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A.  Introduction

This manual describes the Dandelion central processor, the CP, from a microprogramming
perspective.  This user’s manual includes example microcode statements, application notes, and
pointers to restrictions which the programmer should eventually confront.

You should become thoroughly familiar with figures 1 and 2, the microinstruction format and the
data paths.  When in doubt about the construction of a particular microinstruction statement, it is
only necessary to submit it to the assembler (MASS).  However, MASS may reject a perfectly
reasonable statement due to incorrect register assignments (sec. E.3) or timing violations which may
be permissible with 4 or 8 bit wide arguments (sec. Q).

The complete Dandelion system is described in the Dandelion Hardware Manual (not available at
this time).  In general, the CP is shared among the IO devices in a fixed round-robin fashion.  Each
device has an assigned click during which its task microcode can run if the hardware asserts a
wakeup request.  The five clicks make up a round.  If a device does not utilize its click, the Mesa
Emulator executes during the click instead.  In general, microinstructions can be specified without
regard to click boundaries since the hardware will save the micro-program counters and branch
conditions between task changes.  There are no task specific registers, i.e., all registers can be
addressed by all tasks.

Click Task
0 Ethernet
1 Disk  (SA4000/SA1000)
2 IOP (i8085 low speed IO system)
3 Ethernet
4 Display/LSEP

Three microinstructions are executed per click (notationally, c1, c2, and c3), while one word can be
moved to and/or from the memory in this time.  A cycle is 137 nanoseconds long, making a click
411 nSec and a round about 2 microseconds.

Figure 1 shows the microinstruction format.  The first word generally controls the 2901 based ALU:
aS selects the two ALU operands (notationally, R,S), aF determines the function to be applied
between them, and aD (along with sh, a decoding of the fX and fY fields) specifies the ALU
destination of the output.  Either the ALU output or the R register given by the rA field (called A-
bypass) is placed on the Y bus.  Note that the following values of aS imply use of an X bus
operand: D,A, D,Q, and D,0.

fX, fY, and fZ are multipurpose function fields.  The interpretation of fY and fZ is determined by
the value of fS.   fS[0-1] describes how fY is decoded:  fYNorm, DispBr (dispatch/branch), IOOut,
or the high 4 bits of a byte constant (Byte).  fS[2-3] describes how fZ is decoded:  fZNorm, low 4
bits of a U register address, IOXIn, a 4 bit constant (Nibble), or the low 4 bits of a byte constant.
fS[2-3] also determines SU register addressing (sec. E).

Figure 2 shows the CP data paths:  the two major 16-bit buses, X and Y, are identified and the
2901 ALU is enclosed within the dashed rectangle.  The box labeled LRotn is the multiplexer which
can rotate the Y bus by 0, 4, 8, or 12 bit positions (sec. C.2).  Although there are many possible
register-to-register operations implied by this figure, the complete set is not available due to the
microinstruction encoding scheme and timing considerations.
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Field Description

rA
rB
aS
aF
aD
ep
Cin
enSU
mem
fS
fX
fY
fZ
INIA

2901 B reg addr, RH addr
2901 A reg addr, U addr [0-3]

2901 alu Source operand pair

2901 alu Destination/shift control
Even Parity

e

2901 Carry In, Shift Ends, writeSU (if enSU=1)
enable SU reg file
MAR_ (if c1), MDR_ (if c2), _MD (if c3)
Function field Selector
X Function
Y Function
Z Function
Next Instruction Address

aS

1
2
3
4
5
6
7

0 A, Q
A, B
0, Q
0, B
0, A
D, A
D, Q
D, 0

R, S

0

7
6
5
4
3
2
1

F

R + S

R or S
R and S
~R and S
R xor S
~R xor S

1
2
3
4
5
6
7

0

sh,,aD R[rB]_

no write
no write
F
F
F/2
F/2
2F
2F

Q_

F
no write
no write
no write
Q/2
no write
2Q
no write

Ybus_

F
F
A
F
F
F
F
F

fY

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

fYNorm DispBr IOOut

ExitKern
EnterKern
ClrIntErr
IBDisp
MesaIntRq
stackP_
IB_

Noop

ClrIOPRq
ClrDPRq

NegBr
ZeroBr

MesaIntBr
PgCarryBr
CarryBr

XDisp
YDisp

IOPOData_
IOPCtl_
KOData_
KCtl_

DCtl_

PCtl_
MCtl_

POData_

Noop

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

fZ

aF

fZNorm IOXIn

Refresh
IBPtr_1
IBPtr_0
Cin_pc16

pop
push

LRot0
LRot12
LRot8
LRot4

_KIData
_KStatus

_MStatus

_IOPIData
_IOPStatus

_RH
_ibNA
_ib
_ibLow
_ibHigh

Noop

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

fX fXNorm

pCall/Ret0
pCall/Ret1
pCall/Ret2
pCall/Ret3
pCall/Ret4
pCall/Ret5
pCall/Ret6
pCall/Ret7

RH_
shift
cycle

push
pop

Cin_pc16

fS[0-1]

0
1
2
3

fY_
DispBr
fYNorm
IOOut
Byte 3

2
1
0

fS[2-3] fZ_
fZNorm
Nibble
Uaddr[4-7]
IOXIn

SU addr[0-7]
0,,stackP
0,,stackP

2901 alu Function

cycle AltUaddr

XLDisp
XHDisp

YIODisp
XC2npcDisp

NibCarryBr
XRefBr

Noop
Noop
Noop

ClrKFlags

S
R

R
S

PgCrOvDisp

DCtlFifo_

DBorder_

Refresh
push

_KTest

NZeroBr

EOData_

Map_

Map_

ClrRefRq

XwdDisp

EICtl_

EOCtl_
KCmd_

_EIData
_EStatus

KStrobe

_ErrnIBnStkp

rA,,fZ  |    rA,,Y[12-15]*      IF  fZ=AltUaddr*
rA,,fZ  |    rA,,Y[12-15]*      IF  fZ=AltUaddr*

* as executed by previous u-instr

3 Sept 80

EStrobe

Figure 1. Dandelion Microinstruction Format

sh _ (fX=shift) OR (fX=cycle) OR (fY=cycle)
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4

4

16
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4
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Q

0

rA, rB
aS
rB

R
Q
RH
SU

16x16
1x16
16x8
256x16

ib 3x8 ibPtr

W

.

.

8

Mem Addressed by

Y bus

Main

YH bus

8

...
IOIn

16

.

16

.

4

8

Cin,r.0,q.0

Cin,r.15,Carry

~r.15

~Cin

P̂

rA,,fZ | rA,,Y | 0,,stackP

Figure 2. Dandelion Processor Data Paths

22-bit VA
18-bit RA

Main YH,,Y

.ty
TY
XHDisp
XLDisp
XwdDisp

XDisp
XRefBr

X.4,,X.0
X.8,,X.15
X.9,,X.10
X.11
X[12-15]

YDisp

X-bus branches:

ALU branches:

Y-bus branch:

PgCrOvDisp

ZeroBr
NZeroBr
NegBr
NibCarryBr
PgCarryBr
CarryBr

pc16, 0, 1

ib

registers

registers

Buffer
Instruction

fZ 

fY,,fZ

(Nibble constant)

(Byte constant)

num*width

R registers

IOOut

IOOut

2901 ALU

A-bypass

F bus Y bus

X bus

192Kx16
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A.  Registers & Constants

There are 5 register sets available to the microprogrammer: The 16 R registers inside the ALU
(2901), the corresponding 16 RH registers on the X bus, the 256 "slow" SU registers on the X bus
(sec. E), the 8 Link registers (sec. D), and the 3 byte instruction buffer (sec. G).  Twenty-four
input/ouput registers (called IOXIn or IOOut) on the X and Y buses are also directly addressable
via the fY or fZ microinstruction fields.

Also available are 5 registers which are reserved by the Emulator in the standard microcode system:
The Q register, stackP (sec. F), ibPtr (sec. G), pc16 (sec. G.10), and MInt (sec. M.1).

1.  R Registers:  The 16-bit wide R register memory has two ports:  the selected word (notationally,
A) from the A-port is addressed by the rA field and from the B-port (B) by the rB field.  If rA
equals rB, the same R register appears at both ports.  Thus, any two R registers (or a single register
specified via rA and/or rB) can be operands of an ALU computation.

An R register is written from the ALU output F bus as specified by the rB microinstruction field.
The ALU output can be shifted left (notationally, 2F) or right (F/2) one bit position before being
written.

In the standard system, 7 registers are allocated to the Emulator (TOS, L, G, PC, and 3
temporaries), 3 to the Display/LSEP, and 2 each for the Disk, Ethernet, and IOP.

2.  RH Registers:  The 8 bit wide RH registers are read and written from the X bus.  They
normally act as extensions of the R register file and hold high-order memory address bits (sec. J &
K).  However, they can be used as flags, subroutine return points (sec. D.6), and general byte
storage.  An RH register is always addressed by the rB field of the microinstruction (which also
specifies the R register write address).

3.  Q Register:  The 16-bit wide Q register is addressed by the aS field and is loaded from the
ALU output which can be pre-shifted left or right 1 bit.  Note that the Q register can not be
simultaneously written along with an R register or be loaded in an instruction which uses A-bypass
(aD=2).  The Q register can be used in double length shifts (sec. C).

4.  Constants:  Four-or-eight-bit constants can be placed onto the X bus where they can be used in
branching, be loaded into X bus destination registers, or be an ALU operand.  Four-bit constants
(Nibble) use the fZ field and 8 bit constants (Byte) use the fY and fZ fields.  The upper 12 or 8
bits, respectively, are zeroed.

Larger constants can be preloaded into U registers and used like normal constants (except for
timing, sec. Q).  Zero is available inside the ALU and does not utilize the X bus.  ALU "+1" or "-
1" operations are also possible without the X bus since they an artifact of Cin.  Without preloading
another register, U registers can only be written in one statement with 0 or -1.

Reg _ -0E,     {Reg _ 0FFF2} c1;
Reg _ ~0FF,     {Reg _ 0FF00} c2;
Reg _ ~Reg xor Reg,     {Reg _ 0FFFF} c3;

Ureg _ 0, c1;
Ureg _ ~Reg xor Reg,     {Ureg _ -1} c2;

Sixteen-bit constants with identical halves can be constructed in two cycles instead of the three
normally required in the general case.

R _ 0AA, c1;
R _ (R LRot8) or R,     {R _ 0AAAA} c2;
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B.  Branches & Dispatches

The following table lists the source for each branch/dispatch function and where they are OR’d into
INIA.  See section D on the Link register dispatches and section G for the IB dispatch.

Some notation:  The address of an instruction is called IA.  NIA, Next Instruction Address, is the
12-bit quantity which addresses the control store, and is the address of the instruction to be
executed in the next cycle.  INIA refers to the contents of the 12-bit microinstruction field.  In the
hardware, INIA is OR’d with the currently specified dispatch/branch bits to form NIA.

source INIA dest
NegBr F.0 11 sign of alu result (This is not Y.0)
ZeroBr F=0 11 alu output equal to zero
NZeroBr F#0 11 alu output not equal to zero
MesaIntBr MesaInt 11 Mesa Interrupt bit
NibCarryBr Cout.12 11 alu carry out of low Nibble
PgCarryBr Cout.8 11 alu carry out of low Byte
CarryBr Cout.0 11 alu carry out
XRefBr X.11 11 present & referenced map bit
XwdDisp X.9,,X.10 10,,11 X bus write protect & dirty bits
XHDisp X.4,,X.0 10,,11 X High bus
XLDisp X.8,,X.15 10,,11 X Low bus
PgCrOvDisp PgCross,,OVR 10,,11 pageCross & Overflow bits
XDisp X[12-15] 8,,9,,10,,11 low 4 bits of Xbus
YDisp Y[12-15] 8,,9,,10,,11 low 4 bits of Ybus
XC2npcDisp X[12-13],,C2,,~pc16 8,,9,,10,,11 X bus, cycle2, ~pc16
YIODisp Y[12-13],,bp.39,,bp.139 8,,9,,10,,11 IO branches (bp=Backplane pin)

IBDisp ib [4-11] Instruction Buffer
LnDisp Linkn 8,,9,,10,,11 Linkn dispatch  (n=0..7)

1.  Simple Branches:  Branches require 2 cycles to complete.  In the first microinstruction the
branch or dispatch condition is specified by a value in the fY field of the microinstruction.  During
execution of the first instruction, the hardware OR’s the result {0,1} of the specified branch into
INIA[11] of the second instruction, which is being read from the control store.  This will send
control to either INIA or INIA OR 1.

In the source program, the second instruction should contain a BRANCH[Label0, Label1] phrase.
MASS will assign Label0 to an even control store location and Label1 to (Label0 OR 1).  Note
that the hardware treats the BRANCH macro like a GOTO macro, i.e., the branch condition
specified in a previous microinstruction is always OR’d into the INIA field of the current
instruction.

Reg _ Reg xor RegA, ZeroBr, c1;
BRANCH[NotZero, Zero], c2;

NotZero: Noop       {here if Reg#RegA}, c3;
Zero: Noop       {here if Reg=RegA}, c3;

2.  Address Constraints:  The at[x, y, Label] macro is used to constrain the control store location of
instructions.  It causes MASS to place the instruction at an address which is (x MOD y) and in the
same "MOD group" as the instruction at Label.  The third argument (Label) is optional.

Although the at’s are not required, the above example could be rewritten as:

Reg _ Reg xor RegA, ZeroBr, c1;
BRANCH[NotZero, Zero], c2;

NotZero: Noop, c3, at[0,2,Zero];
Zero: Noop, c3, at[1,2,NotZero];



8

3.  Simple Dispatches:  Dispatches, like branches, require 2 cycles to complete.  Dispatches differ
from branches only in that they OR more than a single bit into INIA.

The second statement of a dispatch contains either DISP2[Label], DISP3[Label], or DISP4[Label]
(abbreviated DISPn, where n specifies the number of bits used in the dispatch).  When constructing
the INIA field, MASS zeros the low n bits of Label unless there is a mask specified (see below).  at
clauses ARE required for all dispatches.

Xbus _ MD, XLDisp, c1;
DISP2[Table], c2;

Table: Noop,    {here if MD.8,,MD.15 = 0} c3, at[0,4,Table];
Noop,    {here if MD.8,,MD.15 = 1} c3, at[1,4,Table];
Noop,    {here if MD.8,,MD.15 = 2} c3, at[2,4,Table];
Noop,    {here if MD.8,,MD.15 = 3} c3, at[3,4,Table];

4.  Branching via a Dispatch:  A two-way branch on what is normally a multi-way dispatch is
accomplished by specifying a mask which has 1’s in those bit positions of the dispatch which should
be ignored by the hardware.  The hardware still OR’s the specified dispatch bits into INIA, but
since the INIA bits given by the mask are 1, the OR operation has no effect in these positions.

The mask should not be wider than the width of the specified dispatch.  The mask is a third
argument to the BRANCH macro.  The only legitimate values for the third argument have exactly
one zero in their binary representation (and a leading zero is used if needed); they are
{1,2,3,5,6,7,0B,0D,0E}.  0F is illegal since it has no zero in its binary.  at clauses are NOT
required.

Xbus _ Reg LRot8, XDisp, c1;
BRANCH[NotSet, Set, 0B],  {branch on bit 13 of X bus} c2;

NotSet: Noop,     {here if bit 5 of Reg=0}, c3;
Set: Noop,     {here if bit 5 of Reg=1}, c3;

5.  Sub-Field Dispatching:  Similarly, a dispatch on a sub-field of a dispatch is specified with a mask
which indicates which bits of the larger dispatch should be ignored.  The mask is a second
argument to the DISPn macro.  at clauses ARE required.  Note that the addresses of the statements
in the dispatch table must also have the same bits set to 1.

Xbus _ rhReg, XDisp, c1;
DISP4[Table, 9], c2;

Table: Noop,     {here if RHReg.13,,RHReg.14 = 0}, c3, at[9,10,Table];
Noop,     {here if RHReg.13,,RHReg.14 = 1}, c3, at[0B,10,Table];
Noop,     {here if RHReg.13,,RHReg.14 = 2}, c3, at[0D,10,Table];
Noop,     {here if RHReg.13,,RHReg.14 = 3}, c3, at[0F,10,Table];

6.  Canceling Branches:  The CANCELBR macro is used to cancel pending branch/dispatch
conditions by forcing the argument address to have ones where condition bits would normally be
OR’d in.

CANCELBR may be necessary after a sequence of two instructions which specify branching or may
be required after a MAR_ (see sec. I).  MASS will give an error message where it thinks there
should be a CANCELBR.  (It uses the principle that all dispatches or branches or LnDisp’s should
be followed by either a BRANCH, DISPn, RET, or CANCELBR.)

R _ R + 2, ZeroBr, c1;
[] _ T - 1, NegBr,  BRANCH[NZ, Z], c2;

NZ: BRANCH[Pos, Neg], c3;
Z: CANCELBR[Zero], c3;

Zero: Noop,       {placed at[1,2] by MASS} c1;
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7.  Canceling Dispatches:  The CANCELBR macro can also specify a mask which declares which
bits of an address Label should be set to 1.  The mask is a second argument to the CANCELBR
macro and can have values [0..0F].  Thus, a mask of 0F causes the instruction at the argument’s
address to be placed at[0F,10].

CANCELBR[Label, 2] is used to cancel the implied pageCross branch of a MAR_ (see section I).

ZeroBr, c1;
pRet0,  BRANCH[NZ, Z], c2;

NZ: RET[NZReturn], c3;
Z: CANCELBR[NotYet, 0F], c3;

NotYet: Noop,       {placed at[0F,10] by MASS} c1;

8.  CANCELBR masks:  A general rule for the branch/dispatch masks described above:  The mask
always indicates which bits should be IGNORED.  Also note that the low 4 bits of the addresses
composing a dispatch table must have the same bits set as the corresponding mask does.

All dispatch bits need not be masked:  If it is known that some bits of the specified dispatch are
always zero, then those bit postions need not appear in the mask or at’s of the dispatch table.

If it is known that some resulting values of a dispatch (or sub-field of a dispatch) will never occur,
it is not necessary to specify these entries.

9.  pageCross Branch:  The pageCross branch OR’s into INIA[10] (instead of INIA[11] as do other
branches).  A pageCross branch occurs with the PgCrOvDisp dispatch or automatically with a
MAR_.

pageCross equals pageCarry XOR aF.2.    See sec. I on Memory for details.

10.  Carry Branches:  Even in the absence of ALU arithmetic, the NibCarryBr, PgCarryBr, and
pageCross branches can produce non-zero results (i.e., branch).  When aF=RandS, NibCarryBr and
PgCarryBr are the logical inner product of R with S (of the low 4 or 8 bits).  If aF=notRandS and
aS=0,B, 0,A or 0,Q, then NibCarryBr tests for the low nibble not equaling zero and PgCarryBr
tests for the low byte not equaling zero.  If aF=RorS, NibCarryBr is the logical inner sum of R
with S.

11.  Equivalent Branches:  XDirtyDisp is equivalent to XLDisp and is used to dispatch on the Dirty
bit of a Map entry (see sec. J).

EtherDisp is equivalent to YIODisp.  When the Option card is present, BP[39]=0 and
BP[139]=Ethernet Attention.  When the Option card is not plugged in, BP[39]=1.

12.  GOTOABS:  The GOTOABS macro sends control to an absolute control store location.

GOTOABS[0], c3;
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C.  Shifting & Rotating

The single bit shifts and rotates (LShift1, RShift1, LRot1, RRot1) are applied to the output of the
ALU (the internal F bus) and the results can only go to an R register, or the Q register on double
length shifts.

The four bit rotates (LRot0, LRot4, LRot8, LRot12) are done while moving something from the Y
bus to the X bus.  If the result of the 4 bit rotate is destined for an R register, it must have been
placed onto the Y bus via the A-bypass  (which implies that aD=2).  The 4 bit rotates are
abbreviated LRotn.

Single bit shifts use the fX field, single bit rotates fX or fY, and 4 bit rotates fZ.

LShift1, RShift1 Left, Right Shift R by  1
LRot1, RRot1 Left, Right Rotate R by 1
DALShift1, DARShift1 Double Arithmetic Left, Right Shift R,,Q by 1
DLShift1, DRShift1 Double Left, Right Shift R,,Q by 1
LRot0, LRot4, LRot8, LRot12 Left Rotate of Ybus

1.  Single Bit Shifts & Rotates:  The single bit shift and rotate macros must precede the arithmetic
clause to be shifted.  Parentheses are ignored by MASS, but are included here to clarify the actual
operations performed.

Reg _ LShift1 Reg, c1;
Reg _ LShift1 (Reg and 0F) c2;
Reg _ LShift1 (Reg + 1) c3;

2.  Four Bit Rotates:  The 4 bit rotates are handled differently by MASS.  When the quantity to be
rotated is the output of the ALU, the rotate clause must follow the arithmetic clause.  When the
quantity to be rotated is a register whose rotated value will be used as an input to the ALU, the
rotate phrase must follow the register to be rotated (which must be the first part of the arithmetic
clause).  Parentheses are ignored by MASS, but can be used to clarify the actual operations
performed.

Reg _ Reg LRot4, c1;
Reg _ (Reg LRot4) or Reg c2;
rhReg _ (RegA + Reg) LRot4 c3;

3.  Shift Ends:  The macros SE_0, SE_1, or SE_pc16 are used to specify the shift ends.  SE_ is
equivalent to Cin_.  The Q register gets the INVERSE of Cin or R.0 on double length shifts.

Reg _ LShift1 Reg, SE_1,  {puts 1 into Reg.15} c1;
Reg _ DALShift1 Reg, SE_1,  {puts 0 into Q.15} c2;

DARShift1 shifts carryOut of the current ALU operation into the left side of the double length
R,,Q.  (This feature can be used by multiply routines.)  Since carryOut can be true on logical

aD.0 = 0 implies right shift

CinCin

~

~

aD.1

1

1

0

0

Cout

Cin

R

R

R

R

Q

Q

~Cin

~Cin

,,
,,,,

.

..

.
..

shift

cycle

shift

cycle

fX, fYName

LShift1, RShift1

LRot1, RRot1

DALShift1, DARShift1

DLShift1, DRShift1

Figure 3.  Single Bit Shifting & Rotating
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operations, if you want to shift a 0 into the left side you must specify an arithmetic operation which
produces no carry:

Reg _ DARShift1 (Reg+0), c1;

4.  Shifting and SU:  Both the single bit shifts and the SU registers utilize Cin.  Therefore, if an SU
register is being read and shifted, or is being read and there is a shift operation in the ALU, the
shift ends must be 0.  If an SU register is being writen, the shift ends must be 1.  Note that A-
bypass and shifting is not a legal aD combination.

R _ Lshift1 Ureg, {SE_0,} c1;
R _ Lshift1 R, Xbus _ Ureg, XDisp, {SE_0,} c2;
Ureg _ T, T _ T LShift1, {SE_1,} c3;

5.  Shifting and Arithmetic:  Both the single bit shifts and ALU arithmetic utilize Cin.  If shifting is
combined with ALU addition, the shift ends must be 0 unless a +1 operation is desired.  If shifting
is combined with subtraction, the shift ends must be 1 unless a -1 operation is desired.  Note that
Reg-Reg implies Cin=1.

Reg _ RShift1 (Reg + Reg), {SE_0,} c1;
Reg _ RShift1 (Reg+1), {SE_1,} c2;
Reg _ RShift1 (Reg - Reg - 1), {SE_0,} c3;
Reg _ RShift1 (Reg - Reg), {SE_1,} c1;

6.  LRotn and A-Bypass:  LRotn, when used in conjunction with A-bypass, allows the ALU to be
used for other purposes.  For instance, an R register can be rotated and placed onto the X bus
(where it can be branched on or sent to RH or IOOut) while arithmetic is performed in the ALU.
Note that the R register given by rB must always be written when A-bypass is used.

IOOut _ RegA LRot8, Reg _ Reg + 1, c1;
rhReg _ Reg LRot12, Reg _ ~Reg, XDisp, c2;
STK _ RegA, rhReg _ RegA LRot0, Reg _ Reg + 1, c3;

7.  General 16 Bit Rotate:  An arbitrary 16 bit rotate requires 3 cycles to complete (plus 1 to specify
the rotation).  This example uses 2 R registers and assumes the shift count is in rhReg.

[] _rhReg, XDisp, c1;
T _ LRot1 R,  DISP4[Rot], c2;

Rot: GOTO[Shift0], c3, at[0,10,Rot];
R _ T, GOTO[Shift0], c3, at[1,10,Rot];
R _ LRot1 T, GOTO[Shift0], c3, at[2,10,Rot];
R _ RRot1 R, GOTO[Shift4], c3, at[3,10,Rot];

GOTO[Shift4], c3, at[4,10,Rot];
R _ LRot1 R, GOTO[Shift4], c3, at[5,10,Rot];
R _ LRot1 T, GOTO[Shift4], c3, at[6,10,Rot];
R _ RRot1 R, GOTO[Shift8], c3, at[7,10,Rot];

GOTO[Shift8], c3, at[8,10,Rot];
R _ LRot1 R, GOTO[Shift8], c3, at[9,10,Rot];
R _ LRot1 T, GOTO[Shift8], c3, at[0A,10,Rot];
R _ RRot1 R, GOTO[Shift12], c3, at[0B,10,Rot];

GOTO[Shift12], c3, at[0C,10,Rot];
R _ LRot1 R, GOTO[Shift12], c3, at[0D,10,Rot];
R _ LRot1 T, GOTO[Shift12], c3, at[0E,10,Rot];
R _ RRot1 R, GOTO[Shift0], c3, at[0F,10,Rot];

Shift0: GOTO[Done], c1;
Shift4: R _ R LRot4, GOTO[Done], c1;
Shift8: R _ R LRot8, GOTO[Done], c1;
Shift12: R _ R LRot12, GOTO[Done], c1;
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D.  Link Registers & Subroutines

Link registers, besides being used for subroutines, can be used to store 4 bits of state information
which can be dispatched on later.  Also, constants or branch condition bits can be stored in Link
registers.   Ln_ (pCalln) is used to load a link register and LnDisp (pRetn) has the effect of a
dispatch.  When either an LnDisp or Ln_ is specified, the following instruction must be constrained
in some way.

The general approach to subroutines is that callers identify themselves with some unique (usually 4-
bit) number which the subroutine then dispatches on to return to the caller.  All subroutine call
(and return) points usually have the same cycle number, but this is not necessary if the subroutine
has no MAR_’s or Map_’s or any other cycle-dependent macros.

In the standard microcode system the Mesa Emulator uses the first 4 link registers, while the
remaining are utilized one per device task.

In general, Link registers are loaded from the low 4 bits of NIA.  This value is a constant if there
are no branch/dispatch bits pending from the previously-executed instruction.

1.  Loading Link with Constant:  The format for loading a constant into a Link register is  Ln _
constant.  MASS constrains the instruction after the Ln_ such that its low 4 bits equal the constant
to be loaded and IA[7] is set to zero.  at’s are NOT required.

Set[L1.FlagBB, 6];

L1 _ L1.FlagBB,     {loads a 6 into Link1} c1;
Noop, c2{, at[6,10]};

2.  Loading Link with Conditions:  If the microinstruction before the Ln_ specifies a branch,
dispatch or LnDisp, then the specified bits will be OR’d into the value stored into the Link register.
at’s are NOT required.

[] _ Reg - RegA, NegBr, c1;
L5 _ 2, BRANCH[Pos, Neg],   {Link5 _ IF neg THEN 3 ELSE 2} c2;
Noop, c3{, at[2,10]};

3.  Link Dispatching:  LnDisp (equivalently pRetn) is used to dispatch on the value of Link register
n.  Branches or dispatches can be simultaneously specified.  The instruction after an LnDisp must
be constrained so that the BRANCH, DISPn or RET has the desired affect.  In addition, IA[7] of
the next instruction must be 1 (MASS does this allocation).

The following example dispatches on (0,,0,,Ureg.8,,Ureg.15) OR Link3 and places the result in
Link2:

Xbus _ Ureg, L3Disp, XLDisp, c1;
L2 _ 0, DISP4[Table], c2;

4.  Link Subroutines:  If Link registers are used for subroutine calling and returning, each
subroutine has an associated table of 16 possible return locations.  On exit, the subroutine uses a
Link register specific to the routine to dispatch into the return table.  Thus, a subroutine has a
maximum of 16 possible return locations, although it may be called from more than 16 different
places if return points are shared.  Note that it is possible for a subroutine to have more than 16
return points, and this requires more overhead than the method described here (see below).

The RET macro is used after the pRetn of a subroutine and is equivalent to a DISP4.  The CALL
macro is used at the subroutine call point and is equivalent to a GOTO.

The Label used in the at macros of the return table does not have to be assigned to any particular
return-point instruction, as the following example demonstrates.
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L7 _ 0, c2;
Noop, c3;
Noop, c1;
CALL[Sub], c2;
Noop,     {return point 0} c2, at[0,10,Return];

L7 _ 1, c1;
CALL[Sub], c2;
Noop,     {return point 1} c2, at[1,10,Return];

L7 _ 2, CALL[Sub],     {only 1 call to Sub can be of this form} c2;
Noop,     {return point 2} c2, at[2,10,Return];

L7 _ 3, c2;
CALL[Sub],     {call and return point 3} c2, at[3,10,Return];

Sub: pRet7, c3;
RET[Return], c1;

{Sub’s return dispatch table is
0: return point 0
1: return point 1
2: return point 2
3: return point 3}

5.  Conditional Calls and Returns:  Since condition bits can be simultaneously specified with an
LnDisp, there can be conditional return points.  The same is true of pCalln, so conditional entry
points are possible.  If the appropriate bits of the return address are not masked, conditional calls
always imply conditioned returns (since the condition bits are saved in the Link register).

6.  RH Subroutines:  RH registers can be used for subroutine calling instead of Link registers.  This
format requires more microinstruction fields, but is less address-constraining:  Calling sequences
have no address constraints and return addresses need not have IA[7]=1.

rhRet _ 0, c2;
Noop, c3;
Noop, c1;
CALL[Sub], c2;
Noop,     {return point 0} c2, at[0,10,Return];

rhRet _ 1, c1;
CALL[Sub], c2;
Noop,     {return point 1} c2, at[1,10,Return];

rhRet _ 2, CALL[Sub], c2;
Noop,     {return point 2} c2, at[2,10,Return];

Sub: Xbus _ rhRet, XDisp, c3;
RET[Return], c1;
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7.  Single-Instruction Subroutines:  The following example demonstrates.

MAR _ [rhE, 0+0], L6 _ L6.Host0, c1;
L6Disp, CALL[Sub], c2;

MAR _ [rhE, 1+0], L6 _ L6.Host1, c1, at[L6.Host0,10,EFetch];
L6Disp, CALL[Sub], c2;

MAR _ [rhE, 2+0], L6 _ L6.Host2, c1, at[L6.Host1,10,EFetch];
L6Disp, CALL[Sub], c2;

Sub: EE _ MD, RET[EFetch], c3;

8.  More than 16 Return Points:  By using RH registers more than 16 return points can be
accomodated through multiple return tables.  The following example provides 32 possible return
locations.

Sub: Xbus _ rhRet, XRefBr, c1;
Xbus _ rhRet, XDisp, BRANCH[Table1, Table2], c2;

Table1: RET[ReturnA], c3;
Table2: RET[ReturnQ], c3;
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E.  SU Registers

The 256 SU (Stack & U) registers are controlled by 3 microinstruction fields: fS, Cin, and EnSU.
EnSU is true for all SU operations.  Cin=1 for writes and equals 0 for reads.  fS determines how
the SU registers are addressed.  Cin is also used by the shifts (see sec. C).

1.  SU and Arithmetic:  When writing SU, Cin must be 1.  Therefore, if SU is written and
aF={0,1,2}, ALU arithmetic must assume a Cin of 1.  When reading SU, Cin must be 0.  Note
that R-R implies Cin=1, and R-R-1 implies Cin=0.

Because the SU registers are slow sources and slow destinations, they can not be used as an operand
in ALU arithmetic nor be written as the result of an ALU arithmetic operation (sec. Q).  However,
the low byte or nibble, respectively, can be used in arithmetic if less significance is possible.
 

Xbus _ Ureg, Reg _ Reg + RegA, c1;
Ureg _ RegA, Reg _ Reg + 1, c2;
Ureg _ RegA, Reg _ Reg - Reg, c3;

2.  stackP Addressing:  If fS.2=0, the SU address comes from the stack pointer stackP.  The fZ
field is free to be interpreted as either fZNorm or a Nibble (but not IOXIn, such as _RH).  The
macro STK should be used when this addressing mode is desired.  See sec. F.
 

STK _ RegA, Reg _ RegA + 0FF + 1, c1;
Reg _ STK, rhReg _ RegA LRot0, XLDisp, c2;

3.  U Register Addressing:  If fS.2=1, the U address is rA,,fZ.  Since the aS value which combines
a U with an R register is D,A and since rA is also used to specify the high four U address bits, a
given R register can only be combined (in one microinstruction) with U registers which are in the
block of 16 given by the value of the R register.  If A-bypass is used in a statement which uses a U
register, the same restriction is true.

If fS[2-3]=3, U register addresses must be constrained by the value of the IOXIn source desired.
In addition, the rA constraint given above may apply.
 

RegDef[RegA, R, 2];
RegDef[Ureg, U, 2B];    {rA=RegA, fZ=_RH}
RegDef[Uregx, U, 5B];    {fZ=_RH}

Ureg _ RegA, Reg _ RHreg,   {A-bypass} c1;
Ureg _ Reg, Reg _ RHreg,   {A-bypass} c2;
Uregx _ Q, Xbus _ RHreg, XDisp,   c3;

4.  UY Register Addressing:  If fS[2]=1 and fZ of the previous instruction was AltUaddr, then the
U address is rA,,Y[12-15], where Y[12-15] results from the previous microinstruction (the same one
which contained the AltUaddr).  This alternate U register indexing mode can be used to efficiently
load a block of 16 U registers from memory (such as from a CSB).

MASS expects a register of type UY, where the 4-bit register number references the block of 16.
Since the AltUaddr addressing mode will not properly work across clicks, AltUaddr can not occur in
c3, and equivalently, a UY register can not be specified in c1.  The following example assumes the
16 words in memory are hex-aligned (rAddr is 0 mod 10).
 

RegDef[Ublock, UY, 0E];

Cont: MAR _ [rhAddr, rAddr], rAddr _ rAddr+1, c1;
[] _ ~0 and rAddr, AltUaddr, NibCarryBr {tests for #0 nibble}, c2;
Ublock _ rData, rData _ MD, BRANCH[Exit, Cont], c3;
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F.  The Mesa Stack & stackP

The Mesa evaluation and argument stack is stored in the bottom SU registers: [0..0F].  When
fS[2]=0, the 4-bit register stackP addresses these locations.  The stackP can be incremented or
decremented independently of the ALU.

1.  Pop and Push:  The pop function decrements the stackP by (1 MOD 10) and push increments
it by (1 MOD 10).  The stackP is not updated until after the microinstruction completes.

Reg _ STK and Reg, pop,    {uses non-decremented stackP} c1;
STK _ Reg, push,    {writes STK, then increments stackP} c2;

2.  Reading & Writing stackP:  The stackP is loaded from the low 4 bits of the Y bus.  One
microinstruction must intercede between a stackP_ and the use of the stackP via STK.

stackP _ Reg + 3, c1;
Noop       {pop or push OK here}, c2;
STK _ 0, c3;

The inverse of stackP is read via _ErrnIBnStkp onto X[12-15].

3.  Stack Overflow & Underflow:  To ameliorate checking for stack overflow or underflow, the pop
function fields have been asymetrically encoded.  The following table shows the allocation of pop’s
and push’s among the function fields.  A microinstruction can contain up to 3 pop or push
functions: Their effect on the stackP and the values of stackP which will cause a hardware trap
(sec. H) are shown below.

fX fY fZ
push push push
pop pop

functions stackP Trap is if stackP  is
pop -1 underflow 0
push +1 overflow 15
fXpop, push 0 underflow 0
push, fZpop 0 overflow 15
fXpop, fZpop -1 underflow 0 or 1
fXpop, fZpop, push 0 underflow 0 or 1

4.  Format of Mesa Stack:  For the Mesa PrincOps evaluation stack, the stack pointer (SP) equals
the number of words contained in the stack.  Thus, SP=0 for an empty stack, and
SP=StackDepth for a full stack.  Also, in the PrincOps stack, the SP indexes the next word above
the top of the stack, thus a PrincOps POP must decrement the SP and return the top of stack and a
PrincOps PUSH must write first, then increment the SP.

In the Dandelion, the top of stack is kept in an R register called TOS and the word below the top
of stack is kept on the top of the "stack" in the SU register file.  The SU register which holds
stack[SP-1] is called STK and is always pointed at by the contents of the 4-bit stackP register.
Thus, to pop the Dandelion stack one moves STK to TOS and decrements the stackP, and to push
one increments the stackP and then moves TOS to STK.  In order to keep the value of the stack
pointers identical for the two stack representations, PrincOps stack locations [1..StackDepth] should
be mapped into SU locations [2..StackDepth+1].

Since TOS is a volatile register, it is assumed that TOS can always be saved into SU[stackP+1]
without any side effects.  As an example, if the PrincOps stack has one entry, then TOS is occupied,
stackP=1, and TOS could be saved in SU[2].  If the stack is empty, then TOS is empty, stackP=0,
and TOS could be saved in SU[1].
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Stack overflow is defined to be stackP=StackDepth+1 and push.  This implies that whenever a
true PrincOps PUSH is desired, the stackP must be push’d twice and pop’d once.  In general,
stackP can always be incremented once (to save TOS into STK) without fear of overflow, but if we
are truly putting one more word on the Mesa stack, it must be incremented once more.

Stack underflow occurs when stackP=0 and a pop is attempted.

The maximum value of StackDepth is 14:  overflow at stackP=15 and push, underflow at
stackP=0 and pop.  Currently, the hardware PROM which checks the stack size assumes a
maximum stack of 14 words.

5.  Preserving TOS:  In general, the previously-executed Mesa instruction may complete executing
without duplicating TOS into STK.  Therefore, each Mesa instruction implementation must, if
neccessary, save TOS into  SU[stackP+1] before it modifies TOS.  According to PrincOps, if TOS
is an argument to the bytecode, TOS should be saved (so it can be recovered by a Mesa PUSH) if
either the Mesa bytecode does not change the contents of the stack or does not change the value of
SP.  SLn and JEQn are two examples.

Note that as a part of normal stack maintenance, TOS must be saved into STK if the Mesa opcode
implementation is pushing data onto the stack.
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G.  Instruction Buffer & PC16

The instruction buffer (IB) holds bytes from the code segment while a Mesa opcode is executing.
The 3-byte buffer guarantees that the opcode will always find its arguments in the buffer, thereby
eliminating the need for another type of trap.  Buffer refill traps occur only between the execution
of Mesa opcodes when the buffer is not full.

The state of the buffer is given by the instruction buffer pointer ibPtr, which is automatically
updated by the functions which read and load the buffer.  The Mesa byte program counter, which
is contained in the R register PC and the 1-bit extension PC16 register, must be maintained
independently and in synchrony with the ibPtr.

The IB holds a maximum of 3 bytes, the minimum number necessary to complete a Mesa
instruction.  Whenever a Mesa opcode completes (executes an IBDisp) and there are not 3 bytes in
the buffer, a microcode trap is caused which results in refilling of the IB.  The so-called "refill"
microcode executes in one click if 2 more bytes are needed and in two clicks if 4 are needed.  The
refill code also dispatches on the first arriving memory byte or the front of the buffer, so if 4 bytes
were fetched, 3 are retained.

The bytes in the IB are ordered by their arrival from the X bus:  the most significant byte is placed
"before" the least significant byte.  The first byte in the IB is called ibFront, the second is IB[0] and
the third is IB[1].

1.  Instruction Buffer States:   The IB has four possible states as given by the 2 bit ibPtr register:

state name bytes in IB ibPtr
full 3 2
word 2 3
byte 1 1
empty 0 0

Note that the complement of ibPtr is read by _ErrnIBnStkp, and appears on X bus bits [10..11].

 

2.  Instruction Buffer Functions:   The following table summarizes the effect of the various IB
related function fields on the ibPtr, ibFront, and the X bus.  Figure 5 graphically shows sequences
of typical IB functions.

////////////////////////
IB[0] IB[1]

ibFront

////////////////////////Figure 4.  Instruction Buffer States

ibPtr=full ibPtr=word ibPtr=byte ibPtr=empty
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function new ibPtr new  ibFront Xbus  _
_ib ibPtr-1 IB[ibPtr[1]] 0,,ibFront
_ibNA unchanged unchanged 0,,ibFront
_ibHigh unchanged unchanged 0,,ibFront[0-3]
_ibLow unchanged unchanged 0,,ibFront[4-7]
IBDisp ibPtr-1 IB[ibPtr[1]] not affected
AlwaysIBDisp ibPtr-1 IB[ibPtr[1]] not affected
IB_ IF empty THEN word IF ibPtr=empty THEN X[0-7] not affected

   ELSE full    ELSE unchanged
IB_, ibPtr_1 IF empty THEN byte IF ibPtr=byte THEN X[8-15] not affected

   ELSE full    ELSE unchanged
IBPtr_0 word IB[0] not affected
IBPtr_1 byte IB[1] not affected

_ib, IBDisp, and AlwaysIBDisp cause the ibPtr to "decrement" by 1.  The ibPtr "counts" full,
word, byte, empty, or 2, 3, 1, 0.

IB_ causes ibPtr to be set to word if it was empty and otherwise sets it to full.  When the buffer is
empty, this convention sets ibFront to the left half of an incoming word.  If IBPtr_1 is executed
along with the IB_, ibFront will get the right half of an incoming X-bus word.

IBPtr_0 sets ibPtr to word and IBPtr_1 sets it to byte.

_ibNA, _ibHigh, and _ibLow do not change ibPtr.

IB[0],,IB[1] is parallel-loaded by a word from the X bus via IB_.  IB[0] gets X[0-7] and IB[1] gets
X[8-15].

ibFront is loaded via IBDisp, AlwaysIBDisp, _ib and IB_.  IB_ only loads ibFront if the old
ibPtr=empty.  When it is loaded, its value comes from IB[0] if the old ibPtr was full and from
IB[1] if the old ibPtr was word.  When ibFront is loaded by IBPtr_n, its value comes from IB[n].

3.  Reading Instruction Buffer:   _ib and _ibNA cause ibFront to be placed onto the low half of the
X bus, while _ibHigh puts the high 4 bits, and _ibLow the low 4 bits of ibFront onto X[12-15].
High order X-bus bits are zero’d.  _ibNA does not advance the ibPtr.

MAR _ [rhL, L+ib], c1;
rhT _ ibLow, c2;

4.  Dispatching on IB:   IBDisp and AlwaysIBDisp cause a 256-way dispatch based on the value of
ibFront.  They can only be specified in c1 or c2, but, by convention, they are restricted to c2 so that
the first instruction executed after the dispatch is in c1.  (The IBDisp can not be in c3 because only
4 dispatch bits are saved across clicks.)

The high 4 bits of ibFront replace INIA[4-7], while the low 4 bits of ibFront are OR’d with INIA[8-
11] (thereby allowing simultaneous branch/dispatches).  INIA[0-3] is unaffected, so there are 16
possible 256-way dispatch tables which can be simultaneously specified.

5.  Instruction Buffer Refill Traps:   If an IBDisp is executed and ibPtr#full, the dispatch does not
occur and instead a microcode trap is caused.  INIA[0-3] is replaced with 4 when ibPtr=empty or 5
when ibPtr#empty.  If there is a pending Mesa interrupt request, MInt=1, INIA[0-3] _ 6 (if the
IB is also empty) or INIA[0-3] _ 7 (if the IB is also not empty).  If either trap occurs ibPtr does
not change.  The Error microcode trap to location 0 has priority over the IB traps (see sec. H).
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Since INIA[4-11] (the low 8 bits of OpTable in the example below) will normally be zero, IB traps
will occur according to this table:

Trap location (hex)
IB empty 400
IB not empty 500
Mesa interrupt 600 or 700

6.  Non-trapping IB Dispatch:  AlwaysIBDisp acts like an IBDisp but does not trap:  AlwaysIBDisp
will dispatch on ibFront even if there is a pending Mesa interrupt request or the buffer is not full.
(It is used in the refill code).  AlwaysIBDisp is encoded by fY=IBDisp and fZ=IBPtr_1 and is
defined as a macro in Dandelion.df.

7.  pageCross Cancel of IB Dispatch:   If the microinstruction executed before either an IBDisp or
AlwaysIBDisp is a MAR_ which causes a pageCross branch, the instruction buffer dispatch will not
occur and ibPtr will remain unchanged.  Control will go to location INIA instead (label OpTable in
the example below).

8.  DISPNI macro:   The DISPNI macro is used after IBDisp’s and AlwaysIBDisp’s.  It is
equivalent to the GOTO macro except it zero’s the low 8 bits of its argument address.

MAR _ [rhPC, PC], c1;
AlwaysIBDisp, BRANCH[$, Cross, 1] c2;
IB _ MD, DISPNI[OpTable], c3;

9.  IB Empty Error Trap:   An Error Trap to location 0 occurs if a _ib, _ibNA, _ibLow, or
_ibHigh is executed with ibPtr=empty.  This trap has priority over the IB refill-interrupt trap
described above (although ibPtr will still change if they occur simultaneously).

This trap is used at code segment page crossings to verify whether control will actually proceed to
the next sequential page so that a possible unwarranted page fault can be avoided.  It is not
necessary to use this trap if the software can tolerate occasional page faults to code segments which
actually aren’t needed.  In particular, if this trap is not utilized, a fault may be caused to the (non-
existent) page following a code segment which ends exactly on a page boundary.

This trap is utilized as follows:  If during the IB not-empty refill, the Mesa program counter points
to the last word of a page, instead of being refilled, the IB is left untouched (ibPtr#full) and
control is returned to execute the next Mesa bytecode.  If this byte code uses code segment bytes
which straddle the page boundary, an IB Empty Error trap will occur, and only then will the next
code segment page be mapped (possibly resulting in a page fault).

Note that _ib, _ibNA, _ibLow, or _ibHigh references never occur in c2 or c3 of the last click of a
Mesa opcode.  Therefore, since the IB Empty Error trap can only occur in c1 of the last click or
before the last click, the trap is guaranteed to occur before control dispatches to the next opcode.

In order for this trap to properly work, the refill code which executes when the PC points to the
last word of the page must save the appropriate Mesa PrincOps state so that it can be restored after
the opcode traps (if indeed it does).  Thus, TOS, PC, pc16, and the stackP must be saved.  L, G,
rhMDS, UvL, UvG, etc. need not be saved since, if they are changed, control is going elsewhere
anyway.

Since main memory is obviously part of the Mesa PrincOps state, IB references (_ib, _ibNA,
_ibLow, or _ibHigh) can not occur during or after the first MDR_ in the opcode implementation.
(In particular, an incorrect memory location may be written if the memory address is indexed by an
IB byte).  Since the IB reference can occur in c1 (such as in the SLB opcode), the hardware cancels
a memory write if the IB Empty Error trap occurs in c1.
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10.  PC16:   pc16 is a 1-bit register which is utilized as an extension to the Mesa program counter.
The word part of the counter is stored in the R register PC and the byte index in pc16.

If fX or fZ is Cin_pc16, pc16 becomes the Cin for the ALU.  Also, pc16 is inverted at the end of
the instruction.  Thus, the following statements are used to add or subtract from the byte program
counter PC,,pc16.

PC _ PC + PC16,   {adds 1} c1;
PC _ PC - PC16,   {subtracts 1} c2;
PC _ PC + 2 + PC16,   {adds 5} c3;

Since Cin is also the shift ends, SE_pc16 can be used to load pc16 into an R register, thereby
reconstructing the Mesa program counter in one microinstruction.

PC _ LShift1 PC, SE_pc16, c1;

The XC2npcDisp OR’s the inverse of pc16 into INIA.11.

Due to the way Cin is implemented in the hardware, when the Cin field of the microinstruction is
0, the fX version of Cin_pc16 must be used. (If the fZ version is used, Cin will be 0 instead of
pc16.)  If Cin=1, then either version of Cin_pc16 can be used.  (Note that Cin=0 on read SU, and
Cin=1 for write SU.)  MASS guarantees these assignments.
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Figure 5.  Typical Instruction Buffer Sequences
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H.  Control Store Traps

There are two general classes of control store traps:  The Instruction Buffer Refill traps (described
in sec. G.5) and the so-called Error traps.

The Error traps cause control to be transfered to control store location 0 which will execute in c1.
The EKErr (Emulator-Kernel Error) register indicates the type of error:

EKErr Error
0 Control Store Parity
1 Emulator Virtual Address Out of Range (>22 bits) OR

   Emulator Double Bit Memory Error
2 stackP Overflow or Underflow
3 IB Empty Error  (see sec. G.9)

Smaller values of EKErr have priority over larger values.  Thus, if a control store parity error occurs
along with a double bit memory error, then the CS parity error will be indicated instead of the
memory error.  The errors also accumulate, so that if a higher priority error occurs after a lower one
has been detected (but before EKErr has been read), the higher priority error will be indicated.
Also note that these Error traps have priority over the IB Refill trap.

EKErr is read by the _ErrnIBnStkp function onto X[8-9].

1.  CS Parity Error:   If a parity error occurs (i.e., odd parity) while any task is executing, then
control will go to location 0 at the Kernel task level.  Since the Kernel task is of highest priority, no
other tasks will execute.  The trap code should turn off IO device write operations.

This error is non-recoverable (and unfortunately depends on the reliability of the parity-&-error-
reporting circuits).  The CS Parity Error signal is available to the IO Processor (IOP), so that a
system boot (or whatever) can take place.

Since the default value of EKErr is 0, if control inadvertently reaches CS location 0, this will appear
to be a CS parity error (except to the IOP).

Timing:  If the CS parity error occurs in c1 (meaning the instruction which would have executed in
c2 has odd parity), then the next click will be the Kernel’s at location 0.  If the error occurs in c2 or
c3, one more click will execute before control goes to location 0.

2.  Memory Error:   If EKErr=1, then a memory error of some type occured.  If bit 8 of the
Memory Status register, MStatus[8], is set, then an Emulator double bit memory error was the cause
of the trap.  (This does not detect IO task double-bit errors.  See sec I.3)

If MStatus[8]=0, then a virtual address used during a Map_ was out of range.  This Emulator trap
occurs for ANY task which executes Map_’s!  Currently, the hardware PROM assumes virtual
addresses are 22 bits wide, so if either of the 2 high-order bits of an RH register used in a Map_
are non-zero, then a trap will occur.

This mechanism places Emulator double bit memory errors at higher priority than virtual address
out-of-range errors.  It also assumes that the Memory system error-logging register was reset  (see
sec. I.3).

Timing:  If a memory error occurs (virtual address error in c1 or double-bit error in c3), at most
one additional Emulator click can execute before control is at location 0 in c1 at the Emulator task
level.
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3.  Stack Error:   If a pop or push is executed with the values of stackP given in sec. F.3, then a
Stack Error trap occurs.  The stackP will still be incremented or decremented if the error occurs.
The hardware PROM which checks the stackP can be reprogrammed to assume various maximum
stack sizes up to 14 words.

Timing:  If a stack trap occurs (any cycle) at most one additional Emulator click can execute before
control is at location 0 in c1 at the Emulator task level.

4.  IB Empty Error:   See section G.9.

5.  ClrIntErr:  ClrIntErr resets both MInt and EKErr.  Therefore, MInt should be set if ClrIntErr is
being used to reset EKErr.

Executing a ClrIntErr means that the trap to location 0 will not repeat unless the condition which
caused the trap is still present (i.e., CS parity error) or a new hardware trap occurred.

6.  Example Error-Trap-Catching Code:   The following is typical location-0 code.  Every stand-
alone program MUST have at least the instruction shown at location 0.

ErrTrap: T _ RRot1 ErrnIBnStkp, ClrIntErr, CANCELBR[$, 0F], c1, at[0];
Xbus _ T LRot0, XwdDisp, c2;
DISP2[ErrType], c3;

ErrType: KCtl _ 0, GOTO[CSParErr], c1, at[0,4,ErrType];
Xbus _ MStatus, XLDisp, GOTO[MemErr], c1, at[1,4,ErrType];
GOTO[StackErr], c1, at[2,4,ErrType];
GOTO[IBEmptyErr], c1, at[3,4,ErrType];

MemErr: BRANCH[VirtAddrErr, EmuMemErr, 1], c2;
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I.  Memory

The memory system accepts either real addresses (via MAR_) or virtual addresses (via Map_).
When virtual addresses are specified, the memory returns as data the real page number which
corresponds to the virtual page part of the virtual address and some flags (See sec. J on Mapping).
This section will deal with real address accesses only.

Currently, the memory address register (MAR) is 18 bits wide and the memory size is 192K words.
Assuming the current format of Map entries, the maximum possible address width is 20 bits, which
implies a maximum real memory size of 1M words.

Addresses are sent to the memory system via the YH and Y buses, where YH is the output of the
RH register used to hold the 2 high-order address bits.  Thus, YH[6],,YH[7],,Y[0-7] holds the page
number and Y[8-15] holds the page displacement.

The mem bit of the microinstruction format is used to designate memory operations.  If mem is set
and the instruction is executing in c1, MAR will be loaded from YH,,Y.  If set in c2, the memory
write data register (MDR) will be loaded from the Y bus and the memory location will be written.
If mem is set in c3, returning memory data (MD) will be placed onto the X bus.

1.  Loading MAR:  MAR _ [rhReg, <arithPhrase>] designates a real-address reference to memory
and can only occur in c1.

rhReg specifies the RH register which holds the 2 high-order address bits, and, with some formats,
which R/RH register pair holds the 10 high-order address bits.  The rB field is set to the value of
rhReg.  Notationally, <arithPhrase> is anything that can occur on the right side of an arithmetic
clause.

An RH register should not be loaded in the same instruction which specifies a MAR_.  Due to
timing, MAR can only be loaded with a constant, the IB, or ErrnIBnStkp from the X bus (sec. Q).

2.  MAR_ Side Effects:  There are three important side effects of a MAR_:

(a)  MAR_ forces aS_0,B and aF_aF OR 3 for the high half of the ALU;
(b)  MAR_ enables a pageCross branch in INIA[10]; and
(c)  If a MAR_ causes a pageCross branch to occur, a following MDR_, IBDisp, or AlwaysIBDisp
will be cancelled.

(a)  aF_aF OR 3 for ALU[0-7]:  If the aF field of the MAR_ instruction is R+S, S-R, R-S or RorS
(i.e., 0..3), aF for the high half of the ALU (bits 0-7) will be set to RorS, causing the ALU output
F[0-7] to equal the high half of the register given by rB.  MASS currently does not allow aF values
of [4..7] during a MAR_.

In general, if A-bypass is not used, the upper 10 bits of the memory address (i.e., the page address)
come from the RH/R pair given by the rB field, while the lower 8 bits (i.e., the displacement
within a page) come from the source defined by <arithPhrase>.  This feature is used to combine
the real page number (as read from the Map) with a displacement into the page in one cycle.  (This
method also meets memory system timing requirements.)
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For example,

MAR _ R _ [rhR, RA + 2], c1;

causes
YH _ rhR,
Y[0-7] _ R[0-7] _ R[0-7],
Y[8-15] _ R[8-15] _ RA[8-15] + 2.

If A-bypass is used, MAR receives the complete R register given by the rA field, but the high half
of the ALU is still affected and the high 2 bits of address still come from RH[rB].  A-bypass also
implies that the R register given by rB must be written.  Thus,

MAR _ [rhR, RA], R _ RA +2, c1;

causes
YH _ rhR,
Y _ RA,
R[0-7] _ R[0-7],
R[8-15] _ RA[8-15] + 2.

A consequence of forcing F[0-7] _ R[rB] is that the carry out from the low ALU half does NOT
propagate into the high half.  Thus, after the following statement is executed, R[0-7] is unaltered:
 

MAR _ R _ [rhR, R + 0FF + 1], c1;

(b) pageCross:  The second major effect of a MAR_ is that it automatically specifies a pageCross
branch.  A branch will occur in INIA[10] if the evaluation of the ALU operation (e.g.,
<arithPhrase>) results in a carry from the low byte.  This usually implies that a remapping of the
real address is necessary.

pageCross is defined to be pageCarry XOR aF.2, where pageCarry is the carry out of the low 8
ALU bits.  This has the effect of toggling pageCarry when doing subtraction (aF=S-R).  pageCross
equals pageCarry when doing addition (aF=R+S).  Thus, if you use positive displacements, such as
Reg+1 or Reg-1, pageCross will consistently indicate when a page boundary has been crossed.

However, the aF=R-S form of subtraction, unlike aF=S-R, does NOT cause pageCarry to be
toggled on subtraction (since aF.2=0).  However, the aF=S-R form covers most of the common
subtraction cases:  B-1, A-1, B-A, A-constant, and Q-constant.  It does NOT include D-1.  MASS
will check whether aF=R-S has been used, and if so desired, LOOPHOLE[pci] ("PageCross
Inverted") will allow its application.

The pageCross branch occurs in INIA[10]; therefore the BRANCH[Label0, Label1, 1],
CANCELBR[Label, 2], or DISPn[Label] forms must be used after a MAR_.  Since the branch
occurs in INIA[10], other branch conditions can be simultaneously specified, as the following
example shows:

MAR _ Reg _ [rhReg, Reg+1], ZeroBr, c1;
MDR _ Ureg, DISP2[Table], c2;

Table: GOTO[NotZero], c3, at[0,4,Table];
GOTO[Zero], c3, at[1,4,Table];
GOTO[PgCross&NotZero], c3, at[2,4,Table];
GOTO[PgCross&Zero], c3, at[3,4,Table];
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The implied pageCross branch can be canceled by CANCELBR[Label, 2] or DISPn[Label, 2].  If it
is known that the ALU arithmetic operation will never produce a pageCross, CANCELBR[Label, 0]
can be used.  This will reduce the number of control store restraints.

Since the ALU can generate pageCarry’s on logical operations, one should avoid the logical
functions (aF=RorS in particular) during a MAR_.  This serves to reduce the number of allocation
constaints and may be necessary for memory writes (see below).

For example, you must explicitly write MAR _ [rhR, R+0], where MAR _ [rhR, R] was
considered.  In general, if MASS doesn’t see an expression of the form register+0, then the MAR_
must be followed by either BRANCH, DISPn, or CANCELBR.  If Cin_pc16 is present with MAR_,
then a pageCross-caused branch is always possible.

The following forms do NOT require a CANCELBR (and will not cancel an MDR_).  The final
item is allowed because "+0" timing is a special case.
 

MAR _ [rhR, RA+0], c1;
MAR _ [rhR, RA], R _ R+0, c1;
MAR _ [rhR, 0+0],  {first location of page} c1;
MAR _ [rhR, 0+0FF],  {last location of page} c1;
MAR _ [rhR, RA], R _ Ureg+0, LOOPHOLE[byteTiming] c1;

(c)  Cancelation of MDR_ & IBDisp:  If a pageCross branch actually occurs during a MAR_, then
a following MDR_, IBDisp, or AlwaysIBDisp is canceled.  This prevents writing into the wrong
memory page (if A-bypass was not used) or dispatching on the next Mesa instruction if a page
crossing has been indicated.

This feature makes it manditory that logical functions not be used during a MAR_ (see above).

This characteristic of pageCross is easily overlooked, so to catch a common misunderstanding,
MASS disallows CANCELBR[Label, 2] with an MDR_.  However, if you know that when the
pageCross actually occurs the MDR_ SHOULD be canceled, then the macro LOOPHOLE[wok]
(also called WriteOK in Dandelion.df) will make MASS happy.  In the following example, the write
will be canceled when Line=0FF.
 

MAR _ [rhLine, Line+1], c1;
MDR _ dX, LOOPHOLE[wok], CANCELBR[$, 2], c2;
Noop, c3;

3.  Display Bank Contention:  If a MAR_ is executed in clicks 0 through 3 (i.e., all clicks except for
the Display click) and the Display controller hardware is reading from the display bank (low 64K of
memory), the click will be aborted.  In other words, none of the microinstructions of the click will
be executed and the machine state will remain unchanged.

4.  Error Correction:  The memory system corrects single-bit errors and detects double-bit errors
read from any bank.  A memory read to non-existent memory causes a double-bit memory error.

(a)  Erorr-Logging Register:  Associated with each task is a 1 bit register which is set whenever a
double-bit memory error occurs on an _MD executed by the task.  The 8-bit error register is loaded
onto X[8-15] by _MStatus, where bit 8 is task 0’s log bit and bit 15 is task 7’s log bit.

Individual bits in the logging register can be reset by executing an MCtl_ with Y[4]=1 and Y[5-
7]=task# for the logging register to be reset.

IO tasks, before entering a critical data transfer phase can clear and then check the task’s error bit
after moving the data.  Note that there is special microcode trap if the Emulator task causes a
double-bit  memory error (see Sec. H).
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(b) MCtl & MStatus:  If MCtl is loaded with Y[15]=1, future single bit errors will not be
corrected.  If any of Y[8-13] is set, the corresponding check bit written into memory will be
inverted.  This is used for verifying the correction system.

On a _MStatus, X[6] indicates a single-bit error and X[7] indicates whether a double bit error
occured on the previous memory read.  X[0-5] are the syndrome bits of the last read.
 
_MStatus:        Syndrome Error Log                   .

| A    B    C    D     E    F   |se | de | t0    t1    t2    t3    t4     t5     t6    t7  |
 0     1     2     3     4     5     6     7     8     9    10    11   12   13   14    15

MCtl_:  Inv Check                   .
|   | clr |      task       |  A    B    C     D     E     F    |       | en |
 0     1     2     3     4     5     6     7     8     9    10    11   12   13   14    15

5. Memory Notes:

(a)  Due to the A-bypass mechanism, a memory address can be incremented either before or after
being sent to MAR.  However, the latter case, as part of a writing loop, prevents the last word of a
page from being stored.
 

MAR _ Reg _ [rhReg, Reg+1], c1;
MAR _ [rhReg, Reg], Reg _ Reg+1, c1;

(b)  The implied pageCross branch can be used to indicate the end of a count sequence.  Cnt[8-15]
is initialized with 256-actualCount, rhCnt[6-7],,Cnt[0-7] holds the page address, and Reg[8-15]
holds the location within the page.  If the MAR_ is part of a writing loop, the associated MDR_
will be canceled on exit.
 

MAR _ [rhCnt, Reg], Cnt _ Cnt+1, c1;

(c)  If a memory location is both read and written in the same click, the old contents are returned.

MAR _ [rhR, R+0], c1;
MDR _ New, c2;
Old _ MD, c3;

(d)  Due to a design bug in the current memory controller, IO tasks should not execute either an
MDR_ or _MD without a corresponding MAR_ (or Map_).  However, these are legal for the
Emulator so long as IO microcode does not read or write the display bank when the display is on.

MASS checks for this and LOOPHOLE[mdrok] or LOOPHOLE[mdok] can be used appropriately.

The memory bug causes all display-contention-aborted clicks to be memory-cycle clicks.  However,
in general, if there is not a MAR_, a double-bit error will not occur on a _MD and memory will
not be written by an MDR_.
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J.  The Mesa Map

The Map is a 16K-word table located after the display bank in real addresses [10000..13FFF].  The
memory system indexes into this table with the 14-bit page part of a 22-bit virtual address.  Entries
contain a 12-bit real page number (only 10 bits currently used) and some flags pertaining to the
virtual page.  Figure 6 illustrates the mapping process.

The Map assumes a 22-bit virtual address space (4M words), but a smaller Map is possible since all
16K does not have to be used.  Currently, 23- or 24-bit virtual addresses will result in a hardware
trap (sec. H), but a hardware PROM (and the memory system) can be changed to allow larger
virtual addresses.

Virtual addresses are sent to the memory system via the YH and Y buses, where YH is the output
of the RH register used to hold the 6 high-order address bits.  Thus, YH[2-7],,Y[0-7] holds the page
number and Y[8-15] holds the page displacement.  Note that Y[8-15] is ignored by the memory.  If
YH[0] or YH[1] is set, the virtual-address-out-of-range microcode trap is caused (sec. H).

If either fX or fY is set to Map_ (in c1), the memory system will assume a Map reference for the
entire click.  If the mem bit of a microinstruction is set in c2 of the click, the memory write data
register (MDR) will be loaded from the Y bus and the Map entry will be written.  If mem is set in
c3, returning Map data (MD) will be placed onto the X bus.

The mem bit should not be set in c1 along with the Map_ unless MAR_’s side effects are explicitly
desired.  This is accomplished by writing Map _ MAR _.  Note that such clicks could be aborted
due to display bank contention (sec. I.3).
 
1.  Map_:  Map _ [rhReg, <arithPhrase>] designates a virtual address reference to the Map and
can only occur in c1.

rhReg specifies the RH register which holds the 6 high order address bits.  The rB field is set to
the value of rhReg.  Notationally, <arithPhrase> is anything that can occur on the right side of an
arithmetic statement.

An RH register should not be loaded in the same instruction which specifies a Map_.  Due to
timing, Map_ can not be loaded from an arithmetic operation which uses an X-bus operand.

Map _ [rhR, R], c1;
Map _ R _ [rhR, RA + 1], c1;
Map _ [rhR, RA],  R _ RA + 0FF + 1, c1;

2.  Map Entry Format:  All entries of the Map are of the form: 

  
|        page[4-11] |dp | w | d | rp |  page[0-3] |
 0   8     9  10  11  12                15

Field Bits Function
page 12-15,,0-7 real page number (12 bits)
dp 8 dirty & present
w 9 write protected
d 10 dirty
rp 11 referenced & present
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The Map flags have the following interpretation, where present is a derived column and is the
inverse of the PrincOp’s vacant.  The PrincOp’s referenced bit is equivalent to the rp bit here.

w d rp dp present Interpretation
0 0 0 0 1 untouched, unprotected
0 0 1 0 1 unwritten, read
0 1 0 1 1 reserved for software
0 1 1 1 1 written
1 0 0 0 1 untouched, protected
1 0 1 0 1 protected, read
1 1 0 0 0 vacant
1 1 1 0 1 reserved for software

3.  Maintaining the Map Flags:  The Map flags must be checked with every virtual address access.
They only need to be updated the first time a present virtual page is either read or written.  Thus, a
normal virtual address access requires two clicks: one for the Map read and one for the real address
access.  As a consequence, the microcode typically saves the real page number acquired in the first
Map reference and then reuses it until invalid, such as with a page-crossing.

Because a Map entry can not be updated atomically, IO task microcode can not maintain the Map
flags, i.e., only the Emulator can write into the Map.

(a)  Virtual Read:  When a Map_ is executed with the intent of reading, XRefBr is used to branch
on the rp bit returned in c3.  If rp=0, then either the page has not been previously referenced or it
is not present.  If rp=1, the microcode can proceed assuming that the page is present in real
memory and no Map maintenance is required.

When rp is 0, the microcode can XwdDisp on w,,d and act according to the following table:

w d action
0 0 rewrite Map entry with rp_1 & continue
0 1 rewrite Map entry with rp_1 & continue
1 0 rewrite Map entry with rp_1 & continue
1 1 restore Mesa state & Xfer to SD[sPageFault]

(b)  Virtual Write:  Similarly, when a Map_ is executed with the intent of writing, XDirtyDisp
(XLDisp) is used to branch on the dp bit returned in c3.  (Note that the branch occurs in INIA[10].)
If dp=0, then either the page has not been previously written, or it is write-protected, or it is not
present.  If dp=1, the microcode can proceed assuming that the page is present and writeable and
no Map maintenance is required.

When dp is 0, the microcode can XwdDisp on w,,d and act according to the following table:

w d action
0 0 rewrite Map entry with d_dp_1 & continue
0 1 rewrite Map entry with d_dp_1 & continue
1 0 restore Mesa state & Xfer to SD[sWriteProtect]
1 1 restore Mesa state & Xfer to SD[sPageFault]

Note that for Page and WriteProtect Faults PC,,pc16, stackP, TOS, STK, and any other altered
Mesa state must be restored to its value at entry to the Mesa instruction.  (Link registers are
typically used to encode the required state fixup.)
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The following example of write-Map update code is the body of the W2 Mesa opcode.  The
common subroutine WMapFix returns through Link register 0 if the page is present and through
Link 1 if the page is swapped out.  This code also shows the saving of TOS into STK (sec. F.5),
poping the address & data from the stack, encoding state fixup in Link registers and dispatching on
the next opcode.

@W2: Map _ Q _ [rhMDS, TOS+2], L1_L1wDecOnly, c1, opcode[111’b];
PC _ PC + PC16, push, L0_L0.RedoW, c2;
Rx _ rhRx _ MD, XDirtyDisp, STK _ TOS, pop, c3;

RedoW: MAR _ [rhRx, Q+0], BRANCH[WxMapUD, $, 1], c1,  at[L0.RedoW,10,WMapFixCaller];
MDR _ STK, pop, IBDisp, c2;
TOS _ STK, pop, DISPNI[OpTable], c3;

WxMapUD: CALL[WMapFix] {will return to RedoW}, c2;

{Write Map Update Subroutine}
WMapFix: Xbus _ Rx LRot0, XwdDisp, L3_L3.rhMDS.Q, c3;

Map _ [rhMDS, Q], DISP2[FixWFlags], c1;

FixWFlags: MDR _ Rx or 0B0, L0Disp, GOTO[ReWrite], c2, at[0,4];
MDR _ Rx or 0B0, L0Disp, GOTO[ReWrite], c2, at[1,4,FixWFlags];
T _ sWriteProtect, L1Disp, GOTO[WTrap], c2, at[2,4,FixWFlags];
T _ sPageFault, L1Disp, GOTO[WTrap], c2, at[3,4,FixWFlags];

ReWrite: Xbus _ 2, XDisp, RET[WMapFixCaller], c3;
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K.  Bus Destinations

All possible X- and Y-bus destinations are included in this list.  The non-IO registers have been
discussed elsewhere.

Destination Source Bus
MAR_ YH,,Y Memory Address Register (for real address)
Map_ YH,,Y Memory Address Register (for Map reference)
MDR_ Y Memory Data Register
STK_ Y SU register addressed by stackP
stackP_ Y stack Pointer
Ureg_ Y U register
DCtlFifo_ Y Display Output Data Control Fifo
DBorder_ Y Display Output Data Border Pattern register
MCtl_ Y Memory Control register

IB_ X Mesa Instruction Buffer
RHregister_ X RH registeristers
KOData_ X Rigid Disk Output Data register
EOData_ X Ethernet Output Data register
POData_ X Printer Output Data register
IOPOData_ X IOP Output Data register
KCtl_ X Rigid Disk Control register
KCmd_ X Trident Disk Control register
EICtl_ X Ethernet Input Control register
EOCtl_ X Ethernet Output Control register
IOPCtl_ X IOP Control register
DCtl_ X Display Control register
PCtl_ X Printer Control register
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L.  X Bus Sources

All possible X-bus sources are listed here; the non-IO registers have been discussed elsewhere.
Xbus[0-7] is set to zero with Nibble, Byte, or IOXIn = {8..0F} (marked * in list).  Also, Xbus[8-11]
is set to 0 on _ibLow, _ibHigh and Nibble (marked ** in list}.  Even though KStrobe and
EStrobe are listed under IOXIn, they are not X-bus sources.

X bus Source
_ Y LRotn Left Rotate Y bus by 0, 4, 8, or 12 positions

fZ ** 4 bit constants (Nibble)
fY,,fZ * 8 bit constants (Byte)

_MD Memory Data
_STK SU register addressed by stackP
_Ureg U register
_RHreg * RH registers

_ib * Instruction Buffer
_ibNA * Instruction Buffer (doesn’t advance IBPtr)
_ibLow ** ib[4-7]
_ibHigh ** ib[0-3]

_KIData Rigid Disk Input Data
_EIData Ethernet Input Data
_IOPIData * IOP Input Data

_ErrnIBnStkP * X[8-9]=EKErr, X[10-11]=~ibPtr, X[12-15]=~stackP
_KStatus Rigid Disk Status
_KTest  Rigid Disk Status (diagnostics)
_EStatus Ethernet Status
_MStatus Memory Status
_IOPStatus * IOP Status
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K.  Miscellaneous Functions

1.  MesaIntRq:  This function sets the 1-bit Mesa Interrupt register (MInt).  When set, IBDisp will
trap instead of dispatch (see sec. G.5).

MInt has two uses in the Mesa Emulator: to catch pending interrupts (given by uWP) and to
indicate that the PC is pointing to the last word of a page (uPCCross true).  Thus, MInt being set
does not necessarily imply there are pending interrupts.

IO tasks should set MInt in the same click in which uWP is written.  uWDC does not need to be
checked before setting MInt.  Similarly, the Emulator should reset MInt (ClrIntErr) in the same
click in which uWP is read and reset.

R _ uWP, MesaIntRq, c1;
R _ R or uWakeupMask, c2;
uWP _ R, c3;

2.  EnterKern:  The Kernel task will run in the next click when EnterKern is executed in c1.  No
other tasks can run when the kernel is running, so it becomes necessary for the Kernel to refresh
memory.  EnterKern is used to implement breakpoints.

3.  ExitKern:  When executed in c1, ExitKern will cause normal task scheduling to begin.  Thus,
which task runs in the click following ExitKern depends on where in the round structure the
ExitKern occured.

4.  Refresh:  When fY or fZ = Refresh in c1, one row of all the memory chips is refreshed (a
"RAS only" memory cycle).  The row address is supplied by a 7 bit counter in the memory
controller which is incremented once per Refresh.  All 128 memory rows must be refreshed every 2
mSec, which is equivalent to about 1 refresh per 33 clicks (or twice per display line, 14 rounds).

If Refresh is executed in c2 or c3, or when the display is reading from the low bank (i.e., Refresh
in clicks [0..3] and Display on & not blanking) no memory refresh occurs.

5.  Clear Wakeup Requests:  ClrDPRq, ClrIOPRq, and ClrRefRq reset the Display/Printer, IOP, or
Refresh task wakeup requests.  The Ethernet and Disk wakeups are cleared automatically by the
hardware after being serviced.  ClrKFlags clears the Disk Word Status register.

6.  Noop’s:  fX, fY (fYNorm), or fZ (fZNorm) = 8 are Noop’s.  fZ = 9, 0A, and 0B are also
Noop’s because these values are not decoded.  fZ = 4 (fZNorm) is unused.  fY = 0B and 0E
(IOOut) are unused and available on the backplane.



35

N.  MASS

MASS creates control-store-loadable files from microcode source files.  It also produces symbol
table files for Burdock and a status file with error messages which refer directly to the source text.

1.  Files:  There are two types of source files.  There are macro-and-definitions files and there are
microcode source files.  The macro-and-definitions files have a .df extension and source files have
an .mc extension.  .df files do not contain microinstructions and the definitions are global to an
assembly.  Some intermediate files (.ml, .si, and .eb) are produced for each source file to allow
subsequent partial re-assemblies.

Source files may also have macros and definitions (which will be used globally), however this may
produce inconsistent results if the macros or definitions are used by another .mc file.

The .fb is the control-store-loadable file of allocated microinstructions.  The .ft is a human-readable
form of the .fb file.  The symbol table file has an .st extension.

The .er status file contains MASS version information and the errors encountered.  Along with the
explanatory text and a copy of the source line in error, the phrase which caused the error is shown.
There are usually multiple error messages per incorrect source line since MASS outputs a message
for each possible and unsuccessful attempt to encode the statement.  Allocation errors are displayed
by listing, for the entire block, the labels and their constraints.

The following files are used (u) or generated (g) by MASS in pass 1 or pass 2, where pass 2 is the
allocation pass.

pass1 pass2
.mc u -- MicroCode source
.df u -- macro and Defs File
.eb g u Early Binary (one per .mc)
.ml g u Label constraint records & Reserves (one per .mc)
.si g u Symbol Intermediate (one per .mc)
.fb -- ug Final Binary
.ft -- g Final binary Text
.st -- g Symbol Table
.er g g status and ERrors

2.  Command Line Switches:  Switches should only be appended to a file name, not to MASS.  A typical
command line might be

MASS Dandelion/d Name Name/o/t/a

Local Switches:
none use Name for .mc input, .eb, .ml, & .si output files.
/d designates a .df file
/o use Name for .er, .fb, .ft, and .st Output files
/2 pass 2 only for this file (will read .eb, .ml, & .si files)
/x satisfy imports from this file but exclude its locations from allocation

Global Switches:
/a Automatic re-assembly:  For each .mc, pass1 executes only if there is no corresponding .si file

or the .mc file has been updated since the last .si written.
/n .ft and .fb not generated
/t .ft not generated
/g MASS doesn’t pause with "hit me." Hits itself.
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3.  Sample Command Lines:  The following three examples illustrate file creation and usage during
an assembly.

MASS  Regs/d  Macros/d  Source  System/o

pass1: reads Regs.df, Macros.df, Source.mc
writes Source.eb, Source.ml, Source.si

pass2: reads Source.ml, Source.si
writes System.st
allocates Source
reads Source.eb
writes System.fb, System.ft, System.er

MASS  Regs/d  SourceA SourceB  System/o/t/a

pass1: reads Regs.df, SourceA.mc
reads SourceA.mc or SourceB.mc if they have been updated

pass2: reads SourceA.ml, SourceA.si, SourceB.ml, SourceB.si
writes System.st
allocates Source, SourceB
reads SourceA.eb, SourceB.eb
writes System.fb, System.er

MASS  Config/d  SourceA/2  SourceB  SourceC/x  System/o

pass1: reads Config.df, SourceB.mc
writes SourceB.ml, SourceB.eb, SourceB.si

pass2: reads SourceA.ml, SourceA.si, SourceB.ml, SourceB.si, SourceC.fb
writes System.st
allocates SourceA, SourceB
reads SourceA.eb, SourceB.eb
writes System.fb, System.ft, System.er

4.  MASS Runtime Interface.  While MASS is running, the cursor is moved vertically down for
each .mc or .df file read, and horizontally for each error encountered.  The cursor is reversed once
per statement processed.

During the allocation phases (pass 2), a square cursor is displayed with the number of enclosed dots
increasing to six.  If errors are found in the assembly, MASS pauses with the cursor showing "hit
me".  As soon as any keyboard character is struck, MASS returns to the Alto executive (which may
continue on to Bravo if the S macro was previously invoked).  The Swat key causes MASS to close
the .er file, but might produce an invalid .si file, so the next assembly should not use the /a switch.

5.  Microcode Source Format:

(a)  Comments:  All text between squiggly bracket pairs { and } is ignored by MASS.  The brackets
nest, so they must be properly paired.  This feature enables commenting out sections of code which
are already commented.

(b)  Names & Numbers:  Names are used as instruction labels (Label:), constants (Set), register
names (RegDef), macro names (MacroDef), or names of microinstruction functions (reserved macro
names).  Names do not start with digits and can not have imbedded spaces.  The case of letters in
names must be consistent.
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None of the function field or builtin macro names should be used as user names (i.e., as labels,
constants, registers, or macros).  For example, RH, ib, Q, EStatus, c1, xor, and pop are all
reserved.  Null and Apass are also reserved names.  _ should not be present in a user name.

Hexadecimal numbers are the default or can be specified with a trailing ’x.  A decimal number is
specified by a trailing ’d and an octal number by a trailing ’b.  Hex numbers which begin with A..F
must be prefixed by a zero.  For example, 15’d = 17’b = 0F’x = 0F.

(c)  Source Line Format:  A line of source which defines a single microinstruction is a list of clauses
which is terminated by a semicolon.  Clauses are separated from one another by commas.  A clause
is either a microinstruction function name, a macro invocation, or an arrow (arithmetic) clause.

A name followed by a colon is the label of the microinstruction.  Microinstructions can have
multiple labels.

Spaces are used as token delimiters in arrow clauses, but are otherwise ignored.  Parentheses may be
used in arithmetic clauses where they may improve readability and are ignored by MASS.
Parentheses are also used in macro definitions.  Brackets are used to denote the argument list to
macros, but are also used in MAR_[...], Map_[...], and []_.

(d)  Register & Constant Definitions:  All registers and constants must be defined before their
names are used.   The builtin macro RegDef is used to associate a name with a register type {R,
RH, U, UY} and value.  An error message will be given if a register name is used twice.

RegDef[Reg, R, 0B];
RegDef[uReg, U, 4E];
RegDef[rhReg, RH, 4];
RegDef[uBlock, UY, 9];

The macro Set is used to associate a number with a name which can be used in an arithmetic
clause (as a constant) or in other macros.

Set[sZeroDivisor, 0C];
Set[L0.ERefill, 8];

(e)  Arrow Clause:  Arrow clauses (which include arithmetic clauses) may have one or more
destinations and there can be more than one arrow clause per source line.

B _ B - A, c1;
B _ uReg _ stackP _ B or A, c2;
R _ MD, Ureg _ RA, c3;

The right side of an arrow clause consists of a single item, or two items with an operator, or three
with two identical operators.  The operators are: +, -, or, and, xor.  It is also possible for an item
to have a qualifying unary operator (~ or -).  For example,

B _ ~cFieldSize, c1;
B _ A + B + 1, c2;
B _ ~0FF and B, c3;

(f)  Default Labels:  A $ can be used in BRANCH, DISPn, and CANCELBR macros and refers to
the address of the following source statement.

ZeroBr, BRANCH[MapUpDate, $], c1;
CANCELBR[$], c2;

Also, the label used by all the at clauses of a dispatch table need not actually be the label of any
particular statement of the table.  Such floating labels do not appear in the symbol table.
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(g)  Cycle Numbers:  Each source line must include a cycle number macro: c1, c2, c3, or c*.
MASS checks whether all instructions in cycle n are followed by instructions in cycle (n+1 mod 3)
or are preceeded by instructions in (n-1 mod 3).

The c* macro inhibits the wrong cycle error from MASS.  This can be used in loops which are not
a multiple of three instructions but always exit on the same cycle.  It is also useful for subroutines
which don’t contain cycle constrained operations and therefore can be called from statements on
different cycles or return to various cycles.  Such loops or subroutines should not contain MAR_,
Map_, MDR_, _MD, AltUaddr, or any other cycle-dependent operations.

(h)  User Macros:  A user macro is defined by supplying a name for the macro and a text string
which will replace the name.  Macros return nothing or a single number or variable, but never a
pair of arguments, for instance.  Up to 9 arguments may be supplied in the macro call and are
referenced in the expansion as #n for n=0..9.  The special argument #0 is replaced by the
number of arguments in the macro call and #1..#9 are replaced with the appropriate argument
(or Null if there is none).  Parentheses must be used to enclose arguments containing commas.  For
example:

MacroDef[NewMacro, (OldMacroA[#1], OldMacroB[#2, #3])];

The invocation of a macro is caused by supplying the macro and optionally up to nine arguments.
Arguments are separated by commas, and if an argument contains a comma, it must be enclosed
within parentheses.  Macro calls can not appear on the left side of arithmetic clauses, and only
unargumented macros (such as macros defined by Set) can appear on the right side.

If an .mc file contains macro definitions, they remain valid for subsequent .mc files which are part
of the same assembly unit.

(i)  External Variables:  Note:  Since MASS assembles fairly rapidly, these macros for constructing
large systems are almost never used.

The macro IMPORT indicates which labels of the .mc file have been defined elsewhere.  The
EXPORT macro specifies labels which other modules will import.  When MASS is assembling a
group of files together (a combination of .mc and/or .ml/.si files) it is illegal to have the same label
defined twice or imported and defined.  Labels defined in IMPORT macros will be assigned values
from the EXPORT of a previous assembly unit by using the /x switch on the file name.

6.  Starting Address:  SetTask[n] and StartAddress[Label] place special entries in the .fb file
which Burdock uses when loading the program.  Specifically, Burdock initializes TPC[n] to the
value of Label.  The task specified by the SetTask macro remains in effect until the next SetTask.

Note that the statement at Label must have a CANCELBR[$, 0F], since the hardware TC
(conditions) register can not be initialized.  Since there are no explicit task-specific user registers in
the Dandelion, the SetTask macro has no other effects.

7.  Conditional Code Generation:  The IfEqual, IfGreater, IfAndZero and SkipTo macros can be
used to conditionally assemble sections of code.  IfEqual, IfGreater, and IfAndZero have four
arguments [x, y, resultA, resultB], where resultA and resultB are names (macros, registers, etc.).
They are defined by:

IfEqual _ IF x=y THEN resultA ELSE resultB
IfGreater _ IF x>y THEN resultA ELSE resultB
IfAndZero _ IF (x and y) = 0 THEN resultA ELSE resultB

SkipTo[Label] causes MASS to stop processing source lines until the line labeled Label!, where the
! must be appended to the label name.  An example conditional assembly macro:
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IfEqual[Config, 1, , SkipTo[BandBLTEOF]];

8.  Command Line Set’s:  The values of variables can be set on the command line by phrases of
the form [varName,value] with no spaces inside the brackets.  MASS treats the bracketed pair as
an argument to a Set macro.  MASS predefines a variable, Config, to be zero which is useful for
controlling system configurations.

9.  Reserves:  Reserve[LowLoc, HighLoc], where LowLoc and HighLoc are numbers, causes
MASS not to allocate instructions within the range.  Reserve[Loc] will cause MASS not to place an
instruction at control address Loc.

10.  Arithmetic Macros:  The following macros return a value which is the operation applied
between the (up to 9) arguments: Add, Mul, And, Or, and Xor.  Lshift[arg1, arg2] returns the
value of arg1 left shifted by arg2, Rshift[arg1, arg2] shifts right, and Sub[arg1, arg2] returns the
value of arg1 - arg2.

11. Builtin Macro Summary:  Most of the following macros have already been discussed.

Add[arg1, ... , arg9]
Mul[arg1, ... , arg9]
And[arg1, ... , arg9]
Or[arg1, ... , arg9]
Xor[arg1, ... , arg9]
Lshift[arg1, arg2]
Rshift[arg1, arg2]
Sub[arg1, arg2]

GOTO[label]
CALL[label] {equivalent to GOTO}
GOTOABS[value]
BRANCH[label0, label1, mask] {mask optional}
CANCELBR[label, mask] {mask optional}
DISP2[label, mask] {mask optional}
DISP3[label, mask] {mask optional}
DISP4[label, mask] {mask optional}
DISPNI[label] {mask optional}
RET[label] {equivalent to DISP4}
c1, c2, c3, c*

IfEqual[x, y, equalVal, unequalVal]
IfGreater[x, y, equalVal, unequalVal]
IfAndZero[x, y, equalVal, unequalVal]
SkipTo[label]

EXPORT[label1, ..., label9]
IMPORT[label1, ..., label9]
at[offset, modulo, label] {modulo and label optional}
Reserve[LowLoc, HighLoc] {HighAddr optional}
LOOPHOLE[type]

Set[varName, value]
MacroDef[macroName, expansion]
RegDef[regName, regType, regAddress]
PrintVar[varName] {print variable in .er file}
Print[Message] {puts Message in .er file (only letters, numbers, and ".")}
SetTask[task]
StartAddress[label]



40

11.  LOOPHOLE[] Summary:  Most of these loophole phrases have already been discussed.

wok {previously WriteOK}
mdok {allows _MD without MAR_}
mdrok {allows MDR_ without MAR_}
stw {previously SuppressTimingWarning.  Use niblTiming & byteTiming instead}
niblTiming {Use Nibble timing for this instruction}
byteTiming {Use Byte timing for this instruction}
pci {Suppress pageCross Inverted error message}
natc {Prevents attributes of Label in at from causing allocation errors}
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O.  Microcode Conventions:

1.  Font:  All microcode source files should be in either Helvetica8 or Helvetica10.

2.  Tabs:  The tab stops for Helvetica8 microcode should be near 140, 160, and 420 points.  The
stop at 160 keeps lines with long labels from jumping over to the comment field when Bravo is not
in hardcopy mode.

3.  Source File Header:  The top of the microcode source file should have at least the following
information:

{File name:  <Name>.mc
 Description: <what file contains>,
 Author: <being>,
 Created: <date>,
 Last Edited: <date & time>, <what changed>}

4.  Source Line Format:  The general format of a source statement is:

<Label:> <Arrow clause>, <functions>, <DispBr>, <Ln_,LnDisp>, <GOTOfield> ,<cycle>, <at>;

There should always be at least one space after a comma and one before and after _ when part of
an arithmetic clause.

The <cycle> and <at> clauses should be located after the 420 point tab.  It also helps to locate the
last comma at the 420 stop.  Imbedded comments are encouraged.  For example:

TOS _ TOS + 1 ,c3;

Shift: [] _ ~0F and TOS {mask out low part} ,c1;
PC _ PC + PC16, L1 _ L1.where ,c2;
TT _ STK {TT _ v} ,c3;

TOS _ T LRot1, DISP4[MaskTbl] ,c1;

5.  Click Spacing:  Statements which are executed in the same click should be preceded and
followed by a blank line.  This makes the microcode infinitely more readable.

6.  Use of at’s:  MASS generates the required at phrases for BRANCH’s and Ln_’s, but not for
DISPn’s or RET’s.  For branch destinations which are widely separated (by a page of text for
instance), it helps if at macros explicitly identify the corresponding partner(s) of the pair or group.

MulLoop: Ybus _ Q and 1, NZeroBr, c1, at[0,2,MLDEnd];
TT _ TT - 1, ZeroBr, BRANCH[MPlier0, Mplier1, 0E], c2;

MPlier0: T _ DARShift1 (T + 0), BRANCH[MulLoop, MLDEnd], c3;
MPlier1: T _ DARShift1 (T + TOS), BRANCH[MulLoop, MLDEnd], c3;

MLDEnd: STK _ T {long.high/rem}, pop {point at s}, c1, at[1,2,MulLoop];

7.  Names:  If names consist of multiple parts, the first letter of each sub-name should be
capitalized.  All names should not be all capitalized: MulLoop, FrameOffset, MapOK.  The letter i
is better to use than the capital form I (I), which is indistinguishable from l (small L) and similar to
1 (one).  Try to avoid a solitary O in a name since it looks like a 0 (zero).

All instances of all names must be identical with respect to capitalization, else MASS will not
recognize them.  Bravo searching is also more productive.
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U register names should start with the letter u or U.  RH register names should begin with rh or
RH and otherwise equal the corresponding R register name (unless they are totally unrelated).  It is
also useful to start constants with a c or C and R registers with an r.  For example: uTemp,
uXferCmd, rhEE, cHeadMask, rRcvCnt.

8.  U Register Constraints:  When the address of a U register must be constrained by the rA or fZ
field, these restrictions should be commented.

RegDef[UreturnPC, U, 5D];   {rA = PC, fZ = _ib}
RegDef[UvC, U, 2B];   {fZ = _RH};

9.  Link Register Constants:  Constants defined by Set which will be used in Ln_ macros, should
be prefixed by Ln., for example L3 _ L3.Catch.  Also, any constraints on the link register value
should be commented.

Set[L0.rfR0, 4];  {must be even}
Set[L1.WstrR, 0D];  {must end in 01}

10.  Register Definitions & IO Page:  The allocation and definition of registers used in the standard
microcode system are given in [Iris]<Workstation>Dandelion.df.  It also includes the definition of
the IO page.

Dandelion.df should ONLY be written via the Librarian Access Tool (It can be read anytime by
FTP).  Access checkOutReason/r Dandelion/e is used to check Dandelion.df out and move it
to your disk, and Access Dandelion/s is used to return it to Iris.

11. Bravo S macro:  The S macro facilitates ping-ponging between Bravo and MASS.  It assumes
standard file naming conventions.  In particular, corresponding to a Name.mc source file, there is a
Name.cm command file, and errors are placed into Name.er.
[Iris]<Workstation>MASS>user.cmslice contains the macros.
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P.  Burdock & the CP

Burdock is a client of the Tools package, thereby making available to the user multiple windows
and other tools, such as source windows and the file tool.  There are four special windows which
are always present in Burdock:  CP Panel, IOP Panel, State Analyzer, and Files.  This section deals
with the CP Panel and the State Analyzer as connected to the CP.

1.  CP Panel Commands:  This section discusses the following CP Panel commands:  Boot, Load,
Start, Stop, Reset, and Continue.  Other menu commands (LoadReal, Resume, UnBreak*,
ListBreaks, Alternate, ClrPanel, ClrBreaks, & Update) are not covered here.

The Boot command boots the IOP if necessary, and then loads the CP kernel (Kernel.fb).  All the
TPC’s are initialized to 0FEF, which currently is a microinstruction which loops on itself and resets
the display controller.  Note that while the kernel is executing at the kernel task level, no other
tasks can run.

Load places the .fb file into the control store and reads the .st symbol table file into Burdock.  The
file name comes from the Files window.  If the source files contained SetTask and StartAddress
macros, the specified TPC’s are initialized.

Start writes the Emulator (task 0) TPC with the value of the type-in label and then causes the CP
to exit the kernel.  Normal task scheduling begins, and if multiple tasks are enabled, any one of
them can begin executing first.  All TPCs must be properly set (see Reset).  Also, the first
instruction to be executed at each task level must have been assembled with a CANCELBR[$, 0F]
macro.

Stop causes the kernel task to run, thereby blocking all other tasks.  The tasks which were running
are interrupted on a click boundary, so their TPC’s and TC’s remain valid.  It is not possible to
determine which click boundary in a round the stop occured on.

The Reset command reinitializes all the TPCs to their values given by the SetTask/StartAddress
macros of the source files.

Continue exits the kernel given the current values of the TPCs and pending conditions (TCs).  Like
Start, it is not known which task will begin executing first.

2.  Breakpoints:  Break sets a breakpoint at the address given by the type-in.  Burdock saves the
breakpointed microinstruction in an internal table and replaces it with the appropriate instruction
which will cause entry into the kernel.  If the control store is examined from Burdock, the
breakpoints will be visible instead of the original instructions.

Up to 16 microinstructions can be simultaneously breakpointed.  Each is assigned a breakID in
[0..0F], which Burdock uses to identify the breakpoint.  (The breakID can be found in the fZ field
of the breakpointed location.)

However, with respect to Continueing from a breakpoint, c2 and c3 breakpointed instructions are
treated differently from c1’s.  In particular, pending branch/dispatch bits or memory data are lost.
Generally, in order to guarantee correct restart from c2 or c3 breakpointed instructions, they should
not be preceeded by a branch or dispatch phrase or be in clicks beginning with a MAR_.  However,
it is possible to specify the pending dispatch bits by writing them into the U register UKSaveDisp
before Continueing.

This affliction does not affect c1 breakpoints, and was only applied to c2 and c3 breakpoints due to
control store economy considerations.  (It is possible to write a Kernel which saves c2 & c3 pending
bits and also saves memory data and subsequently restarts the memory on continuation.)



44

If a cycle1 breakpoint is executed, the kernel will always run in the following task.  However, if a c2
or c3 breakpoint is executed, the breakpointed task must run for at least one more click in order for
the breakpoint to take effect.  This is never a problem with the emulator (since it will eventually
run), but could be a problem with an IO task if the task’s request were disabled during the
breakpointed click, thereby preventing it from executing again.  Note that for c2 and c3 breakpoints
it is not known which other tasks may have run between the breakpointed click and the kernel
entry.

If Start is used instead of Continue after a breakpoint, the second instruction executed must be
at[0F,10].  This requirement is not necessary if UKSaveDisp (or TC[task] in the case of a Stop)
does not have any non-zero bits where the low 4 bits of the address of the second instruction has
zero bits.  For example, if UKSaveDisp or TC[task] is 0, then any microinstruction can be Start’d.
If UKSaveDisp or TC[task] is 1, then only microinstructions which are followed by an instruction at
an odd address can be started.

Another feature of breakpointing (or Stoping) is that on entry to the kernel the display controller is
set such that it will not read from the low bank (DCtl _ 3, On & Blank).  (It can’t be turned off
since it may have been on.  It’s not possible to read this On/Off state bit).  This allows the kernel
to do Refreshs and a user to read the low bank of memory from Burdock.  Note that the display
will be left in this state on exit from the kernel.

UnBreak restores the breakpointed location with its original contents and makes the breakID
available again.

3.  CP Panel Registers:  After the CP has been Boot’d or Stop’d, its registers can be read or written
via absolute addresses.  After a program has been loaded, Burdock can read or write registers given
their source file symbolic names.  Burdock ignores capitalization in all names (e.g., rCnt and RCnt
are equivalent to Burdock).  Note that the control store, TPC, and TC registers can be read or
written if only the IOP is booted (& not the CP).

The format for reading and writing a register with absolute addresses is .name address or address
.name.  U, R, and RH registers can be read or written with their symbolic name.  A number
without a .name is assumed to be a virtual memory address.  All numbers in Burdock are
hexadecimal.  Burdock recognizes the following CP register names:

.name address range

.q

.r [0..0F]

.rh [0..0F]

.u [0..0FF]

.tc [0..7] {read only}

.tpc [0..7]

.link [0..7]

.ioxin [0..0F] {address is value of fZ.  Read only}

.ioout [0..0F] {address is value of fY.  Write only}

.cr [0..0FFF] {control store: takes 3 data words}

.mr [0..3FFFF] {memory real address}

.mv [0..3FFFFF] {memory virtual address: .mv optional}

.map [0..3FFF] {address is index into Map}

.ib

.ibPtr {can only be set to word or byte}

.stackP

.pc16 {set to 0 or 1}

.MInt {set to 0 or 1}

.EKErr {read only}
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4.  State Analyzer Window:  For CP debugging, the low 12 bits of the state analyzer (Tektronics
7904 + DF1 formatter) are connected to the control store address lines NIA[0..11]’.  The upper 4
bits are available for other inputs (such as IOPWait, cycle number, task number, etc).  The
Analyzer window displays 256 addresses either before, after, or in the middle of a trigger address
entered into the Tektronix hardware.  (Burdock can translate between absolute control store address
and symbolic labels.)

The window can format, filter, and search the addresses for matches.  The "mask" is and’d with all
displayed addresses and the "xor" mask is used to invert appropriate bits.  The default for the xor
mask is 0FFF since the control store address lines are inverted.

The addresses can be displayed in one of 4 modes: NIA (i.e., symbolic labels), hex, octal, or binary.
Since NIA is displayed, the occurrence of a label corresponds to the cycle when the instruction was
being read from the control store; the indicated instruction was actually executed in the following
cycle.  Thus, if c1 is being displayed in the top 4 bits, it actually corresponds to microinstructions
labeled c2 in the source file.
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Q.  Timing Constraints

The architecture of the CP allows the execution of microinstructions which will not always properly
complete.  This is due to either "slow" X bus operands or "slow" destination registers, i.e., hardware
timing differences between registers and/or operations.  These timing variations exist mostly on the
X bus.  MASS will flag such instructions with a timing violation error.

1.  Non-Xbus Operations:  All ALU internal register-to-register operations complete on time.  All Y-
bus destinations can be loaded as a result of any ALU operation which does not use the X bus as
an operand (except for the high 12 bits of SU register arithmetic).

2.  XBus Operations:  If the ALU operation uses the X bus as an operand (aS = D,A, D,Q, D,0), it
may not complete within 137 nanoseconds on some machines under some circumstances.  In
general, all X bus sources can at least be loaded into an R register, which is a logical operation (aS
= D,0, aF = RorS).

Figure 7 should answer the question: "Is my microinstruction legal with respect to X-bus timing?"
The table deals with all possible X-bus sources and destinations: X-bus-source-to-X-bus destination,
X-bus ALU operands (aS = D,A, D,Q, D,0), and X-bus branching and dispatching.  Intersections
marked with a square indicate legal source/destination combinations or branching phrases.

X + R represents the 3 arithmetic operations (aF = R+S, S-R, R-S) and X or R the 5 logical
operations (aF = RorS, RandS, ~RandS, RxorS, ~RxorS).  B_ implies the loading of an R
register; Q_ has the same timing.  pgCross refers to the automatic page cross branch with MAR_
and pageCross & OVR refer to PgCrOvDisp.

Branching and dispatching have different timing than the basic ALU operations and a potential
statement must meet both conditions.  In general, zero, negative, or overflow branching is not
possible with any X-bus operand.

3.  ALU Arithmetic:  The ALU performs arithmetic at three different speeds depending on which
bits of the result you’re looking at.  Thus, figure 7 has three numbers for arithmetic operations
depending on which bits of the result are of interest.  ALU[0-7] are the slowest since they depend
on a carry from the lookahead unit.  ALU[8-11] are next as they depend on a ripple carry from the
low nibble.  Finally, ALU[12-15] are fastest since Cin arrivies very early relative to X bus sources.
Thus, the low nibble always has the timing of a corresponding ALU logic operation.

Note that some "+1" or "-1" operations do not necessarily imply use of the X bus, but use Cin
instead.  Thus, R _ R + 1, NegBr is legal where R _ R + 2, NegBr is not.

All arithmetic operations with the ALU internal zero as an operand (aS = 0,Q, 0,B, 0,A, or D,0)
complete on time.  This obviously includes all X-bus sources.

4.  Timing LOOPHOLEs:  MASS checks for the timing violations given in Figure 7.  The macros
LOOPHOLE[niblTiming] or LOOPHOLE[byteTiming] can be used to prevent an error message
where the timing is legal for the bottom 4 or 8 bits.  LOOPHOLE[stw] can be used in other cases.

R _ Ureg - 1, LOOPHOLE[byteTiming] c1;
MDR _ R + 2, LOOPHOLE[niblTiming] c2;
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Figure 7.  Allowable X-bus Operations
2 Dec 80

B_X or R

B_X or R, ZeroBr

B_X or R, NegBr

[]_X or R, YDisp

B_X + R

B_X + R, ZeroBr

B_X + R, NegBr

B_X + R, OVR

B_X + R, PgCarryBr

B_X + R, NibCarryBr

B_X + R, pageCross

MAR_X + R, pgCross 72

B_X + R, CarryBr

B_X + R, YDisp

B_RShift1 (X+R)

B_LShift1 (X or R)

B_RRot1 (X+R)

Xbus _ X, XDisp

X Source Time

constant,

74
105

60

(A or B)

stackP_

_ib
IOIn

IOYOut_X + R

IOYOut _ X

Timing OK across 16 bits of result

Timing OK across low byte of result

Timing OK across low nibble of result

Operation not possible due to syntax or data paths

B_LRot1 X (X or R)

78

Map_ X + R

MAR_ X + R

MDR_ X + R

SU_ X + R

MAR_ X or R

Map_ X or R

MDR_ X or R

SU_ X or R

IOYOut_ X or R

110

ErrIBStkp
X
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Appendix:  Antithetical List of MicroInstructions

This appendix contains a list of some example microinstructions in addition to examples of illegal
ones.  They are clearly not in the correct MASS format.  This is not a complete list!

Those microcode statements which can be written but don’t work as intended have three possible
reasons for their shortcomings:

1.  Timing error,
2.  Syntax error, or
3.  Characteristic of a processor data path.

Abbreviations used here:

SU ::= STK | U register;
A ::= the R register addressed by rA;
B ::= the R register addressed by rB;
R ::= an R register addressed by either rA or rB;
Rot1 ::= LRot1 | RRot1;
Shift1 ::= LShift1 | RShift1;
LRotn ::= LRot0 | LRot4 | LRot8 | LRot12;
constant ::= Nibble | Byte;
ArithBr ::= NegBr | ZeroBr | PgCrOvDisp | CarryBr | PgCarryBr;
LogicBr ::= NegBr | ZeroBr;
XDispBr ::= XRefBr | XHDisp | XwdDisp | XLDisp | XDisp;
o ::= alu logic operation (R or S, R and S, ~R and S, R xor S, ~R xor S);
+ ::= alu arithmetic operation (R + S, S - R, R - S);
4 ::= alu arithmetic or logic operation;

1.  General:

Possible: Not Possible:

B _ R o R,
B _ R + R,
Q _ R 4 R, B _ Q _ R 4 R, (2)
YBus _ A, B _ R 4 R, YBus _ A, [] _ R 4 R, (2)

YBus _ A, Q _ R 4 R, (2)

2.  SU registers:

Possible: Not Possible:

B _ SU o A, B _ SU + A, (1)
B _ SU o Q,
SU _ R o R, SU _ R + R, (1)
B _ SU _ R o R,
SU _ A, B _ R o R,
SU _ A, B _ R + R + 1, SU _ A, B _ R + R, Cin_0, (2)
SU _ A, B _ R - R, SU _ A, B _ R - R - 1, (2)

SU _ A, B _ SU, (2) & (3)
SU _ SU 4 A, (2) & (3)

SU _ A, B _ R + R + PC16,
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3.  Constants:

Possible: Not Possible:

B _ -constant,
B _ A 4 constant,
B _ 0,
{B _ 100,} B _ 0FF + 1
{B _ 0FF00,} B _ ~0FF
{B _ 0FFFF,} B _ ~B xor B
{B _ 7FFF,} B _ RShift1 (~B xor B)
{B _ 1FF,} B _ LShift1 0FF, SE_1

STK _ constant, (1)
U _ constant, (2)
B _ SU 4 constant, (2) & (3)

SU _ 0
{SU _ 0FFFF,} SU _ ~A xor A

4.  RH registers:

Possible: Not Possible:

B _ RH[B] o A, A _ RH[B], (2)
B _ RH[B] + A, RH[B] _ RH[B]
RH[B] _ SU,
RH[B] _ SU, B _ SU o A,
RH[B] _ SU, B _ R 4 R,
RH[B] _ constant,
RH[B] _ constant, B _ R 4 R,
RH[B] _ ib,
RH[B] _ ib, B _ R 4 R,
STK _ A, B _ RH[B] 4 A, U _ A, B _ RH[B] 4 A, (2)

5.  Memory:

Possible: Not Possible:

R _ MD,
R _ R o MD, R _ R + MD, (1)
Q _ R o MD, R _ MD Shift, (1)
RH[B] _ MD, SU _ MD,  (1)
RH[B] _ MD, B _ R 4 R,
RH[B] _ MD, B _ MD, SU _ A,
MAR _ [rh[B], A], B _ B 4 R, MAR _ [rh[B], A], rh[B] _ x (3)
MAR _ [rh[B], A], B _ IOIn,
MAR _ [rh[B], A], B _ RH[B],
MAR _ [rh[B], A], B _ SU,
MAR _ [rh[B], A], B _ constant,
MAR _ [rh[B], B 4 R], MAR _ [rh[B], SU4 R], (1)
MAR _ B _ [rh[B], B 4 R], MAR _ [rh[B], RH4 R], (1)
MAR _ [rh[B], constant4 R],
MAR _ [rh[B], ib4 R], Map _ [rh[B], SU4 R], (1)
Map _ Q _ [rh[B], R 4 R], Map _ [rh[B], RH4 R], (1)
Map _ [rh[B], constanto R], Map _ [rh[B], constant+ R], (1)
Map _ [rh[B], ibo R], Map _ [rh[B], ib+ R], (1)
MDR _ R 4 R,
MDR _ A, B _ R 4 R,
MDR _ SU o A, MDR _ SU 4 A, {OK in bits[12-15]} (1)
MDR _ RH[B],
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6.  IOIn/IOOut:

Possible: Not Possible:

B _ IOIn 4 A,
RH[B] _ IOIn,
MDR _ IOIn,
RH[B] _ IOIn, B _ IOIn 4 A,

SU _ (IOIn 4 A) LRotn, (1)
IOOut _ (R o R) LRotn, IOOut _ (R + R) LRotn, (1)
IOOut _ Q LRotn,
IOOut _ MD,
IOOut _ IOIn,
IOOut _ RH[B],
IOOut _ SU,
IOOut _ A LRotn,
IOOut _ ib,

7.  stackP:

Possible: Not Possible:

stackP _ R 4 R,
stackP _ stackP 4 A, stackP _ stackP + constant, (2) & (3)
stackP _ Nibble, stackP _ MD, (1)
stackP _ IOIn,
stackP _ RH[B],
RH[B] _ stackP,

8.  LRotn:

Possible: Not Possible:

B _ A LRotn, {A bypass} B _ (R 4 R) LRotn, (2) & (3)
[] _ (A o B) LRotn, Q _ A LRotn, (2) & (3)
[] _ Q LRotn, B _ Q LRotn, (2) & (3)
B _ A o (A LRotn), B _ B 4 (A LRotn), (2)

SU _ (R 4 R) LRotn, (2) & (3)
SU _ A LRotn, (2) & (3)
MDR _ A LRotn, (2) & (3)
B _ SU LRotn, (2) & (3)
B _ (A LRotn) Rot1, (2) & (3)
B _ (R 4 R LRotn) Shift1, (2) & (3)
RH[B] _ A LRotn,

RH[B] _ A LRotn, B _ R 4 R,
RH[B] _ (R o R) LRotn, RH[B] _ (R + R) LRotn, {OK in [12-15]} (1)

RH[B] _ (RH[B] 4 A) LRotn, (2) & (3)
STK _ A, RH[B] _ A LRotn, B _ R + R + 1,
STK _ A, RH[B] _ (R o R) LRotn, U _ A, RH[B] _ (R o R) LRotn, (2)
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9.  Single Bit Shifting:

Possible: Not Possible:

B _ (R o R) Shift1,  Q _ (R o R) Shift1, (2)
B _ (R o R) Rot1,  Q _ (R o R) Rot1, (2)

B _ (R + R) Shift1, (1)
B _ (R + R) Rot1, (1)
YBus _ A, B _ R Shift1, (2)
[] _ R Shift1, (2)

B _ (R + R) Shift1, SE_0, B _ (R + R + 1) Shift1, SE_0 (2)
B _ (R - R - 1) Shift1, SE_0, B _ (R - R) Shift1, SE_0 (2)
B _ (SU o A) Shift1, SE_0, B _ (SU o A) Shift1, SE_1, (2)

SU _ B Shift1, (2)
SU _ A, B _ R Shift, (2)

B _ (constant + A) Shift1, {only [8-15]} B _ (constant + A) Rot1  {OK in [12-15]}
B _ R + R, DRShift1,
B _ R + R, DLShift1,

10.  Branching:

Possible: Not Possible:

B _ R 4 R, Branch,
YBus _ A, B _ R 4 R, Branch,
B _ Xbus o A, LogicBr, B _ MD o A, LogicBr, (1)
B _ Xbus + A, CarryBr, {except for SU, MD} B _ Xbus + A, ZeroBr, (1)
B _ Xbus + A, PgCarryBr, {except for SU, MD} B _ Xbus + A, NegBr, (1)
B _ R + 1, ArithBr,
B _ R 4 R, YDisp,
B _ RH[B] o A, YDisp, B _ SU o A, YDisp, (1)

B _ MD o A, YDisp, (1)
YBus _ A, B _ R 4 R, YDisp,
[] _ SU, XDispBr,
[] _ IOIn, XDispBr,
[] _ constant, XDispBr,
[] _ ib, XDispBr,
[] _ RH[B], XDispBr,
[] _ stackP, XDispBr,
[] _ MD, XDispBr,
B _ A LRotn, XDispBr,
B _ A o (A LRotn), XDispBr,
[] _ (R o R) LRotn, XDispBr, [] _ (R + R) LRotn, XDispBr, {bits[12=-15 OK} (1)


