This is here so the I BRef, Map_ or MAR_ states get reset
Sr before entering | DLE where they coul d be set again. '

*
cadh reflects (nmeneMap)* PhaseA -
the F Bus. Thils .

is broadcast
for debuggi ng. JAPQut _ cadh

S4 MR
| DLE i
L BRg i ?35 | BRef
(mem=AAR) * PhaseA ?821

(memEVAR) * PhaseA

| [AuxRef
Wait for Valid Al Bits] SG: FrOJt’FO FI S22 Aux t _ 0
S5 * (Rq' = 0) ! S5 * (PhaseB* (Rqg'= 0)) 1PhaseB* (Rq'=0)
S7: APQut _ (IBRe fPCp) . BRef '* rah)
S5 * (APIN = fPCp) S5 * (APIN = rah)
Latch MARPgCross, pMDR_, pDouble and
p_Mbu during Phase F here. This is ddne . ¢ Mist be able to drive Al and Cp’
in case the next ulnst stalls trying tjo read, S8: — and | eave S8 before PhaseF ends.
or dispatch on, an enpty IB. The |atdhe . . V% . . _
signals are called LMARPgCross, LMDR S5 (& =0 S5 ((Cp* = 0)* (PhaseF = 1))
and LMbu.
S9: APQut _ (IBRe f PCd) (1 BRef'* cadh)
S5 * (APIN = fPCd) S5 * (APIN = cadh)
S5 * (Ca' =0) , Mist be able to drive A2 and Ca’
SeraOJt 0 and | eave S10 before PhaseA ends.
S5 * ((Ca' =0) * LM&R‘) S5 * ((Ca’ =0) * PhaseA* LMDR)
Wait for Wite Data to be valid.
Note this nust be done before waiting
1 for Resp’ since Resp’ may take awhile.
APQut _cadh from above. The cadh latch
PhaseF = 1 enable MJST be disabled after this PhaseF
to hold the wite data.
Doubl e Fetch Wite
S5 * ((Respv’'= 0)* LMARPgCross’ *
S5' * (Respv’'= 0)* LMARPgCross’ * LMbu) LMDR _* (APIN = cadh))
S5 * (Respv’'= 0) Srz S5 * Respv’= 0)* LMARPgCross)
| I B Fetch W!t oRespv’ | Abort]
S13: QFH’ _ Fet ch S14: CoQut’ _pr Caut’ _ 1 S15: CaOr _1
1 r S5 * ((Respv'= 0)* LMARPgCross' *
o =0 LMDR _ * LMD’) (Cp'= 1)* (Ca’ =1) Ca =1
|
S16: Relea /rBus
|
r R \ On Reset, al | state flip-flops are res!t' except PB4
i's the name of a state S17: RaQuty~ 1 and S17, the!’are set. We could have Used S3 in$tead
Sx ’ Ry’ = 1 of S4. Starting here resets Rq’, Ca’ and Cp’'. t alsp
is the FORK synbol . B waits for Respu’ and Respv’' to go away.
is the JON synbol . S18: Qaut’ _ at’ 1
"F" is defined to nean Logi cal AND.
"B" is defined to nean Logical OR (Cp’ =1)* (Ca' =1) * (Wbuvalid)
The input to a pad driving signal xx to a This state exists so the processor clock circuitf{y can
pinis called "xxQut." S19 wit fo Val i di stinguish receiving the first word of a double|fetch
The output of a pad receiving signal xx fromreceiving both words. Thus the clock can bg¢
froma pinis called "xxIN" started after receiving the first word.
- ;
Mbu is latched on S5 * LMbu * WbuValid’ =5 (Vvvalid)
; - - Py
Mv is latched on S5 LMDR WDvVal i d S5 * (Wovvalid)* LSel ect0
| B bytes0,, lare | atched by BWiteSel ect0* WbuValid’

S20

This state exists becaus
Fork can’t |ead direct
to a Join.

| B bytes2,,3are |latched by BWiteSel ect0* WovValid’ S5 * (WwValid)* LSelectl
| B bytes4,,5are | atched by BWiteSel ect1* WbuValid’
I B bytes6,, 7are | atched by BWiteSel ect1* WbvValid’

The IBWiteSel ects are derived on |BIPSim46.sily Points A and B are
LSel ect0 _ IBWiteSel ectOas |atched by WouVvalid’ on I BIPsimi6.sily

LSelectl_ IBWiteSel ect@s |atched by WouValid’ set EMI . 1s& Full.o

Proj ect Ref erence File Desi gner Rev | Date Page
XEROX) 9 ¢

oo Dai sy Bus Interface - I Bl PSi m43. si Il Garner, Davies| A | 8/19/83 | 43
State D agram

1. To increase the performance of the Daisy P chip, an
aut ononmous instruction fetch unit has been incorporated.
This circuitry can fetch ahead in the instruction stream
when the Enul ator woul d otherw se not be using nenory.
The bytes fetched are held in an 8-byte Instruction Buffer.
Use of the Buffer requires two pointers. One, vPC, holds
the virtual nmenory address of the next byte to be used
by the Enulator. A copy of this byte will be in the
Instruction Buffer, so the Emul ator need not wait to access
it. The other pointer, fPCp,,fPCd, is used to point to
the next real menory location fromwhich bytes will be
fetched. One may think of the fPCp,,fPCd concatenation fPCd.7 is always sent to nenory as
as formng a program counter which is always ahead of, or 0. Its actual value can be read from
equal to, the vPC. The difference between them equal s the X bus.
the nunmber of bytes in the Instruction Buffer.
2 F Bus |0 |1 |2 |3 |4 |5 |6 |7 |8 |9 |1o|11|12|13|14|15|
fPCp |0 |1 |2 |3 |4 |5 |6 |7 |8 |9 |10|11|12|13|14|15| Loaded from F Bus using fPCp_
See IBIPSimi2.sily for bit assignnents
vPC |0 |1 |2 |3 |4 |5 |6 |7 |8 |9 |10|11|12|13|14|15| Loaded from F Bus using PCs_
Loaded from F Bus using PCs_
f PCd |O |1 |2 |3 |4 |5 |6 |7 | See IBIPSimd2.sily for bit assignnments
| Byt e
Wor d
Doubl e Word
Quad Word
3. The Instruction Fetch Unit consists of an Instruction Rul e 2:
E;ififgnags Iﬁtecpelt 2%' I(:bgi zhznhnfzggcg;ophgu%; Is An | BAccess causes a word to be read fromthe IB.
Emul ator. There are a nunber of exception conditions Excepti on to Rule 2:
encountered in normal operation. The vPCis the | ower
16 bits of Mesa's virtual programcounter (actually If the IBis enpty, the IBIP clock will be stopped to del ay
PC + CodeBase). It is incremented by hardware each the I BAccess while the Instruction Fetch Unit puts sone
time a byte is removed fromthe I B (successful |BD sp, Mesa bytes into the IB. The IBAccess will be allowed to
AW BDisp, _ib, etc)). The fPCd is the least significant proceed only when the data arrives.
8 bits of the real address of the double word to be . .
fetched into the IB. The vPC register points to bytes, EXCGptI on to the EXCGptI on to Rule 2:
fPCd points to words. fPCd.[0..7] corresponds to . S .)
vPC[g 14] The difference[betm}eenthesgtm If the IBis enpty and filling it would require the
uaﬁtiii.es é uals the number of words in the Instruction Fetch Unit to access a new page, the access
anstruction guffer fPCd. [0..7] >= VPC.[7..14] will be cancelled, the clock will not be stopped and an
Because Mesa pages'have 256 \.Ni)r ds (512 i)yt éé) ’ | BEnpt yT'r ap wll bel generated. This results in a page
the least significant 8 bits of a given vi rtuél address faul't being taken_5| nce ”‘? new page cannot be resident.
and its corresponding real address are the same. They Any Mesa Instructlpn enptying the IB nust have
ive the displ acenent of the word in a page encountered an | BDi spTrap that woul d have reset
9 p page. f PCAt EndOf Page if the next page were resident.

P i Even if the Emulator junps to the end of a virtual page,
Definition: the IBDisp in the junp microcode will generate an |BD spTrap
An" | BAccess" is any operation which reads a byte in the Fg‘;gsen{ cprcgt Eggro;cpfliggnw Il be true by PhaseB of the
Instruction Buffer. The byte may or nay not be renoved P ’
ngrait 25 IOE'e 0; B,{Ac;:te)ss :f)stEr uei te):-it gﬁr Iifbf_z\?v mA;; g:an;; ugt' ON 4. The Instruction Buffer can hold 8 bytes or 2 double
if fPCAt EndCf Page_i s false while a microinstruction has vwords. The Instruc_tl on Fetch Unit uses doubl e wor d
an 1 BDi sp fetches when accessing nmenory. fPCd.7 is always sent

’ to the menory as 0. |Its actual value can be read from

P the X bus.

Definition:

An "IBConsume” is an | BAccess that actual |y renoves 5. The nethod used to synchronize the Enulator with events
the byte read fromthe IB. Al |BAccesses are | BConsunes originating outside the P chip is to stop the P Chip clock.
excent for ibH ah and iBLow The clock may al so be stopped when the Enul ator requres

P - 9 -) a resource (Instruction Buffer, AP Bus) which is not

| i available. See IBIPSim49.sily for details of
Rul el: the clock holding curcuitry. Because the clock may
An IBDisp is an | BAccess (and an | BConsune) be stopped waiting for an Instruction Buffer fetch to
P ’ conpl ete, the Instruction Fetch machine itself may not
Excepti on to Rule 1: depend on the clock. Primarily for this reason, the
AP Bus State Machine and the Instruction Fetch State
If the last bytes put into the IB cane fromthe end of machi ne have been integrated into a single asynchronous
a page, fPCAtEndOfPage is set. |f a microinstruction state machine (see |IBIPSimi3.sily).
attenpts an | BDi sp while fPCAt EndOf Page is set, the
!rﬁuassfh;eciagcﬁlol ?gAirc]gsznoerPBégzgifml s generated instead. 6. The Instruction Buffer itself nust be addressed so that
Speci al microcode then trys to find a real nenory address the corregt bytes rrayf ble \rM?ad sn_dl\gl_rltten. I-bw;:]ver,
for the next virtual page. |If the next virtual page is one F“’St € very carerul when bui’ding an asynchronous
resident in real nenory, fPCp is | oaded, fPCAtEndOf Page machi ne that its |np_uts wWill not have ynwant .6d p_uI ses or
is turned off and both the Emul ator and the |IFU can _edges ag t_hs \(;WOEQ ti mes. Afte_r chE ||nvest|g_at|_o?j
proceed. |f the page is not resident, the Enul ator saves Ibt vx.asf eci de dtfatOdC' reuits using t effeastdzl gni ficant
what ever data is necessary in case the Mesa instruction a:IN: 2 \rlsdcugzd sEch alsiigﬁgguct lngaSlsje g; ?hi LestSﬁz
must be restarted and proceeds with the Mesa instruction | ys pr Buf f . gdd .db h !
in hopes that data fromthe next page won’'t be needed. nstruction Buffer s addressed by a rather strange
If it is, we arrive at the Exception to the Exception to Rul e circuit (at least if you are used to standard TTL stuff)
2 ’ shown on the next page.
Proj ect Ref erence File Desi gner Rev | Date Page
XEROX
oo Dai sy Instruction Fetch Unit: | B PSi m44. sillyGarner, Davies| A | 8/19/83 | 44
Docunent ati on

7.

10.

11.

Conceptual Representation

Instruction Buffer

Byte O Byte 1 uvPC. 0

Byte 2 Byte 3 uvPC. 1

Byte 4 Byte 5 uvPC. 2

Byte 6 Byte 7 uvPC. 3

The uvPC bits are a Unary Virtual Program Counter. They
forma program counter that counts by setting exactly one

of the uvPC bits to 1. For exanple, if byte O were to be read
next, uvPC.0 would be set and uvPC. 1, uvPC 2 and uvPC. 3

would all be reset. The byte within the word to be read is
indicated by vPC.15. It is O for reading even bytes and

1 for reading odd bytes.

The Instruction Fetch Unit uses double word reads to fill
the Instruction Buffer. If Full.0 is set, at |east one of
the bytes in ByteO..Byte3 has been | oaded from nenory

but not yet read. The sane relationship holds for Full.1l
and Byte4..Byte7. In this sense, Full.x really neans

"Not Empty.x." Al four conbinations of Full.[0..1] (00, 01, 10,
are |l egal and occur as part of nornal operation.

Two interesting signals are derived fromthe Full bits. One,
| BRoom indicates there is roomfor another double word
inthe IB. The other, IBEnpty, indicates the IBis enpty.
The equations are:

| BRoom (Full.0+ Full.1)
| BEnpty = (Full.0'* Full.1)

Each time the Mesa Enul ator executes a junp instruction,

the Instruction Buffer nust be "cleared." As part of

the Emul ator routine for the junp instruction, a "PCs _"
clause appears in a mcroinstruction (before or after

possi bly re-mappi ng the new virtual PC page number into fPCp).

a) causes vPC.[0..15] _ F.[0..15],

b) causes fPCd.[0..7] _ F.[7..14],

c) causes uvPC.0 _ F. 14",

d) causes uvPC. 1 _ F. 14,

e) causes uvPC.2 _ uvPC. 3 _ O,

f) causes Full.0 _ Full.1 _ 0.

The next tinme a microinstruction attenpts to read or

Ful'l.Q

Ful I .

11)

This

di spatch on a byte fromthe Instruction Buffer (an IBAccess), that

microinstruction will be held until the Instruction Fetch
Unit fetches a double word. The |IBAccess, alnost certainly
an | BDi sp, may occur in the mcroinstruction

imedi ately following the PCs_. It may al so occur |ater.

As a result of an |IBReference, fPCd is incremented (by 2) and
one of the Full bits is set. To prevent a race between

Enul ator junp code and this action, any mcroinstruction
containing a PCs_ clause is held up before it enters the

M crolnstruction Register (MR). As usual, this is done by
stopping the clock. It nmay proceed only when the

| BRef er ence conpl et es.

The clock is al so stopped whenever the next mcroinstruction
contains an | BAccess (IBDi sp, AWM BDisp, _ib, _ibSE, etc) and
the IBis enpty. The stopping of the clock before the

first IBDisp after a PCs_ clause is a special case of this.
This holding of the mcroinstruction prevents the Emul at or
fromreading data that hasn't arrived yet.

I'n nornmal operation, Full.0 is set after the upper double
word has been |loaded with data. It is reset when uvPC. 2
goes to 1 indicating all bytes in the upper double word
have been read. Full.1l is set when the | ower double word
has been witten and is reset when uvPC.0 is set. It is
possible that the Emulator will do an |BAccess just as an
| BRef erence is | oading a double word into the IB. This will
not cause a problem since the byte being read cannot lie
in the double word being witten. Care nust be taken to
ensure the IB WiteEnable signals have no glitches at the
wrong tinmne.

XEROX
SDD

Proj ect Ref erence File

Dai sy I nstruction Fetch Unit:
Docunent ati on

| Bl PSi m45. si |

Desi gner
y Gar ner ,

Davi es

Dat e
8/ 19/ 83

Page
45

12. GCeneration of the Instruction Buffer wite enables The Sel ect Equations are:

requires both select terms (which latch) and timng ’ x Ve
terns (when data is valid). This note describes the IBWiteSelectO Full.1+ (Full.0* Full.1* (uvPC.0 + uvPC. 1))

sel ect terms. IBWiteSelectE Full.O+ (Full.0* Full.1'* (uvPC. 2)

the Instruction Buffer wite selects are forned as Note that if the Enulator reads |IB Byte 7 just as
follows (Note |BReferences are only started when there one of the | ow double words is being witten, Full.1
is roomin the IB): will goto O and uvPC.0 will go to 1. This could cause

a glitch in the IBWiteSelectO term To help avoid this, we

a) Wite the | ower double word of the IBif either the re-write the equations as fol | ows:

upper double word is not enpty (Full.1=1) or both
doubl e words are enpty and the next byte will be

i *
read fromthe |ower double word (uwPC.0 = 1 or IBWiteSel ect 6= (Full. 1+ Full. Oy (Full. 1+ uvPC. 0 + uvPC. 1)

uvPC.1 = 1). Note the only way uvPC. 1 can be set IBWiteSelectE (Full.O+ Full.1y * (Full.0+ uvPC 2)
while both Full bits are reset is that a PCs_ cl ause
has just been executed. If the circuit is inplemented in this way, we nust only ensure
that the (Full.1+ uvPC.0 + uvPC. 1) term does not glitch.

b) Wite the upper double word of the IBif either the This is equivalent to making sure uvPC.0 is set before
| ower double word is not enpty (Full.0 = 1) or both Full.1l is reset. This is incorporated into the state nachine
doubl e words are enpty and the next byte will be shown bel ow (we go to uvPC. Oa, then to a state which resets
read fromthe upper double word (uvPC. 2 = 1). Full.1). Note uvPC.0 = uvPC. 0a + uvPC.0b + uvPC. Oc.

uvPC.2 is simlarly constructed.

c) Wthin a double word, the word with an even IB

(and nmenory) address is witten with data |atched

by Respu’. The odd addressed word is witten

with Respv’ data. Note there are two sets of

| atches on the pads, one for Respu’ data and

one for Respv’ data. Even words in the IB are

wired to the Respu’ latch and odd words to the

Respv’ | atch.
Comment s:
— 1. Points A and B are fromIBIPSimd3.sily. They specify
uvP the points at which the Full bits are set.

2. Dividing uvPC.0 and uvPC. 2 into three states satisfies
2 conditions:

a) uvPC.0 (or 2) must be set before Full.1 (or 0) is
uvPC. 0 reset (see 12 above),

b) Being in uvPC.0 (or 2) nust not prevent Full.O (or 1)
frombeing set as would be done if the IB were
filled up.

As noted above, we nust arrive in uvPC. 0 before

resetting Full.1l. This is why uvPC. 0a (and uvPC. 2a) exist.

Entering state uvPC. xa both sets the uvPC.x termin the

I BWiteSel ect equations and signals that it is tine to

reset the corresponding Full bit. State uvPC xb resets

uvPC. xa and the Full bit. W enter uvPC xc to rel ease
the reset on Full. W assune the Full bit was already
set on entering uvPC xa. |If it were not we would
hdseB * | BConsume have just been reading froman enpty section of |B.

— W al so assunme that the state nachine enters each

successor state before |eaving each predecessor state

— FS 1F so (uvPC xa + uvPC xb + uvPC. xc) does not glitch.
3. The effect of a PCs_ clause is:
a) uvPC. 0c _ F. 14",
b) uvPC.1 _ F.14,

c) all other uvPC and Full states are reset.

uvP

> |

uvP

K

h!seB * | BConsune

t

B'L

uv P

uvP@

uvPC. 2

uvP

4. There are two interesting signals generated fromthe
Full bits. One indicates that there is roomin the IB
for another double word. The other indicates that the

— IBis enpty. Note that only mcrocode (by accessing the

*

haseB * | BConsume I B, advancing the uvPC and clearing the Full bits) can

set these signals. The equations are:

uv P

uvP@

IBRoom = (Full.0'+ Full.1)

haseB * | BConsune | BEnpty = (Full.0* Full.1)

5. The uvPC bits change in PhaseB because the IB is actually
read in Phase A

6. An | BConsune is an operation which reads and renoves
a byte fromthe IB. Al IBAccess operations are also
| BConsunes except _ibH gh and _ibLow (see |BIPSin44.sily).

Proj ect Ref erence File Desi gner Rev | Date Page

Dai sy Instruction Fetch Unit: | B PSi m46. si Iy Garner, Davies| A | 8/19/83 | 46
Docunent ati on

XEROX
SDD

13. The IB nenory circuits are interesting (or strange, The foll owi ng di scussion assunes fPCAt EndCf Page is not set.
?ﬁgegg'ggg g? {ggrcﬁ;)'pnénggd\é' 2\2’3:h| 3tafgezi't Izet\?\zdlsi 225_ I f _the next mcroinstruction cont ai ns an | BAccess and the
0L = bit is 0, 10 = bit is 1, 11 = bit isn't valid yet. The IBis emty, the Emulator clock will be stopped. If an
| atches require that both the wite enabl es be set and IBRefgrence is already in progress, it w |l conplete, a Full
the input bits reach the 01 or 10 states before they b!t wll be set, |BEmty W'I! be reset a_nd the Em'” at_or C!OCk
will be witten. W assume they are written very soon wll start. llf t he In_st_ructlon Fetch Unit was !dle, it will w
after the 01 or 10 state is reached for any P chip bus activity to conplete and begin an
' | BRef er ence.
14. There are two sets of data bits latched fromthe AP Bus. This act of waiting for bus activity to conplete inplies a
The first set is latched with when Respu’ rises. The second restriction on the type of bus activity allowed when
set is latched whenever Respv’ rises. The first set goes to using the IB. In particular, the mcrocoder may not include
the even words of the Instruction Buffer array and to an MDR_ clause and an | BAccess in the sane
the Mbu latch. The second goes to the odd words of the m croinstruction. Referring to the bus machine state
IB array and the MDv | atch. diagramin | Bl PSim3.sily, one can see that the
m croinstruction imediately following a MAR_ or Map_
15. The Mbu latch is activated only on double fetch operations. defines the type of menory operation to be perforned.
The MDv latch is activated for all MAR_ or Map_ If the operation is a wite (has an MDR_ cl ause), the bus
operations. The IBis witten only in |BReferences. machi ne nust wait until the end of this second
mcroinstruction for the wite data. |f, however, that sane
16. Generation of the wite enable termfor any particul ar m croinstruction contains an | BAccess, it would be held
latch involves both a select term (given above or in |BIP46.sily) before being executed. This would result in a deadl ock
and a timng term Latches receiving Respu’ data are enabl ed in which the clock holding circuitry would be waiting for the
when they are sel ected and Respu’ drops causing all the IFU to fill the IB, the IFU would be waiting for the bus
data inputs to go to the 11 state. The wite enables are machine to rel ease the bus so it could start and the bus
reset when all data bits reach either the 10 or 01 state. machi ne woul d be waiting for the clock holding circuitry to
We assune the delays involved in both detecting the data rel ease the second microinstruction.
bits have reached valid states and disabling the wite
enabl es covers the data setup tine to the end of the It is interesting to note that because an | BAccess can stop
wite enable pulse. Thus: the clock, an ordinary menory read can be "interrupted"
| BWiteEnabl 01 = | BWiteSel ect & WouVal i d' by an | BReference. Consi F|er a st andard‘ short Mesg routine
I BWit eEnabl e23= | BWit eSel ect ¢ WDvVal i d’ containing a MR, an IBDisp and a _MDin successive
| BWit eEnabl e45 = | BWit eSel ect * WDuVal i d’ m croi nstruc_tl ons. The f:l ock coul d be stopped j _ust bef ore
| BWiteEnabl e67 = | BWiteSel ect ¥ WovVal i d' the | BDi sp mcroi nst ruf:t ion. The bus st atfe machi ne woul d see
that the microinstruction after the MAR_ didn't have an
MDR_ or _Mbu clause, so it would assune a single
17. W are now ready to discuss the conditions that intiate word fetch. This fetch would be conpleted by the
an | BRef erence. The general philosophy is that the Instruction asynchronous bus state machine. At the end of the fetch,
Fetch |l ogic should stay out of the way as much as possible the data woul d be latched in the Mbv register. Upon entering
while attenpting to nmaintain an adequate nunber of bytes State S2 (IDLE), the bus state machine woul d see | BEnpty and
in the Buffer. | BAccess, so it would start an | BReference. Wen it
Following this line of reasoning, we derive tw conditions ?grzlee;ﬁg' t ﬁeFE: locEI \twm)gl gt gretset :rhgagfrlulngt lorBExhlydt ?hgg
under which the Instruction Fetch unit should initiate a . N h
Fet ch: execute the IBDisp and _MD microinstructions normally.
a) Sﬁg: gAsc:-}gtsc?S\ggergYIe;Si :sz glelx;) maﬁgmt Eztlrtécit 'Sogn;?;‘t ains One mght (al nbst correctly) think the I BRequest is:
indicated by |BEnpty (1BIPSimi5.sily). IBRq = (I BEmpty * pl BAccess * PhaseF) +
b) Begin a fetch if there is roomin the IB for another double '
) Worgd (1 BRoon¥1l) and the current mcroinstruction contains (1BRoom™ | BWndow * PhaseA)
an | BWndow clause. This gives the nicrocoder explicit . —

; b . pl BAccess is the indication that the next mcroinstruction
ﬁq.oglt, (rngodg tsrr:gult:jnﬁzea} Bcv’mngzwt czelnBt \r/]mel IEnLF;fgr The contains an | BAccess. This | ndication is valid in PhaseF.
won't be using nenory for awhile and the bytes fetched An | BAccess of an empty 1B wi Il cause Fhe clopk to stop
wi Il probably be used. It is expected that after the basic and vai t f_or the Instruction Fetch logic to _flgure out what
structure of the mcrocode and the chip set timngs are 'S happe_nm ng. So long as the. | BEMpty f!ag is correctly set
set, mcrocoders will tune the performance by placing by the time .the bus state ma;hl ne |ands In state S2 (!DLE)‘
| BW ndow ¢l auses in the code. th_e Instruction Fetch unit will see no |ogic hazards in

this term
18. An IBReference will not start if the fPCd has reached the The IBW n_dow term 'S anot her st ory. The whol e purpose

end of a nenory page. This is because it doesn't know of providi ng an IBWndow clause is to allow the Enul ator
where the next virtual page is in real space. The fPCd is to proceed in parallel with an IBRef_erence: Hence, we cannot
increnented by 2 during each IBReference. |If there is a stop the_ Emul at or cloc!< on every | BWndow just to let the
carry out of bit 0, the fPCAtEndOf Page flag is set. \Wen IFU see it. In fact', It is most reasonabl e to let the IFU
this flag is set, IBWndow clauses are ignored. Wen it is set, i gnore the | BWndow if bus is _al regdy busy doi ng soneth! ng
each | BDi sp executed causes a microcode trap. In this el se. The probl em then may arise it the bgs state machi ne
| BDi spTrap code, the new virtual page number is exam ned. arrives in state S2 (IDLE) just as PhaseA is ending, turni ng
If the new virtual page is already in real memory, pff that term This pould cause a hazardA and greatlconf usi on
the corresponding real page number is put in fPCp in the bus state machine. It cou! d concei vabl y dgc!de to go
and the code di spatches on the next byte in the IB. This can to no state at all, effectively disabling bus activity forever.
be done since the trap occured when the Emul ator expected To remedy t hi I obl install an arbiter de of
to dispatch on a new bytecode. If the new virtual page Y s proplem we instal! an a er mde o
was not present in menory, the machine state is saved and seary. (to the 9' dffaSh' oned TTL designer) gates and
the Enulator attenpts to dispatch on the next bytecode transistors. it is shown on the next page.
anyway. It is not legal to cause a page fault until we are
certain the new page will be needed. Thus, if there is
an | BAccess, the IB is enpty and fPCAt EndCf Page is true,
we know a new page nust be brought in. Wen this condition
is detected, another type of microcode trap i s generated.
This trap code recovers the state of the nachine at the
begi nni ng of the bytecode, saves this, and puts this process
to sleep while scheduling the page fault process. Wen
the page arrives, this process may be restarted at the
begi nni ng of the bytecode that caused the fault.

XEROX Proj ect Ref erence File Desi gner Rev | Date Page

oo Dai sy Instruction Fetch Unit: I Bl PSi m47. sillyGarner, Davies| A | 8/19/83 | 47
Docunent ati on

24. The | BWndow Arbiter is shown bel ow.

| BW ndow

| BRoom | BW ndowRg Set

PhaseA I pWE' Q W ndowSt art’
pVWH | Lo W ndowHol d

S2’ Reset

| BWndow is true when the current m croinstructilion | BWndow is valid during PhaseA

contains an | BWndow cl ause.
| BRoom= (Ful |l .0+ Full. 1)

S2’

This is a strange circuit. Note that because of the MOS
transistors, WndowStart',, WndowHold may be in only

the 01, 10 or 11 states. |f both NOR gates produce

00, both transistors are turned off and the pull ups

force both WndowStart’ and WndowHold to the 1 state.

In fact, it is claimed that whenever the NOR gate outputs
are equal, WndowStart’ and W ndowHol d are both set

to 1. W need to know what WndowStart’ and W ndowHol d

do in order to understand the circuit. The basic idea is
that when WndowStart’ is 0, we will start an |BReference.
When W ndowHold is a 1, we hold the Emulator clock. Wile
the arbiter is deciding what to do (NOR gate outputs

tracki ng each other, and no |onger in PhaseA), we hold

the clock AND don’t start an |BReference. Wen it decides,
the circuit will either start an |BReference, |eave S2, and
rel ease the clock or just release the clock. |If the

m croinstruction being held contains a MAR_ or Map_,

sonme gate delay conditions nust be net to ensure the

clock stays held if we leave S2 and this circuitry rel eases
the clock. There is an explicit list of critical delay
assunptions on |BIPSinb0.sily - IBIPSinb2. sily.

is al when the bus state machine is NOT in state S2 (IDLE).

Normal Iy, the bus nachine is either in the S2 (I1DLE) state when
IBWndowRq is set or it stays outside S2 for the duration of
the I BWndowRg pul se. Explore these two cases:

a) The bus state machine was already in the S2 state.

In this case, the action proceeds as follows:
1) The appearance of |BW ndowRq causes an | BRq

2) The I BRgq causes the bus state machine to | eave
the S2 state, setting S2'.

3) Assuming this happens before PhaseA conpl etes,
both the set and reset inputs are active, so
both outputs are set to 1.

4) PhaseA ends so only the reset input is active.
Note that if PhaseA ends before the nmachine
exits S2, we sinply skip 3) above.

5) Wth the reset active and the set inactive
W ndowStart’ stays at 1 and W ndowHol d goes
to 0. This allows the clocks to proceed if there
were no ot her conditions holding them

Note that if things are sl ow so WndowHol d stays up past

Case a the Pause Point, the clock is just held and the machine
slows down a bit until WndowHold finally falls.
PhaseA _ | b) The bus state machine stayed outside S2 while
| BW ndowRg was true. See timng diagram bel ow.
PhaseB |
| BW ndowRq | 4) PhaseA | |
pWs'] | PhaseB |
pWH | | | BW ndowRq | |
W ndowSt art’ | 3) | pWs' | |
I BRq 1]] pWH
| BRef | W ndowSt art’
s2’ 2) | | BRq
W ndowHol d | 5) | | BRef | either_active or inactive |
PMAR | | s’
pMAR * S2’ | | W ndowHol d _| |—
Pause’ | I] pMAR | |
I :
Pause Poi nt PMAR * 52 I |
Note that it is fine for Pause’ to Pause’ l []
go H so long as it is LO before |
the Pause Point. |t cannot be stable Pause Poi nt
before the pMAR flag is stable.
The only action is to set WndowHold while I BWndowRq is set.
This only lasts to the end of PhaseA, well before the Pause
The case of S2' going LO while IBWndowRq is HI Point, so there is no net effect on the machine.
is shown in the critical delay documentation (IBIPSinb0.sily).
Proj ect Ref erence File Desi gner Rev | Date Page
XEROX ; Instruction Fetch Unit: ; ; ;
SDD Dai sy X : | Bl PSi m48. si llyGarner, Davies] A | 8/19/83 48
Docunent ati on

d k a-c c a-c | b |c a-c c a-c | b | pause |c

PhA |_

PhB] —
PhF
Tap B
Pause’
Pause Poi nt Pause Poi nt
Ti meCut
+
| a b (b < a) (
RL__D T c Delay Line & T | .
I] bi
Pause’ —— N
Pause’ ——.py | <P _
|— —d J Pha
I ak |
T PhaseB
PhaseA (=a-c+c = a)
Read/ Wite R/'RH registers L b
Read/ Wite U registers | ——— PhaseA
X bus valid . -
Precharge F bus I I .
Conmput e ALU | ogi cal functions
Comput e F15

Gve CA WiteData to AChip

PhaseB (=a-c+b+pause+c = a+b+pause)

Conpute ALU carries

F bus valid

Precharge X bus

Update/ Wite registers (Q Fh, Stkp, vPC, uvPC, fPCd)
Precharge U R/ RH regs

Gve RA bits to AChip

Next M croinstruction fields can be decoded

PhaseF (=pause+c)
F Bus Valid
c = Time for Fbus_MD, CSA INI A or Cbus

I BI P C ocki ng
16 August 83

25. The | BRequest is generated as follows: 28. Another subtle point that escaped nme for a couple
of weeks is that the delay line enpties and the
W ndowSt ar t’ deci si on about whether to hold the clock or not
1 BRg (the Pause Point in IBIPCdocking.sil) is made just
| BEnpt BEFORE PhaseF, not at the end of PhaseF.
pl BAccess PhaseF starts with the pause and ends c tine units
PhaseF after the clock holding circuitry has decided to start
the clock. The main consequence of this is that one
cannot deci de whether or not to stop the clock by
An | BRg causes the| state machine to | eave | ooking at signals that are only valid in PhaseF.
S2, setting S2' anQ reSetting the arbiter on
I BI PSi 8. sily 29. The main conditions that cause the Emulator clock to stop are:
26. This drawi ng describes the clock holding circuitry. a) Wiiting to use the AP bus,
The clock itself is shown in Garner’s draw ng . -
I Bl PAl ocki ng.sil or |BIPC ocking.press on b) :—gv:zgufaarted a memory cycle, waiting for the data
[I ndi go] <Daf f odi | >I Bl P>Doc and !
[1 ndi go] <Daf f odi | >I Bl P>Doc>Press respectively. c) Wiiting for the Instruction Fetch Unit to put bytes into
the Instruction Buffer so the Enulator may read or dispatch
27. A couple of subtle points about that clocking schene on them
shoul d be noted before going on. First, the |ongest d) Waiting for the Instruction Buffer to conplete a reference
run of 1's in the delay line is of length a. |n order so the Mesa program counters may be | oaded. This occurs
to ensure that the clock operates properly, b nust in the junp routines,
Ib.e Iess_than a. If it weren't, that run of 1's could e) Waiting for the |BWndow arbiter to deci de whether
ie entirely between taps a and b, both taps would
. , h not to do an | BReference.
signal 0, and a new run of 1's would begin
erroneously. Notice that, in general, we don't stop the clock if an
attenpted | BAccess will result in an IBD spTrap or an
Second, notice that the basic node of operation is | BEnptyTrap. The only exception is when we junp to the
for the run of 1’s to fall off the end before Pause’ end of a page. There, we stop the clock while the IB data
is exam ned. Wen Pause’ goes H, another run of arrives, then allow the IBDi spTrap to take place. It’s too
1's begins. The TineQut line is supposed to restart messy and unnecessary to wait for the AMBDisp in the
the clock if Pause’ refuses to go H. This also causes | BDi spTrap code to stop the clock and run the |BReference.
a mcrocode trap. The tine at which Pause’ is
examned is called the "Pause Point. 30. To enhance performance, a mcroinstruction needi ng nenory
This feature of ignoring Pause’ until the delay |ine _data is allowed to proceed to'the point at Vm' ch the data
enpties allows one to be fairly sloppy in generating IE' stgred. V\hen t_he data_ larrlhves, ths cl ock is stz_rted_. Theh
Pause’. The in fact, one need not worry about g Ip has ¢ time units unt!f PhaseF ends. During t |s‘;!me, the
generating a rising edge on Pause’ at any time. If it ata nust be stored and, if the mcroi nstruction specifies a
Lo, branch based on the F bus contents, the new mcroinstruction
occurs when Pause’ is being ignored, it will be ignored. .
A b) . b address nust be calculated. |If we made the entire
if it occurs when the clock is stopped, it will sinply mcroinstruction wait until the data arrived, as is done with
start the clock. One need only worry about falling !
. . all of the other cases, we would waste the time needed to get
edges on Pause’ just when the delay |ine runs out. t hrough PhaseA and PhaseB to PhaseF on many nenory
I f Pause’ falls just at the right tine, a runt clock
references.
pul se coul d be generated.

31. The IBIP uses a two |level pipeline in which the fetching and
decodi ng of one mcroinstruction is overlapped with the
execution of the next. W call the mcroinstruction being
executed the "current” microinstruction and the one being
decoded the "next" mcroinstruction. In the equations
bel ow, we add the prefix "p" to denote a field fromthe next
m croinstruction. For exanple, "mem is the field of the
current mcroinstruction indicating what sort of nenory
operation should take place. The corresponding field in the
next microinstruction is called "pmem"

Pause’ = (Enabl eAPBus *
(
a) ((pmem = MAR_)+ (pmem = Map_))* S’
+
b) (mem = _Mbu) * (S5 * S2' * S1' * S19') {Not an |BReference and waiting for 1st word of double fetch.}
(mem = _Mv) * (S5 * S2° * S1') + + {Not an IBReference and waiting for 2nd word of double
fetch or only word of single fetch. See |BIPSi mi3.sily}
c) | BEnpty * fPCAt EndOf Page’ * (((pfS.1= 0)* (pfz.[0..1]=0)) + ((pfS# 15)* (pfYy=15))) +
{_ib, _ibSE, _ibLow, _IbHi gh} {Aw BDi sp, |BDisp}
d) ((pfX =PCs_) + (pfX=fPCp_)) * S5 +
e) W ndowHol d
)
Proj ect Ref erence File Desi gner Rev | Date Page
XEROX ; Clock Hold circuits: ; ; ;
SDD Dai sy i : | Bl PSi n49. sily Garner, Davies] A| 8/19/83 49
Docunent ati on

Critical Delay Assunptions Conment s

1. After an |IBReference, the new val ue of | BRoom nust 1. One of the two forks at the bottomof IBIPSim3.sily
be valid by the tine state S2 (IDLE) is entered. will be taken at the end of an IBReference. This will
cause one of the Full bits to be set (see |BIPSi n46.sily).
The | BRoom cal cul ation is

| BRoom= Full .0+ Full.1",

so | BRoom should go to 0 soon after this fork unless
the IB was conpletely enpty. The other branch of the
fork leads to a join with the S5 state and the join
leads to S1. Note we cnnot |eave S1 for S2

until the Full bit has been set. The designer nust
additional ly guarantee that IBRoomis valid by the
time S2 is entered. |If it falsely indicated that there
was roomin the IB and an | BWndow cl ause was present,
anot her | BReference could begin with disasterous
results. Another consequence of |BRoom staying too
long could be that |1BRq might disappear just as the
state machine was |leaving S2. This could cause
confusion, possibly leaving all the states turned off.

2. If the clocks are near the Pause Point (IBIPC ocking.sil),2. W nust guarantee that if
then leaving S2 nust set the

(PMAR_ + pMap_) * S2' termof the Pause’ circuitry the bus state machine enters S2 just as | BWndowRg drops

- . and

before resetting the Wndowtol d term the arbiter (IBIPSim48.sily) waits until after the Pause Point
This condition should only be reached when the bus to decide what to do
state machine entered S2 just as and
| BWndowRq (I BIPSi m48.sily) goes LO it decides to start an |BReference

and

the next mcroinstruction contains a MAR_ or Map_
THEN

Pause’ is held LO w thout a glitch.

When both | BWndowRg and S2' drop, pWs' and pWH can

go to an undecided state. It is claimed that while in this

state they are equal to each other so both MOS transistors

are turned off and both WndowStart’ and W ndowHol d are

H . WndowHol d hol ds Pause’ LO while a decision is nade.

If the arbiter had decided to forget the |BReference,

W ndowHol d woul d sinply rise and the clock would start.

W assune the arbiter decides to start an |BReference and
Not to Scale, the Pause Point is too soon. pulls WndowStart’ LO This eventual |y causes S2' to be

raised. This starts two events into motion. First, the

rasen 1 Lo he -t s on propasaos o ihe
Phases —! Pacs traneistor. pulling Wndowkbl 4 L0 To guarant ee that
L e oot P gerT I, et e e
pWS' [] |— W ndowHol d goes LO

pVH | | |

W ndowSt art’ | |
1 BRq | |

| BRef —
s’ 1 —
W ndowHol d [|

pMAR |

PMAR * S2’ —
Pause’ - 1

Pause Poi nt
See IBIPSim48.sily for circuit.

2a. | BWndowRg shoul d set W ndowHol d If it were possible to violate condition 2a and it took a
bef ore the Pause Point. very long time to set S2', it would be possible to have a
m croinstruction containing a MAR_ or Map_ start just as

the bus state machine was enbarking on an | BReference.

Proj ect Ref erence File Desi gner Rev | Date Page
XEROX) ¢ 9

SDD Dai sy Critical Delay Assunptions|IBIPSi nb0.sily Garner, Davies|] A| 8/ 19/83 50

3.

4.

Critical Delay Assunptions

Starting an | BReference nust set the

(

(pf X=PCs_) + (pfX=fPCp)) * S5 Pause’ terms

before resetting the WndowHol d term

The Instruction Buffer wite enables nmust not
glitch.

a)

b)

c)

d)

The WbuValid and WbvValid signals should go to

0 between the tine the P chip senses that Respv’
has gone to O and it has set Rg’, Ca’ and Cp’' to
1.

The del ay between when the Wou or WDv |ines

actual ly have valid data and when this is reflected
in WbuValid or WovValid should be |onger that the
setup tines of the destination |atches.

It should not be possible for a Wou (or WDv) data |ine
to go fromvalid to invalid after Respu’ (or Respv’)
has gone H . It should simlarly be inpossible for

a Wou (or Wov) data line to take on, even

nonmentarily, the incorrect value (10 or 01) on the
way to the correct val ue.

The 1B state machi ne nust set the uvPC.2 state
(see IBIPSim6.sily) before clearing the Full.O state.
Simlarly, it nust reach uvPC. 0 before clearing Full.1.

Comment s

Note that putting an | BWndow clause in a

m croinstruction which imredi ately preceeds a

MAR_ or Map_ microinstruction is generally a bad
idea. The result will be that either nothing happens
(if there was no roomin the IB) or the menory
reference will be delayed by the IBReference. It is
generally a better idea to put the | BWndow

cl auses where they cannot interfere with normal

Enul ator nenory references. Note that it

woul d make sense to have | BWndow and MAR_

in adjacent microinstructions if the | BWndow

m croinstruction were at the end of a loop that would be
executed a couple of tines before getting to the
MAR_.

Putting | BWndow and PCs_ cl auses in

successive mcroinstructions is a genuinely bad

idea. Either there will be no IBReference (if the

IB had no room) or the PCs_ clause will be del ayed
while the Instruction Fetch Unit fetches 4 bytes

that will be imediately thrown away. This could

only make sense if the |IBWndow mcroinstruction had a
branch and the path | eading to the PCs_ was

sel dom executed. Nonet hel ess, the hardware nust
performcorrectly if a PCs_ microinstruction

imedi ately follows an | BWndow m croi nstruction.

To guarantee this, we nust guarantee that if the
arbiter decides to execute an | BReference, the clock
will be held. The followi ng sequence will be executed:

a) Wndowstart’ go LO setting | BRq
b) IBRg will set S5 (see |BIPSi mi3.sily)

c) In parallel: the ((pfX=PCs_) + (pfX=fPCp_)) * S5
will start towards H while the machi ne begins to
| eave the S2 state.

d) Leaving S2 will set S2', resetting the
W ndowHol d term of the clock hold circuitry.

will

If the clock is to be held properly,
((pf X=PCs_) + (pfX=fPCp)) * S5 nust
W ndowHol d goes LO

go H before

There are three undesirabl e consequences of incorrect
behavi or on the Wbuval id, WbvValid and IB wite
enabl e signals.

a) If Wouvalid or WhvValid falsely indicate that the
data frommenory is available before it actually
arrives and the bus state machine | ooks at them
while they are in this state, the state nachi ne
wi || proceed as though the data had actually
arrived. This will cause both bad data to be used
and it will allowthe state nachine to start
Enul ator or |BReference before the A chip is ready.

b) If the IBwite signals glitch as they are being
sanpl ed to decide which IB Full bit to set, the
wong one could be set. This could cause the
Instruction Fetch Unit to |lose track of what is
really in the IB.

c) The IB input data is only valid briefly before the
IB wite enable signals are disabled. |If the
wite enable signals glitch at this tine, the IB may
be witten incorrectly.

Meeting conditions 4a - 4c guarantees that the
WouVal i d and WbvValid signals will thenselves be valid
when the state nmachine | ooks at them

As discussed in IBIPSimi6.sily, the IB wite enable
signal s are conposed of select and timng terms. The
timng terms are either WouValid or WivVvalid depending
on which word in the double word is being witten.

If the Select ternms are glitch-free, conditions 4b and 4c
guarantee that the correct data will be witten in

the IB or MD destination |atches.

From | BIPSimi6.sily, the wite select terns are:
IBWiteSelectG (Full.1+ Full.0f * (Full.1+ uvPC.0 + uvPC. 1)
IBWiteSelect® (Full.O+ Full.1) * (Full.0+ uvPC 2)

Condi tion 4d guarantees these wl|
if the Enulator reads the IB just

be glitch-free even

XEROX
SDD

Ref erence File

Critical

Proj ect

Dai sy Del ay Assunptions

| B PSi nb1. sil

Desi gner
Gar ner,

Dat e Page

Davi es] A | 8/19/83 51

as the IFUis witing to it.

Critica

Del ay Assunptions

The delay fromwhen a PCs_ cl ause causes the Full

bits to be cleared until

must be less than the tine fromthe begi nning of
PhaseA to the Pause Point.

The del ay from when an | BConsune causes the Full

bits to be cleared until

must be less than the time fromthe beginning of
PhaseB to the Pause Point.

The delay fromwhen the Instruction Fetch machine
causes fPCAt EndOf Page to be set until it can be
used to cause an |BDi spTrap nust be |less than the
del ay fromthe begi nning of PhaseF to the begi nning

of the next

PhaseB.

the Pause’ signal can be raised

the Pause’ signal can be raised

Comment s

A Mesa junp instruction results in a change in the

Mesa PC. This is inplenmented by having a microinstruction
in the Enulator’s junp code execute a PCs_ cl ause.

This, in turn, sets the least significant 16 bits of the
virtual program counter (vPC) and the least significant

8 bits of the fetch Program counter (see IBIPSimi4.sily -
IBIPSimi6.sily). It also causes the Instruction Buffer’s
Full bits to be reset, indicating that the IBis enpty and
shoul d be refilled with instruction streamdata referenced
by the new fetch PC. The decoded PCs_ signal is |atched
by PhaseA, hence it becones valid soon after the

begi nni ng of PhaseA.

It will start clearing the Full bits at this tine.

If the next microinstruction contains an | BAccess, likely an
I BDi sp, it nust be possible to stop the clock while the
Instruction Fetch unit retrives instruction stream data.
In order to stop the clock, the Pause’ signal nust be
valid by the Pause Point. Thus, the propagation

delay of the circuits that gate the PCs_ signal, clear the
Full bits, set IBEnpty and can activate the Pause’ signal
nmust be less than the interval between the beginning

of PhaseA and the Pause Point.

This is simlar to the case above except that the uvPC

can’t be changed until PhaseB starts. This is because

it is used to address the IB in PhaseA. This is potentially
a nuch nore serious constraint than #5 above because

the circuit can't start until the beginning of PhaseB.

If a Mesa junp lands on the last byte of a page (actually
any of the last 4 bytes) we nust have an | BDi spTrap

before starting that first bytecode. The Emulator is
witten assumng an | BDi spTrap will occur whenever the

IB can't fetch any nore without crossing a page boundry.

It is quite likely that the junp mcrocode will execute a
PCs_ followed by an IBDisp. The IBDisp will not trap then
because fPCAt EndOf Page should be false. Instead, the
IBDisp will stall as the | FU fetches the | ast double word
of the page. At the end of the fetch, the IFU wll
increnent the new fPCd, which starts to set fPCAt EndOf Page.
It will also set one of the Full bits, which resets |BEmpty
and al | ows PhaseF of the m croinstructi on BEFORE t he

IBDisp to proceed. The actual |BDi spTrap takes place

in the next PhaseB. There, the vPC, uvPC and Full counters
are held and the proper trap address is generated

in NLA. Wile we have until the end of PhaseB to generate
the trap address, we cannot begin to increnent the
counters in PhaseB, then go back.

Hence, if the fPCd counter is increnented when the

Full bit is set which is when IBEnpty is reset which is
when Pause’ goes H which is when the fixed delay section
of PhaseF begins, fPCAt EndOf Page*| BDi sp nust

inable the trap | ogic which disables the counter updates
by the begi nning of the next PhaseB.

Note that if we attenpt to fix the problemshown in #6
above by increnenting the IB counters in PhaseA, this
condi tion becones nore restrictive. W would require
the trap logic to be active by the begi nning of PhaseA.

XEROX
SDD

Proj ect

Dai sy

Ref erence

Critica

Del ay Assunptions

File

| Bl PSi nb2. sily Garner, Davies] A| 8/18/83 52

Desi gner Rev | Date Page

32.

33.

As seen on IBIPSimil.sily, the least significant bit
of the Al address group is F.15. This is a problem
because the Al bits should be ready by the end of
PhaseA and the F bus bits aren’t nornally ready

until the beginning of PhaseF. To fix this, a special
circuit has been added that conputes F.15 in PhaseA.
To make the circuit fast, it only performs arithmetic
operations (addition and subtraction). Thus, all

m croinstructions containing a MAR_ nust formthe
address using some sort of arithmetic operation.
Adding O is a legal arithmetic operation. The
Dandel i on al | owed one to al so send addresses via
A-Bypass and one coul d use an OR operation.

The A-Bypass has al ready di sappeared, there is
sinply no data path fromthe A side of the R
registers to the F Bus that avoids the ALU or

LRot box. The OR operation was fairly rare anyway.

If the clocks are held too long, a tine out signal starts

them and causes a trap (IBIPC ocking.sil, IBlPControl.sil).
This time out can be disabled by sone external pin.

This is viewed as a debugging aid. Its alittle difficult
to see what the IBIP will do in the TimeQut trap since

its only comunication port (the AP Bus) is busted

and the bus state is undefined.

XEROX
SDD

Proj ect Ref erence File

Dai sy M scel | aneous Points

| B PSi nb4. si |\

Desi gner
Gar ner,

Davi es

Dat e

8/ 19/ 83

Page
54

