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2.0  Central Processor (CP)

2.1 Introduction

The Central Processor (CP) controls the high-speed I/O devices and the main memory of the
Dandelion.  It provides short-latency memory access and ALU service for the integral I/O
controllers and can emulate the Mesa Processor as defined by the Mesa Processor Principles of
Operation.  It is composed of about 160 standard chips and resides entirely on one 11" by 15"
printed circuit card located in slot 3.

This chapter presents the hardware structures of the Central Processor and its interfaces with the
rest of the Dandelion.  Another manual, the Dandelion Microcode Reference (DMR), presents the
assembler microcode format and is interspersed with hardware details and examples.1

The CP is a microprogrammed, 16-bit general-purpose computer.  The microstore can hold up to
4096 48-bit microinstructions2 and can be read or written by the low-speed Input/Output Processor
(IOP).  Each microinstruction is decoded and executed in 137 nanoseconds, a cycle.3  All
microinstruction operations are completed in one cycle; instruction execution is not pipelined over
several cycles, except that while one is being executed its successor is being read from the
microstore.

Cycles are grouped into clicks, where one click equals three successive cycles labeled c1, c2, and
c3.  Cycles are always enumerated in order c1, c2, c3, and then c1 again.4  This sequence is never
interrupted or altered; accordingly, both targets of a two-way branch must be specified with the
same cycle number.  (Strictly speaking, this is necessary only if the target microinstructions contain
cycle-dependent operations.)  The microcoder’s task of aligning instructions so that they execute in
successive cycles is a necessary outcome of the fixed-tasking, click structure.  Moreover, when one
desires code which is speed optimized, this structure usually requires the elimination of three
microinstructions instead of one.

While the three microinstructions of a click are executing, a memory read or write can be
performed:  the address is sent to the memory in c1, a single data word may be sent during c2,
and data is returned from memory in c3.  A memory operation can only be initiated in cycle 2.

Clicks are grouped into rounds:  five successive clicks (numbered 0..4) comprise a round, which is
two microseconds in duration.  Each click of a round is permanently allocated to one or more of the
I/O controllers.  If an I/O controller does not request the service of its corresponding task
microcode, the Emulator-microcode task runs during that click instead of the device-microcode task.
When there is a transition between tasks, the hardware preserves the outgoing task’s microprogram
counter and restores it when it runs again.

The click is a basic microcode time unit:  devices and the Emulator are serviced in units of clicks
and the microcode can transfer exactly one memory word in this time.  For purposes of
synchronization, the click is an atomic operation.  Since a click is 411 nanoseconds in duration, the
maximum memory bandwidth available through the CP is 40 Mbits/s (2.4 megawords/s).

The CP is implemented using four 2901 bit-slice chips plus external memories and registers.  The
2901 provides 17 registers readily accessible to the microcoder, the usual logical and arithmetic
functions, and single bit shifting.

Available to the microprogrammer and external to the 2901 are four register sets (U, RH, IB, and
Link), a four-bit rotator, the I/O registers and memory, and four Emulator registers (stackP, ibPtr,
pc16, and MInt).  There are no task specific registers:  all registers can be addressed by all tasks.
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2.2 Microinstruction Format

The microinstruction format attempts to strike a balance between some naturally opposing
constraints:  control store width versus control store size, encoding schemes versus decoding
hardware constraints, and coverage of all possible data operations versus exclusion of impracticable
operations.  The goal of the format is that frequently applied operations are encoded in the smallest
number of bits.  Furthermore, it was designed so that the most important Mesa Emulator and I/O
operations execute in one click.  The format is illustrated and summarized in Figure 2.

A 48-bit microinstruction has three major parts:  2901-control bits, miscellaneous functions, and a
"goto"-address field.  The field names are abbreviated as:

rA, rB R registers A and B
aS, aF, aD ALU source address, function, destination address
ep even parity
Cin 2901 carry input
enSU enable stack/U registers
mem memory operation
fS function fields selector
fX, fY, fZ function fields X, Y, and Z
INIA intermediate next instruction address.

The 2901-control bits occupy the first word:  rA, rB, aS, aF, and aD.  The "goto" address, INIA,
utilizes 12 bits.  INIA is a control-store-destination address unless condition bits, specified by the
previous microinstruction, are or’d into it, resulting in a branch or dispatch.  Thus, every
microinstruction is a potential jump instruction.

The fS field is broken into two subfields:  fS[0-1] and fS[2-3].  These control the deciphering of
the fY and fZ fields, respectively.  Both the fY and fZ fields have four possible enumerations as
defined by fS:

The fY field can, depending on fS[0-1]:  (1) name a branch or multi-way dispatch, (2) specify a
miscellaneous function, (3) name an I/O register to be loaded, or (4) equal the high nibble of an 8-
bit constant.  These four functions are called DispBr, fYNorm, IOOut, and Byte.

The fZ field can (1) enumerate a miscellaneous function, (2) equal a 4-bit constant or the low half
of an 8-bit constant, (3) be the low half of a U register address, or (4) name an I/O register to be
read.  These four classes are abbreviated fYNorm, Nibble, Uaddr, and IOXIn, respectively.
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rA
rB
aS
aF
aD
ep
Cin
enSU
mem
fS
fX
fY
fZ
INIA

2901 B reg addr, RH addr
2901 A reg addr, U addr [0-3]

2901 alu Source operand pair

2901 alu Destination/shift control
Even Parity

e

2901 Carry In, Shift Ends, writeSU (if enSU=1)
enable SU reg file
MAR_ (if c1), MDR_ (if c2), _MD (if c3)
Function field Selector
X Function
Y Function
Z Function
Next Instruction Address

aS

1
2
3
4
5
6
7

0 A, Q
A, B
0, Q
0, B
0, A
D, A
D, Q
D, 0

R, S

0

7
6
5
4
3
2
1

F

R or S
R and S
~R and S
R xor S
~R xor S

1
2
3
4
5
6
7

0

sh,,aD R[rB]_

no write
no write
F
F
F/2
F/2
2F
2F

Q_

F
no write
no write
no write
Q/2
no write
2Q
no write

Ybus_

F
F
A
F
F
F
F
F

fY

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

fYNorm DispBr IOOut

ExitKern

ClrIntErr
IBDisp
MesaIntRq
stackP_
IB_

Noop

ClrDPRq

NegBr
ZeroBr

MesaIntBr
PgCarryBr
CarryBr

XDisp
YDisp

IOPOData_
IOPCtl_
KOData_
KCtl_

DCtl_

PCtl_
MCtl_

POData_

Noop

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

fZ

aF

fZNorm IOXIn

Refresh
IBPtr_1
IBPtr_0
Cin_pc16

pop
push

LRot0
LRot12
LRot8
LRot4

_KIData
_KStatus

_MStatus

_IOPIData
_IOPStatus

_RH
_ibNA
_ib
_ibLow
_ibHigh

Noop

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

fX fXNorm

pCall/Ret0
pCall/Ret1
pCall/Ret2
pCall/Ret3
pCall/Ret4
pCall/Ret5
pCall/Ret6
pCall/Ret7

RH_
shift
cycle

push
pop

Cin_pc16

fS[0-1]

0
1
2
3

DispBr
fYNorm
IOOut
Byte 3

2
1
0

fS[2-3]

fZNorm
Nibble
Uaddr[4-7]
IOXIn

SU addr[0-7]

0,,stackP
0,,stackP

2901 alu Function

cycle AltUaddr

XLDisp
XHDisp

YIODisp
XC2npcDisp

NibCarryBr
XRefBr

ClrKFlags

S
R

R
S

PgCrOvDisp

DCtlFifo_

DBorder_

Refresh
push

_KTest

NZeroBr

EOData_

Map_

Map_

ClrRefRq

XwdDisp

EICtl_

EOCtl_
KCmd_

_EIData
_EStatus

KStrobe

_ErrnIBnStkp

rA,,fZ  |    rA,,Y[12-15]*      IF  fZ=AltUaddr*
rA,,fZ  |    rA,,Y[12-15]*      IF  fZ=AltUaddr*

* as executed by previous u-instr

EStrobe

sh _ (fX=shift) OR (fX=cycle) OR (fY=cycle)

Cin’
Cin’

R + S + Cin

EnterKernel

_TStatus

_TIData

Bank_

Equivalent names:  XDirtyDisp = XLDisp; EtherDisp = YIODisp; TAddr_ = ClrDPRq; TCtl_ = PCtl_; TOData_ = POData_

pCall when NIA[7]=0. pRet when NIA[7]=1.

fY= fZ=

Figure 1. Dandelion CP Microinstruction Format
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2.3 Registers and Data Paths

Figure 2 illustrates the registers and data paths layout for the CP.  The area inside the dashed lines
represents the internal components of the 2901 ALU.  The Y bus corresponds to the Y output of
the 2901 and the X bus is connected to the 2901 D input.  Both the X and Y buses are available on
the backplane.

2.3.1 R and Q Registers and 2901 Data Paths

Figure 2 shows the 16-word, two-port register file called the R registers.  One of the output ports is
labeled A and the other B.  These are the "fast" registers of the CP and can be used to hold
temporaries, memory data and addresses, and arithmetic operands.

Every cycle, the contents of the R register given by the register-A (rA) field of the microinstruction
is available at the A port, and likewise for the B port.  If rA=rB, then the same data appears at
both ports.

If the alu-Destination (aD) field specifies a write back into an R register, the rB field specifies
which one:  at the end of the cycle, register B is written with the ALU output (named F) or it is
written with F shifted one bit.

The Q register holds 16 bits which can be written with the ALU output or its old value single-bit
shifted left or right.  It is implicitly referenced by the aS field of the microinstruction and can be
used for double-word shifting.

The 2901 arithmetic unit has three inputs:  R, S and Carryin (Cin).  The R input can be set to the
output of the A port, the value of the X bus, or zero.  The S input can be driven by the output of
the A or B ports, the value of the Q register, or zero.  Cin can be either 0 or 1, or the value of the
single-bit Emulator register pc16.

The 2901 can perform three arithmetic and five logical operations as specified by the alu-Function
(aF) field.  Arithmetic follows the two’s-complement conventions.  Three of the logical operations
are symmetrical with respect to R and S:  logical or, and, and xor.  The remaining two logical
operations complement R:  ~R xor S and ~R and S.

Figure 3 shows a matrix of ALU computations as a function of possible aS and aF values.  From
the table it is clear there are many possible ways to generate zero within the ALU.  All one’s
(0FFFF) is easily produced for some functions if rA=rB.
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(Byte constant)

num*width

R registers

IOOut

A-bypass

F bus

P̂

Y-bus dispatch

F[15]’

Cin, pc16

Cin’, pc16’

.

.

2901

Cin, F[15], Cout

Cin, F[0], Q[0] ...
0

ALU

ibFront

.

16

.
768Kx16

16 16

LRotn
Y[0-15]
Y[4-15],,Y[0-3]
Y[8-15],,Y[0-7]
Y[11-15],,Y[0-12]

.
.

IB[0]

IB[1].
IOIn

U

D input

Y  bus X  bus

.
+1

. .
4

stackP

Y  bus

8

X[0-7]

X[8-15]

..
4

4

_ibHigh

_ibLow

_ib

16 16

.

.

Figure 2.  Dandelion CP Data Paths
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Figure 3.  ALU Operations as a function of aS, aF, and Cin.
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The F output of the ALU can be written into an R register, loaded into the Q register, or placed
onto the Y bus.  Although the F output is normally placed onto the Y bus, it is possible to route
output-port A of the R register file onto the Y bus.  This mode is called A-bypass or "A-pass-
around."

The two-bit alu-Destination (aD) field, in combination with a one-bit value called sh, specifies
whether R and/or Q is written and whether F or A-bypass is placed on the Y bus.  The sh field is
defined by certain functions of the microinstruction word (see Figure 1 for sh’s definition).  In
general, when sh = 1 the F output is shifted one bit position before being written back into R or
Q.  This is accomplished inside the 2901 by 3-input multiplexers at the inputs to R and Q.  What is
shifted into the ends of R or Q determines the type of shift.

When sh concatenated with aD (sh,,aD) equals 001, neither an R register nor Q is written.  This
may be desired when writing an external register or when comparing two quantities.  When sh,,aD
= 000, Q is loaded with the ALU output.  When sh,,aD is equal to 010 or 011, an R register is
loaded with the ALU output.

The Y bus gets the ALU output in all cases except when sh,,aD = 010, when it receives the A-
bypass value.  Two general rules:  When A-bypass is utilized an R register must be written and it
is not possible simultaneously to write R and Q with F.

When sh=1, a single-bit shifting operation is performed on the ALU output and/or Q.  There are
two major types of shift operations (Figure 4):  a double-word shift of F,,Q and a single-word shift
of F alone.  These two types of shifting, combined with the two directions, are named by the four
values of aD when sh=1.

For single-word shifts, the Q register is unaffected and the R register gets the ALU output shifted
one bit to the left or right.  The end of F which is vacated by the shift operation is replaced by Cin
or the bit shifted out of the opposite side of F (a single bit rotate).

For double-word shifts, both the ALU output and the Q register are shifted together.  The low-
order bit of the ALU output is "connected" with the high-order Q bit to form a 32-bit quantity.
The high-order bit of F which is vacated by a right double shift can be written with Cin or the
Carryout (Cout) of the current ALU computation.  Similarly, the low end of Q is written with the
complement of Cin (~Cin) if the shift direction is left.  Note that the high bit of Q is written with
the complement of the low bit of F.  A general rule:  Shift inputs into Q are complemented.

In summary, the following 2901-related restrictions apply:  (1) When A-bypass is utilized an R
register must be written, (2) it is not possible simultaneously to load R and Q, and (3) A-bypass
cannot be used with single bit shifts or when loading Q.
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2.3.2 External 2901 Data Paths

There are two major 16-bit data buses external to the 2901:  the X bus and Y bus.  Both are
present on the backplane; however, they are not general purpose, bidirectional buses.  The YH bus,
an 8-bit extension of the Y bus, is used for memory addressing.

The Y bus is driven only by the Y output of the 2901.  It can be used to supply a memory address,
memory data, U register data, or device output data.

The X bus is the major system bus and is connected to multiple drivers and multiple receivers.5  X
bus sinks are:  the D input of the 2901, the RH registers, the Instruction Buffer (IB), and controller
output registers.  X bus sources are: the U registers, RH registers, the IB, constants, memory data,
and controller input registers.  The IB, RH, and controller output registers receive data from the X
bus so that they can be loaded directly from memory in one cycle.

Data can be passed from the Y bus to the X bus via a 4-bit rotator, called LRotn.  Data can be
rotated zero, four, eight, or twelve positions to the left, as specified by the fZ field.  A zero rotation
allows Y bus data to be placed unaffected onto the X bus; an example is loading controller output
registers from the ALU output.

Eight- or four-bit constants can be placed onto the X bus directly from the fY and/or fZ fields.
The upper 8 or 12 bits of the X bus are set to zero.

The following table lists the registers which are addressable by the CP and the buses to which they
are attached:

Register inputs from Register outputs to
MAR_ YH,,Y _MD X Memory
Map_ YH,,Y
IB_ X _ib, _ibNA X Instruction Buffer

_ibLow, _ibHigh X[12-15]
~ibPtr X[10-11]

RH_ X[8-15] _RH X[8-15]
U_ Y _U X
stackP_ Y[12-15] ~stackP X[12-15]
MDR_ Y EKErr X[8-9]
MCtl_ Y _MStatus X Memory
KOData_ X _KIData X Rigid Disk
EOData_ X _EIData X Ethernet
POData_/TOData_ X _TIData X LSEP/MagTape
IOPOData_ X _IOPIData X IOP
KCtl_ X _KStatus X Rigid Disk
KCmd_ X _KTest X Rigid Disk
EICtl_ X _EStatus X Ethernet
EOCtl_ X
IOPCtl_ X _IOPStatus X IOP
DCtl_ X Display
DBorder_ Y
DCtlFifo_ Y
PCtl_/TCtl_ X _TStatus X LSEP/MagTape
TAddr_ X
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2.3.3  U Registers

A 256-word register file, called the U registers, can be written from the Y bus and read onto the X
bus.  These 16-bit general purpose, "slow" registers are used to hold a 16-word stack, virtual page
addresses, temporaries, counters, and constants.

With respect to accessibility, U registers are situated between main memory and the R registers:
they cannot be both read and written in the same cycle, nor can they be used as an operand or
destination register in 16-bit ALU arithmetic.

As illustrated below, there are three ways to form an 8-bit U register address:  normal, stack-pointer,
and alternate.

In the normal mode, true when fS[2]=1, the U register address is defined by the concatenation of
the rA and fZ microinstruction fields.  This sharing of the rA field between R and U register
addresses has several implications.  In general, a U register can be loaded into any R register since
the rB field defines the write address.  However, an arbitrary U register and an arbitrary R register
cannot both be ALU operands unless the upper four bits of the U register address equal the R
register address.  This addressing mechanism partitions the U registers into sixteen, 16-word banks
such that, in one cycle, a bank’s U register can only be combined with the bank’s corresponding R
register.

In the stack-pointer addressing mode, used when fS[2]=0, the U register is selected by the 4-bit
stackPointer register (stackP) from the low bank; that is, the address is 0,,stackP.  The stackP is
not explicitly modified with this addressing mode and if an instruction uses this mode and also
executes a pop or push function, the stackP before modification is used to access the U register.

The alternate mode provides indirect addressing and is used when fS[2]=1 and fZ=AltUaddr for
the previously executed microinstruction.  In this mode, the low nibble of the U address equals the
least significant Y bus nibble for the previously executed microinstruction�the same one that did
the AltUaddr.  Thus, instead of rA,,fZ, the U address is rA,,Y[12-15].

While reading or writing U registers, the fZ field can specify both a U register address and another
function.  Specifically, when fS[2-3] = 3, fZ can take on IOXIn values.  This is commonly used to
read an RH register or the IB while simultaneously writing a U register.  When the stackPointer
addressing mode is used, the fZ field is free to be interpreted as either fZNorm or a Nibble.

The U registers are also controlled by two other microinstruction fields:  enSU and Cin.  The enSU
bit is 1 for any cycle which either reads or writes a U register.  Cin must be 1 if writing, and 0 if
reading.  Thus, if a U register is written and the ALU function is addition or subtraction, these
computations execute with Cin=1.  Note that normal two’s complement subtraction implies Cin=1.

rA fZ

rA

0 stackP

Normal

stackPointer

Alternate

Figure 5.  U Register Addressing Modes

Y[12-15]

7430
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2.3.4  RH Registers

Located on the X bus is the 16-by-8-bit RH register file, an extension of the R registers.  The
principle application of this small memory is to hold the highest-order memory address bits.
Moreover, it can be utilized as general-purpose storage:   for flags, counters, temporaries, and
subroutine return pointers (see DMR).

The RH registers are addressed by the rB field, and, since this field names the R register to be
written, an RH register can only be written into its corresponding R register (or the Q register).

Like the U registers, the RH registers cannot be both read and written in the same cycle.  An RH
register is written from the low byte of the X bus when fX = RH_ and is read onto X[8-15] when
fZ = _RH.  Whenever it is read onto the X bus, the high half of the bus is set to zero.

Every cycle, the 8-bit YH bus is driven with the value of the addressed RH register, thereby
supplying the high order memory address bits to the Memory Control card.  However, these bits are
only used by the memory if a MAR_ or Map_ is specified.  As a corollary to the rule that RH
registers cannot simultaneously be read and written, an RH register cannot be loaded if the
microinstruction also executes a MAR_ or Map_.

2.3.5  Instruction Buffer

The Instruction Buffer (IB) was designed to hold up to three Emulator macroinstructions or data
bytes.  It is used in a first-in, first-out manner.  Data loaded into the IB from the X bus can be read
back onto the X bus or be used to define a 256-way dispatch in control store.  The IB is loaded by
special Emulator "refill" microcode (sec. 2.6.4) while the actual control of the registers is
accomplished by a hardware state machine.

The IB is maintained by the Emulator in a way that guarantees all macroinstructions will find
necessary code segment operands there.  Furthermore, the IB is where the 256-way dispatch is made
on the next macroinstruction to be executed.  This dispatch (IBDisp) occurs in c2 so that the next
macroinstruction begins in c1, thereby adjoining the previous one.  However, when IBDisp is
executed and the buffer is not full, a microcode trap occurs and the refill microcode loads the
buffer with more bytes from memory.  If an IBDisp is executed and there is a pending interrupt
(MInt=1), special interrupt trap (IB-Refill) microcode runs instead of the refill microcode.  Since
the IB is so small, IBDisp’s frequently trap; however, since the IB-Refill trap runs at memory speed,
this scheme of supplying operand bytes to the macroinstructions is very efficient.

This scheme is efficient from both memory bandwidth and page-fault handling perspectives.  In the
former case, macroinstructions would otherwise have to call an operand-fetching subroutine, which
would waste time becoming cycle aligned.  In the latter case, macroinstructions need not worry
about a page fault from the code segment.  (The occurrence of a code segment page fault can add
major complications to the implementation of macroinstructions since the microcode must, before
processing the fault, restore the Mesa machine state to its value at the beginning of the instruction.)
The IB insures that macroinstructions can always find code segment arguments present in the IB.  In
this sense, the IB is more like an operand data buffer than an instruction buffer.

The minimum number of bytes in the buffer required to prevent an IB-Refill trap is three (the
maximum size of a Mesa macroinstruction) and they only occur between the execution of
macroinstructions.  The refill code completes in one click if the buffer requires two bytes and
finishes in two clicks if four are needed.  Because the buffer is small, the only codebytes which do
not result in an IB-Refill trap are single-byte opcodes executed from even memory locations.

The instruction buffer itself consists of three 8-bit registers, called IB[0], IB[1], and ibFront.  IB[0]
holds the even code segment byte and IB[1] the odd.  The bytes are shuffled through ibFront in
even/odd, sequential order.  There are four states which enumerate the location of data bytes
among the holding registers.  These states are indicated by the 2-bit register ibPtr and are defined
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below.  The following diagram shows the four IB states (the cross-hatching indicates the position of
the data bytes):

state name bytes in IB ibPtr
full 3 2
word 2 3
byte 1 1
empty 0 0

 

There is a total of 8 microinstruction functions which affect the IB.  In general, the functions
maintain the original even/odd byte ordering while updating ibPtr and ibFront.  The following
table lists the functions and their effect on ibPtr, ibFront, and the X bus.  A discussion of the table
follows, except that IB dispatches and IB-Refill traps are presented in sections 2.5.2 and 2.5.5.1.

function new ibPtr new ibFront X bus _
_ib ibPtr-1 IF ibPtr[1]=0 THEN IB[0] 0,,ibFront

   ELSE IB[1]
_ibNA unchanged unchanged 0,,ibFront
_ibHigh unchanged unchanged 0,,ibFront[0-3]
_ibLow unchanged unchanged 0,,ibFront[4-7]
IBDisp ibPtr-1 IB[ibPtr[1]] unaffected
AlwaysIBDisp ibPtr-1 IB[ibPtr[1]] unaffected
IB_ IF empty THEN word IF ibPtr=empty THEN X[0-7] unaffected

   ELSE full    ELSE unchanged
IB_, IBPtr_1 IF empty THEN byte IF ibPtr=empty THEN X[8-15] unaffected

   ELSE full    ELSE unchanged
IBPtr_0 word IB[0] unaffected
IBPtr_1 byte IB[1] unaffected
_ErrnIBnStkp unchanged unchanged X[10-11]_~ibPtr

Figure 7.  Effects of IB-related Functions

////////////////////////
IB[0] IB[1]

ibFront

////////////////////////ibPtr=full ibPtr=word ibPtr=byte ibPtr=empty

Figure 6.  Instruction Buffer States
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The IB is loaded from the X bus:  the high-order, even byte is written into IB[0] and the low-order,
odd byte into IB[1].  If the buffer is empty, then the X bus byte passes through IB[0] or IB[1] and
is loaded directly into ibFront in one cycle; thus, the data can be used immediately in the cycle
following the IB load.

The default IB write operation is to write ibFront with X[0-7].  However, if IBPtr_1 is coincident
with IB_, then ibFront is written with X[8-15] instead, thereby throwing away the even data byte.
If there are one or two bytes in the buffer, then IB[0] and IB[1] are loaded and there is no feed
through into ibFront.

ibFront can be read onto the X bus:  when the microcoder specifies a _ib or _ibNA, ibFront is
placed onto X[8-15] and the high byte of the X bus is set to zero.

There are several variations to this basic read.  With the _ibHigh function, ibFront[0-3] is placed
onto X[12-15].  Analogously, _ibLow places ibFront[4-7] onto X[12-15].  In both cases the upper
12 bits of the X bus are set to zero.

When _ib is executed, a funneling process occurs:  ibFront is loaded with the next byte from either
IB[0] or IB[1] and ibPtr is "decremented" by one.  ibPtr is gray code decremented:  2, 3, 1, and
then 0.  Thus, the low order bit of ibPtr divides the values of ibPtr into two classes with respect to
refill:  empty and not empty.  (This scheme equates the empty and full states, but note that the
buffer is not full when the IB-Refill trap occurs.)

Several of the microcode functions have no effect on the state of the buffer:  The _ibNA function
(used to read the IB without advancing ibPtr), _ibHigh, and _ibLow do not change ibPtr.  Also,
like the RH and U registers, it is not possible simultaneously to read and write IB; hence, the
combination of IB_ and _ib in the same cycle does nothing.

The functions IBPtr_0 and IBPtr_1, when used alone, merely load ibFront from IB[0] or IB[1],
respectively.  They typically occur in the cycle after the IB has been loaded with a jump-target
codebyte, thereby selecting the even or odd destination opcode.

The complement of ibPtr can be read onto X[12-13] with the _ErrnIBnStkp function.
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2.3.6  stackP Register

The 4-bit stack pointer, stackP, is used to address one location from U register bank 0 (Sec. 2.3.3)
and can be incremented or decremented independently of the 2901.  The pop function decrements
(modulo 16) and the push function increments (modulo 16) the stackP at the end of a cycle.
Unlike the U and RH registers, the stackP can be read and written in the same cycle.

The stackP can be loaded from Y[12-15] with an fY function.  However, one cycle must intercede
between a stackP_ and a microinstruction which uses the stack-pointer addressing mode and
expects the new value.  A pop or push can be used in the intervening instruction and appropriately
modifies the value loaded.

The pop and push functions have been sprinkled throughout the microinstruction function fields to
ameliorate the checking of stack overflow or underflow.  The push function occurs in all three
function fields while pop is in fX and fZ.  An outcome of this arrangement is that when push is
specified in the same microinstruction as pop, the stackP does not change:  it does not matter how
many pop’s or push’s there are; as long as there are both, the stackP is unaffected.  Also, multiple
pops or pushs in the same instruction do not decrement or increment the stackP by more than
one.  Multiple pop and push functions are used to check for stack overflow or underflow (sec.
2.5.5.2).

2.3.7  pc16 Register

The pc16 register is designed to serve as a low-order, 1-bit extension of an R register; namely, the
R register which holds the Emulator’s macroprogram counter (PC).  That is, pc16 can be used as
the byte index of a PC memory address.

If fX or fZ is Cin_pc16, the pc16 bit becomes the carry input of the 2901 and pc16 is inverted at
the conclusion of the cycle.  Thus, Cin_pc16, in combination with ALU addition and subtraction,
properly adjusts the 17-bit byte program counter PC,,pc16  (See DMR).

Since Cin is also the shift ends (Sec. 2.3.1), Cin_pc16 can be used to shift pc16 into the low-order
bit of an R register in one cycle, thereby reconstructing a byte program counter in an R register.

Due to the hardware implementation of the carry input, when the Cin field of the microinstruction
is 0, the fX version of Cin_pc16 must be used.   If Cin=1, then either the fX or fZ version of
Cin_pc16 can be specified.
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2.3.8  Timing Limitations

The architecture of the CP allows the execution of microinstructions which will not always properly
complete.  This is due to either "slow" X bus operands or "slow" destination registers; that is,
certain sources can not be loaded into certain destinations because the source value is not stable in
time.  Basically, the delay time of the source plus the setup time of the destination must be less
than the cycle time, 137 nS.  MASS will flag such instructions with a timing violation error.

All ALU internal register-to-register operations complete on time.  All Y bus destinations can be
loaded as a result of any ALU operation which does not use the X bus as an operand (except for
the high 12 bits of a U register).

If the ALU operation uses an X bus operand (aS = D,A, D,Q, D,0), depending on the register, the
operation may not complete in time.  In general, all X bus sources can at least be loaded into an R
register, which is a logical operation (aS = D,0, aF = RorS).

Figure 7 should answer the question: "Is a microinstruction legal with respect to X bus timing?"
The table deals with all possible X bus sources and destinations: X-bus-source-to-X-bus destination,
X bus ALU operands (aS = D,A, D,Q, D,0), and X bus branching and dispatching.  Intersections
marked with a full, half, or quarter square blob indicate legal source/destination combinations or
branching phrases.

X + R represents the 3 arithmetic operations (aF = R+S, S-R, R-S) and X or R the 5 logical
operations (aF = RorS, RandS, ~RandS, RxorS, ~RxorS).  B_ implies the loading of an R
register; Q_ has the same timing.  pgCross refers to the automatic page cross branch with MAR_
and pageCross & OVR refer to PgCrOvDisp.

Branching and dispatching have different timing than the basic ALU operations and a potential
statement must meet both conditions.  In general, zero, negative, or overflow branching is not
possible with any X bus operand.

The ALU performs arithmetic at three different speeds depending on which bits of the result you’re
looking at.  Thus, figure 7 has three numbers for arithmetic operations depending on which bits of
the result are of interest.  ALU[0-7] are the slowest since they depend on a carry from the
lookahead unit.  ALU[8-11] are next as they depend on a ripple carry from the low nibble.  Finally,
ALU[12-15] are fastest since Cin arrivies very early relative to X bus sources.  Thus, the low nibble
always has the timing of a corresponding ALU logic operation.

Note that some "+1" or "-1" operations do not necessarily imply use of the X bus, but use Cin
instead.  Thus, R _ R + 1, NegBr is legal where R _ R + 2, NegBr is not.

All arithmetic operations with the ALU internal zero as an operand (aS = 0,Q, 0,B, 0,A, or D,0)
complete on time.  This obviously includes all X bus sources.
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Figure 7.  Allowable X-bus Operations
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2.4  Main Memory Interface

This section discusses the interface between the CP and the memory system.  As outlined earlier, a
memory address is sent to the Memory Controller in c1, any data to be written is sent during c2,
and returning data is available in c3.  Every click is a potential memory operation:  if the Emulator
kept the memory 100% busy and there were no I/O, it would have available up to 2.4 megawords/s
(38 Mbits/s) of bandwidth.

The memory system accepts two types of addresses:  real or virtual.  Real references result in a read
or write to the addressed location itself.  Virtual references cause the memory system to ignore the
low byte of the address and then, using the remaining 16 bits, read or write the Map, located at real
address 10000 hex.

For both reference types, when the mem field is set in c2 a write occurs (MDR_) and when set in
c3 a read occurs (_MD).  If both a read and write are specified in the same click, the original value
is returned and then the location is overwritten.  Furthermore, if a click specifies a MDR_ or _MD
without a corresponding MAR_ then memory is not written and a potential memory Error trap
does not occur.

As outlined in section x.xx, the memory system is available in a variety of sizes:  real address size
from 192K to 768K words and virtual address size from 4 to 16 megawords.  This section assumes
the maximum of both ranges:  20-bit real addresses and 24-bit virtual addresses.

2.4.1  Real Address References

When the mem bit is true in cycle 1, a real reference is caused.  The microcoder specifies a real
reference by using the MAR_ macro in c1.  The memory address is sent to the Memory Control
card on the YH and Y buses.  The Y bus can be driven from either the 2901’s F bus or A-bypass;
hence addresses can be either pre or postmodified.  The YH bus, which supplies the high-order
address bits, is always driven by the RH register addressed by rB.  Furthermore, YH[0-3] are
ignored by the memory.

Several important things happen with a MAR_:  the 2901 is divided such that the high half
executes a fixed function, a special "address-overflow" branch is enabled, and an MDR_ or IBDisp
in the next cycle is canceled if the branch is taken.  Moreover, if a MAR_ is executed with YH[4-7]
= 0 and the display controller is enabled and actually transferring bits to the monitor, then the
click is suspended  (See sec. 2.5.6.5).

MAR_ Effect:  Split 2901

If mem=1 in c1, the 2901 is divided such that the high half executes with its aS and aF inputs
equal to (0,B) and (aF or 3), while the low half executes the aS and aF values given by the
microinstruction.  This causes the high byte of the ALU output to equal the high byte of the R
register addressed by rB (or its complement if aF is in [4..7]).  Thus, assuming the Y bus is driven
from the F bus, the 20-bit real address is rhB[4-7],,rB[0-7],,F[8-15].

This change in normal ALU function was required by the fact that the most significant memory
address bits must be ready very early in the click.  Only logical operations would allow the address
to pass through the ALU quickly enough.  The requirements are not so strict on the low order bits,
so arithmetic operations are allowed on the bottom byte.  This change also facilitates the combining
of the virtual page number returned by a Map reference with the offset into the page contained in
the low byte of an R register (see the DMR for examples).

An outcome of this bipartition is that a carry out from the low half does not propagate into the
high half: the high byte of rB remains unchanged after a MAR_ (unless aF is in [4..7]), even if A-
bypass is utilized.
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The real address modes are illustrated below.  In summary, if A-bypass is not used, the upper 12
bits of the memory address (the page address) come from the RH/R pair named by the rB field,
while the lower 8 bits (the page displacement) are defined by the desired ALU operation.  This
feature can be used to combine the real-page number, as read from the Map in the previous cycle,
with a displacement into the page.  If A-bypass is specified, the lowest 16 address bits come from
the R register addressed by rA.  Hence, the 20-bit real address is rhB[4-7],,rA[0-15].

MAR_ Effect:  pageCross Branch

The second effect of a MAR_ is that it automatically specifies a pageCross branch:  1 is or’d into
INIA[10] if the ALU operation results in a carry out from the low half.  Thus, although the carry
out from the low byte does not propagate into the high byte, as discussed above, it can be detected
as a transfer of control.  A true pageCross branch can imply that the real address is invalid and
that a remapping of the virtual address which originally generated it is necessary.  Since pageCross
is not or’d into INIA[11], other simple branches can be concurrently specified.

pageCross is defined to be (pageCarry xor aF[2]), where pageCarry is the carry out from the low
2901 byte.  The xor has the effect of toggling pageCarry when doing subtraction; pageCross
equals pageCarry when doing addition.  The aF = (R-S) form of subtraction does not cause
pageCarry to be inverted since aF[2] = 0; however, the aF = (R-S) form covers the most
common subtraction requirements.  See the DMR.

A complication of the MAR_ automatic pageCross branch is that pageCross can indeed equal 1
if the 2901 executes a logical, instead of arithmetic, function.  See the DMR.

MAR_ Effect:  Cancelation of c2 Functions

The third effect is that if pageCross = 1 during a MAR_, then a following MDR_, IBDisp, or
AlwaysIBDisp in c2 is ignored.  This mechanism can be used to prevent writing into the wrong
page or dispatching on the next Emulator instruction when the corresponding virtual address should
be remapped.  This effect increases the need to avoid logic functions during a MAR_.  See the
DMR.

Normal

rhB

YH bus Y bus

rB[0-7]rhB F[8-15]

rA[0-15] A-bypass

0 7 8 1574

Figure 8.  MAR Address Types
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2.4.2   Virtual Address References

When either the fX or fY fields equal Map_ in cycle 1, a memory reference to the virtual-to-real,
page-translation Map is caused.  The Map is a table whose first entry is at location 10000 hex, just
after the display bank.  During a Map reference, the memory system uses the upper 16 bits of the
virtual address (14 bits in the case of a 22-bit virtual address) to index into the table.  Each entry of
the table contains a 12-bit real-page number and four flags pertaining to the virtual page.
Currently, a 16K table is used by the Emulator.  Figure 10 illustrates the process.

The virtual address is made available to the Memory Control card on the YH and Y buses.  The
low byte of the Y bus is ignored and, unlike MAR_, there are no ALU side effects.  Since the Y
bus can be driven from either the 2901’s F bus or A-bypass, addresses can be either pre or
postmodified:

For 24-bit virtual references, all of the YH bus is used.  However, with early versions of the CP,
which assumed a maximum 22-bit virtual address, if either YH[0] or YH[1] are 1, an Error trap
resulted.

The following figure shows the format of a Map entry.  See the DMR for a description of how the
referenced, dirty, and present Map flag bits are maintained.

The mem field should not be set in c1 along with a Map_ unless MAR_’s side effects are explicitly
desired.  Moreover, if YH[4-7] = 0, such clicks will be suspended due to display bank contention.

Normal

rhB

YH bus Y bus

rhB

rA[0-15] A-bypass

0 157

F[0-15]

0

Figure 9.  Map Address Types
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Figure 11.  Map Entry Format

Referenced & Present flag

Figure 10.  Virtual to Real Address Mapping
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2.5  CP Control Architecture

This chapter discusses the algorithms used for controlling the execution of microinstructions and the
interface between the IOP and the CP.  Figure 12 is a block diagram of the control paths and
registers.

As presented in the introduction, cycles are illimitably executed c1, c2, and c3.  Every cycle, one
microinstruction is decoded and executed while the next is being read from the control store (except
in those clicks which have been suspended due to display bank contention).  Since a device task
does not execute in consecutive clicks, there is hardware to save the microprogram counter of each
task while it is not running.

We first look at branching, dispatching, the Link registers, and the Error traps, as they can be
described without reference to the tasking structure.

2.5.1  Conditional Branching and Dispatching

Every microinstruction can potentially branch:  during each cycle, condition bits specified by the
executing microinstruction are or’d into the next instruction’s "goto"-address field (INIA) being read
from control store.  At the end of the cycle, this results in an address (NIA) which is used to read
the next microinstruction.  If the executing microinstruction does not specify a branch function,
then 0 is or’d into INIA and, accordingly, a branch does not occur.  When a microinstruction
specifies a dispatch function, up-to-four bits are or’d into the INIA field; selecting one of up-to-
sixteen target microinstructions.  (The maximum of four dispatch bits was chosen in order to
minimize the number which must be saved between task switches.)

Thus, all branches and dispatches take two cycles to complete:  one cycle to specify the branch and
one to read out the target microinstruction.  The microinstruction bits required to specify a branch
are fS[0-1] = DispBr and the fY field which names the branch or dispatch (Figure 13).

The notation used to specify the branching behavior is as follows:  A microinstruction is located in
control store at its Instruction Address, IA; the Next Instruction Address, NIA, is the control store
address register; and the Intermediate Next Instruction Address, INIA, is the 12-bit "goto" address
present in each microinstruction.  Every cycle, the hardware or’s the condition bits specified by fY
(abbreviated DispBr) and together with a Link register specified by fX into INIA, thereby producing
the NIA value used for the next cycle:

NIA[0-11] _ INIA[0-11] or DispBr[0-3] or Link[0-3].

In the case of dispatches, it is not always necessary for the microcoder to provide target instructions
for each possible outcome.  Any particular condition bit can be ignored by placing a 1 in its
corresponding position in INIA.  This method can also be used to cancel unwanted, pending
branches. See the DMR.

Figure 13 enumerates the available branches and dispatches.  Note that, in some cases, there is
more than one way to branch on a particular bit and that any bit on the low half of the X bus can
be branched on.  The NZeroBr exists so that code can be more readily shared.
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Figure  12.  CP Control Paths
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source INIA

NegBr F[0] 11 sign of alu result (not necessarily Y[0])
ZeroBr F=0 11 alu output equal to zero
NZeroBr F=0 11 alu output not equal to zero
CarryBr Cout[0] 11 alu carry out
NibCarryBr Cout[12] 11 alu carry out from low nibble
PgCarryBr Cout[8] 11 alu carry out from low byte
XRefBr X[11] 11 present & referenced Map bit
MesaIntBr MInt 11 Emulator Interrupt (see 2.5.3)
XwdDisp X[9],,X[10] [10-11] write protect & dirty Map bits
XHDisp X[4],,X[0] [10-11] X (high) bus
XLDisp X[8],,X[15] [10-11] X (low) bus
PgCrOvDisp PgCross,,OVR [10-11] pageCross & alu overflow
XDisp X[12-15] [8-11] low nibble of X bus
YDisp Y[12-15] [8-11] low nibble of Y bus
XC2npcDisp X[12-13],,c2,,~pc16 [8-11] X bus, cycle2, inverse of pc16
YIODisp Y[12-13],,bp[39],,bp[139] [8-11] I/O branches (bp=backplane pin)

IBDisp ibFront [4-11] Instruction Buffer
LnDisp Linkn [8-11] Link register  (n=0..7)

Equivalent names:  EtherDisp = YIODisp,  XDirtyDisp = XLDisp.

Figure 13.  Branches and Dispatches
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2.5.2  Instruction Buffer Dispatch

The instruction buffer dispatch, IBDisp, is a special dispatch since more than four bits are or’d into
INIA.  Consequently, IBDisp can only occur in c1 or c2, and, by convention, it is restricted to c2.
See section 2.3.5 for a discussion of the instruction buffer.

Assuming that the instruction buffer is full, IBDisp can cause a 256-way dispatch based on the value
of ibFront:  NIA[4-7] is set to the high nibble of ibFront and the low nibble of ibFront is or’d with
INIA[8-11].  (Due to the or operation into the low nibble of INIA, simultaneous Link register
dispatches are possible.6)   INIA[0-3] is unaffected by the IBDisp (except by the four IB-Refill trap
values); therefore, up-to-twelve 256-way dispatch tables can be concurrently used.

If the buffer is not full (ibPtr = full) when an IBDisp is executed, or there is a pending interrupt,
then an IB-Refill trap occurs  (See 2.5.5.1).

A special version of IBDisp, called AlwaysIBDisp, never IB-Refill traps:   AlwaysIBDisp dispatchs
on ibFront even if there is a pending interrupt  (MInt = 1) or the buffer is not full.  It is used in
the Emulator refill and jump microcode (sec 2.6.4) to dispatch on ibFront while the buffer is still
being filled.  AlwaysIBDisp is encoded as fY = IBDisp and fZ= IBPtr_1.

If the microinstruction executed before an IBDisp or AlwaysIBDisp causes an IB-Empty Error trap,
or it contains a MAR_ and the 2901 computation results in pageCross = 1, then the IB dispatch
(or possible IB-Refill trap) does not occur and ibPtr remains unaffected.  Since INIA is not modified
in this case, control transfers to the first entry of the macroinstruction dispatch table.  (Accordingly,
Emulator opcode 0 should not be assigned to a macroinstruction.)

2.5.3  MInt Register

The 1-bit MInt register can be used to interrupt the contiguous execution of Emulator
macroinstructions.  When MInt is set in a antecedent cycle, IBDisp traps instead of dispatches
(1.5.5.1).  MInt is set with fY = MesaIntRq and cleared with fY = ClrIntErr.  (ClrIntErr also resets
the EKErr register.)  See the DMR for user conventions.

2.5.4  Link Registers

The CP has eight, 4-bit Link registers which can be loaded from the low four bits of the control
store address.  Generally, these Link registers can be used to hold four bits of state information
derived directly from the flow of control.  Thus, previously determined state information can be
easily recalled by dispatching on a Link register.  Moreover, macroinstructions can share common
code at various stages of their execution and Link registers can be used for subroutine call and
return structures.  See the DMR.

The Link register addressed by fX is written with the low nibble of NIAX (which equals NIA except
during a task switch in c2.  see 2.5.6.4).  A Link register is written when fX is in [0..7] and NIA[7]
= 0:  Link[fX] _ NIAX[8-11].

A Link register is or’d into the low nibble of INIA when fX is in [0..7] and NIA[7] = 1, causing a
potential 16-way dispatch.  Since the Link register is designated by an fX function, the fY field is
free to specify other condition bits which can be or’d into INIA[8-11].

If the preceding microinstruction does not specify a branch or dispatch condition, then the Link
register is loaded with a constant.  However, if the prior instruction contains a branch or dispatch,
the value loaded depends on the outcome of the branch or dispatch.  (The low four bits of the IB
dispatch value can also be recorded in this way.)  See the DMR.
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2.5.5  Microcode Traps

There are two general classes of microcode traps:  IB-Refill and Error.  The former only occurs as
the result of IBDisp’s; hence between the execution of macroinstructions.  There are four IB-Refill
trap locations which are a function of ibPtr and MInt.  Error traps can occur in any cycle and
always trap to location 0 in c1.  The Error traps have priority over the IB-Refill traps and cannot
be disabled.

2.5.5.1  IB-Refill Traps

If an IBDisp is executed and ibPtr = full or MInt = 1, then the ibFront dispatch does not occur
and instead an IB-Refill trap is caused.  Specifically, ibPtr is unaffected, INIA[4-11] is not modified,
and NIA[0-3] is set to the 4-bit quantity 0,,1,,MInt,,ibPtr[1].  The following table summarizes the
interpretation of the IB-Refill trap locations.  (If an IB-Refill trap occurs and MInt = 0, then ibPtr
can not equal full.)

NIA[0-3] MInt ibPtr
   4  0 empty
   5  0 not empty (i.e., byte or word)
   6  1 empty or full
   7  1 byte or word

AlwaysIBDisp never IB-Refill traps and a MAR_ caused pageCross branch or IB-Empty Error trap
cancels a potential IB-Refill trap.

2.5.5.2  Error Traps

Error traps can result when one or more predefined error conditions are detected in the CP or
memory.  All error traps cause the instruction at microstore location 0 to be executed in c1 by the
Emulator or Kernel, depending on the error type.  Error traps cannot be disabled.

The EKErr register, read onto X[8-9] with _ErrnIBnStkp, names the type of error:

EKErr Type
0 control store parity error
1 Emulator memory error
2 stackPointer overflow or underflow
3 IB-Empty error

If, coincidentally, two or more errors occur at the same time, smaller values of EKErr are reported.
The error types are also accumulated until EKErr is reset:  the minimum value is reported when
EKErr is read.  Error traps have priority over the IB-Refill trap.  See the DMR for example error-
handling microcode.

EKErr is reset by the ClrIntErr function which, as a side effect, also resets any pending interrupts.

With early CP modules, an EKErr value of 1 can also imply that a 23- or 24-bit virtual address had
been used by the Emulator.  In this case, the ErrorLogging register in the Memory Controller is
read to determine whether the error is actually a double-bit memory error.  Since the Memory
Controller can now accept 24-bit virtual addresses, this interpretation of EKErr=1 is no longer
necessary (beginning with CP etch 4, Rev N).
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CS Parity Error

If the parity of a microinstruction read by any task is odd, then control is transferred to location 0
at the Kernel task level.  Since the Kernel is the highest priority task, no other microcode tasks can
execute.  The CS-parity-error signal is sampled by the IOP, which can consequently sense a failed
control store chip.

If the instruction read from microstore in c1 has bad parity, then the Kernel runs at location 0 in
the next c1.  If the parity error occurs in c2 or c3, then there is a one click delay before the
Kernel executes at location 0 in c1.  This intervening click can be executed by any task.

Emulator Memory Error

If the Memory Controller indicates a double-bit memory error in c3 during an _MD executed by
the Emulator, then a trap to location 0 in c1 occurs at the Emulator task level.

The hardware requires the execution of one additional Emulator click between the c3 which errored
and the trap at location 0.  Thus, other tasks and an additional Emulator click can intervene
between the occurrence of the error and the trap code.

This trap only occurs for memory errors incurred by the Emulator task:  device tasks must explicitly
utilize the ErrorLogging register in the Memory Controller.  Yes, the memory address is lost (as
well as the syndrome if other memory reads occurred since the error).

Stack Pointer Overflow or Underflow

If a pop or push is executed with the values of the stackPointer given in the following table, then
a trap to location 0 in c1 at the Emulator task level occurs (the stackP is still modified).

The hardware requires the execution of one additional Emulator click before the trap at location 0.
Thus, other tasks and an Emulator click can intervene between the occurrence of the error and the
trap code.

Multiple pop’s and push’s can be specified per microinstruction in order to ameliorate the detection
of Stack overflow or underflow.  For instance, fXpop (i.e., the pop in the fX field), fZpop, and
push executed together leave the stackPointer unmodified, yet simulate two pop’s with respect to
stack underflow detection.  fXpop with push checks for stack overflow while not moving the
stackPointer, and, likewise, push and fZpop check for underflow.  The following table enumerates
the cases.

functions stackP Trap is if stackP  is
pop -1 underflow 0
push +1 overflow 15
fXpop, push 0 underflow 0
push, fZpop 0 overflow 15
fXpop, fZpop -1 underflow 0 or 1
fXpop, fZpop, push 0 underflow 0 or 1

If the Emulator top-of-stack (TOS) element is kept in an R register and the rest of the Stack in the
U registers, and it is assumed that TOS can always be stored away into the Stack, then these values
imply a maximum stack size of 14 words.
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IB-Empty Error

If an _ib, _ibNA, _ibLow, or _ibHigh is executed when ibPtr=empty, then an IB-Empty Error
trap occurs to location 0 in c1 at the Emulator task level.  If the IB-Empty Error occurs in c1, a
MDR_ in the next cycle is canceled.  (Furthermore, an IBDisp is ignored, but this fact is of no
particular value.)

In normal operation (sec. 2.3.5) the IB is always guaranteed to have enough operand bytes (two)
before a macroinstruction begins executing.  However, when the macroprogram counter points to
the last word of a page, the buffer is intentionally not refilled by the Emulator "refill" microcode
and the IB-Empty trap can occur, indicating that control has actually proceeded across a page
boundary.  See the DMR.

If the IB-Empty error occurs in c1, then control transfers to location 0 in the next Emulator c1.
However, if the error occurs in c2 or c3, the hardware requires the execution of one additional
Emulator click before the trap at location 0.  Consequently, other tasks and an Emulator click can
intervene between the occurrence of the IB-Empty error in c2 or c3 and the trap code.  In
particular, if such a click executed a MDR_ with an address which was a function of an IB value
read in the previous c2 or c3, then a random memory location can be written.

The IB is not read during c2 or c3 of a macroinstruction’s last click.  However, the microcoder
must ensure that, immediately following an _ib, _ibNA, _ibLow, or _ibHigh  function executed in
c2 or c3, there is not a memory write with a MAR_ or Map_ address which is a function of the IB
value read in c2 or c3.  (This is not checked for by MASS.)
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2.5.6  Task Scheduling and Switching

A task is the microcode which supports an IO device or the Emulator.  A device task runs whenever
the device controller in the Dandelion asserts its "wakeup" request.  Since a device task can only
run during its pre-allocated clicks, a controller’s maximum memory latency and maximum memory
bandwidth is an outcome of its preassigned location within the round.

The Emulator and Kernel tasks behave differently than device tasks.  The Kernel task is a special
task used for communication between the CP and IOP (see 2.5.6.6).  The Emulator task has no
fixed assigned slot in the round:  it executes during a click which a controller has opted not to use.
Since devices do not utilize all of the bandwidth implied by the round structure, there is always a
minimum number of clicks available to the Emulator.

2.5.6.1  Task Allocation

The CP can control a maximum of 8 tasks.  Currently, there are 6 wakeup lines (5 of them on the
backplane) which can request microcode service.  The eight task numbers are allocated between the
devices, Emulator, and Kernel as follows:

0 Emulator
1 Display or LSEP or MagTape
2 Ethernet
3 Refresh (Auxiliary)
4 Disk (Rigid)
5 IOP
6 IOP control store read/write address
7 Kernel

The Dandelion is configured at boot time so that either the Display, or the LSEP, or the MagTape
can use task number 1, but all three can not simultaneously use task 2.  Normally, the Display task
controls the refreshing of memory, but when the LSEP or MagTape (or other Option board
controller) is active instead of the Display, then the Refresh task has this responsibility.  Similarly,
the Disk task cannot be simultaneously used by both the SA4000 and SA1000.  Task 6 is currently
not assigned to an actual device:  instead it is used by the IOP as an address register when reading
or writing the control store (see 2.5.6.7).

2.5.6.2  Click Allocation

There are two types of rounds:  a standard 5-click round and an extended 10-click round.  The
standard round is used with the HSIO board (Shugart SA4002 or SA1002 disks) and the extended
round with the HSIO-LD board (LDC, or LargeDiskController:  Trident drives).  The extended 10-
click round is an "even" 5-click round followed by an "odd" 5-click round.  In the even rounds, the
Ethernet task has claim to click 3, and in the odd rounds the Trident disk controller does.

Click 4 is special because the Display Controller hardware guarantees that memory references to the
display bank can never abort in this click.  In order to refresh memory and maintain the cursor, the
Display and Refresh tasks are assigned to this click.  When the Display is on, the Display task will
start in click 4 of the 11th round of a Display line.  In contrast, the Refresh task will begin with the
1st round of a Display scan line.

The LSEP also uses click 4 since its band buffers are located in the Display Bank.  Moreover,
because of hardware pin limitations, the LSEP and Display wakeup requests are or’d together (on
the HSIO board).  Thus, if both the Display and LSEP are enabled, their wakeup requests will be
irresolvable.  (Note the single microcode function, ClrDPRq, is used to reset both their wakeup
requests.)  Also in click 4, the Display-LSEP wakeup request has priority over the Refresh request.
Conversely, due to special hardware in the MagTape controller, the Refresh request has priority
over the MagTape request.
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The following tables show the standard and extended rounds:

Standard Round: Click Task
0 Ethernet
1 SAx000 Disk
2 IOP
3 Ethernet
4 Display-LSEP-MagTape OR Refresh

Extended Round: Click Task
0-0 Ethernet
0-1 Trident Disk
0-2 IOP
0-3 Ethernet
0-4 Display-LSEP-MagTape OR Refresh

1-0 Ethernet
1-1 Trident Disk
1-2 IOP
1-3 Trident Disk
1-4 Display-LSEP-MagTape OR Refresh

2.5.6.3  Click Bandwidth Utilization

The following table summarizes the bandwidth availble to each device and the percentage which
remains for the Emulator when the controller is transferring data.  (Pre- and post-data-transfer
overhead, which normally utilizes 100% of device clicks, is not included.)  Note that the IOP only
transfers one byte per click, so its maximum available rate is actually 3.9 Mbits/s.

Device BW allocated BW used % remaining
(Mbits/s) (Mbits/s) for Emulator

Ethernet(w/SAx000)    15.6 10.0 36
Ethernet(w/Trident)    11.7 10.0 15
SA4000     7.8  7.14  9
SA1000     7.8  4.27 45
Trident    11.7  9.6 18
Display (microcode)     7.8  1.1 86
IOP     7.8  2.0 26
LSEP & Refresh     7.8  3.7+1.1 38
MagTape & Refresh     7.8   .6+1.1 78

Even with the Ethernet, SA1000, and IOP concurrently transferring data and the Display microcode
refreshing memory, the Emulator still executes 60% of the time.
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2.5.6.4  Tasking Hardware

The CP control hardware was designed to hide the details of task switching from the programmer.
Since tasks are frequently resumed and suspended by controller wakeup requests, the hardware
performs all the necessary start upand stop functions:  every click it saves the current task’s
microprogram counters and pending condition bits and, when it is scheduled to run again, it
restores them.  Figure 14 illustrates the process, outlined below.

Every c2 the Schedule Prom in the CP, on the basis of the controller wakeups and click number,
decides which task (Nt) will run in the next click.  Also in c2, the Switch Prom, on the basis of Nt,
the currently executing task (Ct), and Wait (x.xx), decides whether to activate the task switching
logic (and, if so, sets Swc2 _ 1).  A task switch has two parts dealing with the outgoing and
incoming microprogram counter and conditions:  (1) a restore process and (2) a save process.

(1)  The Temporary Program Counter (TPC) array holds the eight 12-bit task microprogram
counters.  If it is cycle 2 and a task switch is occuring, the TPC, as addressed by the next task
number, is the source of the control store address.  The next task’s first micronstruction is
subsequently read in c3 and executed in the following c1.  In short,  NIA _ TPC[Nt] at the end of
c2.

At the same time the next task’s microprogram counter is being read from TPC[Nt], the saved
condition bits are read out of the Temporary Conditions array, TC, and latched into the TC regsiter.
During c3, TC is or’d with the next task’s first microinstruction INIA field, which is being read from
the microstore.  In summary, the saved condition bits are read during c2 from TC[Nt], latched into
the TC register, and in c3 or’d with INIA.

(2)  The current task’s Next Instruction Address (which would have been loaded into NIA if there
were no task switch) is latched into the NIAX register at the end of c2 and then saved in the current
task’s TPC location during c3.  In general, every c3, TPC[Nt] _ NIAX.  (Note that in c3, Nt equals
the task currently executing.)

Furthermore, the condition bits of the task currently executing (which would have been or’d into
INIA) are latched into the TCX register at the end of c3 and then saved into the TC array in c1.  In
general, every c1, TC[Nt] _ TCX.  (In c1, Nt actually equals the task which executed in the
previous click.  The condition bits are saved in c1 because there is not enough time in c3 to write
them into a RAM.)

The following table summarizes when the TPC and TC are read and written and the interpretation
of Nt:

cycle operation Nt
end of c2 NIA _ TPC[Nt]     next task
c3 TPC[Nt] _ NIAX current task
end of c3 NIA _ INIA or TC
end of c3 TCX _ DispBr or Link
c1 TC[Nt] _ TCX    previous task

The TPC and TC RAMs are written every click (except suspended clicks) even if there is not a
pending task switch.  Consequently, if the Emulator is suspended because of Display bank
interference, it’s correct restart address is available in the TPC.
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NIA _ TPC[2] = E1
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TC[0] _ 1
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M2:

M3:

M4:

M5:

NIAX _ M2 NIA _ M2

NIAX _ M3 NIA _ M3

NIAX _ M4 TC _ TC[2] = 0

NIA _  E2 or 0

NIA _ E3

NIA _ TPC[0] = M4
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NIAX _ E2

,,,,

NIAX _ E3

DISP4[disp],

NIAX _  disp or 9

XBus _ 9, XDisp,

NIAX _ Neg

NIAX _ M5 NIA _ M5,

TPC[0] _ M4

TPC[2] _ disp 9or

,
TC[2] _ 0

TCX _ 0

{Emulator microcode for above example.}

{Ethernet microcode for above example}

This example demonstrates a pending branch across the task switch for the Emulator
and shows when the TPC and TC arrays are written and when NIAX is not equal to NIA.

Figure 14.  Demonstration of Tasking Mechanism:

Where the Emulator task (0) is preempted by the Ethernet task (2) for one click.

The Save Process refers to the writing of the TPC & TC arrays, while the Restore Process refers
to the reading out of TPC & TC.

Tt;:
Tt;:

Tt;::;tT



CP 39

2.5.6.5  Display Bank Interference

If any task references the dual-ported Display bank (lowest 64K of real memory) and the Display
controller is reading the bank, then the task is suspended for the duration of that click; that is, no
microinstructions are executed during the suspended click.  Click suspension is always in multiples
of clicks and the c1-c2-c3 structure is not modified.  Device tasks should not reference the Display
bank (unless the Display is off).

In particular, the Emulator task is suspended until either it is scheduled for click 4 or the Display
controller relinquishes the low bank.  This reduces the Emulator’s maximum possible bandwidth
into the low bank by about half (47%) when the Display is active:  from 38.9 to 18.3 Mbits/s  (1.1
megaword/s).7

Clicks are suspended by the signal Wait which gates off all clocks which can change sensitive state
information.  In the schematics, such clocks are labeled WaitClock, in contrast with the normal
AlwaysClock.  Wait is defined

Wait _ (MAR_ and YH[4-7]=0 and Disp-Proc’=0) or (IOPWait and c1)
or (Wait and c2) or (Wait and c3).

When Wait is true, the following registers and RAMs are not written:  R, Q, U, RH, stackP, IB[0],
IB[1], ibFront, ibPtr, Link, TC, TPC, MInt, pc16’, and Errors (Memory, stackPointer, CSParity,
IBEmpty).  By contrast, the following are unaffected by Wait:  MIR, NIA, NIAX, TCX, TC,
KernelReq, EKErr, and schedular task states (Nt, Ct, Pt, Swc3).

Since the Microinstruction (MIR) and Next Instruction Address registers’ (NIA) clocks are unaffected
during suspended cycles, the decoded signals from the MIR can change during an aborted click.
However, this does not result in a random sequence of decoded microinstructions:  the MIR output
in c1, c2, and c3 is equal to the values it would have had if the click were not suspended.  This is
because the microinstruction loaded into MIR is always defined by an NIA which is unaffected by
any invalid states generated during the suspended click:  cycle 1’s MIR output is defined by the NIA
read from the TPC (in c2), cycle 2’s by the value of INIA or TC (computed in c3), and cycle 3’s by
INIA or’d with conditions bits specified in c1 (which are not effected by WaitClock in c1).
Furthermore, if the Emulator is suspended for consecutive clicks, the MIR output is the same for
each click since NIA is reloaded from the TPC during suspended clicks.

2.5.6.6  Kernel Task

The Kernel task is used for supporting the debugging of the CP (e.g., breakpoints, reading/writing
CP registers) and handling the CP-IOP communication while booting (e.g., memory refresh during
control store read/write).  When the Kernel task is enabled, it executes in all clicks, preempting all
device tasks and the Emulator.

The Kernel task runs if there is a CSParityError, IOPWait is true (2.5.6.7), or the microcode
function EnterKernel is executed.  If EnterKernel is executed in c1, the Kernel runs in the next
click.  However, if executed in c2 or c3, an Emulator or device click can intervene before the
Kernel runs.  When the Kernel task is started, the Switch Prom does not cause a task switch; hence,
a breakpoint microinstruction can specify an entry point into the Kernel.

The Kernel task request remains active until reset by the ExitKernel function.  An ExitKernel is
overridden by a pending IOPWait or CSParityError.  When ExitKernel is executed in c1, the next
click can be executed by another task (depending on which click the ExitKernel is in and the
wakeup requests).
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2.5.6.7  CP-IOP Interface

The IOP interfaces with the CP as both a standard I/O controller and as a boot loader/debugger.
This section deals with the booting interface:  the control lines used to load the control store and
initialize the tasks’ microprogram counters (TPCs).  The following signals are used between the IOP
and CP:

SwTAddr high level causes Nt = IOPTPCHigh[0-2] and
NIAX[0-4] = IOPTPCHigh[3-7] and
NIAX[5-11] = IOPData bus

IOPWait high level sets Kernel wakeup request and
WaitClock is suspended

WrTPCHigh positive edge writes IOPTPCHigh with IOPData bus
WrTPCLow pulse causes TPC[Nt] _ NIAX
CSWE[n]’ pulse writes a control store byte with IOPData bus
ReadCSEn’ places CS byte, TPC, & TC onto IOPData bus
ReadCS[n] selects CS, TPC, & TC bits to use with ReadCSEn’

The basic algorithm for reading or writing control store is to first write TPC[6] with the address of
the location to be accessed and then read or write data bytes (addressed by CSWE[n]’ or
ReadCS[n]) while allowing the Kernel to Refresh memory if necessary.  Although all of the tasks’
TPCs can be initialized, the TC registers cannot be loaded by the IOP.

In general, when reading or writing a TPC location or CS byte, both SwTAddr and IOPWait must
be high and the value of Nt (loaded into IOPTPCHigh) must be 6 or 7.  When SwTAddr is true,
Nt and NIAX are defined by the IOPTPCHigh register instead of their normal sources.  This allows
the IOP to address and supply data directly to the TPC RAM.

Setting IOPWait causes the Wait line to be high.  Thus, registers clocked by WaitClock cannot be
loaded with spurious data while a TPC or CS location is being written.  (Moreover, the
CSParityError trap cannot occur.)  IOPWait also sets the Kernel wakeup request so that the Kernel
task runs when IOPWait is removed.

While IOPWait=1 and Nt = 6 or 7, the Switch Prom causes a continuous task switch; that is,
Swc2 is always true and NIA is set to the value of TPC[6] or TPC[7].  In this state, the Kernel
microcode does not run and its TPC does not change.  However, after writing one byte of control
store or one TPC location, it may be necessary to refresh main memory.  In this case, IOPWait and
SwTaddr are reset and, since the IOPWait caused the Kernel wakeup request to be set, the Kernel
begins running at the saved TPC location and executes the required number of Refresh functions
or performs a function enumerated by the IOP via the normal I/O interface (e.g., _IOPIData,
_IOPStatus).

The following table shows which control store bytes are read or written with ReadCSEn’ and
CSWE[n]’.  Note that when writing the control store the inverse of the data must be supplied on
IOPData.

ReadCS CSWE[n] IOPData[0-7]
   0    a   rA, rB
   1    b   aS, aF, aD
   2    c   ep, Cin, EnableSU, mem, fS
   3    d   fY, INIA[0-3]
   4    e   fX, INIA[4-7]
   5    f   fZ, INIA[8-11]
   6      TC, TPC[0-3]
   7      TPC[4-11]
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2.6  Input/Output Interface

The CP and the high speed devices were mutually designed within one framework and are
inexorably bound together:  the I/O bus is the same as the CP’s main data bus (the X bus), the I/O
register control is directly encoded into the microinstruction format, and the devices depend on the
preallocated click structure for guaranteed memory latency and bandwidth.  This intimate
relationship between the devices and the processor exists in order to absolutely minimize the overall
system cost.  By sharing the ALU among several controllers, overlapping memory accesses with
ALU computation, and guaranteeing memory latency, very small IO controllers can be built.  This
section exists because it is possible to design different disk or display controllers on the HSIO
board, new high speed controllers on the Option board, and new Memory systems.

2.6.1  CP-IO Interface

The following signals and buses are used between the CP and a typical device controller, called
Dev:

X bus 16-bit data to or from memory or 2901
Y bus 16-bit data from 2901
DevReq’ task wakeup request to CP Schedule Prom
DevCtl_’ signal from CP to load controller control register from X or Y Bus
DevOData_’ signal from CP to load controller data register from X Bus
_DevStatus’ signal from CP to place controller status onto X Bus
_DevIData’ signal from CP to place controller data onto X Bus
ClrDevRq’ signal from CP to reset controller wakeup request
DevStrobe’ signal from CP for general use by controller
IODisp CP branch on a controller state
Wait level from CP to gate off WaitClock

Normal CP-Controller interaction (for input) goes something like:  (1) A controller receives a word
of data, (2) the controller activates its wakeup request, (3) the controller’s task runs in its allocated
click, (4) the microcode reads the data from the controller to main memory or 2901, and (5) the
controller resets its wakeup request.  In general, the wakeup request is either explicitly turned off by
the task via ClrDevRq’ or is turned off by the controller when it senses a _DevIData’,
DevOData_’, or DevStrobe’.  It is explicitly assumed that a controller only causes wakeups when
data transfers are pending (or when directed by its task) in order to minimize the impact on the
Emulator.

A device’s wakeup request must be turned off by the end of the cycle 1 which follows the service
click in order to prevent a task from accidentally running again.  Since the device’s wakeup request
must be 2-level synchronized, this implies that the reset-wakeup function must be executed in c1 or
c2 for those devices which have a two-click minimum separation.

In general, all controller control registers should be clock’d with WaitClock so that spurious device
actions are prevented while writing control store.  If a control signal can be used by an Emulator
click which could be suspended, it should also be gate’d with WaitClock.  Device tasks should not
reference the Display bank unless the Display is off.
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2.6.2  Controller Latencies

A controller’s data buffer size depends on how often the buffer is serviced and what kind of
wakeup scheme is employed.  There are two basic wakeup strategies:  post and prerequesting.  In
the former case, the wakeup request is raised after the device buffer is available to be read/written
by the CP.  In prerequesting, the wakeup request is raised before the device buffer is actually
available.  Only the SAx000 disk uses prerequesting.  Where a task must process some of the data
and cannot transfer a word per click, then a FIFO is usually used as a buffer (as in the Ethernet).
However, when little or none of the data must be examined by the microcode, then a simple
register buffer is sufficient (as in the rigid disk controllers and LSEP).

In order to avoid overruns with the postrequesting scheme, the maximum microcode service latency
plus the wakeup-request synchronizer delay must be less then the data rate:

Lmax + smax < b/r,

where b is the number of bits of buffering, r is the data rate of the device (in Mbits/s), Lmax is the
maximum latency (in mseconds), and smax is the synchronizer delay (equal to 2T, where T = .137
msec).  If the task microcode transfers one word per click, then

Lmax = 3dT + 4T for output, and
Lmax = 3dT + 3T for input,

where d is the maximum seperation between device clicks.  If the microcode does not always
transfer a word per click, then Lmax is correspondingly greater.

For prerequesting, the wakeup request cannot be made too early, thus the constraint

smin + Lmin - thandoff > 0,

where thandoff is the time for the CP to read the buffer (equal to T) or the controller to read the
buffer (about .05 msec)).  If prerequesting begins p device bit times before the buffer is ready, then

smin = 2T - p/r, and
smax = T - p/r.

Since Lmin = 5T for output and 4T for input, p must satisfy the following conditions in order for
prerequesting to work (thandoff = 0 for output):

[rT(3d + 6) - b]  <  p  <  6rT     for output, and

[rT(3d + 5) - b]  <  p  <  4rT     for input.

For SA4000 write or verifty operations: 4.54 < p < 5.51 !
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2.6.3  IO Controller Design Rules

Since replacement or augmented controllers are being designed for the Dandelion, the following
design rules should be followed in order to guarantee correct operation.  Figure 15 illustrates the
proper application of the CP interface signals.

(1)  CP control signals such as DevReq’, DevCtl_’, _DevIData’, ClrDevRq’, and DevStrobe’
originate from an SN74S138 decoder and therefore must not be used in an asynchronous way, such
as the clock input of a register.  These CP signals must be synchronized to the CP clock or gate’d
with pAlwaysClk or pWaitClk.

(2)  Controller input buffers must be either an SN74S240 or SN74S374 (or equiv) and the CP
control signal which enables them onto the X bus, such as _DevIData’ or _DevStatus’, must be
connected directly to the output enable input without being gate’d in any way.

(3)  If there is more than one output register on the board, the X bus must be buffered with an
SN74S241 (or equiv) before routed to the registers.  The CP control signals which load the output
registers, such as DevOData_’ or DevCtl_’, can be modified per the constraints of a clock qualifier
signal (see (5)).

(4)  The device wakeup request signal, DevReq’, must come from an SN74S374 (or S74, or equiv)
and must be synchronized by at least 2 such FF’s.

(5)  The clock qualifying structure shown in figure 8 must be used:  the S02 is located in the
position nearest backplane pins 1-10 and the "qualifier" gates are no further away then the center of
the board, their preferred location.  Clock qualifier terms should be valid by 94 nanoseconds after
the positive (active) edge of AlwaysClk.  Clock’d registers should be no more than 10" from their
qualifier gate.

pWaitClk must be used for any register which, if spruiously loaded during a control store boot, can
activate a device function (e.g., disk write enable).  Such registers should also be reset by IOPReset’
which is or’d with the power supply on/off reset.
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2.7 Example Microcode

Just as a melody, in order to be heard, requires both notes and intervals, the CP hardware should
be viewed in light of its corresponding microcode.  The following microcode examples illustrate how
and in what time frame certain elementary functions are accomplished.  There are seven examples,
some simplified:  Mesa Emulator Load Local n, Read n, Jump n, Refill, and the Ethernet, Disk,
and LSEP inner loops.  See the DMR for a description of the microcode format.

(1)  The Mesa Emulator Load Local 1 (LL1) macroinstruction indexes the local frame pointer and
then push’s the addressed word from memory onto the Stack.   It executes in one click if the
indexing operation does not cross a page boundary and in three if a page cross occurs.  If the Map
flags must be updated (RMapFix), another two clicks are required.

@LL1: MAR _ Q _ [rhL, L+1], L1_L1.PopDec, push, c1, opcode[1’b];
LLn: STK _ TOS, PC _ PC+PC16, IBDisp, L2_L2.LL, BRANCH[LLa,LLb,1], c2;
LLa: TOS _ MD, push, fZpop, DISPNI[OpTable], c3;
LLb: Rx _ UvL, c3;

LSMap: Noop, c1;
Q _ Q - Rx, L2Disp, c2;
Q _ Q and 0FF, RET[LSRtn], c3;

LLMap: Map _ Q _ [rhMDS, Rx+Q], c1, at[3,10,LSRtn];
Noop, c2;
Rx _ rhRx _ MD, XRefBr, c3;

MAR _ [rhRx, Q + 0], L0_L0.R, BRANCH[RMUD,$], c1;
IBDisp, GOTO[LLa], c2;

RMUD: CALL[RMapFix], c2;

(2)  The Mesa Emulator Read 1 (R1) macroinstruction indexes the virtual address on the top of
Stack and then push’s the addressed word from memory onto the Stack.   It executes in two clicks.
Four are required if the page has been read the first time; that is, the Map flags must be updated.

@R1: Map _ Q _ [rhMDS, TOS + 1], L1_L1.Dec, pop, c1, opcode[101’b];
push, PC _ PC + PC16, c2;
Rx _ rhRx _ MD, XRefBr, c3;

MAR _ [rhRx, Q + 0], L0_L0.R, BRANCH[RMUD,$], c1;
IBDisp, GOTO[LLa], c2;

(3)  The Mesa Emulator Jump 2 (J2) macroinstruction increments the PC by 2 bytecodes and then
refills the instruction buffer.   It executes in two clicks.  Five are required if the jump crosses a
page boundary.

@J2: MAR _ PC _ [rhPC, PC+1], push, c1,opcode[201’b];
STK _ TOS, L2 _ L2.Pop0IncrX, Xbus_0, XC2npcDisp, DISP2[jnPNoCross], c2;

jnPNoCross: IB _ MD, pop, DISP4[JPtr1Pop0, 2], c3, at[0,4,jnPNoCross];
jnP1Cross: Q _ 0FF + 1, L0 _ L0.JRemap, CANCELBR[UpdatePC, 0F], c3, at[2,4,jnPNoCross];

JPtr1Pop0: MAR _ [rhPC, PC + 1], IBPtr_1, push, GOTO[Jgo], c1, at[2,10,JPtr1Pop0];
JPtr0Pop0: MAR _ [rhPC, PC + 1], IBPtr_0, push, GOTO[Jgo], c1, at[3,10,JPtr1Pop0];
Jgo: TOS _ STK, AlwaysIBDisp, L0 _ L0.NERefill.Set, DISP2[NoRCross], c2;
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(4)  The Mesa Emulator instruction buffer refill code executes in one click if the buffer was not
empty and in two if it was.  Four to six clicks are required if the refill occurs across a page
boundary.

{Buffer Empty Refill.  Control goes from NoRCross to RefillNE since RefillE+1 does not contain an IBDisp.}
RefillE: MAR _ [rhPC, PC], PC _ PC-1, L0 _ L0.ERefill, c1, at[400];

PC _ PC+1, DISP2[NoRCross], c2;

{Buffer Not Empty Refill.}
OpTable: {"Noop" location of Instruction Dispatch table}
RefillNE: MAR _ [rhPC, PC + 1], c1, at[500];

AlwaysIBDisp, L0 _ L0.NERefill.Set, DISP2[NoRCross], c2;

NoRCross: IB _ MD, uPCCross _ 0, DISPNI[OpTable], c3, at[0,4,NoRCross];
RCross: Q _ 0FF + 1, GOTO[UpdatePC], c3, at[2,4,NoRCross];

(5)  The Ethernet input inner loop transfers one word per click until either a page boundary is
crossed (ERead+2 or ERead+3), the maximum sized packet has been exceeded (EITooLong), or
the controller has signaled an abnormal condition (ERead+1 or ERead+3).

{main input loop}
EInLoop: MAR _ E _ [rhE, E + 1], EtherDisp, BRANCH[$,EITooLong], c1;

MDR _ EIData, DISP4[ERead, 0C], c2;

ERead: EE _ EE - 1, ZeroBr, GOTO[EInLoop], c3, at[0C,10,ERead];
E _ uESize, GOTO[EReadEnd], c3, at[0D,10,ERead];
E _ EIData, uETemp2 _ EE, GOTO[ERCross], c3, at[0E,10,ERead];
E _ EIData, uETemp2 _ EE, L6_L6.ERCrossEnd, GOTO[ERCross], c3, at[0F,10,ERead];

(6)  The SAx000 disk write and verify inner loop transfers one word per click until the required
number of words have been sent.

WrtVerLp: MAR _ [RHRCnt, RCnt], RCnt _ RCnt+1, c1, at[0,2,FinWrtVer];
RAdr _ RAdr-1, ZeroBr, CANCELBR[$, 2], c2;
KOData _ MD, BRANCH[WrtVerLp, FinWrtVer], c3;

(7)  The LSEP output inner loop outputs a band buffer entry from the display bank and then clears
the entry.  This continues until the required number of words have been transferred, which is
detected by aligning the data on a page boundary.

scan: MAR_ [displayBase1, rX+0], ClrDPRq, c1;
MDR_ rY{= zero}, rX_ rX+1, PgCarryBr, c2;
POData_ MD, BRANCH[scan, endLine], c3;
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2.8  Footnotes

1  All of the microcode-related specifications and rules presented in this chapter are validated by the
microcode assembler and control-store-allocation program (MASS).

2  The writeable control store is expensive:  out of the 160 chips total, 70 are microstore chips.

A special version of the CP has been built which has a 16K control store partitioned into four, 4K
banks.  The 2-bit Bank register can be loaded from NIAX with fZ = Bank_.  All non-Emulator
tasks are forced to execute from bank 3.  Error trap location 0 exists in each bank.

3  Where did this (prime) number come from?  All system timing is based on the Display’s bit time,
19.59 nS (51.04 MHz, + .05%).  There are 7 bit times in a cycle and 210 cycles (14 rounds) in one
horizontal display line.  More precisely, the cycle time is 137.14 + .57 nsec.

Alternatively, the cycle time (137) equals the inverse of the fine structure constant: a fundemental
dimensionless constant equal to 2p times the square of the electron charge in electrostatic units,
divided by the product of the speed of light and Planck’s constant (2pe2/ch) !

4  This sequence has been likened to the triple time meter of a waltz!

5  Because there are so many sources and sinks on the X bus, it has a nonnegligible capacitance:  it
has been measured at 337 pF!

6  The oring of a Link register with the low 4 bits of the IB byte during an IBDisp is not
encouraged as this feature will not exist in a future version of the processor.

7  The 18.3 Mbits/s into the display bank is approximated as follows:  There are 70 clicks per
display scan line and, of these, the Display controller uses 4*10 = 40 clicks for a normal scan line.
Furthermore, the display microcode uses 2 clicks for memory refresh.  During 808 of the total 897
scan lines, the display controller is actually pumping bits out to the monitor.  Thus, the Display
controller and microcode use about  (808/897)(42/70)(38.4 Mbits/s) = 20.6 Mbits/s of the
bandwidth, leaving 38.9-20.6 = 18.3 Mbits/s for the Emulator.
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3.0 Memory System

The memory system has two, 16-bit ports:  one to the central processor (CP) and one to the display
controller  The CP shares the lowest 64K bank with the display and has exclusive use of the upper
banks.  Single-bit error correction and double-bit error detection is performed on all words
delivered to the CP, but words used by the display are not corrected.  The memory cycle time for
the CP is 411 nanoseconds (nS), but for the display controller is either 293 (full) or 215 (page) nS.

The memory can be configured in at least five different sizes depending on the mix of Memory
Control Cards (MCCs) and Memory Storage Cards (MSCs).  The lowest 64K words (Display bank)
are located on the memory control card along with the error correction and port logic.  The storage
card holds additional memory chips plus data and address drivers.  The timing signals for the
memory system are generated by display controller (sec. x.xx) and are synchronous to the processor
clocks.  Figure 17 is a block diagram of the memory controller.

The MCC comes in one of two sizes:  64K or 256K words.  Likewise, the MSC has either 128K or
512K words (the large version is called MSC-X).  With some modifications, the 256K MCC card
(called MCC-X) can be used with the 128K storage card.  The maximum real memory size is
1,048,576 words.  The following configurations are standard:

MCC MSC Total size (words)
64K none  65,536 (64K)
64K 128K 196,608 (192K)
256K none 262,144 (256K)
256K 128K 393,216 (384K)
256K 512K 786,432 (768K)

From the micropogrammer’s perspective, the CP controls all accesses to the memory:  the CP’s X,
Y, and YH buses are used to supply addresses and transfer data.  Device controllers can only use
memory via their corresponding microcode tasks.  (See section 2.4, "Main Memory Interface.")  The
Display controller is the excemption:  it actually constructs its own memory timing signals (RAS
and CAS) in order to acheive the maximum bandwidth possible through its port (sec. x.xx).  The
Display controller does not use the X and Y buses, but has its own 16-bit address and data buses.
The following figure is a block diagram of the memory system:
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3.1  CP Interface Summary

This section provides a summary of each of the functions of the memory system as viewed from the
central processor.  Figure 18 summarizes the functions.  For a complete description of the
microcode interface, see section 2.4.

Read

A read operation is started by placing the memory address on the Y and YH busses and asserting
mem in the first cycle of a click.  The data can be read back to the X bus during the third cycle by
asserting mem then.  All data read by the processor is error corrected unless the correction inhibit
bit is set in the Memory Control (MCtl) register.

Write

The first cycle of a write operation is dedicated to sending the address to memory.  It is identical to
the first cycle of a read operation.  The data to be stored must be delivered to the memory during
the second cycle of a click, by asserting mem in the second cycle, and placing the data on the Y
bus.  Error correction check bits are always calculated and stored automatically by the memory
system.  If a write operation in the second cycle is followed by a read in the third, the data existing
before the write is returned.

Map Reference

The Dandelion’s virtual memory map is kept in main memory.  A map-reference-type memory read
is identical to a standard read, except the bits supplied by the Y and YH busses are shifted to
facilitate indexing into the Map.  Microcode uses this feature to provide a 22-bit virtual memory
system with the MCC and a 24-bit system with the MCC-X.

The virtual memory is divided into 256 word pages.  The Map_ function discards the low 8 virtual
address bits (since they reference the word location on the page), moving the high 14 bits (virtual
page number) to the low 14 or 16 bits used for the real map address.  The  location of the 16K
map is fixed between locations 10000 and 13FFF  (hex) in real memory.

Each 16 bit entry in the Map contains 10 to 12 bits of real page number and four flags describing
the page (present, dirty, referenced, etc).  To derive a real address from a virtual one, the
microcoder uses the map function (Map_), checks the flags and appends the original low order 8
bits to the 10 or 12 bits fetched (sec. 1.4.2).  The presence of a Map_ function in cycles 2 or 3 has
no effect on the memory.  mem should not be asserted, unless its side effects are desired (sec.
1.4.2).

Refresh

The memory controller contains circuitry to facilitate memory refresh.  Each memory chip is
organized as a 128x128 (or 256x128x2) bit matrix.  When the row address is received, all bits in the
specified row are read.  The column address is used to select one of them.  At the end of the
memory cycle, all 128 bits are rewritten to perform a refresh.  Hence, a row of a chip may be
refreshed by reading any bit in that row.  If the column address is suppressed during refresh, a
substantial section of the chip remains quiescent, saving power.  During each refresh cycle, the
memory controller broadcasts only a 7 (or 8) bit row address and row address strobe (RAS) to every
memory chip.  This row address is supplied by a counter on the MCC that is incremented at the
end of the cycle.

Refresh is initiated by asserting the Refresh function from the CP during cycle 1 of a click when
the display is quiescent.  The Refresh line is ignored during cycles 2 and 3 and whenever the
display accesses memory.   All memory chips require that 128 rows be refreshed at least every 2
milliseconds.  A horizontal line on the display takes 28.8 microseconds, hence, the memory should
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be refreshed at least 1.85 times per horizontal line.  The standard display code performs two refresh
cycles each line.  The display microcode was chosen to do this because it can guarantee that the
display hardware is inactive.  Note that any displayless configuration of the Dandelion must contain
some combination of hardware and microcode to perform the refresh task.  The Refresh task is used
in this case.

Display Lockout

The low 64K of the memory is shared between the display and the CP.  The display has priority.
When actually scanning a line, the display consumes clicks 0 through 3, leaving click 4 for the CP.
Thus, one click out of 5 is available for use by display handling microcode and accessesby the
Emulator to the low bank.  As discussed in section 2.5.6.5, "Display Bank Interference," the lockout
(plus refresh & display microcode functions) reduces by about half the Emulator’s maximum
possible bankdwidth into the display bank:  from 38.9 to 18.3 MBits/s.

Lockout occurs only if the processor and display attempt to access the low bank at the same time.
Accesses to the high banks are not affected.  Lockout does not occur during retrace intervals
(horizontal and vertical), or during any other period of display inactivity (such as when the display
is disabled).  By convention, time critical hardware tasks using the first 4 clicks must never attempt
access to the low (display) memory bank since a lockout could occur causing extra delay.  In
particular, one could not fill the bit map directly from an I/O device such as the disk or Ethernet
without first disabling the display.  See the display controller description for exact details of display
timing.

Lockout is implemented by generation of a wait signal in the CP whenever a bank 0 (low 64K
bank) access is attempted and the display is already using the low bank.  The processor suspends
the microcode which started in that click, and continues the normal arbitration of what runs in the
next click.  In this manner, lockout in one click does not hold up operation in the following click.
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Figure 18.  CP Memory Interface Summary

An access is started in the 65K - 80K bank of memory.  The location accessed is specified by the page number.
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3.2  Error Correction

Since soft errors can occur in the memory (alpha particles from the package, etc.) error correction
circuitry is included in the memory system.  Six check bits added to the 16 bit word provide single
error correction and double error detection (SEC-DED).  No explicit indication of single errors is
provided, although the status of any particular operation can be read from the Status & Errors
(MStatus_) register after an operation.  Error correction can be disabled, and the check bit positions
in memory selectively set by writing into the MCtl register and reading the MStatus register.

A double error signal is available and also latched on a per task basis in the MStatus register.  Thus,
a task, upon entering a critical data transfer phase, could clear its particular bit, perform the task,
and then check to see if its bit was set (double error).  If an error did occur, its effect would be
limited to events in that interval, over which some corrective action might be taken.  If the emulator
task caused the double bit error, a kernel trap is taken to location 0.  See section 2.5.5.2, "Error
Traps."

The following calculations yield probabilities of errors due to independent random processes in each
chip.  They do not include correlated events such as power line transients or static discharges which
could affect all of the chips at the same time.  A memory with 22 bits/word is assumed.

If the chips are assumed to (hard) fail at a rate of one per 2.5 million years (.04%/1000hr), then the
mean time to a chip failure in a memory system with 12 banks (192K or 768K) is 9470 hours (13
months).  By contrast, the mean time to failure with 4 banks (256K) is 28,410 hours (3 years, 3
months).

The soft error rate for the chips is assumed to be 1%/1000 hours.  Following are the probabilities of
0, 1, and 2 soft errors in a 22 bit word in a 10 hour period.  10 hours was selected as the interval
over which errors could accumulate, with the system being reset after 10 hours.  The mean time
between single errors is 38 intervals and the mean time between double errors is approximately
36,200 intervals.  (It should be pointed that these probabilities are those that one would expect to
measure with a program which continually scans through all memory cells looking for an error.  If a
program is confined to a small segment of memory, it would perceive a proportionately smaller
probability of soft error.)

Prob.(1 single error in 22 bit word  in 12 bank system in 10 hr. interval) =.0263

Prob.(1 double error in 22 bit word in 12 bank system in 10 hr. interval) =2.76 x 10-5
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The following table shows the interpretation of the syndrome bits which can be read with the
_MStatus function after a memory read.  The code table shows how the syndrome bits A-F are
generated.  When checking, syndrome bit F is parity over the entire word.

or (A-F) F Meaning
0 0 no errors or >2 errors
0 1 not possible
1 0 double bit error
1 1 single bit error

  

The SEC-DED code was optimized for 9-input parity chips.  The following code table shows how
the syndrome bits A-F are generated.  Each row represents the inputs to a single parity chip.  For
example, syndrome bit A is the xor of data bits 0-3 and 10-13.  Bit 0 will be inverted (corrected)
during reading when A-F equals 110001 (from the column under 0).  Any of the syndrome bits can
be inverted when being generated by setting the corresponding bit in the MCtl register.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 a b c d e f
A + + + + + + + + +
B + + + + + + + + +
C + + + + + + + + +
D + + + + + + + + +
E + + + + + + + + +
F + + + + + + + + +
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3.3  Memory Timing

Typical processor timing is shown in figure 19 below.  The memory address must be valid on the Y
and YH busses early enough that the proper bank is selected and address lines valid for RAS’ (row
address strobe).  The column address bits are latched by the RAS’ signal.   The CAS’ (column
address strobe) signal occurs 42 nS after the RAS’ signal and latches the column address in the
memory chips.  Data becomes valid at the output of the chips at a maximum of 150 nS after RAS’
or 100 nS after CAS’, whichever is later.

When writing into memory, the data to be written must be supplied during the second cycle of a
click.  The data is actually written in the latter half of the third click.  Notice that up until the
presence of the write pulse, all signalling is identical to a read cycle.  The memory chips latch and
hold the old data on their outputs during a write pulse if it occurs more than 150 nS after the RAS’
signal.  Thus, it is possible to write into a location and read data from it, all in the same memory
cycle.

Clk

0 137 274 411

Cycle 1 Cycle 2 Cycle 3

98 nS 39 nS

RAS’
MemChips

>
CAS’
MemChips

>

Address
MemChips Row

Address
Column  Address

Data
Available

Chips

X-Bus

DataIn
MemChips

Write
Enable
MemChips

Corrected Data
to

>>

>

<>
><

40 nS

>
70 nS

><
30 nS

2 nS134 nS

176 nS

><
5 nS

><
25 nS

250 nS

55 nS

250 nS

>30 nS

Normal Memory References through Processor Port
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The display port supports both full and page mode accesses.  The data delivered to the display port
is not error corrected.  The full access cycle time is 280 nS and the page mode access time is 200
nS.  While the full access time is smaller than that specified in the data sheets (320 nS) for
continuous operation, it is the average that is important, and the average cycle time in this case is
342 nS (6 full accesses per round, counting click 5).    A page mode access occurs when the RAS’
signal goes low and the CAS’ signal cycles several times, strobing several different column addresses
into the memory chips while retaining the same row address.  (Because bit 12 is used during RAS, the
maximum number of sequential page mode accesses between full accesses is 7, since bit 12 will change on every 8th
access.  The insertion of full accesses at the appropriate times is handled by the display controller.)

In normal operation, the display controller will seize the low bank of memory for 4 clicks of every
round.  It will start with a full access which is aligned on a click boundary, and then proceed with
page and full accesses until the end of click 4.  The other page or full accesses will not necessarily
be synchronized with any click or cycle boundaries.  They are packed so as to maximize the number
of accesses during the 4 clicks the display has the memory.

LRAS’

DAddr

DData

Click 1 Click 2 Click 3

100 nS

60 nS

>
180 nS 140 nS

140 nS

180 nS

Addr N

N+2 N+3 N+4 N+5

Addr Addr Addr Addr

N+1

Addr

100 nS

Display:  Full and Page Mode Accesses

Full Page Page PageFull

LCAS’

RAS CASCASRAS CAS CAS CAS CAS

Click 4
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3.4  Row and Column Addressing

In the case of 16K chips (to which the Dandelion was originally desinged), one of the seven bits for
the row address must come from the low byte.  The maximum settling time of the high nibble of
the low byte is too long if a carry from the low nibble occurs (sec. 2.3.8).   Consequently, bit 12
(instead of bit 8) of the low byte is used during RAS.  Consistent juggling occurs for map
references so that this is invisible to the microcoder.  The following figure shows how the row and
column address bits map into the Y and YH buses for 16K chips:

When 64K chips are used, the row and column bits are "correct."  The following table shows how
they are derived from the Y and YH bus.  (If it is known that only 64K chips are present in the
system, the restriction that X bus arithmetic can not occur with Map_ is no longer valid.)

MAR_

6 7 0 7 8 11 12 13 15

Row Address

1 2

Column Address

Bank Address

YYH

YH Y

Bank Address

Column Address
Row Address

158707

Map_

20010 3 4 5

Map_

7 0 7 8 15

Row Address
Column Address

Bank Address

YYH

YH Y

Bank Address

Column Address
Row Address

158707

MAR_

4

0100 0


