58

4.0 Display Controller and Clocks

4.1 Overview

This chapter describes the Dandelion display controller. It islocated on the high speed I/0 (HSIO)
board. Only the Display hardware is covered. The minimum microcode reguirements are given.

4.2 Display Functions

The Dandelion large format display has the following parameters:
* 10" high by 12.8" wide bit map display.
* Separate Video, Horizontal and Vertical sync signals.
* Visible area = 808 lines x 1024 bits.
* Refresh rate = 38.7 frames/second (one frame every 25.8 ms)
* Memory used (808+16)* 64 = 52,736 words in low 64k bank (16 lines for cursor).

* Border area= 26 lines at top, 26 lines at bottom, 32 bits at each side. Contents of user-
settable register is repeated to form border pattern. Size of top and bottom borders set
by microcode.

* Tota frame (visible + non-visible) = 897 lines x 1088 hits.

The display hardware supports the scrolling of windows on the screen. These windows and cursors
may be moved or scrolled vertically without actually moving bitsin memory. Horizontal
displacement requires the memory images to be moved.

Memory refresh is also performed by the display microcode.
4.3 Display Controller Hardware

The display controller uses a partitioned, two-port memory to reduce the loss of processor
bandwidth while the display is running. The display controller blocks processor access to the low
64K memory bank only when it is acquiring data bits during an active horizontal line. The
processor has complete access to the low bank at all other times (i.e. during one click in each round
while the picture is being displayed, while the beam is turned off (blanking) and while the border is
being displayed). When not being used by the display hardware, the low memory bank is identical
in performance to the high banks. The display hardware cannot access the higher banks of memory
and has no effect on processor access to these banks.

The following functions are performed by the display controller hardware/microcode.

1. Read datafrom memory and shift out blocks of 1024 bits.

2. Provide horizontal sync, vertical sync, and blanking signals.

3. Perform memory refresh.

Some versions of display microcode will automatically display a 16x16 cursor given its position.

Others support smooth (continuous) scrolling of display windows. The hardware is constructed to
support these features but does not supply them directly.

Display Controller and Clocks

4.4 Partitioning Functions Between Hardware and Microcode

The tasks required of the display controller span awide range of times (shifting bits, reading words,
providing blanking and sync signals and composing fields and frames). It isimportant to minimize
the amount of hardware used for any individual Dandelion controller while not requiring an
excessive amount of the processor for asingle I/O function. For the display controller, a horizontal
line period (28.8 uS) was chosen as the dividing point between functions implemented in hardware
and microcode. Memory accesses, parallel to serial conversion, and horizontal sync generation are
donein hardware. Line counting, vertical sync, cursor insertion, scrolling support and memory
refresh are handled with microcode. The hardware is capable of displaying only a single horizontal
line. The microcode assembles the lines necessary to make a coherent picture.

45 Microcode - Hardware I nterface

Display microcode uses three registers to control the display hardware. They are described below
and summarized in the next figure. Use of thisinterface to operate the display will be described in
the next section. The following terms appear in the discussion.

Line Segment - A subset of ahorizontal line in which the displayed words come from contiguous
memory locations. A line segment can be between 1 and 64 words long. The line segments which
comprise ahorizontal line must total 64 wordsin length. Each entry in the control FIFO (First-In-
First-Out buffer) described below specifies one line segment.

Window - A rectangular region on the display made up of line segments on successive scan lines.
The boundaries of the windows considered here are horizontal or vertical. The hardware does not
preclude windows of arbitrary shape.

Cursor - Thisis aspecial case of window which is 16 scan lines high and two words wide.
Contained in thisregion is a 16x16 array which is bit aligned. The remaining areain the two word
wide area not covered by the 16x16 array is typically loaded with those bits from the main bit map
over which the cursor is placed. The resulting image shows a 16x16 bit-aligned cursor.

Control Register

Thisregister contains 7 bits which control the display operation.

On- Thishit enables requests to the processor for service during the display click.
These requests begin at the end of every horizontal line and end when disabled by the
display microcode. This bit does not affect memory accesses nor does it cause picture or
border to be displayed. Itsonly function isto allow the processor to execute display-task
microcode.

Blank (BKk) - Setting this bit aways causes the video beam to be turned off. No memory

accesses will occur when this bitis set. Typically, the blanking bit will be set during
vertical retrace.

Picture (Pic) - Setting this bit will cause memory accesses unless Blank isalso set (in
which case there is no picture and there are no memory accesses). The contents of the
control fifo is used to specify which locations are accessed and displayed. If both Pic and
Bk are cleared, the border pattern will be displayed for al bits within aline and no
memory accesses will occur. Thisis doneto create the top and bottom picture borders.

Invert (Inv) - Setting this bit causes the video signal to the monitor to beinverted. All
areas of the screen (border and picture) shown while thisbit is set will be inverted.

59

60

Dandelion Har dware M anual

Odd (OD) - Setting this bit indicates to the controller that the odd field of aframeis
being scanned. Thisisused by the controller to determine whether vertical sync pulse
should start and stop at the beginning or middle of aline. It starts at the middle for an

odd line. This hit should not be changed during a vertical sync pulse, since changing it
during the sync pulse would cause the end of the sync pulse to occur at a different location
in aline from whereit started. Neglecting this could cause interlace problems on monitors
triggered on the trailing edge of vertical sync. (Most of our monitors are triggered on the leading
edge of vertical sync.)

Vertical (Vt.) - Vertical sync pulse line goes low when thisbit is set. The exact time of the
transition relative to a horizonta line timeis determined by the odd bit.

Clear Control Fifo' (CCF) - When set to zero, this bit causes the contents of the control fifo
to be declared invalid. The bits are not actually set to zero but the fifo is declared to be
empty. Normally thisbit is kept set to one. The Control Fifo should be cleared during

each vertical retrace as a safety measure.

Display Controller and Clocks 61

Dandel i on Di splay Controller Registers

Control Register (onXBus) Not Used vt Joo |inridek [on

C
) . CF
DCtl nay be witten in any cycle.
9

0 8 10 J11 §12 §13 14 §15

Regi ster controls display operation. Oear Control Fifo' | I |
: Vertical Sync
It is cleared to O by | OPReset when odd Line/ Even 1ine’

systemis powered on. \Wen cleared, the display will
receive only horizontal sync, video will be the contents Invert all visible region
of border register at power-up, and there will be no
di splay requests to the process®nere will be no
vertical synchronization or bl anking.

0 - Border pattern everywhere
No nmenory accesses.
1 - Picture in center of screen

Vertical sync is a strobed version of the Memory accesses except during

vertical bit in the control register. To produce bl anki ng. .
h) . Bl ank Line
interlaced scan, vertical sync is strobed and changes at the No

R) ; ; menory accesses.
begi nning of the line for even lines and middl e of
the line for odd lines, as specified by bit 11. Enabl e Di spl ay Request
Control Fifo Register(onY Bus) Line Nunber (YY)

Last Word (XX)) -]

!] (H gh 10 bits of 16 bit address

DCtI Fifo may be witten in any cycle. inthis line segnent :
in low 64K nenory bank)
0 516 15
VSB LSB VSB LSB

One word is witten into Fifo for each I T | | T |
cycle in which DI Fifo is asserted.
Used to specify a location (line segnent) in Sel ects | ocation (word #) Hori zontal line starts reading data at
menory fromwhich to retrieve al ong horizontal |ine YYY in main menor
data for display. The | ow after which display wll Y
10 bits specify the line nunber, jump to a newline in and_continues reading until |ocation
and the high 6 bits specify menory from which it . .
the Last Word to be read reads data. AFTER whi ch it
before changing line segnents. |f this Last advances to the next control Fifo

Word is not 63 (end of line) then the next | ocation specifying the next line segnent:

Fifo entry is used to identify the next |ine nunber fromwhich a ﬂ .

group of words will be takbote that the low 6 bits (word #) on the same output |ine.

used for the address is incremented fromO to 63 in each line. The control fifo only permits selecting the line nunber and the
location along the line at which a transition is made from one |ine Trmsanasheri.ewed on the nonitor screen, this

mechani smfacilitates vertical novenent of inmages, but not horizontal novenment, since low 6 bits of address conme fromword counter
One control word is |loaded into the fifo for each continuous segnent of words in a horizontal line. Thus, a nornal line with

no cursor or w ndow w |l have one control word. A line with a cursor in the mddle will have 3 control words.

Wiile the fifo size is 16 words, no nore than 10 entries should be for a single line. The last control word

for a line should specify word 63 (deciTed)controller will "wap around" to the next scan line in a field if necessary to advanc
the word nunber specified in a control fifoGQmtmyl words can be |loaded into the Fifo any tine before the
line in which they are used. Care nmust be taken not to insert extra control words, and |ose sync. Cearing control fifo during
vertical sync will purge theThefoontrol Fifo is cleared by setting bit 9 of control register to O.
Di splay Menory (Low 64K bank of physical address space) Exanpl e of Control Fifo Use
L;#ne %Einr b— 64 Vords ——m8¥ — Line Contents of Contents of control
0 o = Displ ay Menory fifo just before beginning
0 1 2 63 2 A B C of line X
‘64 127 3 D E F 25 4
32 2
128 [| 191 4 G H | 63 5
192 nEn 1024 5 J K L
[] Li nes | | |
Line X as displayed on screen.
L] * *
6534 65407 |CI | c|s |t |
65408 o 65471 Vord # along Tine
1023 65K 65472 [| 65535 * 32 Bits of border pattern
1 1 1 byte repeated 4 tines.
MSB LSB =na Y
M) | |
Border Pattern Reg' st er (on Y Bus) H gh Pattern Byte Low Pattern Byte
DBorder nmay be witten in any cycle. 0 71s 15
Hi gh pattern is repeated on Low pattern is repeated on
Border pattern is repeated l'ines 4n+2, 4n+3 where n lines 4n, 4n+l where n is an
on every line during the first is an integer. i nteger.

and | ast 32 bits scanned. The

high and | ow patterns are used on alternate pairs of lines. Lines

are nunbered starting fromO at the top of the screen. The border pattern

will be repeated all across a horizontal line if bits 13 (Pic) and 14 (Blank) of the control register are both 0.

62 Dandelion Har dware M anual

Control Fifo Register

Thisregister contains two fields; last word and line number which are used to specify aline segment.

Last word is used to specify the number of the last word position (relative to lines aligned
on 64 word boundaries in memory) to be used for a given line segment. Last word isthe
high 6 bits of the control fifo entry, and typically remains constant for a given window.
The last word field of the control fifo entry for the last segment in a horizontal line must be
63.

Line number is used to calculate the memory addresses in which bits for the displayed line
segment are found. The controller hardware maintains a 6 bit counter for addressing words
within ahorizontal line. This counter always counts from 0 througn 63 asthe lineis
displayed. Thelow 6 bits of the current memory address are the controller’s 6 bit count.
The high 10 memory address bits come from the line number. When the controller’s count
matches the last word from the current control fifo entry, the next fifo word containing the
next line number isfetched. Using this mechanism, the user can define the mapping
between memory address and screen position. Note the low 6 bits of memory address are
not involved the mapping; they always specify the word' s horizontal position on the screen.
The display hardware supports only vertical displacements. For example, word 0000 in
memory may be shown on any line of the display but must always be the first word in the
line. Thisline number istypically incremented by 2 (because of interlacing) for successive
lines within awindow.

Border Pattern Register

Thisregister contains the two border pattern bytes. Only one of the bytesis used in any given scan
line. Thelow border byteisused during lines 4n, and 4n+1 (lines0,1,4,5,8,9...) and the high
border byte is used during lines 4n+2 and 4n+3 (lines 2,3,6,7,10,11....). The proper byteis
repeated 4 times at the beginning and end of each horizontal line to form the side borders. If the
Picture and Blank control bits are both off, the byte is also used to fill the picture area. The top
and bottom borders are created in this fashion. The border pattern register need only be loaded
once.

4.6 Using the Controller

In the Dandelion architecture, the processor is shared among a number of microcode tasks. One of
these isahigh level language emulator; the others control 1/0 devices. The processor isused in
round-robin fashion by the tasks. Each 1/0 task is assigned one or more clicks in the processor
round. There are five clicks per round. A task may perform one main memory accessin parallel
with three microinstructionsin aclick. The display is assigned click number 4 of each round.
Clicks not used by their assigned 1/0O tasks are available to the emul ator.

Each round takes 2.055 uS to execute. There are exactly 14 rounds per horizontal scan line (the
processor clocks are derived from the display clock so thereis no skew). Thus the display
microcoder must ensure that any action scheduled to take place in one scan line can be donein 14
clicks.

This section outlines the actions the microcode must take to get an image in the low 64K of
memory shown on the display. The following figure shows what is loaded into each register during
the various parts of aframe. Note that the only differences between the "odd" and "even" fields of
aframe are the setting of the odd field bit in the control register, the line offset used when loading
the control fifo and the length of the vertical sync pulse.

Display Controller and Clocks

Note also that the parameters for line n must be loaded during line n-1. For example, parameters
for the first picture line are loaded during the last border line at the top of the screen. Assuming
the microcode used to set the control and control fifo registers runs once per scan line; the proper

order is:

Second to last Top Border line: Send a41' X to DCtl (display line of border).

Last Top Border line: Send a41' X to DCtl, load DCtlFifo with parameters for first line of screen.

First Picture Line: Send 45' X to DCtl (display picture) and load DCtIFifo with parameters for

second picture line.

Regi ster Loadi ng Sequence to Get Bit Map on Displ ay
Function Control Register Control Fifo
Loaded only once . .
: Loaded once per line in
) per function b
Lines . h . even and odd fi el ds.
during first line
1 End Vert Sync, Blk 3
N
’> 13 Top Border 41 16
. Last Wrd = 63
404 Even Field 45 16 Li ne Nunber = even #'s
13 Bot t om Bor der 41 16
18 Start Odd V Sync 73 16 _—
1 End Vert Sync, Blk 3 _—
13 Top Border 41 16
) Last Wrd = 63
404 Cdd Field 45 16 Li ne Nunber = odd #'s
13 Bot t om Bor der 41 16
17 Start Even V Sync 63 16 _—
< 897 lines total 448.5 lines/field

To add a cursor, the control fifo isloaded with 2 or 3 segments per line for arun of 8 linesin each
field. Thisisshown in the next figure. Showing awindow in addition to the cursor requires more
segments per line. For both the cursor and the window, some computation must be made once per
frame to determine the control fifo entries. In addition, the cursor bitmap must be updated each

time the cursor moves.

Cur sor
Li nes

Dandelion Har dware M anual

Regi ster Loadi ng Sequence to Get Bit Map with Cursor
Control Register Control Fifo Duri ng OJ_rsor, 2 or 3
. . Loaded only once . . control fifo entries
Lines Functi on er function Loaded once per line in er line are used
per. _ . even and odd fiel ds. P :
during first |line
1 End Vert Sync, Blk 3 |Last Li ne |
~ Word | Nunber
’> 13 Top Border 41 16
) Last Word = 63 | a X+y + 2n |
X Even Field 45 16 Li ne Nunber = even #'s
8 Even Cursor 45 16 3 Seg. for cursor — | b |808 + 2n |
) Last Word = 63
396-x Even Field 45 16 Li ne Nunber = even #'s 63 |x+y + 2n |
13 Bot t om Bor der 41 16
18 Start Odd V Sync 73 16
1 End Vert Sync, Blk 3
13 Top Border 41 16
] Last Word = 63
y Qdd Field 4516 Line Number = odd #'s |a |x+y+1+2n |
8 Qdd Cur sor 45 ¢ 3 Seg. for cursor— | b |809 +2n |
. Last Wrd = 63
396-y Qdd Field 45 N -)
16 Li ne Nunber = odd # s 63 |x+y+1 + 2n |
13 Bot t om Bor der 41
16
nis line increment within
17 Start Bven V Sync 63 16 cursor ranging fromO to 7
for successive lines in a

897 lines total 448.5 lines/field

<

The size of the bitmap required nay be reduced if nore border

field.

pattern is shown or

lines fromnenory are shown nore than once on the screen.

Menory
0 —
0
Cursor W ndow
16 |ines |
| T 1
-[0 ~ - al a+2| 63
— Active bitmap
in Menory
792-x-y
Actual cursor is bit aligned inglide
cursor wi ndow. Renminder of j
cursor wi ndow contains bit pattdrn
copied frommin bit nap.
807]
808 HC I I [— Cursor Buffer
823 | b in Menory
During Cursor |in®€s, each Iink divided into 3 segnents. The niddle segnent
comes fromthe cursor bitmap. Segment 1 Wrd 0 to a
Segnment 2 Wird a+l to a+2
Segnment 3 Word a+3 to 63
Horizontal cursor position is set by horizontal position of cursor image in Cursor
Vertical cursor position is set by line nunber at which the image is displayed.

Di spl ay Screen

(@]

Buf fer.

Display Controller and Clocks

4.7 Display Hardware I mplementation
Display Controller (Horizontal line generator)

The display hardware handles only those functions which repeat on a horizontal line basis. If the
processor had provided these functions, a great deal of its bandwidth would have been required for
afairly simple, repetitive task. Similar hardware for counting lines and controlling windows is not
used because the processor bandwidth required for these tasks is available.

Horizontal Events

A horizontal line contains 32 bits of border pattern on the left, 1024 bits of picture, 32 bits
of right border, and 382 bits of blanking. A horizontal sync pulse starts 8 bits after
blanking starts and ends 8 bits before blanking ends.

Vertical Events

A frame consists of an even and an odd field, each of which contains 13 lines of top border
pattern, 404 lines of picture, 13 lines of bottom border, and 18.5 (18 linesin onefield and 19
linesin other) lines of blanking during which vertical retrace takes place. The section
covering controller use further describes vertical events. No further mention of vertical
events will appear in this section.

The next two figures show a functional block diagram of the display controller and output machine
timing diagrams. It has three principal parts; the output machine, a datafifo, and the read

machine. Associated with the output machine is the control register. The border pattern register is
associated with the data fifo. The read machine contains the control fifo and associated control fifo
register, end condition logic to terminate memory accesses at the end of around and at the end of a
line, and the LRAS and LCAS memory clock generation. Following are descriptions of these
sections.

65

Dandelion Har dware M anual

Display System Functional Block Diagram

Monitor

Endline’ to Options Card

Output * sync Service Requ
Clocks Req’
19.6 nS Hori zontal Line Machine
S;: Ellult elsotlgcgef?{alrct:lo(r;Cer si on M de Synchro ation
rantees th gnal s
Cl ear Dat a Sour ce a bl e
Sel ect Re
Read 1 8 4 Dat
Dat a / / / Control
Fifo
Data syne Register
Request On
IFO Bl ank
Picture On
I nvert
16x16 FI FO Even/ Cdd
16 1 x 16 Border Reg. Vertical Sync.
| DData Clear Otl. Fifo
Memory
Daddr
Clear &l Fiflo
LRAS .
L Machine
p/ Proc.’
oad Border Pattern
Control Fifo DBor der _’
End Condi ton Detection
LRAS & LCAS Ceneration Load Control Fifo
Cocksw | Data Fifo Loading DCtIFifo_ '

Y Bus

Display Controller and Clocks 67

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1469
l

Horizontal Line = 1470 bit timnmes

0 Bit Nunbers 210 cycles 1469
0 Cyglke Nunbers 20
Details on I—l_DetaiIs on
8 page 18 164. 72 page 18
71 1159 | 1160
|— Border Pattern 32 bits | Vi deo
rrrr Picture TTTT1T Blanking =TTTT77 |
° 10 4 1127 2 1469
. 86 160.
12413 Big = 158315 PPi ¢

- . 1631164 PBI k
T 165166 PHori '
. 16586
633 “ 1167 | 1168 Hori zont al

, 106

0 u2 105u107 Vert Cl k 209
Even o

| Vertical

168

u PReq’
dick 4, Oycle a—l

EndLi ne 208 I10

LowBank Accesses Last & First Access |

> Us UslUs e U7 WUs e Lo e 1 |

There are | ow bank accesses during rounds 1-10 for a line with 1 segment. Sone anpunt of round 11 is used for lines with
2-10 segnents. VWile not recommended, round 12 is available for lines with nore than 10 segnents. Care nust be taken here
since the data fifo can go enpty in this round if nore than 10 segnents are specWriddmust be strobed into DataFifo

at |least 330 ns before it is read Authegi nning of line, DataFifo is filled to 13 words at the end of round 2 .

Al
12!

11!

3 cycles/ click 210 cycles/ line Bit Tine = 19.59 nS Cycle Tine = 137.14 nS
5 clicks/ round 7 bits/ cycle Bit clock = 51.04 Mz Round Tinme = 2.0572 uS
14 rounds/line 1470 Bit tines/line Line Time = 28.8 uS

Figure x. Timing For Output Machine

68

Line #

oA NO

Even
Field

798

Verti cal 800
Retrace
+
Bor der 896
1

3
5
7

Odd
Field

797

Verti cal 799
Ret race

+
Bor der 897

Dandelion Har dware M anual

Line=28.8uS |
1470 Bits
I i i i 1 i i 1 i i /I
11l 11/ i 11! 11/ 11/ 11/ i 11/ 11/
il i i i i 1 i 1 i
/l/ 11/ 11/ i 11/ 11/ 11l 11/ i 11/

a U Ve { U e Ve U Y e | Ve | Lo WL
o\ Vwr { e {vr |pmn vr | | p |
a |V Um Ve {Um VUme | U Ve | Ve | L | L fori 2.
|y {ym Vwr {i pm wr | pm| pi iz
a U Ve U Ve L VU Y e | L | e WL

o\ Ny { v Ve v i v | | p {\in

1 I 1! i 1 I I 1! i 1 1
i I i 11 i 1 i i 1l I 1

I I i I i I I i I I 1
/! I Il 1l I i I I 1l I 1

1 I 1! i 1 I I 1 I I 1
/! I i Il I i i i 1l I 1

1 I 1! i 1 I I 1 Il I 1
1/ i I i I I i I 1/ I 1

1 I 1 i I 1 I 1! I I 1
1/ I i i I i I i i Il 1!

1 I 1! I I 1l I 1! i Il 1
/! I i 1l I i I Il 1l I 1

1 I 1 i 1 I I 1 I I 1
//// I i i I i i i i I 1

1 I 1! i 1 I I 1! I Il 1
/! i Il 1l I i i I 1 I 1

1l I 1l I 1! 1l Il 1! I 1l 1
/! I i Il I i Il I 1l I 1

1 I 1! i I 1 I 1 I I 1
1/ i i i I i il i i I 1

1 1! 1 1 1 1 1! 1 1 1! 1
//// I Il 1l I i i I 1l I 1

* Menory accesses occur in round 11 only for nulti-segnent lines (i.e. cursor or V\Lu_d_cM)rizont al Retrace

1 Frame = Even Field + Odd Field
Field = 399 Active Lines + 32 Border Pattern Lines + 17.5 Blank LInes (retrace)

[7// | Low 64k bank
Menory used by display

|:|:|:|:[|:| Processor use during display
click 5 by display & nenory refresh.

Figure X. Resource Use During Display Frame

Display Controller and Clocks

Output Machine and Control Register

The output machine will be described in terms of the actions that take place during the output of a
horizontal line. Each horizonta line starts with 32 bits of border pattern, followed by 1024 bits of
data from memory, followed by 32 bits of border pattern, and ending with a blanking period during
which the horizontal retrace takes place. This sequence repeats every horizontal line and is shown
in the output machine timing diagram.

The output machine is controlled by a prom state machine with 210 states (1 state per machine
cycle). Itiscycled through these states by the display prom counter, which is a part of the system
clock. The timing diagram shows the outputs of the prom register marked with asterisks. There are
two time referencesin thisfigure. There are 1470 bits per line and they are marked on the top of
thefigure. There are 210 cycles of 7 bit times each, which are labeled in italics.

Starting at bit position 0 (look at line labeled video), the F16 counter in the output machine has just
been resynchronized to 0 by the EndLine and Tick7’ pulse. The output shift register and blanking
register are strobed at the beginning of bit 8 and every 8th bit thereafter during a horizontal line.
Thus, shift register loading, blanking, and unblanking are done on byte intervals.

Thefirst 32 bits of aline come from the border pattern register. The selection of the high or low
byte is done by aflip-flop which istoggled every horizontal linein afield. This produces the signal
BPBS (border pattern byte select). Thissignal is aways reset by avertical sync pulse so the first
line of afield comes from the low byte of the border pattern register. (More specifically, it isthe first

line after the trailing edge of the vertical sync pulse. Note that since the first few lines of afield are often blanked, it

may not correspond to the first visible line.)

On thefirst cycle boundary after the 4th border byte isloaded, PPic goesto alogic 1, such that the
next byte loaded comes from the high byte of the datafifo. Byte selection is performed by the high
bit of the bit counter. Thefifois clocked after the high byte isloaded. This process continues

until all 64 words have been loaded into the shift register and shifted out. While the low byte of
the 64th word is being shifted out, PPic goes low so that the next byte to go out comes from the
border register. While the 4th border byte is being shifted out, PBIk comes on so that blanking
starts on the next byte boundary. Blanking continues until the end of bit 71 (after the counter
wraps around), after which the next horizontal line starts with the border pattern again.

The horizontal sync pulse starts 8 bit times after blanking starts and ends 8 hit times before

blanking ends. Both horizontal and vertical sync signals pass through alow pass filter which
increase the rise and fall times to approximately 100 nS. This helps reduce high-frequency radiation
from the cable going to the monitor.

Data Fifo

A 16 word data fifo provides buffering and solves the problem of synchronization between the
memory system and the output machine. (While both memory and output machine run from the same clock,

the largest common period is the 19.6 nS clock period which is too fine to be of any value) Datais strobed into

the holding register and fifo with DCAS' and DCASDIyY’, respectively, both of which come from the
read machine. Words are read out of the fifo with the signal ReadDataFifo, which comes from the
output machine. The outputs of both the data fifo and border register are multiplexed onto a byte
wide tri-state bus, then through TTL-ECL converter to the parallel input of the output shift register
in the output machine. Selection of the appropriate output byte is done by the output machine.

The output machine controls the read machine such that the fifo never overflows or underflows
during aline.

Read M achine

The read machine does memory accesses during the first 4 clicks of around. It aways starts at the

69

70 Dandelion Har dware M anual

beginning of around and continues to either the end of the round or the last word of aline has

been accessed, whichever occursfirst. Readsin around are initiated by asignal, PD/P, from the
output machine. The read machine will determine the mix of full and page mode accesses
necessary and do the maximum number of memory accesses possible within around. The low 6
bits of the memory address always count from 0 to 63. The high 10 bits (line number) are specified
in the control fifo entry. Thelast word to be used from agiven line is also specified in the control
fifo entry (6 bits) and is used to advance to the next fifo entry when that word number is reached.
The three parts of the read machine (control fifo, end condition logic, and LRAS, LCAS
generation) are described in the following paragraphs.

Control Fifo

The control fifo contains 16 entries. Each entry identifies aline segment using 10 bits to specify the
line number and 6 bits to specify the last word in the segment. The control fifo isloaded from the
Y-Bus, unloaded by a signal from the end condition logic, and cleared by a bit from the control
register. The microcode must take care to load only the entries for one scan line per horizontal line
wakeup on the average. The control fifo should be cleared once per vertical field to eliminate the
effects of noise and assure its state at the beginning of afield.

Word Counter & End Condition Logic

The word counter counts from 0 to 63, synchronous with the memory accesses used to fill the data
fifo. The output of this counter is compared with the 6 bit last word field of the current control

fifo entry. When they are equal, the control fifo is advanced to the next entry. Thereisalsologic
to determine when afull (RAS and CAS) memory reference should take place. A full reference
must take place whenever one of the RAS bits at the memory chips changes. This can occur on the
first reference in around, when the control fifo is advanced, and on every 8th memory reference
due to the arrangement of bits in the memory system.

The number of accessesin around depends on the number of full (293 nS) and page mode (215
nS) accesses that occur. A maximum of 5 full accesses, 4 full and 2 page accesses, or 1 full and 6
page accesses can occur. Thus the total number of accesses canrangefrom5to 7. A prom state
machine looks at the combination of accesses and drops the signal EndRndRead’ during the last
access of around. The accessesin around can end early if word 63 isreached. Thesigna
InhibitRead also becomes true after word 63, locking out any further reads, independent of PD/P
signal from output machine, until is reset by the signal ClrDataFifo’ from the output machine.
Details of the state machine and other logic timing are in the Clock and Display drawing package.

LRAS-LCAS Generation

Thesignals LRAS and LCAS are the clocks for the low bank of the memory system. These signals
areidentical to RAS and CAS for processor memory references (411 nS cycles), but have a faster
full cycletime (293 nS) and a page mode cycle (215 nS) when the display is using the low bank
(indicated by Disp/Proc’ in the high state). 1n all cases, CAS follows RAS by 49 nS. Both of these
generators are simple state machines using one counter and discrete logic for decoding. They have
a19.6 nScycletime.

4.8 Clock Generation

The CP cycle clock (137.14 nS) is derived by dividing the display’ s bit clock by seven. The next
figure shows the relationships between the clocks generated on the HSIO card.

Display Controller and Clocks 71

1 Round
Click 0 I Click 1 I Click 2 I Click 3 I Click 4
1 232 2| 3l 2] 2| sl 2| 2| 3l [2] 3
Cick.0 1 411 nS i : : ' :
L] 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1
dick.1 |s P I]] I
1 1 1 1
I 15 ns — — I I I I
dick.2 1 1 1 1 1 1
L 1 1 1 1
1 1 1 1 1
1] 1 1 1 1
Cycl el’ 1 1 1 1 1
| 1 1 1 1
! 15 ns — — ! ! ! !
L] 1 1 1 1
Cycl e2’ 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1
Cycl e3’ 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 I Goes high
EndLi ne 1 1 1 1 1 Once every
L 1 | | L_14 Rounds __I
:131—| —||—6 nS typical | |137 ns| ! ! !
ppC k 1
mig! Iminim'mininiminimimt

Ty Uuuuuyyuyld

e 1

ns 1 8 LLE : I I
Weul se I : 78 |59 : JUI_;J J_I_Il.iJ JU
L | | O O 1

1
This line is L|;|_|

transition of C

Figure x. System Clocks (Backplane Timing)

72

5.0 Disk Controllers

Two types of rigid disks can be controlled by the Dandelion. Section 5.1 discusses the Shugart disk
controller located on the HSIO card. Section 5.2 describes the Trident disk controller, which is
found on the HSIO-L card.

5.1 Shugart Disk Controller

5.1.1 Overview

This chapter is concerned with the Dandelion’s controller for the Shugart SA4000 and SA 1000 type
disks. Itidentifiesthe major components of the system and their connections. It is assumed that
the reader will have read the SA4000 Fixed Disk Drive OEM Manual and SA1000 Fixed Disk Drive
OEM Manual from Shugart. This chapter is concerned with the function of the disk controller, not
of thedisk drive.

There are four major blocks in the Dandelion Disk Controller . They are the Input Conditioning,
Output Conditioning, Processor Interface and Serializer/DeSerializer circuits. Disk read data, disk
clocks and reference clocks arrive via the Input Conditioning circuits, as do disk statuslines. The
disk control lines, disk write data and write clocks are sent via the Output Conditioning circuits.
The Processor | nterface generates microcode service requests, detects the overrun condition and
passes data, status and commands along the X-Bus. Disk datais converted from 16 bit parallel
words to a serial data stream and back in the Serializer/DeSerializer.

5.1.2 Constraints
Cost

The Dandelion isintended to be arelatively low cost workstation. To this end, the hardware it
contains should be minimized. Thisleads to low manufacturing, testing and service costs. The
guiding principle of the controller’s design has been that only functions which occur too quickly for
microcode to handle or require hardware buffering are implemented in the controller. For example,
step pulses may be sent relatively slowly, so the step line is toggled by having the microcode send
control words in which the step line is alternately set and reset.

Another result of the cost constraint is that one controller board should serve to control both the
SA1000 and the SA4000 drives. Itisableto support drives with 2 to 32 heads. The effort required
to change the board from an SA1000 configuration to an SA4000 configuration issmall. Infact, it
islimited to unplugging a set of SA1000 cables and plugging in a set of SA4000 cables.

Disk Format

Thedisk isdivided into cylinders. Each cylinder represents a distinct position of the read/write
heads. Each cylinder isdivided into tracks, one per read/write head. The SA1004 drive has 4
heads, the SA4008 has 8 and the SA4104 has 16. Each track is divided into sectors. There are 28
sectors per track on the SA4x00 type drives, 16 sectors per track on SA1000 type drives. Each
sector isdivided into three fields, Header, Label and Data. The Header field is used to specify the
sector’ s physical position on the disk (cylinder, head and sector numbers), the Label specifiesthe
page’ s position in the file system and the Datafield holds the actual data. Each field is broken into
4 areas. A pattern of all zerosisfollowed by a synchronization word or address mark, the field's
data and aword of CRC checksum. The length of the synchronization pattern is 7 words on both

Shugart Disk Controllers

drive types. A synchronization word of al onesisused to define the first word boundry on the
SA4000 drive. An address mark serves asimilar purpose on the SA1000 drive. The Header field
contains 2 words of data, the Label field 12 words and the Data field 256 words. The CRC
checksum word following the data area of each field is used to implement an error detecting code.

The controller hardware does not preclude other disk formats. It is designed to read, write or verify
an individual field of asector. The length of each field, the number of fields per sector and the
number of sectors per track is set by the microcode. Thereis arestriction on the number of sectors
on SA4000 type disks. The SeekComplete signal on those disksis sent before the heads have really
settled so the controller adds a delay of 29 sector pulses before passing it on. Thus SA4000 type
disks should have no more than 28 sectors per track (the 29 sectors pulsesis intended to delay at
least 20 mS) or should be prepared to add some sort of extra delay in microcode.

One of the constraints on the design is that it must be possible to read, write or verify each field in
every sector of acylinder at the rate of one revolution per track. This meansthat in addition to the
raw data rate constraint, the inter-field, inter-sector and inter-track setup required by the hardware
must be minimized. A design which requires agreat deal of setup between sectors or fields may
not be acceptable. It should be possible to perform almost any combination of operations on the
fields of a sector. An exception to thisrule isthat when awrite is performed to one field, further
fields of that sector must either also be written or are assumed to be lost. The microcode must also
be capable of aborting operations on later fields based on the results of operations on earlier ones.
For example, if the Header and Label fields of a sector are to be verified before the Datafield is
written, the Data write should be aborted if either the Header or Label verify operationsfail.

The SA1000 drive does not contain a data separator, the SA4000 drive does contain one. The
controller board sends and recieves MFM (M odified Frequency Modulation) encoded datato and
from the SA1000 drive and NRZ (Non Return to Zero) datato and from the SA4000. The SA1000
datarate is 4.27 MBits/Sec (234 ng/bit). The SA4000 datarateisfaster at 7.14 MBits/Sec (140
ng/bit). The SA1000 datarateis governed by aclock in the Dandelion, the SA4000 datarateis set
by drive itself.

Function Allocation

The most complex operation on afield is verify. It requiresthat each bit be checked against a
template from memory, a CRC checksum be maintained, a memory address updated and aword
count decremented. Four pieces of information must be maintained, an address, aword count, the
data to be verified and some sort of checksum. While it would be possible to combine the address
and word count by requiring all field templates to begin (or end) on page or nibble boundries, this
isnot generally acceptable. The designer has been unable to find an encoding scheme which makes
it possible to combine the data to be compared and the checksum. These seem to be the only
remotely workable combinations. Hence al four quantities must be kept independently.

The four quantities must be divided between the two R registersin the processor and registersin
the controller. The lack of U register speed precludes their use. One must spend an entire click to
update one U register (read it, change it, then store it), yet the microcode is only allowed one click
per word transferred. Due to the main memory addressing scheme, the address must reside in one
of the R registers. Thisleavesthe other R register available for either the checksum, datato be
verified or the word count.

Were the R register to be used for the checksum, the hardware would contain the word count and
the data to be verified. This scheme would have the advantage of substituting a simple counter for
amore complex CRC chip. However, the microcode would have to both read the disk datato
maintain the checksum and send memory data to the controller to be verified. This scheme has
latency difficulties. The disk controller and processor use different, unsynchronized clocks. After
sending a Service Request, the controller expects an interval of random, but bounded, length will
pass before microcode reads or writes the proper buffer. The Service Request is sent so that the

74 Dandelion Har dware M anual

controller will have the buffer ready before the minimum service time and will not requireit again
before the maximum service time. As seen from the processor side, there is awindow during which
each Service Request must be served. If the service takes place too soon, the buffer may not be
ready; if it istoo late, the controller may have used the buffer again. In the case of the SA4x00

type disks, the service window is barely one cycle wide. The Service Request is sent so thisis cycle
2 during Read operations and cycle 3 during Write and Verify operations. Sending and receiving
datain one click would require 2 cycles, hence a2 cycle service window. Thisis reason the
microcode cannot maintain the checksum while the controller does data verification.

It would be possible to compute the checksum and maintain the word count in the controller while
doing the address and verification in microcode. Unfortunately, the microcode would be messy and
the status of an operation would be partially in microcode, partially in hardware. The controller as
designed allocates the address and the word count to microcode and the data and checksum to
hardware.

5.1.3 Microcode - Hardware I nterface

The controller has been designed with the idea of minimizing the amount of hardware used. As
much functionality as possible has been left in the microcode and software. Thisresultsin fairly
simple controller hardware.

Many of the lines used to control the disk are set directly by microcode and are ignored by the
controller. For example, the Step and Direction lines controlling the position of the disk’s
read/write heads are merely bitsin the control register that are relayed directly to the drive. The
same istrue for many of the status signals returned by the drive, they are read and interpreted only
by the microcode or software.

The controller contains one word of buffering for write and verify operations and one word for read
operations. As explained above, the Dandelion architecture allows the designer to calculate the
minimum and maximum latencies between a service request and the processor’ s response to ensure
an overrun never occursin normal operation. If the disk microcode stops servicing the hardware,
the overrun flag is set and write operations are disabled to restrict the amount of random data
written on the disk.

This section will begin with an overview of the status, control and data registers then proceed with a
detailed description of each.

Control Register

This 16 bit register receivesits inputs from the X-Bus, sending them to both the disk drive and to
the controller. Itisreset by IOPReset’. The control bits are arranged so that when reset, the
controller and disk are dormant. It is expected that IOPReset’ will be held active while power to
the machine is being turned on or off.

Satus and Test Registers

Three types of 16 bit quantities may be read from the controller. Oneis datafrom the disk, the
second is the status of the current disk operation, the third is a group of test points on the disk and
display controllers. Thefirst will be discussed below under Read Data Register. The second two
are independently sent to the X bus. The operation status is composed of some lines from the drive
itself (Track00, DriveNotReady, etc) and some from the controller (Verify Error, Overrun, etc).
These are the normal lines read using the _ K Status command to guide the execution of a disk
operation. Thetest lines are read using the K Test command by diagnostic microcode or software
to directly test the control and status lines leading to the disk.

Shugart Disk Controllers

Some of the Status signals should only be sampled on word boundaries. The CRC error flag, for
instance, isonly valid after the last bit of the CRC checksum has been seen. Sampling on word
boundries also gives the microcode an entire word time, as opposed to one bit time, to freeze the
final statusflags of a datatransfer. This sampling is done by the Word Status Register.

Write Data Register

Datais sent from the processor to the controller in 16 bit words. The words are buffered in the
Write Data register before being loaded into a shift register. The buffer is automatically cleared
before atransfer begins. It isloaded by the microcode in response to each service request during a
transfer. By calculating the minimum and maximum latencies between request and service, one
may be assured that the buffer is always |oaded after the previous word has been used but before
the current word is needed.

Read Data Register

Like the Write Data register, thisisasingle word of 16 bits. It isloaded from the controller’ s shift
register each time aword boundry passes. Just beforeit isloaded, a service request is sent, asking
the disk microcode to remove the word. Aswith the Write Data buffer, one may assure oneself
that thiswill always happen after the buffer isloaded but beforeit isloaded again.

A wrap-around feature has been included in this controller allowing diagnostic microcode to verify
that data may be written and read correctly. The method for using the feature depends on the disk
being controlled. The SA4000 provides one clock used throughout the controller. The data sent
out isintercepted just before the final drivers and inserted into the input data stream. It isthen
shifted back into the shift register. By having the microcode start a write operation, then perform
reads instead of writes, one may verify that the data being written is correctly re-received. Note
that the re-received data will be arotated version of the data sent.

The SA1000 drive supplies no clock. The clock used to write the datais derived from the stable
processor clock. If thisclock were used for the entire controller, the controller’ s data separator
would not betested. The data separator is tested by allowing it to re-produce the NRZ datausing a
clock derived from the re-received MFM data stream. Because of jitter between the derived clock
and the reference clock, we may not reliably route the re-produced NRZ data back to the shift
register. Hence one may not expect to see the data sent in the ReadData register. The address
mark recognizer section of the data separator does record the polarity of bit 14 of the address mark
however. It appears on the Header tag bit in the KStatus register. One may test the controller by
sending address marks and sampling the Header tag status bit after each one. Each address mark
must be sent in its own field, that is, the TransferEnable bit should be reset between each one. The
Header tag status bit should match bit 14 of the address mark just written.

Service Reguest / Overrun Machine

As seen above, the controller must be able to generate service request to its microcode and
determine whether the requests have been answered. Thisisthe task of the Service
Request/Overrun machine. Thetiming of Service Requests is based on the BitCount within a
word, the time within afield, the operation being performed and the data rate of the disk. Only
two disk types are supported and the data rates of both are fixed.

During data transfer operations, it is crucial that the disk microcode keep pace with the hardware.

If the microcodeis early or late, especialy during write operations, disk data may be destroyed.
The Overrun section of this machine will set the Overrun signal whenever a buffer is needed by the
controller before it has been serviced by the microcode. Thereafter, no data may be written (the
disk’s WriteEnable line is turned off) and the Service Request signal is set until the microcode
finishes the operation and turnsit off. The microcode should sample the status at the end of every
operation, testing the Overrun signal. An unexpected conseguence of turning off WriteEnable very

75

76

Dandelion Har dware M anual

early in the writing of afield isthat the drive will often get a WriteFault error. 1f WriteFault and
Overrun occur together during debugging, it is best to investigate the Overrun first.

Service requests may be used not only to synchronize the transmission of data but also to sense
status conditions. For example, it would be wasteful to burn 1/5 of the processor waiting 20 ms for
an IndexFound signal. The same holds true for a SeekComplete. These and other signals may be
used to generate service requests directly. The microcode may then yield its click to the emulator
while waiting. The signals are chosen using the Operation field of the Control register.

6.1.4 Detailed Register Description

KCt1 Register
Head Sel ect Drive |Fault Reduce | Step |Direct |Firm |Trans- |Wite |Wkeup Control |[Wite
war e fer
16 | 8 | 4 | 2 | 1 Sel ect | Cl ear I W I'n Enabl e | Enabl e | CRC 0 1 Enabl e
KSt at us Regi ster
) . Sect or . . .
Head Sel ect Seek Track | Firm | ndex Found/ SA1000 |Drive |Wite |Over- CRC Verify
Com war e Header / Not run
16 | 8 | 4 | 2 | 1 plete 00 Enabl e | Found Tag SA4000' | Ready | Faul't Error Error
KTest Regi ster
Di sk | Di sk Di sk Di sk Seek Direct-| BHori z | Reduce | TTL- Sector’| Drive |BVert’ | TTL- Step’ | Read Wite
Read | Read Qutput |Wite | Com tion Vi deo Vi deo’
a k Dat a a k Dat a plete’ |In’ W Sel ect’ Gate Gate

Shugart Disk Controllers

Control Register

Theregister isloaded by the processor when a"KCtl _ xx" type instruction is executed in
microcode. This may aso be done as part of a Mesa "Output” instruction. The command word is
divided into two parts intended for the drive and the controller. The meaning of the bitsin the
Drive Control field are explained fully in the appropriate Shugart manuals. They are listed below
with a brief description. A list of Operation bit meaningsis given below. Use of al bitsin the
control word will be given in the section on microcode usage. Control lines required by the drive
but not listed below are the responsibility of the controller, not the microcode.

Drive Control

HeadSelectl - HeadSelect16: These 5 bits are used to select one of the read/write heads. They are
not latched by the drive; all commands must contain them. For example, when one writes afield

by sending awrite command and awrite CRC in succession, the proper head select bits must be
present in both commands. To ensure the drive’ s setup times are met, acommand word containing
the proper HeadSel ect lines should be sent at least 20 uS before one containing the HeadSelect lines
and the operation to be performed.

DriveSelect: The DriveSelect bit has been included even though only one drive may be connected
at atime. Thisis because releasing DriveSelect has useful side effects. The SA1000 type drives
lack a FaultClear input, Write Faults are cleared by de-activating the DriveSelect signal. The
SA4000 drive has afeature enabling it to cut the power to its stepper motors when not selected.
This can result in a substantial power savings. The power may be cut by software when the drive
has been idle for some nominal interval. When re-selected, one must wait 20 ms before using the
drive. Thistimeinterval may be sensed using the SeekComplete signal which is automatically
cleared when the drive is de-sel ected.

FaultClear: The FaultClear bit is only active when an SA4000 drive is connected to the controller.
Write Faults on the SA1000 are cleared by turning off DriveSelect as explained above. An SA4000
WriteFault is cleared by activating both DriveSelect and FaultClear then de-activating FaultClear.
If the WriteFault remains, the driveis probably broken.

Reducel W: Thisbit is only significant when writing on the SA1000 type drives. These drives
require the write current to be reduced on cylinders 128 through 255. This bit should be set by the
microcode when writing on these cylinders. During read and verify operations on SA1000 disks and
during all operations on SA4000 disks, this bit is ignored.

Step, Directionin: The position of the read/write heads on both the SA1000 and SA4000 disksis
controller by a stepper motor. The heads will move one cylinder for each complete pulse of the
Step line. A pulseis sent by sending two control words. In thefirst, the Step lineis set, the the
second, itisreset. The direction of movement is governed by the Directionin line. When
Directionln is set during a series of step commands, the heads will move towards the higher
numbered cylindersin the middie of the disk. To satisfy the disk’s setup times, a command word
containing the proper Directionln bit should be sent at least one cycle before the first Step pulse It
is also recommended that microcode should wait for SeekCompl ete before beginning any stepping
operation.

Both the SA1000 and SA4000 drives have two stepping modes, normal and buffered. In normal
mode, a1 microsecond pulseis sent every millisecond. The heads move every time apulseis sent.
Thismode is used during arecalibration so the TrackOO signal may be sensed. In buffered step
mode, a series of Step pulses with a mimimum period of 2 uS and minimum width of 1 uSis
accumulated in the drive. Once 350 uS have elapsed without pulses, the drive moves the heads. If
more step pulses arrive once the heads are in motion, their final position is undefined. Thus,
buffered step mode should be used by microcode, not software, so pulse timing may be rigidly
controlled.

77

78 Dandelion Har dware M anual

Operation Control

FirmwareEnable: The FirmwareEnable bit is set whenever the disk microcode is running. In
addition to acting as a status bit for higher level software, it is used to generate a service request for
overhead operations.

TransferEnable: TransferEnable is set whenever a data transfer istaking place. A datatransfer
encompasses exactly onefield of a sector. Writing or reading the data of a sector will generally
require three data transfers (verify header, verify label and write or read data). The transfer
operation includes the recognition or writing of the VFO synchronization pattern, sync word or
address mark and the CRC checksum as well as transferring the data. When TransferEnableis
reset, all the state machines used to transfer or recognize data are reset.

WriteCRC: The WriteCRC bit causes the CRC checksum to be written at the end of afield. The
BTransferEnable and BWriteEnable lines must also be true for thisto be accomplished. Proper use
of thisbit in writing afield will be explained in the section on microcode usage.

WakeupControl.(0,1): These bits together with TransferEnable are used to specify the condition
generating the microcode service request. The conditions allowed are;

TransferEnable | WakeupControl.(0,1) Condition

0 00 FirmwareEnable

0 o SeekComplete

0 10 SectorFound (valid only on SA4000)

0 11 IndexFound

1 00 Word Ready from Read operation

1 0 Word Needed for Write or Verify operation
1 10 <no wakeup>

1 1 <no wakeup>

WriteEnable: The WriteEnable bit controls the write amplifier on the drive. In addition, it is used
by the controller to decide when awrite operation istaking place. The WriteGate to the driveis
enabled only when WriteEnable and TransferEnable are true and Overrun is false.

Satus Register

The status register isread using the"_ ~KStatus' clause in microcode. All status bits are inverted
on the X bus because use of the comparable non-inverting drivers was forbidden when the board
was designed. The bitswill be described as though the inverstion were not present. It is expected
that when the user either reads the bitsinto the CP or uses them as X bus branch conditions, the
inversion will be taken into account.

There are two main purposes for status bits: diagnostic and operational. Some bits are included so
diagnostic code may attempt to isolate afault to either the drive or the controller. Operational bits
are needed for normal operations. Diagnostic bits are generally those sent to the drive and also
read back by the controller.

HeadSelectl’ - HeadSelect16': These are diagnostic lines. They should give an inverted version of
the head select lines in the control register. They are used to check that the proper head is actually
being selected.

Shugart Disk Controllers

SeekComplete: This signal indicated the read/write heads are ready for use. It is set when the
driveisready , it is selected and the heads are not in motion. Head motion can be divided into
two parts. First the stepper motor guides the headsto anew cylinder. Second, after they arrive,
they vibrate for afew milliseconds. Thefirst interval is called the seek time, the second is called
the head settling time. The head settling time for both the SA1000 and SA4000 drivesis about 20
mS. This can be much larger than the seek time for short seeks. The SA1000 drives supply their
own head settling delay so their SeekComplete really means the heads have stopped. The
SeekComplete signal from the SA4000 drives means only that the stepper motor has arrived, the 20
mS must be added externally. Thisisdonein the controller hardware (by counting 29 sector
pulses). Thusasfar asthe user is concerned, SeekCompl ete always means the heads have moved
and settled. This counting of 29 sector pulses when an SA4000 type disk is attached isthe
controller hardware’ s only assumption about the number of sectors on atrack. If the number of
sectors on the SA4000 or SA4100 type of disk isincreased, some sort if external delay will be
needed.

Track00: This status line becomes active whenever the disk’ s read/write heads are over cylinder O.
It is probably only valid when SeekCompleteis asserted. It is used by microcode and software to
recalibrate the heads. Note there are afew cylinders beyond cylinder, just as there afew beyond
the maximum cylinder. A recalibration algorithm should take thisinto account. In particular,
simply stepping out from the current position is not guaranteed to lead to cylinder O.

FirmwareEnable: Thishit is used to indicate the microcodeis active. It directly reflects the
FirmwareEnable control bit. It ismostly by convention that this bit is set while the microcode is
active; it would be possible to turn it off when the service requests are derived from another source.
The convention is useful when synchronizing software with disk microcode.

IndexFound: Theindex pulse from the drive occurs once per revolution and lasts between 1 and
10 uS. Itisused to mark aspecific position on the disk, usually the beginning of sector 0 on all
tracks. The IndexFound bit is alatched version of the drive'sindex pulse. Thelatchis cleared
using the "CIrKFlags" clause in microcode. the IndexFound flag may also be used to generate
service requests.

SectorFound/ HeaderTag': The meaning of this bit depends on the drive connected. When an
SA4000 or SA4100 type drive is being controlled, alatched version of the drive’ s sector pulseis
available here. The latch may be cleared using the "CIrKFlags' clause in microcode. The
SectorFound flag is commonly used to generate a service request so the microcode may detect the
start of a sector.

The SA1000 drives have no sector pulse. In order to find the beginning of a sector, the microcode
commands the controller to verify each field asit arrives. The address mark used for header fields
differs from that used for label and datafields. The header address mark hasa 0 in bit 14, the
address mark used for label and data fields hasa 1 there. After reading afield, the value of bit 14
isdisplayed on this status bit when an SA1000 type drive is connected. Using it, microcode may
verify that the field seen was indeed a header field in addition to having the correct data and CRC.
The polarity was chosen so this bit could be used as an error indicator when looking for the correct
header (1 => not a header). Use of this bit is explained further in the section on microcode usage.

SA1000/SA4000': Thishit is set when an SA1000 type drive is attached to the controller. Itis
reset when an SA4000 or SA4100 type driveis attached. The two classes of drives require
completely different cables. This bit is connected to aline that is grounded in the SA4000 and
SA4100 cables and is pulled up in the SA1000 cable. Note the controller gives no hint about the
number of heads per track or other drive variables. Determination of other disk parametersis
initially done using experimentation. It is expected that configuration information will be recorded
on the disk for normal use.

79

80 Dandelion Har dware M anual

DriveNotReady: The drive’s Ready line isinverted and sent here. The Ready line indicates the
drive has power, iswarmed up, is selected and is generally ready for use. Thelineisinverted here
so it may be used as an error flag (not ready => error). Software and/or microcode should wait

for thisline to become active after power on before initiating any operations. In addition, it should
be checked after each operation to ensure the disk hasn’t broken.

WriteFault: Each type of drive can detect someinternal error conditions. On the SA4000 and
SA4100 drives these include WriteGate without write current in the selected head or vice versa,
multiple heads selected, WriteGate active when Ready inactive and WriteGate and ReadGate active
simultaneously. The SA1000 set is less comprehensive including only write current without
WriteGate and multiple heads selected. When a WriteFault occurs (not necessarily only during
write operations), it islatched in the drive. This status bit is abuffered version of the drive’ slatch.
In general, service personnel prefer that software not automatically clear this line when an error is
detected. This gives them some chance to see which condition caused the problem. Thisline
should be cleared at the beginning of an operation. On the SA4000 and SA4100 type drives, itis
cleared by asserting both DriveSelect and FaultClear in a command word, then sending a command
with only DriveSelect. The SA1000's WriteFault is cleared by de-selecting the drive (writing a
command word with DriveSelect=0) for at |east 500 ns. If, because of some hardware condition,
an Overrun occurs, the controller will immediately clear WriteEnable. This sometimes causes a
WriteFault. The WriteFault will then persist through subsequent operations until cleared though
the Overrun may vanish with the next operation. When having a WriteFault problem, it is best to
seeif it is caused by an Overrun.

Overrun: It isimportant to minimize damage to the disk if the processor runs wild and spuriously
enables awrite operation. If the controller’s service requests for data are not answered, the Overrun
bit will be set and WriteEnable turned off. If this happens early in the field being written, the

drive will sometimes detect a WriteFault as explained above. Presence of this bit means either the
controller or the drive is broken or that the jumpers on the drive are not correct. Disk microcode
should check this status bit after every operation.

CRCError: The controller contains a 16 bit cyclic redundancy code (CRC) generator and checker.
The WriteCRC control bit is used to append the generator’ s contents to each field written. After
each field read or verified, this bit should be checked by microcode to ensure the field had the
correct CRC. Likeall the error bits, this oneis set only when there has been an error. The
CRCError bit isvalid only just after the checksum word has been processed by the checker. There
isaone word window for the microcode to stop the transfer, freezing the status. Thisis discussed
in the microcode usage section. The CRCError bit is reset using the microcode’ s "ClrKFlags'
clause before each operation.

VerifyError: The verify operation compares bits on the disk with atemplate in memory. It is used
mainly to find headers and check labels. The verify operation isimplemented by writing the
template to the controller while it is reading the disk data. If one or more of the bits differs, the
VerifyError bit isset. Itisreset using the "CIrKFlags' clause in microcode.

Test Register

Thisregister is used by diagnostic code to read signals on the cables leading from the HSIO board.
In this way, the diagnostic code may decide whether a particular fault liesin the HSIO card or in
the attached peripheral. The register isread using the" ~KTest" clause in microcode.

DiskReadClk: Thissignal is used only when controlling SA4000 and SA4100 drives. It allowsthe
processor direct accessto the disk’s 140 ns clock. Since this clock is not synchronized with the

processor clock, any given sample of it may return either a1 or a0. Diagnostic code should read it
repeatedly to seeif it changes state. The online diagnostics require detection only of stuck-at faults.

Shugart Disk Controllers

DiskReadData: Thisisthe datadirectly from the disk. The SA4000 and SA4100 disks return NRZ
(Non Return to Zero) data; the SA1000 returns 50 ns MFM (Modified Frequency Modulation)
pulses. Again, the diagnostic microcode only hopes to catch this line changing state with repeated
samples.

DiskOutputClk: The SA4000 drives use this clock to sample the controller’ swrite data. The
SA1000 drives use it as atime base for seek operations. It is another signa diagnostic code can
sample.

DiskWriteData: This can actually be controlled by the diagnostic code. By writing words of either
al O'sorall 1I'sthislinecan besetto 0 or 1.

SeekComplete’: Thisisaversion of SeekComplete directly from the cable. The controller delays
an multiplexes this line before sending it to the K Status port (see above).

Directionin’: Thisisone of the signals sent to the drive that isre-received from the cable. Itis
used to test the control register and the drivers.

BHoriz: Display signalsare also available in thisregister. Thisisthe horizontal sync signal sent to
the monitor. Itisactivefor ~7 uS every 28.8 uS. Asusud, it may be sampled by diagnostic code.

Reducel W’: The version of the Reducel W signal (see Control Register above) on the interface
cable to the SA1000 disk is available here. It may be directly controlled by the diagnostic code.

TTLVideo: Thisisthe positive true version of the video signal sent to the monitor. Since this has
aminimum pulse width of 19.59 ns, it probably shouldn’t be sampled arbitrarily. One may set the
border pattern to all zeros or all ones then have the display controller send all border pattern. In
thisway, the video signal will usually take on the known value. About 1/4 of the time (7/28.8) it
will always be set to zero for horizontal retrace.

Sector’: The SA4000 and SA4100 drives send a pulse at the beginning of each sector. The pulses
are 1.1 uSin duration and occur roughly every 710 uS. By diligent sampling, diagnostic code may
see thisline change state.

DriveSelect’: Like Reducel W and Directionln, thislineis available directly from the interface cable
to test the control register and drivers.

BVert': Thisisthedisplay’svertical syncsignal. Itisactive LO. It may be set or reset directly in
the DCtl register.

TTLVideo': Thisisthe negative true version of the display’svideo signa. It wasincluded in
addition to TTLVideo so that both halves of the differential driver might be tested.

Step’: Thisisanother cable signal available to test the control register and drivers.

ReadGate': Only the SA4000 and SA4100 drives use ReadGate'. It is set by the controller during
all read and verify transfers. Diagnostic code may start aread or verify operation then sample this
signal.

WriteGate': Thisisthe version of write enable sent to the drive. If datais not supplied by
microcode after turning on WriteEnable, this signal should remain active LO for one word time,
then go inactive. If the controller is serviced by either writing or reading data or writing a control
word each time a service request is sent, this signal should remain active.

81

82 Dandelion Har dware M anual

ReadData Register

Data read from the disk resided in one 16 bit buffer. It isread by microcode using the"

KIData' clause. When atranfer isin progress, one word must be read each time the controller
requests service. Since the controller will request service in consecutive disk clicks, the disk
microcode may use only 1 click to transfer the data. In addition, when SA4000 or SA4100 drives
are connected, the datain the ReadData register isonly valid in cycle 2. Thetiming is so close that
it could only be valid in one of the cycles. Cycle 2 was chosen so the data could be written to
memory.

WriteData Register

Datato be written or verified is stored in this register using the "KOData_" clause. The register
holds a single 16 bit word and must be filled each time the controller sends a service request. As
with all datatranfers, the microcode has only 1 click to read memory, increment the memory
address, decrement the word count and decide if the end of the transfer has been reached. When
the SA4000 or SA4100 is connected, the "KOData_" statement should only be executed in cycle 3.
Generally dataiswritten to the disk from memory and memory datais availablein cycle 3. Note
that one may substitute aread from KIData or awrite to KCtl for the write to KODatain cycle 3.
The read from KIData might be used during a wrap-around test and the write to KCtl is always
used to send the WriteCRC command at the end of afield.

Shugart Disk Controllers

5.1.5 Microcode Usage

The most useful document for one starting to write microcode for the disk is existing disk code.
The Pilot disk microcode is stored on [Idun]<WDlion>DiskDIlionA.mc and
[Idun]<WDlion>DiskDlionB.mc. This codeisamply commented. It isbroken into two files only
because it istoo large for Bravo to handle. The disk microcode also makes use of two definitions
files stored on [Idun]<WDlion>, DiskDlion.df and Dandelion.df.

The beginning microcoder should read the Dandelion Microcode Reference to become acquainted
with agreat many interesting and obscure Dandelion facts. This discussion will assume a
reasonable facility with Dandelion microcode.

The DiskDlion microcode was written to provide adequate performance while taking as few
microinstructions as possible. It was decided that the SA4000 and SA4100 type disks would have 28
sectors per track (same as the Dol phin) and the SA 1000 disks would have 16. Each sector has the
three standard fields, Header, Label and Data. The Header field has 2 words and the Datafield

has 256. The Label field was originally 8 words long but finally grew to 12 words. The microcode
had to be written so operations could be carried out on runs of consecutive sectors crossing track
boundries. It was hoped that the microcode could fit in 128 control store words but 256 words was
acceptable. The current code fitsin 236 words.

The reguirement for processing consecutive sectors puts severe timing constraints on the code. It
limits the amount of inter-field, inter-sector and inter-track overhead allowed. The original code
took a compact command representation, parsed it and generated the necessary control words. This
code not only did not meet the timing requirements, it was aso much too large. The second
version of the code required the user to specify series of disk operations as small program of simple
instructionsin the IOCB. Thistook advantage of the fact that the same task might be needed many
timesin arun of pages, but code to implement that task would only occur once. An instruction to
the disk microcode might be Increment and Skip If Zero or TranferField. This approach also
alowed the user great flexibility at the head level; diagnostics could use the standard disk
microcode and the disk format could be changed without changing the microcode. The resulting
code took only 128 words but did not satisfy the performance requirements. Thefinal versionis
based on the second one, with a" Transfer Run of Pages' command and a "L oad Parameters"

added. The parameters specify the operation to be performed on each field, the length and location
of each field in memory and the error mask to be used.

This document will assume that the reader wishes to know how to use the controller hardware, not
how to load parameters or determine a disk format. The controller hardware is designed to assist
with the transfer of asingle field within asector. It has no knowledge of the number of cylinders,
heads or sectors on the disk (except as noted in the explanation of the SeekCompl ete status bit).
The DiskDlion microcode has a subroutine called TransferField that accepts asinput the field's
operation, length and location in memory. Itisused for al read, write and verify operations. The
rest of this chapter will be concerned with the TransferField subroutine.

Although the same routine is used to perform all operations on all fields with both the SA 1000 and
SA4000 type disks, the operations will be explained separately. The reader may use the
TransferField routine as an example of how they may be combined. General principles which
apply to al operations will be explained first.

The controller hardware contains no information about the length of the field it is processing.
When writing, it writes the data given until it receives a disabling control word instead of a data
word. The sameistrue of reading and verifying. The length of each field is determined by
microcode.

Timing, especially for the SA4000 and SA4100 disks, is critical. Those drives contain data
separators which should only be enabled when the heads are over synchronization gaps containing

83

84 Dandelion Har dware M anual

all zeros. The microcode calculates the position of the read/write heads by dead reckoning. It can
sense the index and sector pulses from the drive and can know the number of microinstructions
executed since the pulse. Asaresult of this, the number of microinstructions executed between
callsto TranferField cannot be a function of the operation being executed. In fact, the number
clicks executed between the end of afield and the beginning of the next field must be independent
of operation. Of coursg, it is reasonable for the number of instructions to be afunction of the field.
For example, the number of clicks executed between the end of the Label field and the beginning
of the Data field should not depend on the operations performed on either the Label or Data fields
though it may differ from the number of clicks between the Header and Label fields.

Writing on the SA4000 and SA4100
Each field on an SA4000 or SA4100 has 4 parts. These are:
Name length value

Synchronization gap 7 words 0000
Synchronization word 1 word FFFF X
Data 2 words Header Field, or
12words Label Field, or
256 words DataField
CRC checksum word 1 word calculated CRC checksum

The data separator in the drive needs at least 8 uS (~4 word times) to acquire the data stream. The
microcode can only know the position of the read heads to an accuracy of plus or minus one click.
Delaying one click after the nominal beginning of the synchronization pattern gives areal delay of
from zero to two clicks. To ensure at least a1 click delay, the code must wait for two clicks. This
means the real delay could be three clicks so the synchronization gap is 3+4 or 7 words (where the
time between clicks ~= 1 word time).

Code for writing on the SA4000 or SA4100 disk should proceed as specifed below. Writing the
Header field is used as the example, differences between the Header and other field will be
explaned | ater.

1. Preparethe parameters used for writing the Header field.

2. Send acommand to the controller containing the number of the head to be used, DriveSelect,
FirmwareEnable and WakeupControl=3. This causes the next click to take place just after the next
sector mark has been found. If the field is not the Header field, this step must be skipped. The
command word would be 0426’ x + 800" x* HeadNumber. Note that if the Header for Sector O is
desired, one must have the microcode find the index mark and count 27 sectors marks before
starting this step. Having done this, the next sector mark must belong to sector 0. One could
simply find theindex mark and start writing if one were willing to make the operation of writing
the first sector different than that of writing the rest of them.

3. After finding the sector mark, Ny, clicks may be used for further field set up. The minimum

time between when the Find Sector control word is sent and the write is started should be 10 uS (5
clicks) to give the drive time to select the heads properly.

4. Thecontrol word is sent starting the write. This control word contains the number of the head
to beused, DriveSelect, FirmwareEnable, TransferEnable, WakeupControl=1 and WriteEnable. It
is 0433’ x + 800" x* HeadNumber.

5. Thecontroller will write the first two words of synchronization pattern automatically. The
microcode should provide 5 more words of 0to KOData; al in cycle 3.

Shugart Disk Controllers

6. Themicrocode supplies one word of FFFF x to the controller in cycle 3. Thisisthe
synchronization word used by the controller hardware to find the word boundries in the serial bit
stream when the field is read.

7. Microcode should execute aloop which transfers one data word per click to the KOData port.
All transfers should take placein cycle 3. Seethe DiskDlionB.mc file for an example of such a
loop.

8. A control word should be sent causing the CRC checksum to be appended to the field. The
control word isidentical to the one used to start the write operation with the addition of the
WriteCRC bit. It is043B’x + 800’ x* HeadNumber.

9. Thesame control word should be sent again. The controller is pipelined to the extent that one
word is being sent to the disk while the next word is received from the processor. Thusthe
controller cannot be stopped now as this would cause the CRC to be chopped off. Some word
must be sent to the controller to prevent an Overrun condition. Sending the same control word is
as easy as anything else.

10. A command should be sent disabling the Controller. It should contain the number of the head
to be used in the next field, DriveSelect and FirmwareEnable. It is 0420’ x+800" x* HeadNumber.

11. The DriveNotReady, WriteFault and Overrun status bits should be checked. If there was an
error, the operation should probably be aborted. The disk task’s double bit memory error flag in
the M Status register should also be checked. The errors recorded while the disk task is reading
memory do not cause atrap but they are recorded.

The process of writing fields other that the Header is quite similar. Step 2 may be eliminated since
the sector has been found and the head number established. The number of clicks used for setup
should be minimized, thereis no minimum value. One should take care that the number of clicks
executed between fields isindependent of the operation performed on the fields.

Writing on the SA1000

Thisisintentionally quite similar to writing on the SA4000. The differences are that the SA1000
has no sector marks, it uses an address mark instead of a synchronization word and one is required
to wait for 2 clicks to elapse after starting the CRC write intead of 1.

Because of the fact that there are no sector marks on the SA1000, the position of a Header directly
determines the position of a sector. For thisreason, individual sectors cannot be formatted; one
must format an entire track in one run. The microcode finds the index mark and writes sectors as
fast aspossible. Once atrack isformatted, it is, of course, possible to write the Label and Data
fields of its sectorsindividually. Shown below is the sequence used to write the Header of Sector O
on atrack. When writing other Headers in the formatting run, the step used to find the index mark
is eliminated.

Because address marks are used to define the beginning of fields, all previous address marks on a
track must be erased before formatting. Thisis done in the Pilot system by having the head tell the
microcode to write avery long sector (the length of atrack). Any legal MFM pattern is adequate.

85

86 Dandelion Har dware M anual

The format for afield on the SA1000 is:
Name length value

Synchronization gap 7 words 0000

Address Mark 1 word A141' x - Header Field
A143'x - Label or Data Field
Data 2 words Header Field, or

12 words Label Field, or
256 words DataField
CRC checksum word 1 word calculated CRC checksum

1. Preparethe parameters used for writing the Header field.

2. Send acommand to the controller containing the number of the head to be used, DriveSelect,
FirmwareEnable and WakeupControl=2. This causes the next click to take place just after the
index mark has been found. If thefield is not the Header field of Sector O, this step must be
skipped. The command word is 0424’ x + 800’ x* HeadNumber.

3. After finding the sector mark, Ny, clicks may be used for further field set up. The minimum

time between when the Find Sector control word is sent and the write is started should be 10 uS (5
clicks) to give the drive time to select the heads properly.

4. The control word iswritten starting the write. This control word contains the number of the
head to be used, DriveSelect, FirmwareEnable, TransferEnable, WakeupControl=1 and
WriteEnable. 1t is0433'x + 800" x* HeadNumber.

5. Thecontroller will write the first two words of synchronization pattern automatically. The
microcode should provide 5 more words of 0 to KODatg; al in cycle 3.

6. The microcode writes the data word A141’ x to the controller in cycle 3. Thistriggersthe
writing of the Header’s address mark. Thereal address mark isanillegal MFM string. It can be
distinguished from ordinary data and is used by the controller hardware to find the start of afield.

7. A loop should be executed which transfers one data word per click to the KOData port. All
transfers should take placein cycle 3. See the DiskDIlionB.mc file for an example of such aloop.

8. A control word should be sent causing the CRC checksum to be appended to the field. The
control word isidentical to the one used to start the write operation with the addition of the
WriteCRC bit. It is043B’x + 800’ x* HeadNumber.

9. Thesame control word should be sent two more times. The controller is pipelined to the
extent that one word is being sent to the disk while the next word is received from the processor.
Thus the controller cannot be stopped now as this would cause the CRC to be chopped off. It
additionally appearsthat if a short tail is not written after the CRC, it cannot be read correctly.
Thisiswhy two extracycles aretaken. A word must be sent to the controller in each cycleto
prevent an Overrun condition. Sending the same control word is as easy as anything else.

10. A command should be sent disabling the Controller. It should contain the number of the head
to be used in the next field, DriveSelect and FirmwareEnable. It is 0420’ x+800" x* HeadNumber.

11. The DriveNotReady, WriteFault and Overrun status bits should be checked. If therewas an
error, the operation should probably be aborted. The disk task’s double bit memory error flag in
the M Status register should also be checked. The errors recorded while the disk task is reading
memory do not cause atrap but they are recorded.

Shugart Disk Controllers

Writing other fields in the same sector differs only in that Step 2 can be eliminated and the address
mark written in Step 6 is A143'x. This allows the microcode to distinguish between Headers and
other fieldswhen the fields are read. It is still important that the number of clicks executed
between fields is independent of the operations performed on those fields.

Reading Data from the SA4000 and SA4100

The main differences between reading and writing are that one must find the synchronization gap
instead of creating it and read data instead of writing it. The operations for reading a Header will
be shown. The differencesinvolved in reading other fields will be explained | ater.

1. Preparethe parameters used for reading the Header field.

2. Send acommand to the controller containing the number of the head to be used, DriveSelect,
FirmwareEnable and WakeupControl=3. This causes the next click to take place just after the next
sector mark has been found. If thefield is not the Header field, this step must be skipped. The
command word would be 0426’ x + 800’ x* HeadNumber.

3. After finding the sector mark, N},+2 clicks must be used for further field set up. Note that
thisis same Ny, used when writing afield. The extratwo clicks are used to guarantee that the read

heads are inside the synchronization gap when they are enabled. The minimum time between when
the Find Sector control word is sent and the read is started should be 10 uS (5 clicks) to give the
drive time to select the heads properly.

4. Thecontrol word is sent starting the read. This control word contains the number of the head
to be used, DriveSelect, FirmwareEnable, TransferEnable and WakeupControl=0. It is0430'x +
800" x* HeadNumber.

5. Thecontroller will find the synchronization word automatically. Thefirst service request
announces that the synchronization word isin the KIData buffer. This should beread. It may
then either be saved or discarded. It isprovided for diagnostic purposes.

6. The microcode should execute aloop which transfers one data word per click from the KIData
port. All transfers should take placein cycle 2. See the DiskDlionB.mc file for an example of such
aloop. Notethat if the buffer address calculated in cycle 1 crosses a page boundry, the memory
write operation will be aborted. Data pages in the Pilot world are always page aligned so the last
click executed when transferring data must not increment the memory address. See the Dandelion
Microcode Reference for further details.

7. Anextraword or command must be read or written. This gives the controller time to process
the CRC checksum at the end of thefield. If the extratransfer isleft out, the controller will detect
an Overrun. If acommand is sent, it should be the original read command.

8. A command should be sent disabling the Controller. It should contain the number of the
head to be used in the next field, DriveSelect and FirmwareEnable. Itis
0420 x+800" x* HeadNumber.

9. The DriveNotReady, WriteFault, Overrun and CRCError status bits should be checked. If
there was an error, the operation should probably be aborted.

87

88 Dandelion Har dware M anual

Asusual, Step 2 iseliminated and the time is Step 3 is decreased when reading other fields. Note
that the delay in the read version of Step 3 isaways 2 clickslonger than in the write version of the
corresponding field. For example, if there are 4 clicks between the times a Header operation is
stopped and the write of aLabedl is started, there should be 6 clicks between the times a Header
operation is stopped and a Label read is started. The extratwo clicks are provided by TransferField
in this code, so the time between callsto TransferField must be independent of the operation.

Reading from an SA1000

Headers are very seldom read. They are written only when the disk is being formatted. Normally
they are verified. To read Header n of atrack, one usualy finds the index mark and reads the next
n+1 Headers; all into the same buffer. This complication is not germaneto thisdiscussion. The
process of reading Sector zero's Header will be shown, the normal modifications required to read
other Headers and other fields will be pointed out.

1. Preparethe parameters used for reading the Header field.

2. Send acommand to the controller containing the number of the head to be used, DriveSelect,
FirmwareEnable and WakeupControl=2. This causes the next click to take place just after the
index mark has been found. If thefield is not Sector zero's Header field, this step must be skipped.
The command word would be 0426’ x + 800" x* HeadNumber.

3. After finding the index mark, Nj,+2 clicks must be used for further field set up. Note that
thisis same Ny, used when writing afield. The data separator used for the SA1000 is on the

controller board and has no reguirement about being turned on over the synchronization gap. The
reading process should, however, begin promptly so Sector zero’s Header will be found first.

4. The control word is sent starting the read. This control word contains the number of the head
to be used, DriveSelect, FirmwareEnable, TransferEnable and WakeupControl=0. Itis0430’'x +
800" x* HeadNumber.

5. Thecontroller will find the address mark automatically. The first service request announces
that the address mark isin the KIData buffer. This should be read. 1t may then either be saved or
discarded. Itis provided for diagnostic purposes.

6. Themicrocode should execute a loop which transfers one data word per click from the KIData
port. All transfers should take placein cycle 2. See the DiskDlionB.mc file for an example of such
aloop. Notethat if the buffer address calculated in cycle 1 crosses a page boundry, the memory
write operation will be aborted. Data pages in the Pilot world are always page aligned so the last
click executed when transferring data must not increment the memory address. See the Dandelion
Microcode Reference for further details.

7. Anextraword or command must be read or written. This gives the controller time to process
the CRC checksum at the end of the field. If the extratransfer isleft out, the controller will detect
an Overrun. Noteif acommand is sent, it should be the original read command.

8. A command should be sent disabling the Controller. It should contain the number of the head
to be used in the next field, DriveSelect and FirmwareEnable. 1t is 0420 x+800" x* HeadNumber.

9. TheHeaderTag, DriveNotReady, WriteFault, Overrun and CRCError status bits should be
checked. If there was an error, the operation should probably be aborted. Note the HeaderTag
status bit hereis set if the field read was not a Header. It is available on the status bit that would
have been used for SectorFound if an SA4000 had been connected.

Shugart Disk Controllers

Asusual, Step 2 is deleted when not looking for Sector zero's Header field. Label and Data fields
are generaly read by verifying al fields encountered until a match for the desired sector’ s Header
field isfound, then reading the next fieldsin order. Thereis no requirement that the SA1000 data
separator be turned on over afield of zeros but it should be enabled at least 4 word times before
the address mark of the field to be read or verified.

Verifying Data on the SA4000 and SA4100

A verify operation combines the read and write operations. Data is read both from the disk and
from memory and compared on the controller board. Asfar asthe microcode is concerned, a verify
starts like a read with the data separator enabled to find the field. Oncethefield isfound, averify
islikeawriteinthat datais sent to the controller.

The procedure for verifying a Header will be shown. Asexplained above, thisis by far the most
common operation performed on Headers. DiskDlion microcode uses the verify operation to locate
the Header for the proper sector. Microcode could easily be written that woke up on every
SectorFound pulse and maintained a current sector number. Thiswas not done for simplicity.

1. Preparethe parameters used for verifying the Header field.

2. Send acommand to the controller containing the number of the head to be used, DriveSel ect,
FirmwareEnable and WakeupControl=3. This causes the next click to take place just after the next
sector mark has been found. If thefield is not a Header field, this step must be skipped. The
command word would be 0426’ x + 800" x* HeadNumber.

3. After finding the sector mark, N|,+2 clicks must be used for further field set up. Note that
thisis same Ny, used when writing afield. The extratwo clicks are used to guarantee that the read

heads are inside the synchronization gap when they are enabled. The minimum time between when
the Find Sector control word is sent and the read is started should be 10 uS (5 clicks) to give the
drive time to select the heads properly.

4. The control word is sent to start the verify. This control word contains the number of the head
to beused, DriveSelect, FirmwareEnable, TransferEnable and WakeupControl=1. 1tis0432'x +
800" x*HeadNumber. In the same click as the control word iswritten, but after it iswritten, the first
memory template word must be sent to the controller. It must be sent in the same click because

the next service reguest will not be generated until the controller has started comparing the first
memory and disk words. It must be sent after the control word because the WriteData buffer is
held cleared until then. All words sent before the verify operation is enabled are lost.

5. The controller will find the synchronization word automatically. The first service request
announces that the second template word is needed for comparison. Thisisthe beginning of the
verify loop.

6. Themicrocode should execute aloop which transfers one template word per click to the
KODataport. All transfers should take placein cycle 3. Seethe DiskDlionB.mc file for an
example of such aloop.

7. Two extrawords or commands must be written. This gives the controller time to process the
CRC checksum at the end of thefield. If the extratransfers are left out, the controller will detect
an Overrun. If commands are sent, they should equal the original verify command.

8. A command should be sent disabling the Controller. It should contain the number of the head
to be used in the next field, DriveSelect and FirmwareEnable. It is 0420’ x+800" x* HeadNumber.

89

90 Dandelion Har dware M anual

9. The DriveNotReady, WriteFault, Overrun, CRCError and VerifyError status bits should be
checked. If there was an error, the operation should probably be aborted. Note that if the verify
operation is being used to find the proper Header, errorsin the DriveNotReady, WriteFault and
Overrun are fatal whereas CRC and Verify errors only indicate the wrong Header was found. One
should try every Header on the track before giving up.

The usual remarks about eliminating Step 2 and shortening the delay in step 3 apply when verifying
Label or Datafields. A Verify or CRC error found when verifying a Label or Datafield is always
fatal. Pilot normally issues operations of the form: verify Header, verify Label, read or write Data.

Verifying Data on an SA1000

Verifying Headersis also the principle method used to find sectors on the SA1000 disks. Since the
SA1000 has no sector marks however, one cannot guarantee where the reading process will begin
unless the index mark is sensed. For this reason, address marks are used. These are MFM patterns
that meet the data separator timing requirements but cannot occur in normal data. When enabled,
the controller waits until an address mark is found before starting the verify operation. Itisalso
quite likely that the first address mark found will not belong to a Header field. For this reason,
Header address marks have a 0 in bit 14 while Label and Data address marks have a 1 there. This
bit is shown on the Header Tag status bit. It may be used as an error indicator when reading or
verifying Header fields.

For the sake of consistency, the process of verifying Sector zero’'s Header will be shown, though one
seldom begins a verify operation by finding the index mark on the SA1000.

1. Preparethe parameters used for verifying the Header field.

2. Send acommand to the controller containing the number of the head to be used, DriveSelect,
FirmwareEnable and WakeupControl=2. This causes the next click to take place just after the
index mark has been found. If thefield to be verified is not Sector zero’'s Header field, this step
must be skipped. It isnormally skipped anyway. The command word would be 0426'x +

800" x* HeadNumber.

3. After finding the index mark, Nj,+2 clicks may be used for further field set up. Note that this
is same N}, used when writing afield. The data separator used for the SA1000 is on the controller

board and has no reguirement about being turned on over the synchronization gap. The reading
process should however begin promptly so Sector zero’s Header will be found first if thisis desired.

4. The control word iswritten starting the verify. This control word contains the number of the
head to be used, DriveSelect, FirmwareEnable, TransferEnable and WakeupControl=1. Itis
0432’ x + 800" x* HeadNumber. In the same click asthe control word iswritten, but after it is
written, the first memory template word must be sent to the controller. It must be sent in the same
click because the next service request will not be generated until the controller has started
comparing the first memory and disk words. 1t must be sent after the control word because the
WriteData buffer is held cleared until then. All words sent before the verify operation is enabled
arelost.

5. Thecontroller will find the address mark automatically. Thefirst service request announces
that the second template word is needed for comparison. Thisisthe beginning of the verify loop.

6. Themicrocode should execute aloop which transfers one template word per click to the
KODataport. All transfers should take placein cycle 3. Seethe DiskDlionB.mc file for an
example of such aloop.

Shugart Disk Controllers

7. Two extrawords or commands must be written. This gives the controller time to process the
CRC checksum at the end of thefield. If the extratransfers are left out, the controller will detect
an Overrun. Noteif acommand is sent, it should be the original verify command.

8. A command should be sent disabling the Controller. It should contain the number of the head
to be used in the next field, DriveSelect and FirmwareEnable. It is 0420’ x+800" x* HeadNumber.

9. The HeaderTag, DriveNotReady, WriteFault, Overrun, CRCError and VerifyError status bits
should be checked. If there was an error, the operation should probably be aborted. Note that if
the verify operation is being used to find the proper Header, errors in the DriveNotReady,
WriteFault and Overrun are fatal whereas HeaderTag, CRC and Verify errors only indicate the
wrong field was found. One should try every field on the track before giving up.

When Label or Datafields are verified, Step 2 isleft out and the delay in Step 3 can be shortened.
The HeaderTag bit is also ignored at the end of a Label or Data field operation.

Conclusion

This concludes the section on usage of the controller. The grand scheme for using the disk
proceeds as follows:

1. After power on, wait for DriveNotReady to drop.
2. Clear the WriteFault line as shown in the Control Register section.

3. Recdlibrate the read/write heads by stepping 20 cylindersin, then 222 (202+20 for SA4000 or
SA4100) or 276 (256+20 for SA1000) out, looking for Track0O after each step is complete.

4. Seek to the desired cylinder by having the microcode issue the proper number of pulseson the
Step line with the desired direction set on Directionin.

5. Perform the desired data transfer as outlined above.

6. |If thereareerrors, retry. If the errorsinvolve the WriteFault line, clear it and retry. If
WriteFault errors persist, make sure Overrun isn’t responsible. If the errors indicate the proper
sector can’t be found, try recalibrating.

7. Repeat Steps 4 through 7 as necessary.

5.2 Trident Disk Controller

(To be added)

91

92

(To be added)

(To be added)

(To be added)

(To be added)

6.0 Ethernet Controller

7.0 LSEP Controller

8.0 Magnetic Tape Controller

9.0 Input/Output Processor (IOP)

10P 93
Address Bus Latch
Backpl ane
8 couaddr 8 LPAddr Hi
A ? 1
CPU p. 1
1S373 Address
180854 8 8 | PAJd :Bus
U Lo
AD 7
p. 1
p. 1
, Addr Addr Addr
IOP
Prom RAM RAM
(8K) (8K) (8K) Memory
a p. 2 a p. 3-4 a p. 23-24
2716 2114 2114
8 NenData
7
. I/0 Data
o Bus
LPData
1 = 1
05| I [
E PDat &’ | ||015||D.18 |p.19 L&lul
Fl oppy CPCont r ol Keyboar d Muse Mai nt enance Cont r ol Host
t ate, Status Panel Store Addr ess
Ti nme- of - Day
C ock
p. 29 p. 28
Keyboar d e MPan bl e
On OPTI ONS nodul e:
RS232C Xer ox
Fl oppy
Alternate
LS24 I/O Data
8 Bus
L PADaL
1
8257 1797 [8251A 8253 8255 Alto
p. 7 p. 8 p. 22 p. 22 Unbi I |
Dma Control | er FI oppy Printer Ti mer Alto PPI
Di sk UART
Controller Printer cable
On separate nodul e
p. 28
Fl oppy Cabl e

p. 28

0 P

BLOCK DIAGRAM: 1/0 PROCESSOR DATA PATHS

94 Dandelion Har dware M anual

Address Bus Latch

A CouAddr p. 1 8 | pAddr H
I
CPU || P Address
LS373
] . Bus
AD CpuAD ; | PAddrlo
Ry W . 1 P
p. 1
CpuRd’
CpuW’
LS245
A DnpAddr | PAddrlo
p. 7
DMA LS373
D DnpDat a | PAddr Hi
p. 7 p. 7
8 | PARat a
!
DralVenRd’ LS04 L5353 | PVenRg’
DralVemA
, | PVemN Control
Doal ORd MUX
Dual ON . L Pl ORA' Bus
CpuRd’ I
CouWw'” 1Pl OW’
LS244 Sel ect
LPLORg’ p. 1 p. 1
LPLOW®
p. 7
L PAddr [0]

BLOCK DIAGRAM: /O PROCESSOR CONTROL ORGANIZATION

Dandelion Backplane

Physical arrangement

- 1/ O Processor (I1OP)
Opti ons
Pr ocessor
H gh Speed 1/0 (HSIO
[|- Menory Contr ol

[storage

Ry

r

Relr Si ;:e o k

Top Edge
1,101

01

Files

[1ris]<Wrkstation>Backpl ane>
Backpl ane- C. press
Backpl ane- C. dm

Bot t om Edge
100, 200 2 O O
f pl ane
Backplane Sgnals
Card .
|OP Options Central High Speed Memory Storage
) Processor 1/0 Control
Total Signal 170 max.
lines used 131 166 140 141 155 66 per card
/0 Fl oppy LSEP/ Et her net SA4XXX
o Keyboar d RS232/ RS366 SA100X
nnectors K 1
Printer Di spl ay
on front of b
boar ds Mai nt enanceP
Al to unb.
Power distribution
Backplane Power & Ground 30 lines total Top Bot t om
Edge Back Side Edge
Voltage Backplane Pins
+12V 1,101
+5V 50, 51, 150, 151
Gnd 10, 20, 30, 40, 60, 70, 80, 90, 110, 120, 130, 140, 160, 170, 180, 190
-5V 100, 200
-12V 98, 198 2- 100 pin connectors
Pins on .1" centers
No Conn 97,99, 197, 199 .6" between pins 50 & 51
AW # 530826-3
Termination of clock signals
P OPTI ONS P HslO | MEM CTRL STORAGE
220 220
+5V
|_ +5V
ppCLK 220 j =220 ppCLK
G\D G\D
1 tdrmnation
1 termnation 220 -
|_ +5V
220 AS g
LRAS'
A0 | cas
4 rmnations
Term nations are placed on the 1 OP and STORAGE cards.
XEROX Pr oj ECF Backplane Description File _ Desi gner Rev | Date
SDD Dandelion General Characteristics WSBackplane.sil Ogus C 9/26/80

IoP OPTI ONS HSI O
02 02|Cycle. 1’ dick.0 02|Cycl el’ dick.0 02|Cycl el’ Cdick.0 02
03 03|Cycle. 2’ Click.1 03|Cycl e2’ Cick.1 03|Cycl e2’ dick.1 03
04 04|Cycle. 3 Click.2 04 |Cycl e3’ Cick.2 04|Cycl e3’ dick.2 04
05 |Spar e22 Spar e23 05|Spar e22 Spar e23 05 05 |RAS LRAS 05
06 |Spar e2 06 |Spar e2 06 06 |CAS LCAS 06
07 |Spar e20 Spar e21 07 |Spar e20 Spar e21 07 |Spar e20 Spar e21 07 |Weul se DR/ C 07
08 |Spar el8 Spar el9 08 |Sparel8 Spar el9 08 |Spar el8 Spar el9 08 08
09 lppClLK 091ppClLK 09 lppClLK 091ppClLK 09
11|Sparel6 Spar el7 11|Sparel6 Spar el7 11|All oW ite 11|AllowWite 11
121 OPC k 12|1 oPd k 12 12 12
13|Sparel4d Spar el5 13|Sparel4d Spar el5 13|MVAR_ mem 13|MVAR_ mem 13
14 |Sparel2 Sparel3 14|Sparel2 Spar el3 14 _Mst at us’ 14 _Mstatus’ 14
15|1 OPDat aQut BRC k 151 OPDat aQut BRA k 15 |MapRef Ml 15|MapRef Ml 15
16 |Sel Tr oyMode Spar e9 16|Sel Tr oyMde Spar e9 16 |Ref resh’ 16 |Ref resh’ 16
17 |Wai t | OPReset’ 17 Wi t | OPReset’ 17 |Wai t | OPReset’ 17 Wi t | OPReset’ 17
18|Tr I ndex Tr HdLd 18|Tr I ndex Tr HdLd 18 |Spar e26 Spar e27 18|Spar e26 Spar e27 18
191Tr Ready TrStep 191Tr Ready TrStep 19 1Spare24 Spare2b 191Spare24 Spare2b 19
21|l OPCDat a_’ loPctl 21|l OPCDat a_’ 1oPctl 21|l OPCDat a_’ 1oPCtl 21 21
22 |Tr TKOO TrDirln 22 |Tr TKOO TrDirln 22 |KODat a_’ KCtl _’ 22 |KCDat a_’ KC 1’ 22
23 23|ECDat a_’ EIC]_’ 23|ECDat a_’ ElCl_’ 23|ECDat a_’ EICt]_’ 23
24 |Tr W Pr ot Tr W Gat e 24 |Tr W Pr ot TrWGate 24|DCt 1 Fifo_’ D1’ 24Dt Fifo_’ Dol 24
25|Tr RdDat a Tr W Dat a 25|Tr RdDat a Tr W Dat a 25|DBor der _’ 25|DBor der _’ 25
26 |EWite’ EOCCt| _’ 26|EWite’ ECCt 1’ 26|EWite’ ECCt1 _’ 26|EWite’ ECCt1 _’ 26
27 |KCnd_’ | OQut Sp4_’ 27 |KCrd_’ | OQut Sp4_’ 27 |KCmrd_’ | OQut Sp4_’ 27 |KCnd_’ | OQut Sp4_’ 27
28 28 |PCDat a_’ pPCtl_’ 28|PCDat a_’ PCt1_’ 28|PCDat a_’ PCtl 28
291Spare6 Spare? 29|Spare6 Spare7 29|Spare6 Spare? 29|1Spare6 Spare? 29
31 31|El Dat &’ ESt at us’ 31|El Dat a’ ESt at us’ 31|El Dat a’ ESt at us’ 31
32 |Spar e4 Spar e5 32 |Spare4 Spar e5 32|_KI Data’ _KSt at us’ 32|_KI Data’ _KStat us’ 32
33 33 KWite’ 33|_KTest’ KWite’ 33|_KTest’ KWite’ 33
34|_I OPI Dat @’ _I OPSt at us’ 34|_I OPI Dat @’ _I OPStatus’ 34|_| OPI Dat @’ _l OPSt at us’ 34 34
35|_1A nSp2’ 35|_1 A nSp2’ Prt Req’ 35|_1A nSp2’ Prt Req’ 35]_1 A nSp2’ Prt Req’ 35
36 || OPALE Spar e3 36 |1 OPALE Spar e3 36 || OPALE Spar e3 36 || OPALE Spar e3 36
37 |CSPar Err 37|CSPar Err EndLi ne’ 37|CSPar Err EndLi ne’ 37 EndLi ne’ 37
381 ODi sp. 0 | ODi sp. 1 38|11 CDi sp. 0 1 ODi sp. 1 381 ODi sp. 0 10D sp. 1 38]1 ODi sp. 0 | ODi sp. 1 38
391YIODisp. 0 YIODisp. 1 391YIODisp. 0 YIQDisp. 1 39]Y| ODisp. 0 YIODisp. 1 39]YIODisp. 0 YIQDisp. 1 39
411X. 0 X1 41|X. 0 X1 411X 0 X1 411X. 0 X1 41
421X. 2 X3 421X. 2 X. 3 421X. 2 X. 3 421X 2 X. 3 42
43|X. 4 X. 5 43|X. 4 X. 5 43|X 4 X5 43X 4 X. 5 43
441X. 6 X7 441X. 6 X7 441X. 6 X7 441X. 6 X7 44
45]X. 8 X. 9 45]X. 8 X.9 45]X. 8 X.9 45]X. 8 X. 9 45
46 |X. 10 X 11 46|X. 10 X 11 46 |X 10 X 11 46X 10 X 11 46
471X 12 X. 13 471X 12 X. 13 471X 12 X. 13 471X 12 X. 13 47
481X. 14 X. 15 48|X. 14 X. 15 48|X 14 X 15 481X 14 X. 15 48
49 491Y. 0 Y 1 491Y. 0 Y. 1 491Y Y. 1 49
52 52|Y.2 Y. 3 52|Y.2 Y.3 52]Y.2 Y. 3 52
53 53|Y. 4 Y. 5 53]y. 4 Y. 5 53]Y.4 Y. 5 53
54 541Y.6 Y. 7 54]Y.6 Y. 7 541Y.6 Y. 7 54
55 55]Y.8 Y. 9 55]Y.8 Y. 9 55]Y.8 Y. 9 55
56 56]Y. 10 Y. 11 56]Y. 10 Y. 11 56]Y. 10 Y. 11 56
57 57]Y.12 Y. 13 57]Y. 12 Y. 13 57]Y.12 Y. 13 57
58 58]|Y. 14 Y. 15 58|Y. 14 Y. 15 58]Y. 14 Y. 15 58
59 IDnaReqC DmaAckC 59 |DnaReqC DneAckC 591YH O YH 1 59JYH 0 YH 1 59
61 |DnaReqA’ DmaAckA 61 |DnaReqA’ DnmaAckA 61|YH. 2 YH. 3 61|YH. 2 YH. 3 61
62 |DnaReqB’ DmaAckB’ 62 |DnaReqB’ DnmaAckB’ 62|YH. 4 YH. 5 62|YH. 4 YH. 5 62
63 |DnaCycl e Ext Vi t Req’ 63 |DnaCycl e Ext Wi t Req’ 63|YH. 6 YH. 7 63|YH. 6 YH. 7 63
64 |1 OPI nt ReqO | OPI nt Reql 64 |1 OPI nt ReqO | OPI nt Reql 64|Pt.0 Pt.1 64|Pt.0O Pt.1 64
65|l OPI nt Req2 I OPI nt Reg3 65|1 OPI nt Req2 | OPI nt Req3 65|Pt. 2 65|Pt. 2 65
66 |1 OPSel . 0’ | OPSel . 1’ 66 |1 OPSel . 0’ | OPSel . 1’ 66 |Di sp- Proc’ MenEr r 66 |Di sp- Proc’ Mentr r 66
67| OPSel . 2 | OPSel . 3 671 OPSel . 2 | OPSel . 3 67 67 |DAddr. 0 DAddr . 1 67
68|l OPSel . 4’ | OPSel . 5 68|l OPSel . 4’ | OPSel . 5’ 68 68 |DAddr . 2 DAddr . 3 68
6911 OPAddr ., 00 | OPAddr, 01 691 OPAddr, 00 | OPAddr ., 01 69 691DAddr . 4 DAJdr . 5 69
71|l OPAddr. 02 | OPAddr . 03 71|l OPAddr. 02 | OPAddr . 03 71 71|DAddr. 6 DAddr . 7 71
72|l OPAddr. 04 | OPAddr . 05 72|l OPAddr . 04 | OPAddr . 05 72 72|DAddr. 8 DAddr . 9 72
73|I OPAddr . 06 | OPAddr . 07 73|1 OPAddr . 06 | OPAddr . 07 73 73|DAddr. 10 DAddr . 11 73
74 |1 OPAddr. 08 | OPAddr . 09 74 |1 OPAddr . 08 | OPAddr . 09 74 74 |DAddr . 12 DAddr . 13 74
75| OPAddr. 10 | OPAddr . 11 75|1 OPAddr . 10 | OPAddr . 11 75 75|DAddr . 14 DAddr . 15 75
76 || OPAddr . 12 | OPAddr . 13 76 |1 OPAddr . 12 | OPAddr . 13 76 |1 OPAddr . 12 | OPAddr . 13 76 |DbDat a. 0 DDat a 76
77 |1 OPAddr. 14 | OPAddr . 15 77|1 OPAddr . 14 | OPAddr . 15 77|10 OPAddr . 14 | OPAddr . 15 77 |DDat a. 2 DDat a. 3 77
78 |Spar e0 Sparel 78|Spar e0 Sparel 78 |Spar e0 Sparel 78|DDat a. 4 DDat a. 5 78
7911 OPMVenRd’ LOPI/ ORd’ 7911 OPVenRd’ 1OPI/ ORd” 79 791DData. 6 DData. 7 79
81 |CSVE. a’ CSVEE. b’ 81|CSVE. a’ CSVE. b’ 81|CSVE. a’ CSVEE. b’ 81|DDat a. 8 DDat a. 9 81
82 |CSVE. ¢’ CSVE. d’ 82|CSVE. ¢’ CSVE. d’ 82 |CSVE. ¢’ CSVE. d’ 82 |DDat a. 10 DDat a. 11 82
83 |CSVE. e’ CSVE. f’ 83|CSVE. e’ CSVE. f’ 83 |CSVE. e’ CSVE. f’ 83|DDat a. 12 DDat a. 13 83
84|l OPReq’ drl OPReq’ 84|l OPReq’ Clrl OPReq’ 84|l OPReq’ Crl OPReq’ 84 |DDat a. 14 DDat a. 15 84
85 85 |DPReq’ Cl r DPReq’ 85 |DPReq’ Cl r DPReq’ 85 |DPReq’ C r DPReq’ 85
86 86 |EReq’ Cd r Ref Req’ 86 |EReq’ Cl r Ref Req’ 86 |EReq’ C r Ref Req’ 86
87 || OPMemN’ 1 OPl/ OW’ 87 |1 OPMemW’ 1 OPl/ OW’ 87 |KReq’ C r KFl ags’ 87 |KReq’ d rKFl ags’ 87
88 |Ref Req’ ReadCSEn’ 88 |Ref Req’ ReadCSEn’ 88 |Ref Req’ ReadCSEn’ 88 |Ref Req’ 88
89 IEQRound | OPVWA £ 89 |EQRound] OPVAj t 89 IEQRound | OPWA 89 JEQRound 89
91 |W TPCHi gh’ W TPCLow 91|W TPCH gh’ W TPCLow 91 |W TPCHi gh’ W TPCLow 91 91
92|l OPDat a. 0 | OPDat a. 1 92|1 OPDat a. 0 | OPDat a. 1 92|l OPDat a. 0 | OPDat a. 1 92 92
93|l OPDat a. 2 | OPDat a. 3 93 |1 OPDat a. 2 | OPDat a. 3 93|l OPDat a. 2 | OPDat a. 3 93 93
94|l OPDat a. 4 | OPDat a. 5 94 |1 OPDat a. 4 | OPDat a. 5 94|l OPDat a. 4 | OPDat a. 5 94 94
951 OPDat a. 6 | OPDat a. 7 95|1 OPDat a. 6 | OPDat a. 7 95|l OPDat a. 6 | OPDat a. 7 95 95
96 ISWTAddr SWTAddr’ 96 | SWTAddr SWTAddr’ 96 ISWTAddr SWTAddr’ 96 96
1-100 101- 200 1-100 101- 200 1-100 101- 200 1-100 101- 200
Above diagramis rear view (wiring side) of backplane. Dandelion BaCkplme S|gnals -1 Rev C 9/26/80

ALL NUMBERS ARE | N DECI MAL.

St amenl- 4. sil

in:

[1ris]<workstation>Backpl ane>Backpl ane- C. dm

MEM CTRL STORAGE
02]cycl er’ 02 02
03[Cycl e2’ 03 03 Dandelion Backplane - 2
04|cycl ez’ 04 04
05 |RAS’ LRAS 05|rRAS' LRAS 05
06 |cas LCAS 06 |cAs LCAS 06 Rev C 9/26/80
07 |Wpul se DR/ C 07 07
08 08 08 Cgus
091ppClLK 091ppClLK 09
11|ATowwite 11 11
12 |Bank0’ 12]Bank0’ 12 Physi cal arrangenent of cards:
13|vaR_ mem 13 13 :
14 _Mst at us’ 14 14 - 1oP
15|MapRef Ml 15 15 Opti ons
16 |Ref resh’ CRefresh’ 16 |Ref resh’ CRefresh’ 16 Processor
17 |wai t 17 17 Hsl O
18|sba 00 SDO. 01 18|sD0. 00 SDO. 01 18 Nem Gt |
19lspo 02 SDO 03 19|sDo 02 SDO 03 19 Conponent |- Storage
21[spo. 04 SDO. 05 21|sDo. 04 SDO. 05 21 Si de [9
22|sDo. 06 SDO. 07 22|SD0. 06 SDO. 07 22 / /l L L L
23|spo. 08 SDO. 09 23|sDo. 08 SDO. 09 23 | /
24|smo. 10 SDO. 11 24|sDo. 10 SDO. 11 24 /
25|smo. 12 SDO. 13 25[sm0. 12 SDO. 13 25 rrr
26|sDo. 14 SDO. 15 26|SDO. 14 SDO. 15 26
27]spo. 16 SDO. 17 27|sDo. 16 SDO. 17 27
28[spo. 18 SDO. 19 28|sDO. 18 SDO. 19 28
29|spo 20 SDO 21 29|sDo 20 SDO 21 29
31 31 31
32|sAddr . 00 SAddr . 01 32[sAddr . 00 SAddr . 01 32
33|sAddr. 02 SAddr . 03 33[sAddr. 02 SAddr . 03 33
34|sAddr . 04 SAddr . 05 34|SAddr . 04 SAddr . 05 34
35|sAddr . 06 SAddr . 07 35(sAddr . 06 SAddr . 07 35 Rear oo s s
36|YlLatch YOLat ch 36|YlLatch YOLat ch 36
37|Bank1’ Bank2’ 37|Bank1’ Bank?2’ 37
38 |MRef’ Wite 38 |MRef’ Wite 38
39 39 39
a1lx 0 X. 1 41 41 Power & Ground
421X.2 X3 42 42 Vol t age | Pi ns
43|x. 4 X.5 43 43
44|X. 6 X. 7 44 44 +12 V11,101
45(X.8 X.9 45 45 +5 V|50, 51,150, 151
46|x 10 X. 11 46 46
47|x 12 X. 13 47 47 G\D 10, 20, 30, 40, 60
48|x. 14 X. 15 48 48 70, 80, 90, 110, 120,
49|y 0 Y 1 49 49 130, 140, 160, 170,
180, 190

52[y. 2 Y. 3 52 52
53|v. 4 Y. 5 53 53 SV 100, 200
54]Y. 6 Y. 7 54 54 -12 v | 98,198
55]Y. 8 Y. 9 55 55
s56]Y. 10 Y. 11 56 56 No Conn 97,99, 197, 199
57]y. 12 Y. 13 57 57
58]y. 14 Y. 15 58 58
59]YH 0 YH 1 59 59 Card Edge Connector
61|YH. 2 YH. 3 61 61
62]|YH. 4 YH. 5 62 62 Top Bot t om
63|YH. 6 YH. 7 63 63 Edge Back Side Edge
64|pt.0 Pt.1 64 64 10 00
65|Pt. 2 65 65
66 |Di sp- Proc MentEr r 66 66
67 |DAddr DAddr . 1 67 67
68 |DAddr DAddr . 3 68 68
69|DAddr . 4 DAddr. 5 69 69
71 |DAddr DAddr . 7 71 71
72|DAddr. 8 DAddr. 9 72 72 2- 100 pin connectors
73|DAddr . 10 DAddr . 11 73 73 Pins on . 1" centers
74 |DAddr . 12 DAddr . 13 74 74 .6" between pins 50 & 51
75 |DAddr . 14 DAddr . 15 75 75
76 |DDat a. 0 DDat a. 1 76 76 2 - AW # 530826-3
77|DDat a. 2 DDat a. 3 77 77
78|DDat a. 4 DDat a. 5 78 78
79|DData. 6 Dhata. 7 79 79
81|DDat a. 8 DDat a. 9 81 81
82 |DDat a. 10 DDat a. 11 82 82
83|DDat a. 12 DDat a. 13 83 83
84 |DDat a. 14 DDat a. 15 84 84
85[sDi . 20 SDi . 21 85(sDi . 20 sDi . 21 85
86[sDi . 18 SDI . 19 86|sDl . 18 sDi . 19 86
87|sDi . 16 SDi. 17 87|sDi . 16 SDi. 17 87
88|sDi . 14 SDI . 15 88|sDl . 14 SDi . 15 88
89lspl. 12 SDl. 13 89|sDi. 12 SDl. 13 89
91[sDi. 10 SDI . 11 91[sDi . 10 SDi . 11 91
92|sDi . 08 SDI . 09 92|sDi . 08 sDi . 09 92
93|sDi . 06 SDI . 07 93|sDi . 06 SDi . 07 93
94|sDi . 04 SDI . 05 94|sDi . 04 sDi . 05 94
95[sDi . 02 SDI . 03 95|sDi . 02 sDi . 03 95
961sDl . 00 SDl. 01 961sDl . 00 SDl. 01 96

1-100 101- 200 1-100 101- 200 Stamens-6.sil in:

Above diagramis rear view (wiring side) of backplane.
Al nunbers are in DEC MAL.

[1ris]<Workstation>Backpl ane>Backpl ane- C. dm

