spec
the last of a macroinstruction, in which case the successor address is supplied by the 1
requires a mcrostore address bus and operand data bus directly fromthe IFu to the proce

It is also desirable to make 1/o transfers through the processor fast. To this end theré
address bus and an 1/o data bus for direct access to 1/ocontrollers. The data bus can t
word per cycle, or 265 negabits/second, and both the nenory reference and the 1/0 transfe
be specified in a single instruction, so that it is possible to nove a sequence of words
cache and a device at this rate. However, this subsystemis called the slow /0 system
al so a nore direct nmenory access 1/0 subsystem the fast 1/0o system it allows data to no
bet ween storage and 1/ 0 devices, in blocks of 16 words, w thout polluting the cache. Fic
shows a display controller that uses both slow and fast I/0 systens.

5.9 Constants

Notice that there is no source for 16 bit constants within the processor. Such constant
necessary, particularly in device controller microcode where they often are used as conm
addresses or literal data. It would be possible to include a constant box, addressed pe
FF function, as a source for constants. However, such a box would have a limted size ar
experience tells us, would not hold enough constants to satisfy a grow ng worl d.

Fortunately, a large fraction of the constants used in nicrocoding are either snmall pos

negative (2's conplenent) integers, or sparsely populated bit vectors, with the property
the two eight bit fields in the constant is all zeroes or all ones. Thus a useful subse
can be specified using the eight bits of FF for one byte of the constant and two other b
the other byte value and position. Using this technique, nbst 16 bit constants can be s
one mcroinstruction, and any constant can be assenbled in two mcroinstructions. (The

two bits cone fromthe BSelect field in the nicroword).

12

A PROCESSCR FOR A HI G+ PERFORVANCE PERSONAL COVPUTER

<==<Pr ocFi g5. press<

SEC. 5

LOW LEVEL ARCHI TECTURE

<==<Pr ocFi g6. press<

13

14 A PROCESSCR FOR A HI G+ PERFORVANCE PERSONAL COVPUTER

6. Inplenentation

In this section we describe, at the block diagram|evel, the actual inplenentation of th
processor. There is only space to cover the nost interesting points and to illustrate t
from9 5.

6.1 C ocks

The Dorado has a fully synchronous clock system with a clock tick every 30 nanoseconds.
consists of two successive clock ticks; it begins on an even tick, which is followed by
and conpl etes coincident with the begi nning of a new cycle on the next even tick. Even
be labeled with names liket ,, t, t, t, to denote events within a mcroinstruction exec

pipeline, relative to sone convenient origin. Odd ticks are simlarly labeled t ,, t,, t.

6.2 The control section

The processor can be divided into two distinct sections, called control and data. The ¢
fetches and broadcasts the microinstructions to the data section (and the remai nder of t
handl es task swi tching, maintains a subroutine link, and regulates the clock system It
interface to a console and nonitoring mcroconputer which is used for initialization and
of the Dorado. Figure 5 is a block diagramof the control section

6.2.1 Task pipeline

The task pipeline consists of an assortnent of registers and a priority encoder. Al th
| oaded on even clocks. Wakeup requests are latched at t in wkeuwr, one bit per task; REA

corresponding bits for preenpted and explicitly readi ed tasks. The requests in WAKEUP an
conpete. A task can be explicitly nmade ready by a microcode function. The priority enc
produces the nunber of the highest priority task, which is | oaded into BESTNEXTTASK and al ¢
to read the Tpc of this task into BESTNEXTPC, these registers are the interface between the
stages in this pipeline. The NexT bus normally gets the | arger of BESTNEXTTASK and THI STASK.
TH STASK i s | oaded from Next, and LASTTASK i s | oaded from TH STASK, as the pi peline progresses

This method of priority scheduling neans that once a task is initiated, it nmust explicit
the processor before a lower priority task can run. A bit in the mcroword, Block, is us
i ndi cate that NexT shoul d get BESTNEXTTASK unconditionally (unless the instruction is held)

Note that it takes a mninumof two cycles fromthe tine a wakeup changes to the tine th
change can affect the running task (one for the priority encoding, one to fetch the mcr
This inplies that a task nust execute at |east two microinstructions after its wakeup is
before it blocks; otherwise it will continue to run, since the effects of its wakeup wl
cleared fromthe pipe. The device cannot renmove the wakeup until it knows that the task
(by seeing its nunber on NexT). Hence the earliest the wakeup can be renoved is t, of th

i nstruction (NexT has the task number in the previous cycle, and the wakeup is | atched at
the grain of processor allocation is two cycles for a task waking up after a Bl ock.

Sone trouble was taken to keep the grain snall, for the followi ng reason. Since the nen
heavily pipelined and contains a cache whi ch does not interact with high bandwidth 1/0 t
m crocode often needs to execute only two instructions, in which a nenory reference is s
a count is decrenented. The processor can then be returned to another task. The naxinu
whi ch storage references can be nmade is one every eight cycles (this is the cycle tine o
storage RaMs). A two cycle grain thus allows the full nenory bandwi dth of 530 negabits/s
to be delivered to 1/0 devices using only 25% of the processor

SEC. 6 | MPLEMENTATI ON 15

A sinpler design would require the mcrocode to explicitly notify its device when the wa
shoul d be renoved; it would then be unnecessary to broadcast NexT to the devices. Since
notification could not be done earlier than the first instruction, however, the grain wo
cycles rather than two, and 37.5% of the processor would be needed to provide the full n
bandwi dth. OQher sinplifications in the inplenmentation would result from making the pip
| onger; in particular, squeezing the priority encoding and reading of TPC into one cycle
difficult. Again, however, this would increase the grain.

6.2.2 Fetching mcroinstructions

Refer to the right hand side of Figure 5. At t, of every instruction, the microinstructi

MR is |oaded fromthe outputs of IM the microinstruction menory, and the TH SPC regi ster
| oaded with IMADDRESS. The NextPC i s quickly cal cul ated based on the NextControl field in ™
whi ch encodes both the instruction type and sone bits of NextPc, see Figure 7 for detail.
cal cul ati on produces TH STASKNEXTPC, sO call ed because if a task switch occurs it is not us
next |MADDRESS. | nstead, the BESTNEXTPC conputed in the task pipeline is used as | MADDRESS.

<==<Pr ocFi g7. press<

16 A PROCESSCR FOR A HI G+ PERFORVANCE PERSONAL COVPUTER

TPC is witten with the previous value of TH STASKNEXTPC every cycle (at t;), and read for t

i N BESTNEXTTASK every cycle as well. Thus, TPC is constantly recordi ng the program counter
for the current task, and al so constantly preparing the value for the next task in case
Sw t ch.

6.2.3 M scell aneous features

There is a task specific subroutine Iinkage register, LINK, shown in Figure 5, which is |
the value in THspctl on every nicrocode call or return. Thus each task can have its own
m crocoded coroutines. LINK can al so be | oaded froma data bus, so that control can be s
arbitrary conputed address; this allows a mcroprogramto inplenment a stack of subroutin
for exanple. In addition to conditional branches, which select one of two NextpC val ues,
al so ei ght-way and 256-way di spatches, which use a value on the B bus to select one of e
of 256 Nextpc val ues.

Since the Dorado’s nmicrostore is witeable, there are data paths for reading and witing
paths allow reading and witing TPC. These paths (through the register TPIMOUT) are fol de
al ready existing data paths in the control section and are somewhat tortuous, but they a
i nfrequently and hence have been optim zed for space. |n addition, another conputer (ei
separate mcroconputer or an Alto) serves as the consol e processor for the Dorado; it is
via the cPrReG and a very small nunber of control signals.

6.3 The data section

Figure 6 is a block diagramof the data section, which is organized around an arithnetic
(ALU). It inplements nost of the registers accessible to the programmer and the m crococ
functions for selecting operands, doing operations in the ALUu and shifter, and storing re
cal cul ates branch conditions, decodes MR fields and broadcasts decoded signals to the re
Dor ado, supplies and accepts nmenory addresses and data, and supplies 1/0 data and addres:

6.3.1 The nicroinstruction register

MR (which actually belongs to the control section) is 34 bits wide and is partitioned ir
follow ng fields:

RAddr ess 4 Addresses the register bank rM
ALUO 4 Selects the ALU operation or controls the shifter.
BSel ect 3 Selects the source for the B bus, including constants.
LoadControl 3 Controls loading of results into rRM and T.
ASel ect 3 Selects the source for the A bus, and starts nenory references.
Bl ock 1 Blocks an 1/o task, selects a stack operation for task O.
FF 8 Catchall for specifying functions.
8

Next Cont r ol Speci fies how to conpute NEXTPC.

6. 3. 2 Busses

The maj or busses are A, B (ALU sources), RESULT, EXTERNALB, MEMADDRESS, | QADDRESS, | CDATA,
| FUDATA, and MEMDATA .

The ALU accepts two inputs (A and B) and produces one output (RESULT). The input busses h
variety of sources, as shown in the bl ock diagram ResuLT usually gets the ALU output, bu
al so sourced from nmany other places, including a one bit shift in either direction of th
A copy of Ais used for MEMADDRESS, two copies of B are used for EXTERNALB and | ODATA.

MEMADDRESS provi des a sixteen bit displacenment, which is added to a 28 bit base register i
menory systemto forma virtual addresses. EXTERNALB i s a copy of B which goes to the con
menory, and IFU sections, and I10DATA i s anot her copy which goes to the 1/0 system the soul

SEC. 6 | MPLEMENTATI ON 17

B can thus be sent to the entire processor. Both are bidirectional and can serve as a !
well. 10ADDRESS is driven froma task specific register; it specifies the particul ar devi
whi ch shoul d source or receive |ODATA.

| FUDATA and MEMDATA al l ow t he processor to receive data fromthe 1Fu and menory in parall el
with other data transfers. MEMATA has the value of the nenory word nost recently fetche
the current task; if the fetch is not conplete, the processor is held when it tries to u
| FUDATA has an operand of the current nmcroinstruction; as each operand is used, the IFuU p
t he next one on |FUDATA.

6.3.3 Registers

Here is a list and brief description of registers seen by the mcroprogranmer. All are

bits) w de.

RM a bank of 256 general purpose registers; a register can be read onto A B, ol
shifter, and | oaded from RESULT under the control of LoadControl. Nornally, tl
sane register is both read and | oaded in a given microinstruction, but |oadi
di fferent register can be specified by FF.

STACK: a nenory addressed by the STACKPTR register. A word can be read or witten,
and STACKPTR adj usted up or down, in one microinstruction. |f STACK is used ir
m croinstruction, it replaces any use of RM and the RAddress field in the m
tells how nuch to increment or decrenent STACKPTR. The 256 word nmenory is
divided into four 64 word stacks, with i ndependent underfl ow and overfl ow

checki ng.

T: a task specific register used for working storage; like rRMy it can be read ol
or the shifter, and | oaded from RESULT under the control of LoadControl..

COUNT: a counter; it can be decrenented and tested for zero in one mcroinstruction
only the NextControl or FF field. It is loaded fromB or with small constant:
FF.

SHI FTCTL: a register which controls the direction and anpbunt of shifting and the width
and right masks; it is |loaded fromB or with values useful for field extract
FF.

Q a hardware aid for multiply and divide instructions; it can be read onto A o

| oaded fromB, and is automatically shifted in useful ways during nultiply a
di vide step m croinstructions.

The next group of registers vary in width. They are used as control or address register
dynam cally but infrequently by m crocode.

RBASE: RM addressing requires eight bits. Four come fromthe RAddress field in the
m croword, and the other four are supplied fromRease. It is |loaded froms o
and can be read onto RESULT.

STACKPTR: an eight bit register used as a stack pointer. Two bits of STACKPTR sel ect a

and the least significant six bits a word in the stack. The latter bits are
i ncrenented or decrenmented under control of the RAddress field whenever a sta
operation is specified.

MEMBASE: a five bit register which selects one of 32 base registers in the nmenory to
for virtual address calculation. It is loaded fromFF field or fromB, and ¢
| oaded fromthe 1FUu at the start of a macroinstruction.

ALUFM a 16 word nenory which nmaps the four-bit Aludp field into the six bits requir
to control the ALu

| OADDRESS: a task specific register which drives the 10aDDRESS bus, and is | oaded by 1/0

m crocode to specify a device address for subsequent Input and CQutput operati
It nmay be | oaded fromB or FF.

18 A PROCESSCR FOR A HI G+ PERFORVANCE PERSONAL COVPUTER

6.3.4 The shifter

The Dorado has a 32 bit barrel shifter for handling bit-aligned data. It takes 32 bhits

rRM and T, perfornms a left cycle of any nunmber of bit positions, and places the result on
ALU out put may be masked during a shift instruction, either with zeroes or with data fror
MEMDATA.

The shifter is controlled by the sHFTCIL register. To performa shift operation, SHFTCIL
(in one of a variety of ways) with control information, and then one of a group of "shif
nm crooperations is executed.

6.4 Physical organization

Once the goal of a physically snmall but powerful machine was established, engineering de
material lead tinmes forced us to devel op the Dorado package before the inplenmentati on wa
than partially conpleted, and the inplenentation then had to fit the package. The data
partitioned onto two boards, eight bits on each; the boards are about 70%identical. Th
section divides naturally into one board consisting of all the 1M chips (high speed 1K x
rRavs) and their associ ated address drivers, and a second board with the task switch pipe
NEXTPC | ogi ¢, and LINK register.

The sidepanel pins are distributed in clusters around the board edges to formthe mgjor
The renmai ni ng edge pins are used for point to point connections between two specific boa
I/ 0 busses go uniformy to all the 1/oslots, but all the other boards occupy fixed slots
wired for their needs. Half the pins available on the sideplanes are grounded, but wire
not controlled except in the clock distribution system and no twisted pair is used int
except for distribution of one copy of the master clock to each board.

W were very concerned throughout the design of the Dorado to bal ance the pipelines so t
one pipe stage is significantly Ionger than the others. Furthernore, we worked hard to
| ongest stage (which limts the speed of this fully synchronous machi ne) as short as pos
| ongest stage in the processor, as one mght have predicted, is the IMDDRESS cal cul ation
m croinstruction fetch in the control slice. There is about a 50 nanosecond limt for r
operation in a stitchwel ded machine, and 60 ns in a nmultiw red rmachine. There are pipe
about the sane length in the nenory and IFu.

W al so worked hard to get the nost out of the available real estate, by hand tailoring

integrated circuit |ayout and conponent usage, and by increnentally adding function unti
the entire board was in use. W also found that performance could be significantly inpr
careful layout of critical paths for minimmloading and wiring delay. Although this wa
| abor intensive operation, we believe it pays off.

7. Performance

Four emul ators have been inplenented for the Dorado, interpreting the BcpL, Lisp, Mesa an
Smal ltalk instruction sets. A typical mcroinstruction sequence for a load or store ins
only one or two microinstructions in Mesa (or BcPL), and five in Lisp. The Mesa opcode c
a 16 bit word to or frommenory in one mcroinstruction; Lisp deals with 32 bit itens an
its stack in nenory, so two |loads and two stores are done in a basic data transfer opera
conpl ex operations (such as read/wite field or array elenent) take five to ten m croins
Mesa and ten to twenty in Lisp. Note that Lisp does runtinme checking of paraneters, whi
Mesa nost checking is done at conpile tinme. Function calls take about 50 microinstructi
Mesa and 200 for Lisp.

The Dorado supports raster scan displays which are refreshed froma full bitmap in nain
this bitmap has one bit for each picture elenent (dot) on the screen, for a total of .51

SEC. 7 PERFORVANCE 19

(nmore for gray-scale or color pictures). A special operation called BitBIt (bit boundary
transfer) nmakes it easier to create and update bitnaps; for nore infornmation about BitBIt
where it is called Rasterp. BitBlt nakes extensive use of the shifting/ masking capabilit
processor, and attenpts to prefetch data so that it will always be in the cache when nee
Dorado’s BitBIt can nove di splay objects around in nenory at 34 nmegabits/sec for sinple c
erasing or scrolling a screen. More conplex operations, where the result is a function
object, the destination object and a filter, run at 24 negabits/sec.

I/ 0 devices with transfer rates up to 10 negabits/sec are handl ed by the processor via t}
and | cADDRESS busses. The nicrocode for the disk takes three cycles to transfer two words
way; thus the 10 negabit/sec di sk consunmes 5% of the processor. Hi gher bandwi dth device
the fast 1/0 system which does not interact with the cache. The fast 1/0 microcode for
takes only two instructions to transfer a 16 word block of data fromnenory to the devic
can consune the avail able nenory bandwidth for 1/o (530 negabits/sec) using only one qu:
the available microcycles (that is, two /o instructions every eight cycles).

Recal | that the Nextpc scheme (f 5.5 and f 6.2.2) inposes a rather conplicated structure
m crostore, because of the pages, the odd/even branch addresses, and the special subrout
| ocations We were concerned about the anpbunt of microstore which mght be wasted by aut
pl acenent of instructions under all these constraints. |In fact, however, the automatic
99. 9% of the avail able nenory when called upon to place an essentially full mcrostore.

Acknow edgenent s

The early design of the Dorado processor was done by Chuck Thacker and Don Charnley. Th
data section was redesi gned and debugged by Roger Bates and Ed Fiala. Peter Deutsch wo
m crocode assenbl er and instruction placer, and Ed Fiala wote the Dorado assenbl er macr
m cr opr ogram debugger, and the hardware manual. W!IIie-Sue Haugel and, Nori Suzuki, Bruc
Horn, Peter Deutsch, Ed Taft and Gene MDani el are responsible for production and di agno
ni cr ocode.

Ref er ences

1. dark, D®. al. The nenory system of a hi gh-perfornmance personal conmputer. Technical Report cs.-81-1, Xer
Al'to Research Center, January 1981. Revised version to appear in 1eee Transacti ons on Conputers.

2. Deutsch, L.P. Experience with a mcroprogranmed Interlisp system Proc. 11th Ann. M croprogramr ng Wrks
G ove, Nov. 1979.

3. Geschke, CM et. al. Early experience with Mesa. Conmm acvw 20, 8, Aug 1977, 540-552
Ingalls, D.H The Snalltal k-76 programm ng system Design and inplenmentation. 5th acvm Synp. Principles of
Progranm ng Languages, Tucson, Jan 1978, 9-16.

5. Lanpson, B.W et. al. An instruction fetch unit for a high-performance personal conputer. Technical Repo
Xerox Palo Alto Research Center, Jan. 1981. Subnitted for publication.

6. Mtchell, J.G et. al. Mesa Language Manual, Technical Report csL-79-3, Xerox Palo Alto Research Center, A

7. Teitelman, W Interlisp Reference Manual, Xerox Palo Alto Research Center, COct. 1978.

8. Thacker, C.P. et. al. Alto: A personal conputer. In Conputer Structures: Readings and Exanples, 2nd editio

Bell and Newell, eds., MGawH II, 1981. Al so in Technical Report cs.-79-11, Xerox Palo Alto Research Cen
1979.

9. Newran, WM and Sproull, R F. Principles of Interactive Conputer G aphics, 2nd ed. MGawH Il, 1979.

20

A PROCESSCR FOR A HI G+ PERFORVANCE PERSONAL COVPUTER

