
A Processor for a

High-Performance Personal Computer

by Butler W. Lampson and Kenneth A. Pier

January 1981

ABSTRACT

This paper describes the design goals, microarchitecture, and implementation of the
microprogrammed processor for a compact high performance personal computer. This
machine supports a range of high level language environments and high bandwidth I/O
devices. It also has a cache, a memory map, main storage, and an instruction fetch unit;
these are described in other papers. The processor can be shared among 16 microcoded
tasks, performing microcode context switches on demand with essentially no overhead.
Conditional branches are done without any lookahead or delay. Microinstructions are fairly
tightly encoded, and use an interesting variant on control field sharing. The processor
implements a large number of internal registers, hardware stacks, a cyclic shifter/masker,
and an arithmetic-logic unit, together with external data paths for instruction fetching,
memory interface, and I/O, in a compact, pipelined organization.

The machine has a 60 ns microcycle, and can execute a simple macroinstruction in one
cycle; the I/O bandwidth is 530 megabits/sec. The entire machine, including disk, display
and network interfaces, is implemented with approximately 3000 MSI components, mostly ECL
10K; the processor is about 35% of this. In addition there are up to 4 storage modules, each
with about 300 16K or 64K RAMs and 200 MSI components, for a maximum of 8 megabytes.
The total volume, including power and cooling, is about .14 m3 (4.5 ft3). A number of
machines are currently running.

A version of this paper appeared in Proc. 7th Symposium on Computer Architecture,
SigArch/IEEE, La Baule, May 1980, 146-160.

CR CATEGORIES

6.34, 6.21

KEY WORDS AND PHRASES

architecture, controller, emulation, input/output, microprogram, pipeline, processor.

c Copyright 1981 by Xerox Corporation. XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

A PROCESSOR FOR A HIGH-PERFORMANCE PERSONAL COMPUTER2

1. Introduction

The machine described in this paper, called the Dorado, was designed by and for the Computer
Science Laboratory (CSL) of the Xerox Palo Alto Research Center. CSL has approximately forty
people doing research in most areas of computer science, including VLSI design, communications,
programming systems, graphics and imaging, office automation, artificial intelligence, computational
linguistics, and analysis of algorithms. There is a heavy emphasis on building usable prototype
systems, and many such systems, both hardware and software, have been developed over the last
seven years. Most are part of a personal computing environment which is loosely coupled to other
such environments, and to service facilities for storage and printing, by a high bandwidth
communication network [8].

The Dorado provides the hardware base for the next generation of system research in CSL. Earlier
machines have limitations on virtual address size, real memory size, memory bandwidth, and
processor speed that severely hamper our work. The size and speed of the Dorado minimize these
limitations.

The paper has six sections. We begin by sketching the history of the machine’s development (¶ 2).
Then we discuss the design goals for the Dorado (¶ 3), and explain how these goals and the
available technology determine the high level processor architecture (¶ 4). Next, we present the
most important details of the processor architecture (¶ 5) and some interesting aspects of the
implementation (¶ 6). A final section describes the machine’s performance (¶ 7).

2. History

The Dorado is a descendant of a small personal computer called the Alto, which was designed and
built as an experimental machine in CSL during 1973 [8]. The Alto was a fairly simple machine, but
it had several features which turned out to be important:

• a microprogrammed processor that is efficiently shared among all the device controllers as
well as the virtual machine interpreter;

• a fairly high resolution display system that uses a full bitmap stored in the Alto main
memory;

• a device for pointing at images on the display;

• an interface to a high bandwidth communication network.

The microarchitecture allows all the device controllers to share the full power of the processor,
rather than having independent access to the memory. As a result, controllers can be small and yet
the I/O interface provided to programs can be powerful. This concept of processor sharing is
fundamental to the Dorado as well, and is more fully explained in ¶ 4.

Although there are now many hundreds of Altos at work within Xerox and elsewhere, and they
formed the hardware base for CSL until mid-1980, it was clear by 1976 that a large and rapidly
increasing amount of effort was going into surmounting the Alto’s limitations of space and speed,
rather than trying out research ideas in experimental systems. CSL therefore began to design a new
machine aimed at relieving these burdens. During 1976 and 1977, design work on the Dorado
proceeded in CSL and the System Development Department. Requirements and contributions from
parts of Xerox outside of CSL affected the design considerably, as did the tendency toward
grandiosity well known in second systems. The memory bandwidth and processor throughput were
substantially increased.

In 1977, implementation of the laboratory prototype for the Dorado began. The prototype
packaging and a design automation system had already been implemented, and were used for
constructing and debugging Dorado Model 0. A small team of people worked steadily on all
aspects of the Dorado system until summer of 1978, when the prototype successfully ran all the
Alto software. During the summer and fall of 1978 we used the lessons learned in debugging and

SEC. 2 HISTORY 3

microcoding the Model 0, together with the significant improvements in memory technology since
the Model 0 design was frozen, to redesign and reimplement nearly every section of the Dorado.
We fixed some serious design errors and a number of annoyances to the microcoder, substantially
expanded all the memories of the machine, and speeded up the basic cycle time. Dorado Model 1
came up in the spring of 1979.

During the next year several copies of this machine were built in the stitchweld technology used for
the prototypes. Stitchwelding worked very well for prototypes, but is too expensive for even
modest quantities. Its major advantages are packaging density and signal propagation characteristics
very similar to those of the production technology, very rapid turnaround during development
(three days for a complete 300-chip board, a few hours for a modest change), and complete
compatibility with our design automation system.

At the same time, the design was transferred to multiwire circuit boards; the Manhattan wire
routing and lower impedance of this technology slowed the machine down by about 15%. Dorados
are now assembled with very little in-house labor, since boards and backpanels are manufactured
and loaded by subcontractors. We do 100% continuity testing of the boards both before and after
they are loaded with components and soldered. Checkout of an assembled machine is still non-
trivial, but is a fairly predictable operation done entirely by technicians.

3. Goals

This section of the paper describes the overall design goals for the Dorado. The high level
architecture of the processor, described in the next section, follows from these goals and the
characteristics of the available technology.

The Dorado is intended to be a powerful but personal computing system. It supports a single user
within a programming system which may extend from the microinstruction level to a fully
integrated programming environment for a high-level language; programming at all levels must be
relatively easy. The machine must be physically small and quiet enough to occupy space near
users in an office or laboratory setting, and cheap enough to be acquired in considerable numbers.
These constraints on size, noise, and cost have a major effect on the design.

In order for the Dorado to quickly become useful in the existing CSL environment, it had to be
compatible with the Alto software base. High-performance Alto emulation is not a requirement,
however; since the existing software is also obsolescent and due to be replaced, the Dorado only
needs to run it somewhat faster than the Alto can.

Instead, the Dorado is optimized for the execution of languages that are compiled into a stream of
byte codes; this execution is called emulation. Such byte code compilers exist for Mesa [3, 6],
Interlisp [2, 7] and Smalltalk [4]. An instruction fetch unit (IFU) in the Dorado fetches
such a stream, decodes them as instructions and operands, and provides the necessary control and
data information to the processor; it is described in another paper [5]. Further support for this goal
comes from a very fast microcycle, and a microinstruction powerful enough to allow interpretation
of a simple macroinstruction in a single microinstruction. There is also a cache which has a latency
of two cycles, and can deliver a word every cycle. The goal of fast execution affects the choices of
implementation technology, microstore organization, and pipeline organization. It also mandates a
number of specific features, for example, stacks built with high speed memory, and hardware base
registers for addressing software contexts.

Another major goal for the Dorado is to support high-bandwidth input/output. In particular, color
monitors, raster scanned printers, and high speed communications are all part of the research
activities within CSL; one of these devices typically has a bandwidth of 20 to 400 megabits/second.
Fast devices should not slow down the emulator too much, even though the two functions compete
for many of the same resources. Relatively slow devices must also be supported, without tying up
the high bandwidth I/O system. These considerations clearly suggest that I/O activity and emulation
should proceed in parallel as much as possible. Also, it must be possible to integrate as yet

A PROCESSOR FOR A HIGH-PERFORMANCE PERSONAL COMPUTER4

undefined device controllers into the Dorado system in a relatively straightforward way. The
memory system supports these requirements by allowing cache accesses and main storage references
to proceed in parallel, and by fully segmented pipelining which allows a cache reference to start in
every cycle, and a storage reference to start in every storage cycle; this system is described
another paper [1].

Any system for experimental research should provide adequate resources at many levels. For the
processor, this means plenty of high speed internal storage as well as ample speed. Hardware
support for handling arbitrary bit strings, both large and small, is also necessary.

4. High level architecture

We now proceed to consider the major design decisions which shaped the Dorado processor. For
the most part these were guided by the goals set out above, the available implementation
technology, and our past experience. In this section we stay at a high level, reserving the details of
the architecture for the next.

The Dorado fits into a very compact package, illustrated in Figure 1a; Figure 1b is a high-level
block diagram. Circuits are mounted on large, high density logic boards (288 16-pin DIP logic
packages plus 144 8-pin SIP resistor packages per board). The boards slide horizontally into zero-
insertion-force connectors mounted in dual backpanels ("sidepanels"); they are .625 inches apart.
This density makes it possible to reconcile the goals of size and capability. Certain sacrifices are
made, however. For example, it is not possible to access every signal with a scope probe
debugging and maintenance. We make up for this by providing sophisticated debugging facilities,
diagnostics, and the ability to incrementally assemble and test a Dorado from the bottom up.

The entire machine, including disk, display and network interfaces, is implemented with
approximately 3000 MSI components, mostly ECL 10K; the processor is about 35% of this. In
addition there are up to 4 storage modules, each with about 300 16K or 64K RAMs and 200 MSI
components, for a maximum of 8 megabytes. The total volume, including power and cooling, is
about .14 m3 (4.5 ft3); this is without any enclosing cabinet, however, and the open machine is quite
noisy. Including an 80 megabyte removable disk, it requires about 2.5 Kw of AC power.

Most data paths are sixteen bits wide. The relatively small busses, registers, data paths, and
memories which result help to keep the machine compact. Packaging, however, is not the only
consideration. CSL has a large class of applications where doubling the data path width increases
performance only a little, because some of the bits contain type codes, flags or whatever which must
be examined before an entire datum can be processed. Speed dictates a heavily pipelined structure
in any case, and this parallelism in the time domain tends to compensate for the lack of parallelism
in the space domain. Keeping the machine physically small also improves the speed, since physical
distance accounts for a considerable fraction of the basic cycle time. Finally, performance is often
limited by the cache hit rate, which cannot be improved, and may be reduced, by wider data paths
(if the number of bits in the cache is fixed).

Rather than putting processing capability in each I/O controller and using a shared bus or
to access the memory, the Dorado shares the processor among all the I/O devices and the emulator.
This fundamental concept of the architecture, which motivates much of the processor design, was
first tried in the Alto. It works for two main reasons.

• First, unless a system has both multiple memory busses (i.e., multi-ported memories)
multiple memory modules which can cycle independently, the main factor governing
processor throughput is memory contention. Put simply, when I/O interfaces make memory
references, the emulator ends up waiting for the memory. In this situation the processor
might as well be working for the I/O device.

SEC. 4 HIGH LEVEL ARCHITECTURE 5

<==<ProcFig1.press<

A PROCESSOR FOR A HIGH-PERFORMANCE PERSONAL COMPUTER6

• Second, when the processor is available to each device, complex device interfaces can be
implemented with relatively little dedicated hardware, since most of the control does
have to be duplicated in each interface. For low bandwidth devices, the force of this
argument is reduced by the availability of LSI controller chips, but for data rates above one
megabit/second no such chips exist as yet.

Of course, to make this sharing feasible, switching the processor must be nearly free of overhead,
and devices must be able to make quick use of the processor resources available to them.

Many design decisions are based on the need for speed. Raw circuit speed is a beginning. Thus,
the Dorado is implemented using the fastest commercially available technology which has a
reasonable level of integration and is not too hard to package. In 1976, the obvious choice was the
ECL 10K family of circuits; probably it still is. Secondly, the processor is organized around two
pipelines. One allows a microinstruction to be started in each cycle, though it takes three cycle to
complete execution. Another allows a processor context switch in each cycle, though it takes two
cycles to occur. Thirdly, independent busses communicate with the memory, IFU, and I/O systems,
so that the processor can both control and service them with minimal overhead.

Finally, the design makes the processor both accessible and flexible for users at the microcode
so that when new needs arise for fast primitives, they can easily be met by new microcode. In
particular, the hardware eliminates constraints on microcode operations and sequencing often found
in less powerful designs, e.g., delay in the delivery of intermediate results to registers or in
calculating and using branch conditions, or pipeline delays that require padding of microinstruction
sequences without useful work. We also included an ample supply of resources: 256 general
registers, four hardware stacks, a fast barrel shifter, and fully writeable microstore, to make the
Dorado reasonably easy to microcode.

5. Low level architecture

This section describes in some detail the key ideas of the architecture. Implementation techniques
and details are for the most part deferred to the next section; readers may want to jump ahead to
see the application of these ideas in the processor. Along with each key idea is a reference to the
places in the processor where it is used.

5.1 Tasks

There are 16 priority levels associated with microcode execution. These levels are called
or simply tasks. Each task is normally associated with some hardware and microcode which
together implement a device controller. The tasks have a fixed priority, from task 0 (lowest) to task
15 (highest). Device hardware can request that the processor be switched to the associated task;
such a wakeup request will be honored when no requests of higher priority are outstanding. The set
of wakeup requests is arbitrated within the processor, and a task switch from one task to another
occurs on demand, typically every ten or twenty microcycles when a high-speed device is running.

When a device acquires the processor (that is, the processor is running at the requested priority
level and executing the microcode for that task), the device will presumably receive service from its
microcode. Eventually the microcode will block, thus relinquishing the processor to lower priority
tasks until it next requires service. While a given task is running, it has the exclusive attention of
the processor. This arrangment is similar in many ways to a conventional priority interrupt system.
An important difference is that the tasks are like coroutines or processes, rather than subroutines:
when a task is awakened, it continues execution at the point where it blocked, rather than restarting
at a fixed point. This ability to capture part of the state in the program counter is very powerful.

Task 0 is not associated with a device controller; its microcode implements the emulators currently
resident in the Dorado. Task 0 requests service from the processor at all times, but with the lowest
priority.

SEC. 5 LOW LEVEL ARCHITECTURE 7

5.2 Task scheduling

Whenever resources (in this case, the processor) are multiplexed, context switching must only
happen when the state being temporarily abandoned can be restored. In most multiplexed
microcoded systems, this requires the microcode itself to explicitly poll for requests, save and
restore state, and initiate context switches. A certain amount of overhead results. Furthermore,
the presence of a cache introduces large and unpredictable delays in the execution of microcode
(because of misses). A polling system would leave the processor idle during these delays, even
though the work of another task can usually proceed in parallel. To avoid these costs, the Dorado
does task switching on demand of a higher priority device, much like a conventional interrupt
system. That is, if a lower priority task is executing and a higher priority device requests a wakeup,
the lower priority task will be preempted; the higher priority device will be serviced without the
consent or even the knowledge of the currently active task. The polling overhead is absorbed by
the hardware, which also becomes responsible for resuming a preempted task once the processor is
relinquished by the higher priority device.

A controller will continue to request a wakeup until notified by the processor that it is about to
receive service; it then removes the request, unless it needs more than one unit of service. When
the microcode is done, it executes an operation called Block which releases the processor. The
effect is that requesting service is done explicitly by device controllers, but scheduling of a given
task is invisible to the microcode (and nearly invisible to the device hardware).

5.3 Task specific state

In order to allow the immediate task switching described above, the processor must be able to save
and restore state within one microcycle. This is accomplished by keeping the vital state information
throughout the processor not in a single rank of registers but in task specific registers.
actually implemented with high speed memory that is addressed by a task number. Examples of
task specific registers are the microcode program counter, the branch condition register, the
microcode subroutine link register, the memory data register, and a temporary storage register for
each task. The number of the task which will execute in the next microcycle is broadcast
throughout the processor and used to address the task specific registers. Thus, data can be fetched
from the high speed task specific memories and be available for use in the next cycle.

Not all registers are task specific. For example, COUNT and Q are normally used only by task 0.
However, they can be used by other tasks if their contents are explicitly saved and restored.

5.4 Pipelining

There are two distinct pipelines in the Dorado processor. The main one fetches and executes
microinstructions. The other handles task switching, arbitrates wakeup requests and broadcasts the
next task number to the rest of the Dorado. Each structure is synchronous, and there is no waiting
between stages.

The instruction pipeline, illustrated in Figure 2, requires three cycles (divided into six
completely execute a microinstruction. The first cycle is used to fetch it from microstore (time

t
0
). The result of the fetch is loaded into the microinstruction register MIR at t

0
. The second cycle

is split; in the first half, operand fetches (as dictated by the contents of MIR) are performed and the
results latched at t

1
 in two registers (A and B) which form inputs to the next stage. In the second

half cycle, the ALU operation is begun. It is completed in the first half cycle of cycle three, and
result is latched in register RESULT (at t

3
). The second half of cycle three (t

3
 to t

4
) is used to load

results from RESULT into operand registers.

A PROCESSOR FOR A HIGH-PERFORMANCE PERSONAL COMPUTER8

<==<ProcFig2.press<

<==<ProcFig3.press<

The figure also shows how the pipeline overlapping is achieved. A new microinstruction begins
every cycle time. The operand registers are used in the first half cycle of every cycle to fetch
operands for the current instruction (during t

0
� t

1
). The second half of every cycle is used to store

results for the previous instruction (during t
3
� t

4
).

Figure 3 shows the task arbitration pipeline. This pipeline is two stages long, and also requires
cycle per stage. At the beginning of the pipeline (t

0
), wakeup requests from device controllers are

latched into the WAKEUP register. During the first half cycle (t
0
� t

1
), arbitration is performed and

the highest priority task determined. During the second half cycle (t
1
� t

2
), the microprogram

address for the highest priority task is fetched from the task specific program counter TPC
number, its TPC, and the command to switch tasks (if the highest priority task is higher than the
currently executing task) are loaded into registers at t

2
. In the second pipe cycle, the

fetch the next microinstruction from the microstore, the entire processor uses the selected task

SEC. 5 LOW LEVEL ARCHITECTURE 9

number to fetch the appropriate task specific information, and device controllers are told which task
will have the processor next. Finally, at t

4
 the task switch is complete, and the new task is in

control of the processor; this time corresponds to t
0
 of the first microinstruction executed by the

new task.

5.5 Microinstruction format

One of the key decisions made in the design of any microprogrammed processor is the format and
semantics of the microinstruction. The Dorado’s demand for compactness and power are at odds in
this case. Compactness dictates that an essentially vertical structure be used, with encoded fields
specifying many functions in a few bits. The details of the microinstruction format appear in ¶ 6.
The major features of interest here are the choice of successor instruction encoding, and the
specification of a large number of functions which may be executed by the processor.

In a classical microprogrammed processor, each instruction carries with it the address of its
successor, NEXTPC; this address is latched with the rest of the instruction, and then used directly to
address the microstore for fetching the next instruction. NEXTPC may be modified by state within
the processor during execution, but the basic idea is that enough bits must be present in each
microword to address the whole microstore. This results in a uniform structure for addressing, and
allows the next instruction fetch to proceed without any delay for decoding; it has the disadvantages
of increasing the size and cost (and reducing the speed) of the microstore. The lack of any
decoding time also makes it impossible to specify a subroutine return or other major change in
sequencing, and have it take effect immediately (branches can still use the scheme described below).

The alternative, used in the Dorado, is to divide the microstore into pages, use a few bits to
a next address within the current page, and have a type field which can specify branches, calls,
returns, transfers to another page, or whatever. At the start of a microcycle, the processor decodes
the type field and accesses other information (such as the current page number or the return link)
to compute NEXTPC. In addition, some types cause side effects such as the loading the return link.
The net result is substantially fewer bits to control microsequencing than a horizontal scheme would
require (in the Dorado, 8 bits instead of about 16). The disadvantages are, of course, the
time for decoding this field, and the additional complexity of an assembler which can fit
instructions onto pages appropriately.

Conditional branching is always a problem with pipelined instruction execution. Most designs use
one of the following two schemes, and tolerate its drawbacks. The first requires that a branch be
specified one (or more) instructions before it is taken. Although this simplifies and speeds up the
hardware, it imposes severe constraints on the microcode organization, and often forces extra
instructions to be executed. The second scheme detects the branch and inserts asynchronous delay
or an extra cycle to allow time for the new instruction to be fetched. This obviously slows down
the machine.

Conditional branching in the Dorado is handled by allowing one of eight branch conditions to
modify the low order bit of NEXTPC. This modification (Boolean or into the low order bit) takes
place about half way into the instruction fetch cycle. The microstore is organized so that this bit
does not change the chip address, but instead selects a different chip from a set of chips whose
outputs are tied directly together. Since access time from the chip select is considerably
from the address, the late arriving branch condition does not increase the total cycle time. For this
to work, the assembler must place each false branch target at an even address, and the
corresponding true branch target at the next higher odd address. An annoying consequence is that
several conditional branches cannot have same target; when this case arises the target must be
duplicated. Everything has its price.

Another tradeoff occurs in the mechanism for controlling the functions of the processor at each
microcycle. The Dorado encodes most of its operations (other than register selection, ALU
operations, storing results, and memory references) in an eight bit function field called

A PROCESSOR FOR A HIGH-PERFORMANCE PERSONAL COMPUTER10

quickly decoded at the beginning of every microinstruction execution cycle (during t
0
-t

1
), and is

used to invoke all of the less frequently used operations that the processor can do: controlling the
I/O busses, reading and setting state in the memory and IFU, extracting an arbitrary field from a
word, reading and loading most registers, non-standard carry and shift operations, and loading
values into small registers. FF can also serve as an eight bit constant or as part of a full microstore
address. This encoding saves many bits in the microinstruction, at the expense of allowing only one
FF-specified operation to be done in each cycle, even though the data paths exist for doing many
such operations in parallel.

5.6 Data bypassing

Recall that a microinstruction is initiated at the beginning of every cycle, but takes one
instruction fetch and two cycles for execution. If an instruction uses a result generated by its
immediate predecessor, it needs to get that result from an operand register before the predecessor
has actually delivered the result to that register. Rather than forbidding such use of results, or
delaying execution until the register has been loaded, we solved this problem with a technique
called bypassing. The hardware detects that an operand specified in the current instruction is
actually the result of the previous instruction. Rather than obtaining the operand from the usual
source in a RAM, the processor takes it directly from the input to the RAM, which is the result of the
previous instruction. Figure 4 illustrates the scheme. This costs extra hardware for multiplexors and
bypass detection logic, but the result is much smaller and faster microcode in many common cases.
In the Model 0 Dorado, we omitted bypassing logic in a few places, and required the microcoder to
avoid these cases. The result was a number of subtle bugs and a significant loss of performance.

<==<ProcFig4.press<

5.7 Memory delays

Pipelining and bypassing are effective ways to reduce delay and increase throughput within the
processor. Interactions with the memory, however, pose different problems. Once a memory
reference has been made, there must be some way to tell when the memory system has delivered
the requested data. Two simple techniques are to wait a fixed (unfortunately, maximum) amount of
time before using the data, or to explicitly poll the memory system. Neither is satisfactory for a
high performance machine. First, the difference between the best case (cache hit) and the worst
(cache miss plus memory system resource contention) is more than an order of magnitude. Second,
useful work can often be performed by a given task before it uses the requested memory data.
Third, even if a given task must wait for memory data before it can proceed, higher priority tasks
may very well be able to do useful work in the meantime.

The Dorado manages this problem by making the memory keep track of when data is ready, and
allowing the processor to keep executing instructions. Only instructions which use memory data or

SEC. 5 LOW LEVEL ARCHITECTURE 11

start memory references can be affected by the state of the memory. When such an instruction is
executed, the memory checks to see whether it can be allowed to proceed. If so, no action is taken.
But if the memory is busy, or the data being used is not ready, the memory responds by activating
the signal Hold. The effect of Hold is to stop any state changes specified by the current instruction.
However, all the clocks in the system keep running. This is important, because task switching must
not be inhibited during memory delays. In effect, Hold converts the currently executing instruction
into a "no operation, jump to self" instruction. If no task switch occurs, the instruction is executed
again, and a new calculation is made to see whether it can proceed. Meanwhile, the memory
pipeline is running, and sooner or later, the need for Hold will be gone as the pipeline progresses.

Note that if a task switch occurs while an instruction is held, the state is such that the
instruction may simply be restarted when the lower priority task is resumed by the processor.
Cycles which would otherwise be dead time are consumed instead by higher priority tasks doing
useful work.

5.8 Separate external interfaces

If most macroinstructions (byte codes) are to execute in a small number of cycles, hardware must
be provided to make communication among processor, IFU, and memory very quick in the common
cases. The Dorado provides a number of data paths and control structures for this purpose,
detailed in the block diagrams, Figures 5 and 6. All the busses are a full word wide and can be
accessed in one cycle or less. The B input to the ALU is extended to the remainder of the Dorado
(except I/O devices, which have their own busses) for the transfer of status and control between the
processor and the other subsystems. The memory address bus is a copy of the A side ALU input.
Memory data comes directly into the processor and is routed to a variety of destinations
simultaneously, to make such operations as field manipulations and indirect addressing fast. The
IFU can directly supply operand data to the processor, and any microinstruction can specify that it is
the last of a macroinstruction, in which case the successor address is supplied by the IFU
requires a microstore address bus and operand data bus directly from the IFU to the processor.

It is also desirable to make I/O transfers through the processor fast. To this end there is an
address bus and an I/O data bus for direct access to I/O controllers. The data bus can transfer one
word per cycle, or 265 megabits/second, and both the memory reference and the I/O transfer can
be specified in a single instruction, so that it is possible to move a sequence of words between the
cache and a device at this rate. However, this subsystem is called the slow I/O system. There
also a more direct memory access I/O subsystem, the fast I/O system; it allows data to move directly
between storage and I/O devices, in blocks of 16 words, without polluting the cache. Figure 1b
shows a display controller that uses both slow and fast I/O systems.

5.9 Constants

Notice that there is no source for 16 bit constants within the processor. Such constants are
necessary, particularly in device controller microcode where they often are used as commands,
addresses or literal data. It would be possible to include a constant box, addressed perhaps
FF function, as a source for constants. However, such a box would have a limited size and,
experience tells us, would not hold enough constants to satisfy a growing world.

Fortunately, a large fraction of the constants used in microcoding are either small positive or small
negative (2’s complement) integers, or sparsely populated bit vectors, with the property that one of
the two eight bit fields in the constant is all zeroes or all ones. Thus a useful subset of
can be specified using the eight bits of FF for one byte of the constant and two other bits
the other byte value and position. Using this technique, most 16 bit constants can be specified in
one microinstruction, and any constant can be assembled in two microinstructions. (The "other"
two bits come from the BSelect field in the microword).

A PROCESSOR FOR A HIGH-PERFORMANCE PERSONAL COMPUTER12

<==<ProcFig5.press<

SEC. 5 LOW LEVEL ARCHITECTURE 13

<==<ProcFig6.press<

A PROCESSOR FOR A HIGH-PERFORMANCE PERSONAL COMPUTER14

6. Implementation

In this section we describe, at the block diagram level, the actual implementation of the Dorado
processor. There is only space to cover the most interesting points and to illustrate the key ideas
from ¶ 5.

6.1 Clocks

The Dorado has a fully synchronous clock system, with a clock tick every 30 nanoseconds. A
consists of two successive clock ticks; it begins on an even tick, which is followed by an
and completes coincident with the beginning of a new cycle on the next even tick. Even ticks may
be labeled with names like t

-2
, t

0
, t

2
, t

4
 to denote events within a microinstruction execution or a

pipeline, relative to some convenient origin. Odd ticks are similarly labeled t
-1
, t

1
, t

3

6.2 The control section

The processor can be divided into two distinct sections, called control and data. The control section
fetches and broadcasts the microinstructions to the data section (and the remainder of the Dorado),
handles task switching, maintains a subroutine link, and regulates the clock system. It also
interface to a console and monitoring microcomputer which is used for initialization and debugging
of the Dorado. Figure 5 is a block diagram of the control section.

6.2.1 Task pipeline

The task pipeline consists of an assortment of registers and a priority encoder. All the registers
loaded on even clocks. Wakeup requests are latched at t

0
 in WAKEUP, one bit per task; READY

corresponding bits for preempted and explicitly readied tasks. The requests in WAKEUP and
compete. A task can be explicitly made ready by a microcode function. The priority encoder
produces the number of the highest priority task, which is loaded into BESTNEXTTASK and also used
to read the TPC of this task into BESTNEXTPC; these registers are the interface between the two
stages in this pipeline. The NEXT bus normally gets the larger of BESTNEXTTASK and THISTASK.
THISTASK is loaded from NEXT, and LASTTASK is loaded from THISTASK, as the pipeline progresses.

This method of priority scheduling means that once a task is initiated, it must explicitly
the processor before a lower priority task can run. A bit in the microword, Block, is used to
indicate that NEXT should get BESTNEXTTASK unconditionally (unless the instruction is held).

Note that it takes a minimum of two cycles from the time a wakeup changes to the time this
change can affect the running task (one for the priority encoding, one to fetch the microinstruction).
This implies that a task must execute at least two microinstructions after its wakeup is removed
before it blocks; otherwise it will continue to run, since the effects of its wakeup will not have been
cleared from the pipe. The device cannot remove the wakeup until it knows that the task will run
(by seeing its number on NEXT). Hence the earliest the wakeup can be removed is t

0
 of the first

instruction (NEXT has the task number in the previous cycle, and the wakeup is latched at

the grain of processor allocation is two cycles for a task waking up after a Block.

Some trouble was taken to keep the grain small, for the following reason. Since the memory is
heavily pipelined and contains a cache which does not interact with high bandwidth I/O, the
microcode often needs to execute only two instructions, in which a memory reference is started and
a count is decremented. The processor can then be returned to another task. The maximum rate at
which storage references can be made is one every eight cycles (this is the cycle time of the main
storage RAMs). A two cycle grain thus allows the full memory bandwidth of 530 megabits/second
to be delivered to I/O devices using only 25% of the processor.

SEC. 6 IMPLEMENTATION 15

A simpler design would require the microcode to explicitly notify its device when the wakeup
should be removed; it would then be unnecessary to broadcast NEXT to the devices. Since this
notification could not be done earlier than the first instruction, however, the grain would be three
cycles rather than two, and 37.5% of the processor would be needed to provide the full memory
bandwidth. Other simplifications in the implementation would result from making the pipeline
longer; in particular, squeezing the priority encoding and reading of TPC into one cycle is quite
difficult. Again, however, this would increase the grain.

6.2.2 Fetching microinstructions

Refer to the right hand side of Figure 5. At t
0
 of every instruction, the microinstruction register

MIR is loaded from the outputs of IM, the microinstruction memory, and the THISPC register is
loaded with IMADDRESS. The NEXTPC is quickly calculated based on the NextControl field in MIR
which encodes both the instruction type and some bits of NEXTPC; see Figure 7 for details. This
calculation produces THISTASKNEXTPC, so called because if a task switch occurs it is not used as the
next IMADDRESS. Instead, the BESTNEXTPC computed in the task pipeline is used as IMADDRESS.

<==<ProcFig7.press<

A PROCESSOR FOR A HIGH-PERFORMANCE PERSONAL COMPUTER16

TPC is written with the previous value of THISTASKNEXTPC every cycle (at t
3
), and read for the task

in BESTNEXTTASK every cycle as well. Thus, TPC is constantly recording the program counter value
for the current task, and also constantly preparing the value for the next task in case there is a task
switch.

6.2.3 Miscellaneous features

There is a task specific subroutine linkage register, LINK, shown in Figure 5, which is loaded
the value in THISPC+1 on every microcode call or return. Thus each task can have its own
microcoded coroutines. LINK can also be loaded from a data bus, so that control can be sent to an
arbitrary computed address; this allows a microprogram to implement a stack of subroutine links,
for example. In addition to conditional branches, which select one of two NEXTPC values, there are
also eight-way and 256-way dispatches, which use a value on the B bus to select one of eight, or one
of 256 NEXTPC values.

Since the Dorado’s microstore is writeable, there are data paths for reading and writing it. Related
paths allow reading and writing TPC. These paths (through the register TPIMOUT) are folded into
already existing data paths in the control section and are somewhat tortuous, but they are used
infrequently and hence have been optimized for space. In addition, another computer (either a
separate microcomputer or an Alto) serves as the console processor for the Dorado; it is interfaced
via the CPREG and a very small number of control signals.

6.3 The data section

Figure 6 is a block diagram of the data section, which is organized around an arithmetic/logic unit
(ALU). It implements most of the registers accessible to the programmer and the microcode
functions for selecting operands, doing operations in the ALU and shifter, and storing results. It also
calculates branch conditions, decodes MIR fields and broadcasts decoded signals to the rest of the
Dorado, supplies and accepts memory addresses and data, and supplies I/O data and addresses.

6.3.1 The microinstruction register

MIR (which actually belongs to the control section) is 34 bits wide and is partitioned into
following fields:

RAddress 4 Addresses the register bank RM.
ALUOp 4 Selects the ALU operation or controls the shifter.
BSelect 3 Selects the source for the B bus, including constants.
LoadControl 3 Controls loading of results into RM and T.
ASelect 3 Selects the source for the A bus, and starts memory references.
Block 1 Blocks an I/O task, selects a stack operation for task 0.
FF 8 Catchall for specifying functions.
NextControl 8 Specifies how to compute NEXTPC.

6.3.2 Busses

The major busses are A, B (ALU sources), RESULT, EXTERNALB, MEMADDRESS, IOADDRESS, IODATA,
IFUDATA, and MEMDATA .

The ALU accepts two inputs (A and B) and produces one output (RESULT). The input busses have a
variety of sources, as shown in the block diagram. RESULT usually gets the ALU output, but it is
also sourced from many other places, including a one bit shift in either direction of the
A copy of A is used for MEMADDRESS; two copies of B are used for EXTERNALB and IODATA.
MEMADDRESS provides a sixteen bit displacement, which is added to a 28 bit base register in the
memory system to form a virtual addresses. EXTERNALB is a copy of B which goes to the control,
memory, and IFU sections, and IODATA is another copy which goes to the I/O system; the sources of

SEC. 6 IMPLEMENTATION 17

B can thus be sent to the entire processor. Both are bidirectional and can serve as a source for
well. IOADDRESS is driven from a task specific register; it specifies the particular device and register
which should source or receive IODATA.

IFUDATA and MEMDATA allow the processor to receive data from the IFU and memory in parallel
with other data transfers. MEMDATA has the value of the memory word most recently fetched by
the current task; if the fetch is not complete, the processor is held when it tries to use
IFUDATA has an operand of the current macroinstruction; as each operand is used, the IFU presents
the next one on IFUDATA.

6.3.3 Registers

Here is a list and brief description of registers seen by the microprogrammer. All are one word (16
bits) wide.

RM: a bank of 256 general purpose registers; a register can be read onto A, B, or the
shifter, and loaded from RESULT under the control of LoadControl. Normally, the
same register is both read and loaded in a given microinstruction, but loading of a
different register can be specified by FF.

STACK: a memory addressed by the STACKPTR register. A word can be read or written,
and STACKPTR adjusted up or down, in one microinstruction. If STACK is used in a
microinstruction, it replaces any use of RM, and the RAddress field in the microword
tells how much to increment or decrement STACKPTR. The 256 word memory is
divided into four 64 word stacks, with independent underflow and overflow
checking.

T: a task specific register used for working storage; like RM, it can be read onto
or the shifter, and loaded from RESULT under the control of LoadControl..

COUNT: a counter; it can be decremented and tested for zero in one microinstruction, using
only the NextControl or FF field. It is loaded from B or with small constants from
FF.

SHIFTCTL: a register which controls the direction and amount of shifting and the width of left
and right masks; it is loaded from B or with values useful for field extraction from
FF.

Q: a hardware aid for multiply and divide instructions; it can be read onto A or
loaded from B, and is automatically shifted in useful ways during multiply and
divide step microinstructions.

The next group of registers vary in width. They are used as control or address registers, changed
dynamically but infrequently by microcode.

RBASE: RM addressing requires eight bits. Four come from the RAddress field in the
microword, and the other four are supplied from RBASE. It is loaded from B or
and can be read onto RESULT.

STACKPTR: an eight bit register used as a stack pointer. Two bits of STACKPTR select a stack,
and the least significant six bits a word in the stack. The latter bits are
incremented or decremented under control of the RAddress field whenever a stack
operation is specified.

MEMBASE: a five bit register which selects one of 32 base registers in the memory to be used
for virtual address calculation. It is loaded from FF field or from B, and can be
loaded from the IFU at the start of a macroinstruction.

ALUFM: a 16 word memory which maps the four-bit ALUOp field into the six bits required
to control the ALU.

IOADDRESS: a task specific register which drives the IOADDRESS bus, and is loaded by I/O
microcode to specify a device address for subsequent Input and Output operations.
It may be loaded from B or FF.

A PROCESSOR FOR A HIGH-PERFORMANCE PERSONAL COMPUTER18

6.3.4 The shifter

The Dorado has a 32 bit barrel shifter for handling bit-aligned data. It takes 32 bits of input from
RM and T, performs a left cycle of any number of bit positions, and places the result on
ALU output may be masked during a shift instruction, either with zeroes or with data from
MEMDATA.

The shifter is controlled by the SHIFTCTL register. To perform a shift operation, SHIFTCTL is loaded
(in one of a variety of ways) with control information, and then one of a group of "shift and mask"
microoperations is executed.

6.4 Physical organization

Once the goal of a physically small but powerful machine was established, engineering design and
material lead times forced us to develop the Dorado package before the implementation was more
than partially completed, and the implementation then had to fit the package. The data section is
partitioned onto two boards, eight bits on each; the boards are about 70% identical. The control
section divides naturally into one board consisting of all the IM chips (high speed 1K x 1 bit
RAMs) and their associated address drivers, and a second board with the task switch pipeline,
NEXTPC logic, and LINK register.

The sidepanel pins are distributed in clusters around the board edges to form the major busses.
The remaining edge pins are used for point to point connections between two specific boards. The
I/O busses go uniformly to all the I/O slots, but all the other boards occupy fixed slots specifically
wired for their needs. Half the pins available on the sideplanes are grounded, but wire lengths are
not controlled except in the clock distribution system, and no twisted pair is used in the machine
except for distribution of one copy of the master clock to each board.

We were very concerned throughout the design of the Dorado to balance the pipelines so that no
one pipe stage is significantly longer than the others. Furthermore, we worked hard to make the
longest stage (which limits the speed of this fully synchronous machine) as short as possible. The
longest stage in the processor, as one might have predicted, is the IMADDRESS calculation and
microinstruction fetch in the control slice. There is about a 50 nanosecond limit for reliable
operation in a stitchwelded machine, and 60 ns in a multiwired machine. There are pipe stages of
about the same length in the memory and IFU.

We also worked hard to get the most out of the available real estate, by hand tailoring the
integrated circuit layout and component usage, and by incrementally adding function until nearly
the entire board was in use. We also found that performance could be significantly improved by
careful layout of critical paths for minimum loading and wiring delay. Although this was a very
labor intensive operation, we believe it pays off.

7. Performance

Four emulators have been implemented for the Dorado, interpreting the BCPL, Lisp, Mesa and
Smalltalk instruction sets. A typical microinstruction sequence for a load or store instruction takes
only one or two microinstructions in Mesa (or BCPL), and five in Lisp. The Mesa opcode can send
a 16 bit word to or from memory in one microinstruction; Lisp deals with 32 bit items and keeps
its stack in memory, so two loads and two stores are done in a basic data transfer operation. More
complex operations (such as read/write field or array element) take five to ten microinstructions in
Mesa and ten to twenty in Lisp. Note that Lisp does runtime checking of parameters, while in
Mesa most checking is done at compile time. Function calls take about 50 microinstructions for
Mesa and 200 for Lisp.

The Dorado supports raster scan displays which are refreshed from a full bitmap in main memory;
this bitmap has one bit for each picture element (dot) on the screen, for a total of .5�1 megabits

SEC. 7 PERFORMANCE 19

(more for gray-scale or color pictures). A special operation called BitBlt (bit boundary block
transfer) makes it easier to create and update bitmaps; for more information about BitBlt
where it is called RasterOp. BitBlt makes extensive use of the shifting/masking capabilities of the
processor, and attempts to prefetch data so that it will always be in the cache when needed. The
Dorado’s BitBlt can move display objects around in memory at 34 megabits/sec for simple cases like
erasing or scrolling a screen. More complex operations, where the result is a function of the source
object, the destination object and a filter, run at 24 megabits/sec.

I/O devices with transfer rates up to 10 megabits/sec are handled by the processor via the
and IOADDRESS busses. The microcode for the disk takes three cycles to transfer two words in this
way; thus the 10 megabit/sec disk consumes 5% of the processor. Higher bandwidth devices use
the fast I/O system, which does not interact with the cache. The fast I/O microcode for the display
takes only two instructions to transfer a 16 word block of data from memory to the device. This
can consume the available memory bandwidth for I/O (530 megabits/sec) using only one quarter of
the available microcycles (that is, two I/O instructions every eight cycles).

Recall that the NEXTPC scheme (¶ 5.5 and ¶ 6.2.2) imposes a rather complicated structure on the
microstore, because of the pages, the odd/even branch addresses, and the special subroutine
locations We were concerned about the amount of microstore which might be wasted by automatic
placement of instructions under all these constraints. In fact, however, the automatic placer can use
99.9% of the available memory when called upon to place an essentially full microstore.

Acknowledgements

The early design of the Dorado processor was done by Chuck Thacker and Don Charnley. The
data section was redesigned and debugged by Roger Bates and Ed Fiala. Peter Deutsch wrote the
microcode assembler and instruction placer, and Ed Fiala wrote the Dorado assembler macros, the
microprogram debugger, and the hardware manual. Willie-Sue Haugeland, Nori Suzuki, Bruce
Horn, Peter Deutsch, Ed Taft and Gene McDaniel are responsible for production and diagnostic
microcode.

References

1. Clark, D.W. et. al. The memory system of a high-performance personal computer. Technical Report CSL-81-1, Xerox Palo
Alto Research Center, January 1981. Revised version to appear in IEEE Transactions on Computers.

2. Deutsch, L.P. Experience with a microprogrammed Interlisp system. Proc. 11th Ann. Microprogramming Workshop
Grove, Nov. 1979.

3. Geschke, C.M. et. al. Early experience with Mesa. Comm ACM 20, 8, Aug 1977, 540-552

4. Ingalls, D.H. The Smalltalk-76 programming system: Design and implementation. 5th ACM Symp. Principles of
Programming Languages, Tucson, Jan 1978, 9-16.

5. Lampson, B.W. et. al. An instruction fetch unit for a high-performance personal computer. Technical Report
Xerox Palo Alto Research Center, Jan. 1981. Submitted for publication.

6. Mitchell, J.G. et. al. Mesa Language Manual, Technical Report CSL-79-3, Xerox Palo Alto Research Center, April 1979.

7. Teitelman, W. Interlisp Reference Manual, Xerox Palo Alto Research Center, Oct. 1978.
8. Thacker, C.P. et. al. Alto: A personal computer. In Computer Structures: Readings and Examples, 2nd edition, Sieworek,

Bell and Newell, eds., McGraw-Hill, 1981. Also in Technical Report CSL-79-11, Xerox Palo Alto Research Center, August
1979.

9. Newman, W.M. and Sproull, R.F. Principles of Interactive Computer Graphics, 2nd ed. McGraw-Hill, 1979.

A PROCESSOR FOR A HIGH-PERFORMANCE PERSONAL COMPUTER20

