-- NatInstrGPIBDriver.mesa -- Copyright c 1985 by Xerox Corporation. All rights reserved. -- Created for PostCedar5.2 by Neil Gunther, May 17, 1985 11:22:31 am PDT -- Compiled for Cedar 6.0 , September 6, 1985 -- Last edited by Neil Gunther, September 26, 1985 10:59:15 am PDT -- Tim Diebert, 7-Oct-85 8:28:10 -- -- -- This module implements the NATIONAL INSTRUMENTS GPIB-796P interface functions for a -- Dicentra. It comprises 2 parts. The upper level PROCs conform to the procedural -- interface specified in GPIB.mesa; the lower level PROCs implement the board-specific -- calls. All GPIB drivers should conform to this organization. -- -- The following is paraphrased from the original National Instruments documentation. -- These procedures support synchronous, non-interrupt, non-DMA I/O, for a single interface -- board which is always the system controller and the controller in charge. All -- procedures return the subset of the standard GPIB status bit vector consisting of -- just the SRQI and BusEND status bits. -- The result of the last call is also available in the global variable, -- statusWord. If it was an I/O operation the actual count transferred -- is available in the global variable, byteCount. Before any other call is made -- the GPIBInitialize function must be called to initialize the GPIB interface. Prior -- to calling GPIBRead or GPIBWrite the appropriate devices, including the interface -- board, must be addressed by calling GPIBCommand with the proper addressing commands. -- DIRECTORY Ascii, DicentraInputOutput, GPIB, Inline, Process, String; NatInstrGPIBDriver: MONITOR IMPORTS DicentraInputOutput, Inline, Process, String EXPORTS GPIB = BEGIN OPEN GPIB, Inline; -- Globals for Level 1 maxSendBuf: NAT = GPIB.maxWriteBuffer; sendBuffer: LONG STRING ← [maxSendBuf]; controller: GPIB.DeviceAddr ← 0; -- Globals for Level 2 (GPIB-796P interface) statusWord: WORD ← 0000H; BusEND: WORD = LOOPHOLE[BITSHIFT[1, 13]]; SRQI: WORD = LOOPHOLE[BITSHIFT[1, 12]]; Base: LONG POINTER = LOOPHOLE[0400000H]; GPIBBaseAddr: LONG POINTER = Base + 8000H / 2; -- current setting for Multibus mask: Mask; maxReadBuf: CARDINAL = GPIB.maxReadBuffer; buf: LONG STRING ← [maxReadBuf]; byteCount: INTEGER ← 0; -- *** Level 1: Implementation of GPIB.mesa *** -- InitializeController: PUBLIC ENTRY PROC RETURNS [open: BOOL] = { [] ← Init[]; open ← TRUE; }; FinalizeController: PUBLIC ENTRY PROC = { SetIdle[]; }; -- Universal commands (all devices whether addressed or not) Command: PUBLIC ENTRY PROC [sendMsg: LONG STRING] = { [] ← Cmd[sendMsg]; }; DevicesClear: PUBLIC ENTRY PROC = { ClearBuffer[]; String.AppendChar[sendBuffer, GPIB.devicesClear]; String.AppendChar[sendBuffer, GPIB.UnListen]; [] ← Cmd[sendBuffer]; }; GoToLocal: PUBLIC ENTRY PROC = { ClearBuffer[]; String.AppendChar[sendBuffer, GPIB.goToLocal]; String.AppendChar[sendBuffer, GPIB.UnListen]; [] ← Cmd[sendBuffer]; }; GroupExecuteTrigger: PUBLIC ENTRY PROC = { ClearBuffer[]; String.AppendChar[sendBuffer, GPIB.groupExecuteTrigger]; String.AppendChar[sendBuffer, GPIB.UnListen]; [] ← Cmd[sendBuffer]; }; InterfaceClear: PUBLIC ENTRY PROC = { [] ← Clear[]; }; LocalLockout: PUBLIC ENTRY PROC = { ClearBuffer[]; String.AppendChar[sendBuffer, GPIB.localLockout]; String.AppendChar[sendBuffer, GPIB.UnListen]; [] ← Cmd[sendBuffer]; }; RemoteEnable: PUBLIC ENTRY PROC = { [] ← SetRemote[TRUE]; }; -- Selected Device Commands (only those devices addressed) -- SelectedDeviceClear: PUBLIC ENTRY PROC [device: GPIB.DeviceAddr]= { ClearBuffer[]; String.AppendChar[sendBuffer, GPIB.UnListen]; String.AppendChar[sendBuffer, GetLAD[device]]; String.AppendChar[sendBuffer, GPIB.selectedDeviceClear]; String.AppendChar[sendBuffer, GPIB.UnListen]; [] ← Cmd[sendBuffer]; }; SelectedGoToLocal: PUBLIC ENTRY PROC [device: GPIB.DeviceAddr] = { ClearBuffer[]; String.AppendChar[sendBuffer, GPIB.UnListen]; String.AppendChar[sendBuffer, GetLAD[device]]; String.AppendChar[sendBuffer, GPIB.goToLocal]; String.AppendChar[sendBuffer, GPIB.UnListen]; [] ← Cmd[sendBuffer]; }; SelectedGroupEnableTrigger: PUBLIC ENTRY PROC [device: GPIB.DeviceAddr] = { }; PollDevice: PUBLIC ENTRY PROC [device: GPIB.DeviceAddr, labels: GPIB.SRQLabels] = {}; ReadOnInterrupt: PUBLIC ENTRY PROC [device: GPIB.DeviceAddr, recvMsg: LONG STRING, labels: GPIB.SRQLabels] = {}; SelectedExecuteTrigger: PUBLIC ENTRY PROC [device: GPIB.DeviceAddr] = { ClearBuffer[]; String.AppendChar[sendBuffer, GPIB.UnListen]; String.AppendChar[sendBuffer, GetLAD[device]]; String.AppendChar[sendBuffer, GPIB.groupExecuteTrigger]; String.AppendChar[sendBuffer, GPIB.UnListen]; [] ← Cmd[sendBuffer]; }; SelectedRemoteEnable: PUBLIC ENTRY PROC [device: GPIB.DeviceAddr] = { ClearBuffer[]; String.AppendChar[sendBuffer, GPIB.UnListen]; String.AppendChar[sendBuffer, GetLAD[device]]; [] ← SetRemote[TRUE]; String.AppendChar[sendBuffer, GetTAD[device]]; String.AppendChar[sendBuffer, GPIB.UnListen]; [] ← Cmd[sendBuffer]; }; -- -- Explicit Polling Routines -- ParallelPollConfigure: PUBLIC ENTRY PROC [device: GPIB.DeviceAddr] = { ClearBuffer[]; String.AppendChar[sendBuffer, GPIB.UnListen]; String.AppendChar[sendBuffer, GPIB.parallelPollConfigure]; String.AppendChar[sendBuffer, GPIB.parallelPollEnable]; String.AppendChar[sendBuffer, GPIB.UnListen]; [] ← Cmd[sendBuffer]; }; ParallelPollUnconfigure: PUBLIC ENTRY PROC = { ClearBuffer[]; String.AppendChar[sendBuffer, GPIB.UnListen]; String.AppendChar[sendBuffer, GPIB.parallelPollConfigure]; String.AppendChar[sendBuffer, GPIB.parallelPollDisable]; String.AppendChar[sendBuffer, GPIB.UnListen]; [] ← Cmd[sendBuffer]; }; SelectedParallelPollConfigure: PUBLIC ENTRY PROC [device: GPIB.DeviceAddr] = { ClearBuffer[]; String.AppendChar[sendBuffer, GPIB.UnListen]; String.AppendChar[sendBuffer, GetLAD[device]]; String.AppendChar[sendBuffer, GPIB.parallelPollConfigure]; String.AppendChar[sendBuffer, GPIB.parallelPollEnable]; String.AppendChar[sendBuffer, GPIB.UnListen]; [] ← Cmd[sendBuffer]; }; SelectedParallelPollUnconfigure: PUBLIC ENTRY PROC [device: GPIB.DeviceAddr] = { ClearBuffer[]; String.AppendChar[sendBuffer, GPIB.UnListen]; String.AppendChar[sendBuffer, GetLAD[device]]; String.AppendChar[sendBuffer, GPIB.parallelPollConfigure]; String.AppendChar[sendBuffer, GPIB.parallelPollDisable]; String.AppendChar[sendBuffer, GPIB.UnListen]; [] ← Cmd[sendBuffer]; }; -- Read Specific Devices -- SelectedReadSerialPoll: PUBLIC ENTRY PROC [device: GPIB.DeviceAddr] RETURNS [statusByte: CHAR] = { ClearBuffer[]; String.AppendChar[sendBuffer, GPIB.UnListen]; String.AppendChar[sendBuffer, GPIB.serialPollEnable]; String.AppendChar[sendBuffer, GetTAD[device]]; String.AppendChar[sendBuffer, GetLAD[controller]]; [] ← Cmd[sendBuffer]; ClearBuffer[]; [statusByte, ] ← DataByteRead[]; String.AppendChar[sendBuffer, GPIB.serialPollDisable]; String.AppendChar[sendBuffer, GPIB.UnTalk]; [] ← Cmd[sendBuffer]; }; ReadStatusByte: PUBLIC ENTRY PROC [device: GPIB.DeviceAddr] RETURNS [char: CHAR] = { ClearBuffer[]; String.AppendChar[sendBuffer, GPIB.UnListen]; String.AppendChar[sendBuffer, GetTAD[device]]; String.AppendChar[sendBuffer, GetLAD[controller]]; [] ← Cmd[sendBuffer]; ClearBuffer[]; [char, ] ← DataByteRead[]; String.AppendChar[sendBuffer, GPIB.UnTalk]; [] ← Cmd[sendBuffer]; }; ReadDevice: PUBLIC ENTRY PROC [device: DeviceAddr, recvMsg: LONG STRING] = { ClearBuffer[]; String.AppendChar[sendBuffer, GPIB.UnListen]; String.AppendChar[sendBuffer, GetTAD[device]]; String.AppendChar[sendBuffer, GetLAD[controller]]; [] ← Cmd[sendBuffer]; ClearBuffer[]; [recvMsg, ] ← DataRead[]; String.AppendChar[sendBuffer, GPIB.UnTalk]; [] ← Cmd[sendBuffer]; }; -- Write Specific Devices -- WriteDevice: PUBLIC ENTRY PROC [device: GPIB.DeviceAddr, sendMsg: LONG STRING] = { ClearBuffer[]; String.AppendChar[sendBuffer, GPIB.UnListen]; String.AppendChar[sendBuffer, GetLAD[device]]; String.AppendChar[sendBuffer, GetTAD[controller]]; [] ← Cmd[sendBuffer]; ClearBuffer[]; [] ← DataWrite[sendMsg, TRUE, TRUE]; String.AppendChar[sendBuffer, GPIB.UnListen]; [] ← Cmd[sendBuffer]; }; WriteDeviceInitial: PUBLIC ENTRY PROC [device: DeviceAddr, sendMsg: LONG STRING] = { ClearBuffer[]; String.AppendChar[sendBuffer, GPIB.UnListen]; String.AppendChar[sendBuffer, GetLAD[device]]; String.AppendChar[sendBuffer, GetTAD[controller]]; [] ← Cmd[sendBuffer]; ClearBuffer[]; [] ← DataWrite[sendMsg, TRUE, FALSE]; }; WriteDeviceContinued: PUBLIC ENTRY PROC [device: DeviceAddr, sendMsg: LONG STRING, last: BOOL] = { ClearBuffer[]; [] ← DataWrite[sendMsg, FALSE, last]; }; WriteDeviceBlock: PUBLIC ENTRY PROC [device: DeviceAddr, lp: LONG POINTER, quadWordCnt: CARDINAL, last: BOOL] = { dataWord: MACHINE DEPENDENT RECORD [a,b: CHAR] ← LOOPHOLE [lp↑]; IF quadWordCnt < 1 THEN quadWordCnt ← 1; FOR i: CARDINAL IN [0 .. quadWordCnt-1) DO DicentraInputOutput.OutputByteEven[LOOPHOLE[dataWord.a, CARDINAL], GPIBBaseAddr]; WHILE BITAND[DicentraInputOutput.InputByteOdd[GPIBBaseAddr], mask.D0] = 0 DO ENDLOOP; DicentraInputOutput.OutputByteEven[LOOPHOLE[dataWord.b, CARDINAL], GPIBBaseAddr]; WHILE BITAND[DicentraInputOutput.InputByteOdd[GPIBBaseAddr], mask.D0] = 0 DO ENDLOOP; lp ← lp + 1; dataWord ← LOOPHOLE [lp↑]; DicentraInputOutput.OutputByteEven[LOOPHOLE[dataWord.a, CARDINAL], GPIBBaseAddr]; WHILE BITAND[DicentraInputOutput.InputByteOdd[GPIBBaseAddr], mask.D0] = 0 DO ENDLOOP; DicentraInputOutput.OutputByteEven[LOOPHOLE[dataWord.b, CARDINAL], GPIBBaseAddr]; WHILE BITAND[DicentraInputOutput.InputByteOdd[GPIBBaseAddr], mask.D0] = 0 DO ENDLOOP; lp ← lp + 1; dataWord ← LOOPHOLE [lp↑]; DicentraInputOutput.OutputByteEven[LOOPHOLE[dataWord.a, CARDINAL], GPIBBaseAddr]; WHILE BITAND[DicentraInputOutput.InputByteOdd[GPIBBaseAddr], mask.D0] = 0 DO ENDLOOP; DicentraInputOutput.OutputByteEven[LOOPHOLE[dataWord.b, CARDINAL], GPIBBaseAddr]; WHILE BITAND[DicentraInputOutput.InputByteOdd[GPIBBaseAddr], mask.D0] = 0 DO ENDLOOP; lp ← lp + 1; dataWord ← LOOPHOLE [lp↑]; DicentraInputOutput.OutputByteEven[LOOPHOLE[dataWord.a, CARDINAL], GPIBBaseAddr]; WHILE BITAND[DicentraInputOutput.InputByteOdd[GPIBBaseAddr], mask.D0] = 0 DO ENDLOOP; DicentraInputOutput.OutputByteEven[LOOPHOLE[dataWord.b, CARDINAL], GPIBBaseAddr]; WHILE BITAND[DicentraInputOutput.InputByteOdd[GPIBBaseAddr], mask.D0] = 0 DO ENDLOOP; lp ← lp + 1; dataWord ← LOOPHOLE [lp↑]; ENDLOOP; DicentraInputOutput.OutputByteEven[LOOPHOLE[dataWord.a, CARDINAL], GPIBBaseAddr]; WHILE BITAND[DicentraInputOutput.InputByteOdd[GPIBBaseAddr], mask.D0] = 0 DO ENDLOOP; DicentraInputOutput.OutputByteEven[LOOPHOLE[dataWord.b, CARDINAL], GPIBBaseAddr]; WHILE BITAND[DicentraInputOutput.InputByteOdd[GPIBBaseAddr], mask.D0] = 0 DO ENDLOOP; lp ← lp + 1; dataWord ← LOOPHOLE [lp↑]; DicentraInputOutput.OutputByteEven[LOOPHOLE[dataWord.a, CARDINAL], GPIBBaseAddr]; WHILE BITAND[DicentraInputOutput.InputByteOdd[GPIBBaseAddr], mask.D0] = 0 DO ENDLOOP; DicentraInputOutput.OutputByteEven[LOOPHOLE[dataWord.b, CARDINAL], GPIBBaseAddr]; WHILE BITAND[DicentraInputOutput.InputByteOdd[GPIBBaseAddr], mask.D0] = 0 DO ENDLOOP; lp ← lp + 1; dataWord ← LOOPHOLE [lp↑]; DicentraInputOutput.OutputByteEven[LOOPHOLE[dataWord.a, CARDINAL], GPIBBaseAddr]; WHILE BITAND[DicentraInputOutput.InputByteOdd[GPIBBaseAddr], mask.D0] = 0 DO ENDLOOP; DicentraInputOutput.OutputByteEven[LOOPHOLE[dataWord.b, CARDINAL], GPIBBaseAddr]; WHILE BITAND[DicentraInputOutput.InputByteOdd[GPIBBaseAddr], mask.D0] = 0 DO ENDLOOP; lp ← lp + 1; dataWord ← LOOPHOLE [lp↑]; DicentraInputOutput.OutputByteEven[LOOPHOLE[dataWord.a, CARDINAL], GPIBBaseAddr]; WHILE BITAND[DicentraInputOutput.InputByteOdd[GPIBBaseAddr], mask.D0] = 0 DO ENDLOOP; IF last THEN WriteReg[auxMode, sendEOI]; -- EOI with last byte DicentraInputOutput.OutputByteEven[LOOPHOLE[dataWord.b, CARDINAL], GPIBBaseAddr]; WHILE BITAND[DicentraInputOutput.InputByteOdd[GPIBBaseAddr], mask.D0] = 0 DO ENDLOOP; }; -- Private Procedures -- GetLAD: PRIVATE INTERNAL PROC [device: GPIB.DeviceAddr] RETURNS [CHAR] = { IF device > 30 THEN ERROR; RETURN [LOOPHOLE[device+32]]; -- ASCII Listen address }; GetTAD: PRIVATE INTERNAL PROC [device: GPIB.DeviceAddr] RETURNS [CHAR] = { IF device > 30 THEN ERROR; RETURN [LOOPHOLE[device+64]]; -- ASCII Talk address }; ClearBuffer: PRIVATE INTERNAL PROC [] = {sendBuffer.length ← 0}; -- *** Level 2: Board-specific Procedures *** -- -- NEC 7210 M a s k s a n d R e g i s t e r s -- Auxiliary Controller Commands Nat. Instr. mnemonic powerOn: CHAR = 000C; -- AUX-PON chipReset: CHAR = 002C; -- AUXCR sendEOI: CHAR = 006C; -- AUXSEOI takeAsynchControl: CHAR = 021C; -- AUXTCA goToStandby: CHAR = 020C; -- AUXGTS executeParaPoll: CHAR = 035C; -- AUX-EPP setIFC: CHAR = 036C; -- AUXSIFC clearIFC: CHAR = 026C; -- AUXCIFC setREN: CHAR = 037C; -- AUX-SREN clearREN: CHAR = 027C; -- AUXCREN -- Control Masks for Hidden Registers Nat. Instr. mnemonic ICR: CARDINAL = 000040B; -- Internal Counter Register PPR: CARDINAL = 000140B; -- Parallel Poll Register AUXRA: CARDINAL = 000200B; -- Aux Register A AUXRB: CARDINAL = 000240B; -- Aux Register B AUXRE: CARDINAL = 000300B; -- Aux Register E -- Controller Register Definitions Nat. Instr. mnemonic WRegister: TYPE = { -- WriteOnly cmdDataOut, -- cdor intrptMask1, -- imr1 intrptMask2, -- imr2 serialPollMode, -- spmr addressMode, -- admr auxMode, -- auxmr address, -- adr endOfStr -- eosr }; RRegister: TYPE = { -- ReadOnly dataIn, -- dir intrptStatus1, -- isr1 intrptStatus2, -- isr2 serialPollStatus, -- spsr addressStatus, -- adsr cmdPassThru, -- cptr address0, -- adr0 address1 -- adr1 }; Mask: TYPE = RECORD [ DI: CARDINAL ← BITSHIFT[1, 0], -- Data In D0: CARDINAL ← BITSHIFT[1, 1], -- Data Out BusEND: CARDINAL ← BITSHIFT[1, 4], -- End CO: CARDINAL ← BITSHIFT[1, 3], -- Command Output SRQI: CARDINAL ← BITSHIFT[1, 6], -- Service Request Input DMAI: CARDINAL ← BITSHIFT[1, 4], -- DMA Input Enable DMAO: CARDINAL ← BITSHIFT[1, 5], -- DMA Output Enable ADMO: CARDINAL ← BITSHIFT[1, 0], -- Addr Mode bit 0 TRMO: CARDINAL ← BITSHIFT[1, 4], -- Transmit/Receive Mode bit 0 TRMI: CARDINAL ← BITSHIFT[1, 5], -- Transmit/Receive Mode bit 1 DL: CARDINAL ← BITSHIFT[1, 5], -- Disable Listener DT: CARDINAL ← BITSHIFT[1, 6], -- Disable Talker ARS: CARDINAL ← BITSHIFT[1, 7], -- Addr Reg Select PPU: CARDINAL ← BITSHIFT[1, 4] -- Para Poll Unconfigure ]; -- G P I B - 7 9 6 P F u n c t i o n s Init: INTERNAL PROC RETURNS [WORD] = { WriteReg[auxMode, chipReset]; -- NEC 7210 [] ← ReadReg[cmdPassThru]; -- clear registers by reading & trashing result [] ← ReadReg[intrptStatus1]; [] ← ReadReg[intrptStatus2]; WriteReg[intrptMask1, 0C]; -- disable all interrupts WriteReg[intrptMask2, 0C]; WriteReg[serialPollMode, 0C]; WriteReg[address, 0C]; -- set 796P TAD = 100B+100B (controller) -- disable secondary addressing WriteRegL[address, BITOR[mask.ARS, BITOR[mask.DT, mask.DL]]]; WriteRegL[addressMode, BITOR[mask.TRMI, BITOR[mask.TRMO, mask.ADMO]]]; WriteReg[endOfStr, 0C]; WriteReg[auxMode, clearIFC]; -- and by default enable system controller WriteRegL[auxMode, BITOR[ICR, 5]]; -- set internal counter register N = 5 WriteRegL[auxMode, BITOR[PPR, mask.PPU]]; -- parallel poll unconfigure WriteRegL[auxMode, BITOR[AUXRA, 0]]; WriteRegL[auxMode, BITOR[AUXRB, 0]]; WriteRegL[auxMode, BITOR[AUXRE, 0]]; WriteReg[auxMode, powerOn]; -- put chip online byteCount ← 0; statusWord ← IF BITAND[ReadRegL[intrptStatus2], mask.SRQI] = 1 THEN SRQI ELSE 0; RETURN[statusWord]; }; SetIdle: INTERNAL PROC = { -- return controller to idle state or somesuch. WriteReg[auxMode, chipReset]; [] ← ReadReg[cmdPassThru]; -- clear registers by reading & trashing result [] ← ReadReg[intrptStatus1]; [] ← ReadReg[intrptStatus2]; WriteReg[intrptMask1, 0C]; -- disable all interrupts WriteReg[intrptMask2, 0C]; WriteReg[serialPollMode, 0C]; WriteReg[address, 0C]; -- set 796P TAD = 100B+100B (controller) -- disable secondary addressing WriteRegL[address, BITOR[mask.ARS, BITOR[mask.DT, mask.DL]]]; WriteRegL[addressMode, BITOR[mask.TRMI, BITOR[mask.TRMO, mask.ADMO]]]; WriteReg[endOfStr, 0C]; WriteReg[auxMode, clearIFC]; -- and by default enable system controller WriteRegL[auxMode, BITOR[ICR, 5]]; -- set internal counter register N = 5 WriteRegL[auxMode, BITOR[PPR, mask.PPU]]; -- parallel poll unconfigure WriteRegL[auxMode, BITOR[AUXRA, 0]]; WriteRegL[auxMode, BITOR[AUXRB, 0]]; WriteRegL[auxMode, BITOR[AUXRE, 0]]; -- chip is now offline byteCount ← 0; }; Cmd: INTERNAL PROC [buffer: LONG STRING] RETURNS [WORD] = { s, rLength: INTEGER ← 0; ClearBuf[]; String.AppendString[buf, buffer]; WriteReg[auxMode, takeAsynchControl]; -- if on standby, go to cntl active state byteCount ← 0; rLength ← buffer.length; WHILE (byteCount < rLength) DO s ← BITAND[s, BITNOT[mask.CO]]; -- clear saved copy of Command Output WriteReg[cmdDataOut, buf[byteCount]]; -- output command byteCount ← byteCount+1; WHILE BITAND[(s ← BITOR[s, ReadRegL[intrptStatus2]]), mask.CO] = 0 DO -- wait for Command Output flag BITOR-ed to preserve SRQI ENDLOOP; ENDLOOP; statusWord ← IF BITAND[s, mask.SRQI] # 0 THEN SRQI ELSE 0; RETURN[statusWord]; }; DataRead: INTERNAL PROC RETURNS [LONG STRING, WORD] = { -- Read unspecified number of bytes of data from the GPIB-796P interface into buffer. In addition to I/O complete, the read operation terminates on detection of EOI. Prior to beginning the read the interface is placed in the controller standby state. No handshake holdoffs are used so care must be exercised when taking control (i.e., asserting ATN) following DataRead. Prior to calling DataRead, the intended devices as well as the interface board itself must be addressed by calling Cmd. i, s: CARDINAL ← 0; ClearBuf[]; WriteReg[auxMode, goToStandby]; -- if controller active state, go to standby byteCount ← 0; DO -- read unspecified number of bytes WHILE BITAND[(s ← ReadRegL[intrptStatus1]), mask.DI] = 0 DO -- wait for Data In flag ENDLOOP; buf[byteCount] ← ReadReg[dataIn]; -- store byte byteCount ← byteCount+1; IF buf[byteCount] = '\n OR buf[byteCount] = '\l THEN EXIT; -- IEEE 728 string terminator (\n\l) IF BITAND[s, mask.BusEND] # 0 THEN EXIT; -- stop reading if EOI detected ENDLOOP; buf.length ← byteCount; statusWord ← IF BITAND[s, mask.BusEND] # 0 THEN BusEND ELSE 0; statusWord ← BITOR[ statusWord, IF BITAND[ReadRegL[intrptStatus2], mask.SRQI] # 0 THEN SRQI ELSE 0 ]; RETURN[buf, statusWord]; }; DataByteRead: INTERNAL PROC RETURNS [CHAR, WORD] = { -- Read one byte of data from the GPIB-796P interface into buffer. In addition to I/O complete, the read operation terminates on detection of EOI. Prior to beginning the read the interface is placed in the controller standby state. No handshake holdoffs are used so care must be exercised when taking control (i.e., asserting ATN) following DataRead. Prior to calling DataRead, the intended devices as well as the interface board itself must be addressed by calling Cmd. i, s: CARDINAL ← 0; ClearBuf[]; WriteReg[auxMode, goToStandby]; -- if controller active state, go to standby byteCount ← 0; WHILE BITAND[(s ← ReadRegL[intrptStatus1]), mask.DI] = 0 DO -- wait for Data In flag ENDLOOP; buf[byteCount] ← ReadReg[dataIn]; -- store byte buf.length ← byteCount ← byteCount+1; statusWord ← IF BITAND[s, mask.BusEND] # 0 THEN BusEND ELSE 0; statusWord ← BITOR[ statusWord, IF BITAND[ReadRegL[intrptStatus2], mask.SRQI] # 0 THEN SRQI ELSE 0 ]; RETURN[buf[0], statusWord]; }; DataWrite: INTERNAL PROC [buffer: LONG STRING, init, last: BOOL] RETURNS [WORD] = { -- Write data bytes from buffer to the GPIB-796P. The write operation terminates only -- on I/O complete. By default, EOI is always sent along with the last byte. Prior -- to beginning the write the interface is placed in the controller standby state. Prior -- to calling DataWrite, the intended devices, as well as the interface board itself, -- must be addressed by calling Cmd. rLength: NAT ← buffer.length; ClearBuf[]; String.AppendString[buf, buffer]; IF init THEN WriteReg[auxMode, goToStandby]; -- if controller active state, not -- go to standby (data mode) byteCount ← 0; WHILE (byteCount < rLength) DO IF (byteCount = rLength-1) AND last THEN WriteReg[auxMode, sendEOI]; -- EOI with last byte WriteReg[cmdDataOut, buf[byteCount]]; -- output byte byteCount ← byteCount+1; WHILE BITAND[ReadRegL[intrptStatus1], mask.D0] = 0 DO -- wait for DataOut flag ENDLOOP; ENDLOOP; statusWord ← (IF BITAND[ReadRegL[intrptStatus2], mask.SRQI] # 0 THEN SRQI ELSE 0); RETURN[statusWord]; }; Clear: INTERNAL PROC RETURNS [WORD] = { -- Send IFC for at least 100 microseconds(4 ticks). Clear must be called prior to the first call to Cmd in order to initialize the bus and enable the interface to leave the controller idle state. WriteReg[auxMode, setIFC]; Process.Pause[ticks: 10]; -- 40 ticks = 1mS WriteReg[auxMode, clearIFC]; statusWord ← (IF BITAND[ReadRegL[intrptStatus2], mask.SRQI] # 0 THEN SRQI ELSE 0); RETURN[statusWord]; }; SetRemote: INTERNAL PROC [set: BOOL] RETURNS [WORD] = { WriteReg[auxMode, (IF set THEN setREN ELSE clearREN)]; statusWord ← (IF BITAND[ReadRegL[intrptStatus2], mask.SRQI] # 0 THEN SRQI ELSE 0); RETURN[statusWord]; }; SetStandby: INTERNAL PROC RETURNS [WORD] = { -- Go to the controller standby state (Data mode) from the controller active state, i.e., deassert ATN. WriteReg[auxMode, goToStandby]; statusWord ← (IF BITAND[ReadRegL[intrptStatus2], mask.SRQI] # 0 THEN SRQI ELSE 0); RETURN[statusWord]; }; SetCACS: INTERNAL PROC RETURNS [WORD] = { -- Return to the controller active state (Command mode) from the controller standby state, i.e., assert ATN. Note that in order to enter the controller active state from the controller idle state, Clear must be called. WriteReg[auxMode, takeAsynchControl]; statusWord ← (IF BITAND[ReadRegL[intrptStatus2], mask.SRQI] # 0 THEN SRQI ELSE 0); RETURN[statusWord]; }; Wait: INTERNAL PROC [for: WORD] = { -- Check or wait for a GPIB event to occur. The mask argument is a bit vector corresponding to the status bit vector. It has a bit set for each condition which can terminate the wait. If the mask is 0 then no condition is waited on and the current status is simply returned. Note that since the hardware SRQI bit is volatile it will only be reported once for each occurrence of SRQ. If another function has returned the SRQI status bit, then a call to Wait with a mask containing SRQI will never return. GetStatus: INTERNAL PROC RETURNS [WORD] = { -- Update GPIB status information. RETURN [ statusWord ← (IF BITAND[ReadRegL[intrptStatus2], mask.SRQI] # 0 THEN SRQI ELSE 0) ]; }; WHILE (BITAND[GetStatus[], for] = 0) DO IF for = 0 THEN EXIT; ENDLOOP; }; GetParaPoll: INTERNAL PROC RETURNS [LONG STRING, WORD] = { -- Conduct a parallel poll and return the byte in buf. Prior to conducting the poll the interface is placed in the controller active state. ClearBuf[]; WriteReg[auxMode, takeAsynchControl]; -- if standby, go to controller active state WriteReg[auxMode, executeParaPoll]; buf[0] ← ReadReg[cmdPassThru]; -- store the response byte buf.length ← 1; statusWord ← (IF BITAND[ReadRegL[intrptStatus2], mask.SRQI] # 0 THEN SRQI ELSE 0); RETURN[buf, statusWord]; }; -- P r i v a t e R e g i s t e r O p e r a t i o n s ReadReg: PRIVATE INTERNAL PROC [register: RRegister] RETURNS [char: CHAR] = { word: CARDINAL; SELECT register FROM dataIn => word ← DicentraInputOutput.InputByteEven[GPIBBaseAddr]; intrptStatus1 => word ← DicentraInputOutput.InputByteOdd[GPIBBaseAddr]; intrptStatus2 => word ← DicentraInputOutput.InputByteEven[GPIBBaseAddr+1]; serialPollStatus => word ← DicentraInputOutput.InputByteOdd[GPIBBaseAddr+1]; addressStatus => word ← DicentraInputOutput.InputByteEven[GPIBBaseAddr+2]; cmdPassThru => word ← DicentraInputOutput.InputByteOdd[GPIBBaseAddr+2]; address0 => word ← DicentraInputOutput.InputByteEven[GPIBBaseAddr+3]; ENDCASE => word ← DicentraInputOutput.InputByteOdd[GPIBBaseAddr+3]; char ← LOOPHOLE[LowByte[word]]; }; ReadRegL: PRIVATE INTERNAL PROC [register: RRegister] RETURNS [word: CARDINAL] = { SELECT register FROM dataIn => word ← DicentraInputOutput.InputByteEven[GPIBBaseAddr]; intrptStatus1 => word ← DicentraInputOutput.InputByteOdd[GPIBBaseAddr]; intrptStatus2 => word ← DicentraInputOutput.InputByteEven[GPIBBaseAddr+1]; serialPollStatus => word ← DicentraInputOutput.InputByteOdd[GPIBBaseAddr+1]; addressStatus => word ← DicentraInputOutput.InputByteEven[GPIBBaseAddr+2]; cmdPassThru => word ← DicentraInputOutput.InputByteOdd[GPIBBaseAddr+2]; address0 => word ← DicentraInputOutput.InputByteEven[GPIBBaseAddr+3]; ENDCASE => word ← DicentraInputOutput.InputByteOdd[GPIBBaseAddr+3]; }; WriteReg: PRIVATE INTERNAL PROC [register: WRegister, dataByte: CHAR ] = { dataWord: MACHINE DEPENDENT RECORD [a,b: CHAR]; dataWord.b ← dataByte; dataWord.a ← '\000; SELECT register FROM cmdDataOut => DicentraInputOutput.OutputByteEven[dataWord, GPIBBaseAddr]; intrptMask1 => DicentraInputOutput.OutputByteOdd[dataWord, GPIBBaseAddr]; intrptMask2 => DicentraInputOutput.OutputByteEven[dataWord, GPIBBaseAddr+1]; serialPollMode => DicentraInputOutput.OutputByteOdd[dataWord, GPIBBaseAddr+1]; addressMode => DicentraInputOutput.OutputByteEven[dataWord, GPIBBaseAddr+2]; auxMode => DicentraInputOutput.OutputByteOdd[dataWord, GPIBBaseAddr+2]; address => DicentraInputOutput.OutputByteEven[dataWord, GPIBBaseAddr+3]; ENDCASE => DicentraInputOutput.OutputByteOdd[dataWord, GPIBBaseAddr+3]; }; WriteRegL: PRIVATE INTERNAL PROC [register: WRegister, dataWord: CARDINAL ] = { SELECT register FROM cmdDataOut => DicentraInputOutput.OutputByteEven[dataWord, GPIBBaseAddr]; intrptMask1 => DicentraInputOutput.OutputByteOdd[dataWord, GPIBBaseAddr]; intrptMask2 => DicentraInputOutput.OutputByteEven[dataWord, GPIBBaseAddr+1]; serialPollMode => DicentraInputOutput.OutputByteOdd[dataWord, GPIBBaseAddr+1]; addressMode => DicentraInputOutput.OutputByteEven[dataWord, GPIBBaseAddr+2]; auxMode => DicentraInputOutput.OutputByteOdd[dataWord, GPIBBaseAddr+2]; address => DicentraInputOutput.OutputByteEven[dataWord, GPIBBaseAddr+3]; ENDCASE => DicentraInputOutput.OutputByteOdd[dataWord, GPIBBaseAddr+3]; }; ClearBuf: PRIVATE PROC = {buf.length ← 0}; END... of NatInstrGPIBDriver.mesa