
PageDateRevDesignerProject File

SDD A
XEROX

Daisy

Reference

Bus Interface - IBIPSim43.sily 43
State Diagram

r
r

= fPCp

IBRq

mem=MAR_

mem=Map_

MAR_

Map_

>
>

>

r
=

_

0=Cp’

0_

=

r
r

PhaseB

r

r= 0()* *

Double Fetch
**)0=

Write

= 0()* *
*

_

=r_

Abort

,

Ca’

_

Cp’=()* (Ca’)

Fetch

r

11 1

Release

11 1=

q q

1Rq’ =

q

1,_

I
F

J

I

I
J

F

I
is the FORK symbol.

is the JOIN symbol.J

I

r_

=Rq’ 0

0RqOut’

* ()rWait for Valid A1 Bits

cadh_APOut

pin is called "xxOut."
The input to a pad driving signal xx to a

The output of a pad receiving signal xx
from a pin is called "xxIN."

rah

cadh

CpOut’

APOut

= fPCd

LMARPgCross’ LMDu

CpOut’

0=Cp’

0_

r
LMDu’LMDR’

LMARPgCross’

r
r

CaOut’ _ 0

CaOut’CpOut’ CaOut’

LMARPgCross’
LMDR

rr rRqOut’ _ 1

CpOut’ r = 11)Ca’(*

)(

=Cp’

r

AP Bus

((*) PhaseF = 1)

(

1=PhaseF

* cadh=)

r

0(Ca’)= *

r

LMDR’

* ()

* PhaseA=)Ca’(0 * LMDR

*)(0Rq’=

rAPIN(APIN*

r
)

)

)

0=Cp’* (

r
r

APIN(*

(*)

* ()

(*)

* (APIN)

(*)

Wait for Write Data to be valid.

* ()

* =)Ca’(0

r APIN

F

I >>
I
J

q>

q

>

F

I

r

>
>

IDLE

+

IBRef’*+*IBRef fPCd

r

*

)

*)(0=

Note this must be done before waiting
for Resp’ since Resp’ may take awhile.

CaOut’ 1_

Respv’
Respv’

Respv’

Respv’* (
)

* ((
)

r
(* Respv’ LMARPgCross*)(0=)

IB Fetch

(()) cadh

"+" is defined to mean Logical OR.
"*" is defined to mean Logical AND.

Wait forRespv’

APOut _)(fPCp*IBRef)(rahIBRef’*

r

cadh reflects
the F Bus. This
is broadcast
for debugging.

*

*

PhaseA

PhaseA

(

(

)

)

IBRef

This is here so the IBRef, Map_ or MAR_ states get reset

Latch MARPgCross, pMDR_, pDouble and
p_MDu during Phase F here. This is done

APOut _cadh from above. The cadh latch
enable MUST be disabled after this PhaseF
to hold the write data.

in case the next uInst stalls trying to read,
or dispatch on, an empty IB. The latched>

Garner, Davies

before entering IDLE where they could be set again.

This state exists so the processor clock circuitry can
distinguish receiving the first word of a double fetch
from receiving both words. Thus the clock can be
started after receiving the first word.

)(

*

r

WDuValid

WDvValid

Wait for WDvValid

>
F

I
WDvValid)* (*

I
F

>
r

WDvValid)* (*

LSelect0

LSelect1
IB bytes0,,1are latched by * WDuValid’
IB bytes
IB bytes
IB bytes

2,,3
4,,5
6,,7

are latched by
are latched by
are latched by

WDuValid’*
* WDvValid’

WDvValid’*

B A

IBWriteSelect0
IBWriteSelect0

IBWriteSelect1
IBWriteSelect1

The IBWriteSelects are derived on IBIPSim46.sily
LSelect0 _ IBWriteSelect0
LSelect1_ IBWriteSelect0’

Set Full.1Set Full.0

Points A and B are
on IBIPsim46.sily

>>

q

This state exists because
a Fork can’t lead directly
to a Join.

S1

S3

S4

S5

S6:

S2:

S7:

S8:

S9:

S15:

S16:

S17:

S5

Sx is the name of a state.

S5’

S5

S5

S5

S5

S5’

S5’

S5’

S5’S5’

S5’

S5

S5’

S5’

S5’

S5’

S5

S5

Must be able to drive A1 and Cp’
and leave S8 before PhaseF ends.

Must be able to drive A2 and Ca’
S10:

S11

S12

S13:

S20

S14:

S18:

S19

and leave S10 before PhaseA ends.

On Reset, all state flip-flops are reset except S4
and S17, they are set. We could have used S3 instead
of S4. Starting here resets Rq’, Ca’ and Cp’. It also
waits for Respu’ and Respv’ to go away.

as latched by WDuValid’
as latched by WDuValid’

>
S21

(mem=AAR_) PhaseA*
AuxRef

0_S22:AuxRqOut’
>

F

I
r

>q
J

I

q

)(* 0Rq’=PhaseB

,<

and LMDu.
signals are called LMARPgCross, LMDR

MDu is latched on S5’ * LMDu * WDuValid’
MDv is latched on S5’ * LMDR’ * WDvValid’

8/19/83

PageDateRevDesignerProject File

SDD A
XEROX

Daisy

Reference

IBIPSim44.sily 44

1.

2.

3.

4.

vPC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

76543210fPCd

Quad Word
Double Word
Word

fPCd.7 is always sent to memory as
0. Its actual value can be read from
the X bus.

The Instruction Fetch Unit consists of an Instruction
Buffer and fetch logic. The Instruction Buffer is
written by the fetch logic and read by the Mesa
Emulator. There are a number of exception conditions
encountered in normal operation. The vPC is the lower
16 bits of Mesa’s virtual program counter (actually

time a byte is removed from the IB (successful IBDisp,
AwIBDisp, _ib, etc)). The fPCd is the least significant
8 bits of the real address of the double word to be
fetched into the IB. The vPC register points to bytes,

vPC.[7..14]. The difference between these two
quantities equals the number of words in the
Instruction Buffer. fPCd.[0..7] >= vPC.[7..14].

The Instruction Buffer can hold 8 bytes or 2 double
words. The Instruction Fetch Unit uses double word

Because Mesa pages have 256 words (512 bytes),
the least significant 8 bits of a given virtual address
and its corresponding real address are the same. They
give the displacement of the word in a page.

fetches when accessing memory. fPCd.7 is always sent
to the memory as 0. Its actual value can be read from

Instruction Fetch Unit:
Documentation

PC + CodeBase). It is incremented by hardware each

fPCd points to words. fPCd.[0..7] corresponds to

the X bus.

5.

To increase the performance of the Daisy P chip, an
autonomous instruction fetch unit has been incorporated.
This circuitry can fetch ahead in the instruction stream
when the Emulator would otherwise not be using memory.
The bytes fetched are held in an 8-byte Instruction Buffer.
Use of the Buffer requires two pointers. One, vPC, holds
the virtual memory address of the next byte to be used
by the Emulator. A copy of this byte will be in the
Instruction Buffer, so the Emulator need not wait to access
it. The other pointer, fPCp,,fPCd, is used to point to
the next real memory location from which bytes will be
fetched. One may think of the fPCp,,fPCd concatenation

the number of bytes in the Instruction Buffer.

as forming a program counter which is always ahead of, or
equal to, the vPC. The difference between them equals

6.

The method used to synchronize the Emulator with events
originating outside the P chip is to stop the P Chip clock.

Garner, Davies

The clock may also be stopped when the Emulator requres
a resource (Instruction Buffer, AP Bus) which is not

be stopped waiting for an Instruction Buffer fetch to
complete, the Instruction Fetch machine itself may not
depend on the clock. Primarily for this reason, the
AP Bus State Machine and the Instruction Fetch State
machine have been integrated into a single asynchronous
state machine (see IBIPSim43.sily).

machine that its inputs will not have unwanted pulses or
edges at the wrong times. After much investigation,

The Instruction Buffer itself must be addressed so that
the correct bytes may be read and written. However,
one must be very careful when building an asynchronous

it was decided that circuits using the least significant
bits of vPC and fPCd as Instruction Buffer addresses
always produced such glitches. Because of this, the
Instruction Buffer is addressed by a rather strange
circuit (at least if you are used to standard TTL stuff)
shown on the next page.

1514131211109876543210F Bus

Byte

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15fPCp Loaded from F Bus using fPCp_

Loaded from F Bus using PCs_

Loaded from F Bus using PCs_

See IBIPSim42.sily for bit assignments

See IBIPSim42.sily for bit assignments

available. See IBIPSim49.sily for details of

An"IBAccess" is any operation which reads a byte in the

An "IBConsume" is an IBAccess that actually removes
the byte read from the IB. All IBAccesses are IBConsumes
except for _ibHigh and _ibLow.

the clock holding curcuitry. Because the clock may

Instruction Buffer. The byte may or may not be removed
from the IB. IBAccess is true either if the microinstruction
contains one of {_ib, _ibSE, _ibHigh, _ibLow, AwIBDisp} or
if fPCAtEndOfPage is false while a microinstruction has
an IBDisp.

8/19/83

An IBAccess causes a word to be read from the IB.

If the IB is empty, the IBIP clock will be stopped to delay
the IBAccess while the Instruction Fetch Unit puts some
Mesa bytes into the IB. The IBAccess will be allowed to
proceed only when the data arrives.

If the IB is empty and filling it would require the
Instruction Fetch Unit to access a new page, the access
will be cancelled, the clock will not be stopped and an
IBEmptyTrap will be generated. This results in a page
fault being taken since the new page cannot be resident.

Rule1:

Rule 2:

An IBDisp is an IBAccess (and an IBConsume).

Exception to Rule 1:

If the last bytes put into the IB came from the end of
a page, fPCAtEndOfPage is set. If a microinstruction
attempts an IBDisp while fPCAtEndOfPage is set, the
IBDisp is cancelled and an IBDispTrap is generated instead.

Special microcode then trys to find a real memory address

resident in real memory, fPCp is loaded, fPCAtEndOfPage
is turned off and both the Emulator and the IFU can
proceed. If the page is not resident, the Emulator saves
whatever data is necessary in case the Mesa instruction
must be restarted and proceeds with the Mesa instruction
in hopes that data from the next page won’t be needed.
If it is, we arrive at the Exception to the Exception to Rule
2.

Thus there is no IBAccess or IBConsume.

for the next virtual page. If the next virtual page is

Exception to Rule 2:

Exception to the Exception to Rule 2:

Definition:

Definition:

Any Mesa Instruction emptying the IB must have
encountered an IBDispTrap that would have reset
fPCAtEndOfPage if the next page were resident.
Even if the Emulator jumps to the end of a virtual page,
the IBDisp in the jump microcode will generate an IBDispTrap
because fPCAtEndOfPage will be true by PhaseB of the
IBDisp microinstruction.

PageDateRevDesignerProject File

SDD A
XEROX

Daisy

Reference

7.

8.

9.

10.

11.

Instruction Fetch Unit:
Documentation

IBIPSim45.sily 45Garner, Davies

Conceptual Representation

Instruction Buffer

Byte

Byte

Byte

Byte Byte

Byte

Byte

Byte0

2

4

6

1

3

5

7

uvPC.0

uvPC.1

uvPC.2

uvPC.3

Full.0

Full.1

of the uvPC bits to 1. For example, if byte 0 were to be read
next, uvPC.0 would be set and uvPC.1, uvPC.2 and uvPC.3
would all be reset. The byte within the word to be read is
indicated by vPC.15. It is 0 for reading even bytes and
1 for reading odd bytes.

The Instruction Fetch Unit uses double word reads to fill
the Instruction Buffer. If Full.0 is set, at least one of
the bytes in Byte0..Byte3 has been loaded from memory
but not yet read. The same relationship holds for Full.1
and Byte4..Byte7. In this sense, Full.x really means

Each time the Mesa Emulator executes a jump instruction,

a) causes vPC.[0..15] _ F.[0..15],

b) causes fPCd.[0..7] _ F.[7..14],

c)

d)

e)

f)

the Instruction Buffer must be "cleared." As part of
the Emulator routine for the jump instruction, a "PCs _"
clause appears in a microinstruction (before or after

causes

causes

causes

causes

uvPC.2 _ uvPC.3 _ 0,

The next time a microinstruction attempts to read or

microinstruction will be held until the Instruction Fetch

immediately following the PCs_. It may also occur later.

are legal and occur as part of normal operation.
"NotEmpty.x." All four combinations of Full.[0..1] (00, 01, 10, 11)

one of the Full bits is set. To prevent a race between
Emulator jump code and this action, any microinstruction
containing a PCs_ clause is held up before it enters the
MicroInstruction Register (MIR). As usual, this is done by
stopping the clock. It may proceed only when the
IBReference completes.

The clock is also stopped whenever the next microinstruction

the IB is empty. The stopping of the clock before the
first IBDisp after a PCs_ clause is a special case of this.
This holding of the microinstruction prevents the Emulator
from reading data that hasn’t arrived yet.

In normal operation, Full.0 is set after the upper double
word has been loaded with data. It is reset when uvPC.2
goes to 1 indicating all bytes in the upper double word
have been read. Full.1 is set when the lower double word

form a program counter that counts by setting exactly one
The uvPC bits are a Unary Virtual Program Counter. They

possibly re-mapping the new virtual PC page number into fPCp). This

an IBDisp, may occur in the microinstruction

As a result of an IBReference, fPCd is incremented (by 2) and

has been written and is reset when uvPC.0 is set. It is
possible that the Emulator will do an IBAccess just as an
IBReference is loading a double word into the IB. This will
not cause a problem since the byte being read cannot lie
in the double word being written. Care must be taken to
ensure the IB WriteEnable signals have no glitches at the
wrong time.

uvPC.0 _ F.14’,

uvPC.1 _ F.14,

Two interesting signals are derived from the Full bits. One,
IBRoom, indicates there is room for another double word
in the IB. The other, IBEmpty, indicates the IB is empty.
The equations are:

IBRoom
IBEmpty

=
=
(
(
Full.0’
Full.0’

+)
*)
Full.1’
Full.1’

dispatch on a byte from the Instruction Buffer (an IBAccess), that

Unit fetches a double word. The IBAccess, almost certainly

contains an IBAccess (IBDisp, AwIBDisp, _ib, _ibSE, etc) and

8/19/83

Full.0 _ Full.1 _ 0.

PageDateRevDesignerProject File

SDD A
XEROX

Daisy

Reference

Instruction Fetch Unit:
Documentation

Garner, DaviesIBIPSim46.sily 46

12.

a) Write the lower double word of the IB if either the
upper double word is not empty (Full.1=1) or both
double words are empty and the next byte will be

b) Write the upper double word of the IB if either the
lower double word is not empty (Full.0 = 1) or both
double words are empty and the next byte will be

c)

follows (Note IBReferences are only started when there
is room in the IB):

read from the lower double word (uvPC.0 = 1 or

read from the upper double word (uvPC.2 = 1).

uvPC.1 = 1). Note the only way uvPC.1 can be set
while both Full bits are reset is that a PCs_ clause
has just been executed.

=

=

(

*Full.1

Full.0

Full.0’ Full.1’* (uvPC.0 + uvPC.1))

(*Full.1’Full.0’*(uvPC.2)

one of the low double words is being written, Full.1
will go to 0 and uvPC.0 will go to 1. This could cause

re-write the equations as follows:

= (+Full.1 Full.0’) *

(

Full.1+ uvPC.1+uvPC.0)

Full.0= (+ Full.1’ *) +(Full.0 uvPC.2)

If the circuit is implemented in this way, we must only ensure
that the)uvPC.0 + uvPC.1Full.1+(
This is equivalent to making sure uvPC.0 is set before
Full.1 is reset. This is incorporated into the state machine

uvPC.1sr

sr
J

I
Full.0

Full.1

uvPC.0a

uvPC.0b

sr

sr
sr<

uvPC.0c

PhaseB *

*PhaseB

PhaseB *

*PhaseB

<sr
sr

sr

I
J

sr

sr

uvPC.2a

uvPC.2b

uvPC.2c

uvPC.3

A

sr

sr

B

1.

Comments:

Points A and B are from IBIPSim43.sily. They specify
the points at which the Full bits are set.

2.

Full.1). Note uvPC.0 = uvPC.0a + uvPC.0b + uvPC.0c.
uvPC.2 is similarly constructed.

Dividing uvPC.0 and uvPC.2 into three states satisfies
2 conditions:

a) uvPC.0 (or 2) must be set before Full.1 (or 0) is
reset (see 12 above),

b) Being in uvPC.0 (or 2) must not prevent Full.0 (or 1)
from being set as would be done if the IB were
filled up.

uvPC.xa and the Full bit. We enter uvPC.xc to release
the reset on Full. We assume the Full bit was already

have just been reading from an empty section of IB.

3.

uvPC.0

uvPC.2

The effect of a PCs_ clause is:

a) uvPC.0c _

b) uvPC.1 _

c) all other uvPC and Full states are reset.

F.14’,

F.14,

set on entering uvPC.xa. If it were not we would

Generation of the Instruction Buffer write enables
requires both select terms (which latch) and timing
terms (when data is valid). This note describes the
select terms.

the Instruction Buffer write selects are formed as

Within a double word, the word with an even IB
(and memory) address is written with data latched
by Respu’. The odd addressed word is written
with Respv’ data. Note there are two sets of
latches on the pads, one for Respu’ data and
one for Respv’ data. Even words in the IB are
wired to the Respu’ latch and odd words to the
Respv’ latch.

The Select Equations are:

Note that if the Emulator reads IB Byte 7 just as

term does not glitch.

shown below (we go to uvPC.0a, then to a state which resets

IBWriteSelect0

IBWriteSelect1

IBWriteSelect1

IBWriteSelect0

4. There are two interesting signals generated from the
Full bits. One indicates that there is room in the IB
for another double word. The other indicates that the

IBRoom)Full.1’+(= Full.0’

IBEmpty Full.0’= (Full.1’)*

5.
read in Phase A.
The uvPC bits change in PhaseB because the IB is actually

IB is empty. Note that only microcode (by accessing the
IB, advancing the uvPC and clearing the Full bits) can
set these signals. The equations are:

+

+

a glitch in the IBWriteSelect0 term. To help avoid this, we

As noted above, we must arrive in uvPC.0 before
resetting Full.1. This is why uvPC.0a (and uvPC.2a) exist.
Entering state uvPC.xa both sets the uvPC.x term in the
IBWriteSelect equations and signals that it is time to
reset the corresponding Full bit. State uvPC.xb resets

We also assume that the state machine enters each
successor state before leaving each predecessor state
so (uvPC.xa + uvPC.xb + uvPC.xc) does not glitch.

8/19/83

IBConsume

IBConsume

IBConsume

IBConsume

6. An IBConsume is an operation which reads and removes
a byte from the IB. All IBAccess operations are also
IBConsumes except _ibHigh and _ibLow (see IBIPSim44.sily).

PageDateRevDesignerProject File

SDD A
XEROX

Daisy

Reference

Instruction Fetch Unit:
Documentation

Garner, Davies

The IB memory circuits are interesting (or strange,
depending on your point of view) latches. The pads on
the edges of the chip encode each data bit on two lines.

13.

14. There are two sets of data bits latched from the AP Bus.

the even words of the Instruction Buffer array and to
the MDu latch. The second goes to the odd words of the
IB array and the MDv latch.

15.

set is latched whenever Respv’ rises. The first set goes to
The first set is latched with when Respu’ rises. The second

The MDu latch is activated only on double fetch operations.
The MDv latch is activated for all MAR_ or Map_
operations. The IB is written only in IBReferences.

16. Generation of the write enable term for any particular

01 = bit is 0, 10 = bit is 1, 11 = bit isn’t valid yet. The
latches require that both the write enables be set and
the input bits reach the 01 or 10 states before they
will be written. We assume they are written very soon
after the 01 or 10 state is reached.

when they are selected and Respu’ drops causing all the
data inputs to go to the 11 state. The write enables are
reset when all data bits reach either the 10 or 01 state.

enables covers the data setup time to the end of the

17.

IBIPSim47.sily 47

write enable pulse. Thus:

IBWriteEnable01 = IBWriteSelect0* WDuValid’
*IBWriteSelect0=

= * WDuValid’
*=

IBWriteEnable23
IBWriteEnable45
IBWriteEnable67

IBWriteSelect1
IBWriteSelect1

We are now ready to discuss the conditions that intiate
an IBReference. The general philosophy is that the Instruction

Following this line of reasoning, we derive two conditions

Fetch logic should stay out of the way as much as possible
while attempting to maintain an adequate number of bytes
in the Buffer.

under which the Instruction Fetch unit should initiate a
Fetch:

a) Begin a fetch whenever the next microinstruction contains

b) Begin a fetch if there is room in the IB for another double
word (IBRoom=1) and the current microinstruction contains
an IBWindow clause. This gives the microcoder explicit
control of the times at which the IB will fetch. The

won’t be using memory for awhile and the bytes fetched
microcoder should use IBWindow when the Emulator

will probably be used. It is expected that after the basic
structure of the microcode and the chip set timings are
set, microcoders will tune the performance by placing
IBWindow clauses in the code.

and a timing term. Latches receiving Respu’ data are enabled
latch involves both a select term (given above or in IBIP46.sily)

If the next microinstruction contains an IBAccess and the
IB is empty, the Emulator clock will be stopped. If an
IBReference is already in progress, it will complete, a Full
bit will be set, IBEmpty will be reset and the Emulator clock

18.

19.

An IBReference will not start if the fPCd has reached the
end of a memory page. This is because it doesn’t know
where the next virtual page is in real space. The fPCd is
incremented by 2 during each IBReference. If there is a
carry out of bit 0, the fPCAtEndOfPage flag is set. When
this flag is set, IBWindow clauses are ignored. When it is set,
each IBDisp executed causes a microcode trap. In this
IBDispTrap code, the new virtual page number is examined.

and the code dispatches on the next byte in the IB. This can
be done since the trap occured when the Emulator expected
to dispatch on a new bytecode. If the new virtual page
was not present in memory, the machine state is saved and
the Emulator attempts to dispatch on the next bytecode
anyway. It is not legal to cause a page fault until we are
certain the new page will be needed. Thus, if there is
an IBAccess, the IB is empty and fPCAtEndOfPage is true,
we know a new page must be brought in. When this condition
is detected, another type of microcode trap is generated.
This trap code recovers the state of the machine at the
beginning of the bytecode, saves this, and puts this process

If the new virtual page is already in real memory,
the corresponding real page number is put in fPCp

to sleep while scheduling the page fault process. When
the page arrives, this process may be restarted at the
beginning of the bytecode that caused the fault.

The following discussion assumes fPCAtEndOfPage is not set.

will start. If the Instruction Fetch Unit was idle, it will wait

20. This act of waiting for bus activity to complete implies a
restriction on the type of bus activity allowed when
using the IB. In particular, the microcoder may not include
an MDR_ clause and an IBAccess in the same
microinstruction. Referring to the bus machine state
diagram in IBIPSim43.sily, one can see that the

defines the type of memory operation to be performed.
microinstruction immediately following a MAR_ or Map_

If the operation is a write (has an MDR_ clause), the bus
machine must wait until the end of this second
microinstruction for the write data. If, however, that same
microinstruction contains an IBAccess, it would be held
before being executed. This would result in a deadlock
in which the clock holding circuitry would be waiting for the
IFU to fill the IB, the IFU would be waiting for the bus
machine to release the bus so it could start and the bus
machine would be waiting for the clock holding circuitry to
release the second microinstruction.

21.
the clock, an ordinary memory read can be "interrupted"
by an IBReference. Consider a standard short Mesa routine
containing a MAR_, an IBDisp and a _MD in successive
microinstructions. The clock could be stopped just before
the IBDisp microinstruction. The bus state machine would see

word fetch. This fetch would be completed by the
asynchronous bus state machine. At the end of the fetch,
the data would be latched in the MDv register. Upon entering

IBAccess, so it would start an IBReference. When it
completed, a Full bit would be set, causing IBEmpty to go
false and the clock would start. The Emulator would then
execute the IBDisp and _MD microinstructions normally.

22.

An IBAccess of an empty IB will cause the clock to stop
and wait for the Instruction Fetch logic to figure out what

the Instruction Fetch unit will see no logic hazards in

is happenning. So long as the IBEmpty flag is correctly set

= IBEmpty(* pIBAccess +

(IBRoom *

pIBAccess is the indication that the next microinstruction
contains an IBAccess. This indication is valid in PhaseF.

this term.

The IBWindow term is another story. The whole purpose
of providing an IBWindow clause is to allow the Emulator
to proceed in parallel with an IBReference. Hence, we cannot
stop the Emulator clock on every IBWindow just to let the
IFU see it. In fact, it is most reasonable to let the IFU

IBWindow *

*

PhaseA

PhaseF)

)

ignore the IBWindow if bus is already busy doing something
else. The problem then may arise if the bus state machine

off that term. This could cause a hazard and great confusion
in the bus state machine. It could conceivably decide to go
to no state at all, effectively disabling bus activity forever.

23. To remedy this problem, we install an arbiter made of
scary (to the old-fashioned TTL designer) gates and
transistors. it is shown on the next page.

We assume the delays involved in both detecting the data
bits have reached valid states and disabling the write

WDvValid’

WDvValid’

It is interesting to note that because an IBAccess can stop

One might (almost correctly) think the IBRequest is:

IBRq

an IBAccess (See IBIPSim44.sily) and the IB is empty,
indicated by IBEmpty (IBIPSim45.sily).

8/19/83

for any P chip bus activity to complete and begin an
IBReference.

that the microinstruction after the MAR_ didn’t have an
MDR_ or _MDu clause, so it would assume a single

State S2 (IDLE), the bus state machine would see IBEmpty and

by the time the bus state machine lands in state S2 (IDLE),

arrives in state S2 (IDLE) just as PhaseA is ending, turning

PageDateRevDesignerProject File

SDD A
XEROX

Daisy

Reference

Documentation
Garner, DaviesIBIPSim48.sily 48

CD iRR T

CD iRR T

IBWindow
IBRoom
PhaseA WindowStart’

WindowHold

IBWindow is true when the current microinstruction
contains an IBWindow clause.

IBRoom = (Full.0’+ Full.1’)

IBWindow is valid during PhaseA

24.

This is a strange circuit. Note that because of the MOS
transistors, WindowStart’,,WindowHold may be in only
the 01, 10 or 11 states. If both NOR gates produce
00, both transistors are turned off and the pullups
force both WindowStart’ and WindowHold to the 1 state.
In fact, it is claimed that whenever the NOR gate outputs
are equal, WindowStart’ and WindowHold are both set
to 1. We need to know what WindowStart’ and WindowHold
do in order to understand the circuit. The basic idea is
that when WindowStart’ is 0, we will start an IBReference.
When WindowHold is a 1, we hold the Emulator clock. While
the arbiter is deciding what to do (NOR gate outputs
tracking each other, and no longer in PhaseA), we hold
the clock AND don’t start an IBReference. When it decides,

release the clock or just release the clock. If the
microinstruction being held contains a MAR_ or Map_,
some gate delay conditions must be met to ensure the

the clock. There is an explicit list of critical delay

Instruction Fetch Unit:

R TBARR
Set

Reset

Q

Q*

assumptions on IBIPSim50.sily - IBIPSim52.sily.

In this case, the action proceeds as follows:

1)

2) The IBRq causes the bus state machine to leave

3) Assuming this happens before PhaseA completes,

4) PhaseA ends so only the reset input is active.
Note that if PhaseA ends before the machine

5)
WindowStart’ stays at 1 and WindowHold goes
to 0. This allows the clocks to proceed if there

b)

IBWindowRq

IBWindowRq

WindowStart’

IBRq

IBRef

WindowHold

pWS’

pWH

pWS’

pWH

The appearance of IBWindowRq causes an IBRq

1)

2)

3)

4)

With the reset active and the set inactive

PhaseA

PhaseB

Pause’

pMAR

5)

Pause Point

both the set and reset inputs are active, so
both outputs are set to 1.

Note that it is fine for Pause’ to
go HI so long as it is LO before
the Pause Point. It cannot be stable
before the pMAR flag is stable.

the IBWindowRq pulse. Explore these two cases:

a)

pMAR

Pause’

PhaseB

PhaseA

pWH

pWS’

WindowHold

IBRef

IBRq

WindowStart’

IBWindowRq

either active or inactive

The only action is to set WindowHold while IBWindowRq is set.

is shown in the critical delay documentation (IBIPSim50.sily).

were no other conditions holding them.

Pause Point

IBWindowRq was true. See timing diagram below.

This only lasts to the end of PhaseA, well before the Pause
Point, so there is no net effect on the machine.

Note that if things are slow so WindowHold stays up past
the Pause Point, the clock is just held and the machine
slows down a bit until WindowHold finally falls.

The IBWindow Arbiter is shown below.

Case a

S2’

S2’ is a 1 when the bus state machine is NOT in state S2 (IDLE).

the circuit will either start an IBReference, leave S2, and

clock stays held if we leave S2 and this circuitry releases

Normally, the bus machine is either in the S2 (IDLE) state when
IBWindowRq is set or it stays outside S2 for the duration of

The bus state machine was already in the S2 state.

the S2 state, setting S2’.

exits S2, we simply skip 3) above.

The bus state machine stayed outside S2 while

S2’

S2’

pMAR * S2’

pMAR * S2’

The case of S2’ going LO while IBWindowRq is HI

8/19/83

PhA

PhB

PhF

Pause’

CD i
Delay Line

cd

dc

i

ighi

idc. .

.

ABiii

Reset

PhaseB

PhaseA

PhaseF

. c

a

<
<

>>
>

Clk

Clk

c c

b

<
(b < a)

Read/Write R/RH registers

Compute ALU logical functions
Compute F15

Read/Write U registers

Precharge F bus

Compute ALU carries
F bus valid

X bus valid

Precharge U/R/RH regs

c b b pause

Give RA bits to AChip

Give CA, WriteData to AChip

PhaseF (=pause+c)

c = Time for Fbus_MD, CSA_INIA or Cbus

IBIP Clocking

Precharge X bus

Pause’
ihg
k
mn

+

.

TimeOut

a-c a-c

Next Microinstruction fields can be decoded

F Bus Valid

Tap A Tap BTap C

Pause Point Pause Point

Tap B

Update/Write registers (Q, Fh, Stkp, vPC, uvPC, fPCd)

August 83

a-c a-c c

PhaseA (=a-c+c = a)

PhaseB (=a-c+b+pause+c = a+b+pause)

16

PageDateRevDesignerProject File

SDD A
XEROX

Daisy

Reference

Documentation
Garner, DaviesIBIPSim49.sily 49

26.

Clock Hold circuits:

This drawing describes the clock holding circuitry.
The clock itself is shown in Garner’s drawing
IBIPClocking.sil or IBIPClocking.press on
[Indigo]<Daffodil>IBIP>Doc and
[Indigo]<Daffodil>IBIP>Doc>Press respectively.

27. A couple of subtle points about that clocking scheme
should be noted before going on. First, the longest
run of 1’s in the delay line is of length a. In order
to ensure that the clock operates properly, b must
be less than a. If it weren’t, that run of 1’s could
lie entirely between taps a and b, both taps would
signal 0, and a new run of 1’s would begin
erroneously.

Second, notice that the basic mode of operation is
for the run of 1’s to fall off the end before Pause’

1’s begins. The TimeOut line is supposed to restart
is examined. When Pause’ goes HI, another run of

the clock if Pause’ refuses to go HI. This also causes

This feature of ignoring Pause’ until the delay line
empties allows one to be fairly sloppy in generating
Pause’. The in fact, one need not worry about
generating a rising edge on Pause’ at any time. If it
occurs when Pause’ is being ignored, it will be ignored.
if it occurs when the clock is stopped, it will simply
start the clock. One need only worry about falling
edges on Pause’ just when the delay line runs out.
If Pause’ falls just at the right time, a runt clock
pulse could be generated.

28. Another subtle point that escaped me for a couple
of weeks is that the delay line empties and the

PhaseF starts with the pause and ends c time units
after the clock holding circuitry has decided to start
the clock. The main consequence of this is that one
cannot decide whether or not to stop the clock by
looking at signals that are only valid in PhaseF.

29. The main conditions that cause the Emulator clock to stop are:

a) Waiting to use the AP bus,

b) Having started a memory cycle, waiting for the data
to return,

c) Waiting for the Instruction Fetch Unit to put bytes into
the Instruction Buffer so the Emulator may read or dispatch
on them,

d) Waiting for the Instruction Buffer to complete a reference
so the Mesa program counters may be loaded. This occurs
in the jump routines,

not to do an IBReference.
e) Waiting for the IBWindow arbiter to decide whether

30. To enhance performance, a microinstruction needing memory
data is allowed to proceed to the point at which the data
is stored. When the data arrives, the clock is started. The
chip has c time units until PhaseF ends. During this time, the
data must be stored and, if the microinstruction specifies a
branch based on the F bus contents, the new microinstruction
address must be calculated. If we made the entire
microinstruction wait until the data arrived, as is done with
all of the other cases, we would waste the time needed to get
through PhaseA and PhaseB to PhaseF on many memory
references.

31.

Pause’ =

(MAR_ Map_() *= =(+))
+

= _MDu) * (* *)(
+()= _MDv *)

(= PCs_ *)

*
(+

+

((= 0)* ()()(((*) = 15+))
{_ib, _ibSE, _ibLow, _IbHigh}

fPCAtEndOfPage’

a)

b)

c)

d)

e)

)’

WindowHold

(

)* +IBEmpty *

EnableAPBus *
(

)

25.

i
CDRR Ti

IBRq
WindowStart’

IBEmpty
pIBAccess

The IBRequest is generated as follows:

R TBARR
PhaseF

decision about whether to hold the clock or not
(the Pause Point in IBIPClocking.sil) is made just
BEFORE PhaseF, not at the end of PhaseF.

pmem

mem
mem

pmem

pfS.1 pfZ.[0..1] 0= pfS 15 pfY
{AwIBDisp, IBDisp}

pfX

#

An IBRq causes the bus state machine to leave
S2, setting S2’ and resetting the arbiter on
IBIPSim48.sily

a microcode trap. The time at which Pause’ is

The IBIP uses a two level pipeline in which the fetching and
decoding of one microinstruction is overlapped with the

executed the "current" microinstruction and the one being
decoded the "next" microinstruction. In the equations
below, we add the prefix "p" to denote a field from the next
microinstruction. For example, "mem" is the field of the
current microinstruction indicating what sort of memory
operation should take place. The corresponding field in the
next microinstruction is called "pmem."

examined is called the "Pause Point."

execution of the next. We call the microinstruction being

S2’

S5’ S2’ S1’ S19’
S1’S2’S5’ * *

S5

fetch or only word of single fetch. See IBIPSim43.sily}

{Not an IBReference and waiting for 1st word of double fetch.}
{Not an IBReference and waiting for 2nd word of double

Notice that, in general, we don’t stop the clock if an
attempted IBAccess will result in an IBDispTrap or an
IBEmptyTrap. The only exception is when we jump to the
end of a page. There, we stop the clock while the IB data
arrives, then allow the IBDispTrap to take place. It’s too
messy and unnecessary to wait for the AwIBDisp in the
IBDispTrap code to stop the clock and run the IBReference.

8/19/83

(+ pfX)=(fPCp_)

PageDateRevDesignerProject File

SDD A
XEROX

Daisy

Reference

Garner, DaviesCritical Delay Assumptions

Critical Delay Assumptions

1.After an IBReference, the new value of IBRoom must One of the two forks at the bottom of IBIPSim43.sily
will be taken at the end of an IBReference. This will

The IBRoom calculation is

= Full.0’+IBRoom

the IB was completely empty. The other branch of the

until the Full bit has been set. The designer must
additionally guarantee that IBRoom is valid by the

was room in the IB and an IBWindow clause was present,
another IBReference could begin with disasterous
results. Another consequence of IBRoom staying too
long could be that IBRq might disappear just as the

confusion, possibly leaving all the states turned off.

2.

Comments

1.

2.

cause one of the Full bits to be set (see IBIPSim46.sily).

Full.1’,

so IBRoom should go to 0 soon after this fork unless

2a. If it were possible to violate condition 2a and it took a

microinstruction containing a MAR_ or Map_ start just as
the bus state machine was embarking on an IBReference.

IBIPSim50.sily 50

IBWindowRq

WindowStart’

IBRq

IBRef

WindowHold

pWS’

pWH

PhaseA

PhaseB

Pause’

pMAR

Pause Point

before resetting the WindowHold term.

If the clocks are near the Pause Point (IBIPClocking.sil),

This condition should only be reached when the bus

IBWindowRq (IBIPSim48.sily) goes LO.

See IBIPSim48.sily for circuit.

We must guarantee that if

and
the arbiter (IBIPSim48.sily) waits until after the Pause Point
to decide what to do

and
it decides to start an IBReference

and
the next microinstruction contains a MAR_ or Map_

THEN
Pause’ is held LO without a glitch.

before the Pause Point.

Not to Scale, the Pause Point is too soon.

go to an undecided state. It is claimed that while in this
state they are equal to each other so both MOS transistors
are turned off and both WindowStart’ and WindowHold are
HI. WindowHold holds Pause’ LO while a decision is made.
If the arbiter had decided to forget the IBReference,
WindowHold would simply rise and the clock would start.
We assume the arbiter decides to start an IBReference and

raised. This starts two events into motion. First, the

arbiter, passing through both NOR gates and the lower
pass transistor, pulling WindowHold LO. To guarantee that
the clock circuitry won’t generate a runt pulse, we must

WindowHold goes LO.

IBWindowRq should set WindowHold

fork leads to a join with the S5 state and the join
leads to S1. Note we cnnot leave S1 for S2

time S2 is entered. If it falsely indicated that there

state machine was leaving S2. This could cause

then leaving S2 must set the
(pMAR_ + pMap_) * S2’ term of the Pause’ circuitry

state machine entered S2 just as

the bus state machine enters S2 just as IBWindowRq drops

When both IBWindowRq and S2’ drop, pWS’ and pWH can

pulls WindowStart’ LO. This eventually causes S2’ to be

(pMAR_ + pMap_) * S2’ term in the pause circuitry starts
HI. Second, the S2 transition propagates through the

guarantee that (pMAR_ + pMap_) * S2’ gets HI before

S2’

pMAR * S2’

very long time to set S2’, it would be possible to have a

be valid by the time state S2 (IDLE) is entered.

8/19/83

PageDateRevDesignerProject File

SDD A
XEROX

Daisy

Reference

Garner, DaviesCritical Delay Assumptions

Critical Delay Assumptions Comments

Starting an IBReference must set the

IBIPSim51.sily 51

3. 3. Note that putting an IBWindow clause in a
microinstruction which immediately preceeds a

generally a better idea to put the IBWindow
clauses where they cannot interfere with normal
Emulator memory references. Note that it
would make sense to have IBWindow and MAR_
in adjacent microinstructions if the IBWindow

executed a couple of times before getting to the
MAR_.

successive microinstructions is a genuinely bad

idea. The result will be that either nothing happens

microinstruction were at the end of a loop that would be

Putting IBWindow and PCs_ clauses in

idea. Either there will be no IBReference (if the
IB had no room) or the PCs_ clause will be delayed
while the Instruction Fetch Unit fetches 4 bytes
that will be immediately thrown away. This could

branch and the path leading to the PCs_ was
seldom executed. Nonetheless, the hardware must
perform correctly if a PCs_ microinstruction
immediately follows an IBWindow microinstruction.
To guarantee this, we must guarantee that if the
arbiter decides to execute an IBReference, the clock
will be held. The following sequence will be executed:

a) WindowStart’ will go LO, setting IBRq’

b)

c)

d)
WindowHold term of the clock hold circuitry.

If the clock is to be held properly,

(if there was no room in the IB) or the memory
reference will be delayed by the IBReference. It is

only make sense if the IBWindow microinstruction had a

will start towards HI while the machine begins to

4. The Instruction Buffer write enables must not
glitch.

0 between the time the P chip senses that Respv’
has gone to 0 and it has set Rq’, Ca’ and Cp’ to
1.

4. There are three undesirable consequences of incorrect

The WDuValid and WDvValid signals should go to

behavior on the WDuValid, WDvValid and IB write
enable signals.

a) If WDuValid or WDvValid falsely indicate that the
data from memory is available before it actually
arrives and the bus state machine looks at them
while they are in this state, the state machine
will proceed as though the data had actually
arrived. This will cause both bad data to be used
and it will allow the state machine to start
Emulator or IBReference before the A chip is ready.

b) If the IB write signals glitch as they are being
sampled to decide which IB Full bit to set, the
wrong one could be set. This could cause the
Instruction Fetch Unit to lose track of what is
really in the IB.

c) The IB input data is only valid briefly before the
IB write enable signals are disabled. If the
write enable signals glitch at this time, the IB may
be written incorrectly.

WDuValid and WDvValid signals will themselves be valid
when the state machine looks at them.

As discussed in IBIPSim46.sily, the IB write enable
signals are composed of select and timing terms. The
timing terms are either WDuValid’ or WdvValid’ depending
on which word in the double word is being written.

The delay between when the WDu or WDv lines
actually have valid data and when this is reflected
in WDuValid or WDvValid should be longer that the
setup times of the destination latches.

It should not be possible for a WDu (or WDv) data line
to go from valid to invalid after Respu’ (or Respv’)

If the Select terms are glitch-free, conditions 4b and 4c
guarantee that the correct data will be written in
the IB or MD destination latches.

has gone HI. It should similarly be impossible for
a WDu (or WDv) data line to take on, even

way to the correct value.
momentarily, the incorrect value (10 or 01) on the

The IB state machine must set the uvPC.2 state
(see IBIPSim46.sily) before clearing the Full.0 state.
Similarly, it must reach uvPC.0 before clearing Full.1.

From IBIPSim46.sily, the write select terms are:

IBWriteSelect0

IBWriteSelect1)uvPC.2Full.0(+) *Full.1’+(= Full.0

)uvPC.0 + uvPC.1+ Full.1*)Full.0’Full.1 +(= (IBWriteSelect0

IBWriteSelect1)uvPC.2Full.0(+) *Full.1’+(= Full.0

)uvPC.0 + uvPC.1+ Full.1*)Full.0’Full.1 +(= (

Condition 4d guarantees these will be glitch-free even
if the Emulator reads the IB just as the IFU is writing to it.

Meeting conditions 4a - 4c guarantees that the

IBRq will set S5 (see IBIPSim43.sily)

leave the S2 state.

Leaving S2 will set S2’, resetting the

WindowHold goes LO.

a)

b)

c)

d)

MAR_ or Map_ microinstruction is generally a bad

In parallel: the ((pfX=PCs_) + (pfX=fPCp_)) * S5

((pfX=PCs_) + (pfX=fPCp)) * S5 Pause’ terms
before resetting the WindowHold term.

((pfX=PCs_) + (pfX=fPCp)) * S5 must go HI before

8/19/83

PageDateRevDesignerProject File

SDD A
XEROX

Daisy

Reference

Garner, DaviesCritical Delay Assumptions

Critical Delay Assumptions Comments

IBIPSim52.sily 52

5. The delay from when a PCs_ clause causes the Full
bits to be cleared until the Pause’ signal can be raised
must be less than the time from the beginning of

5. A Mesa jump instruction results in a change in the
Mesa PC. This is implemented by having a microinstruction
in the Emulator’s jump code execute a PCs_ clause.
This, in turn, sets the least significant 16 bits of the
virtual program counter (vPC) and the least significant
8 bits of the fetch Program counter (see IBIPSim44.sily -
IBIPSim46.sily). It also causes the Instruction Buffer’s
Full bits to be reset, indicating that the IB is empty and
should be refilled with instruction stream data referenced

If the next microinstruction contains an IBAccess, likely an
IBDisp, it must be possible to stop the clock while the
Instruction Fetch unit retrives instruction stream data.
In order to stop the clock, the Pause’ signal must be

delay of the circuits that gate the PCs_ signal, clear the
Full bits, set IBEmpty and can activate the Pause’ signal
must be less than the interval between the beginning

PhaseA to the Pause Point.

by the new fetch PC. The decoded PCs_ signal is latched
by PhaseA, hence it becomes valid soon after the
beginning of PhaseA.
It will start clearing the Full bits at this time.

valid by the Pause Point. Thus, the propagation

of PhaseA and the Pause Point.

6. The delay from when an IBConsume causes the Full

must be less than the time from the beginning of
bits to be cleared until the Pause’ signal can be raised

PhaseB to the Pause Point.

6. This is similar to the case above except that the uvPC
can’t be changed until PhaseB starts. This is because
it is used to address the IB in PhaseA. This is potentially
a much more serious constraint than #5 above because
the circuit can’t start until the beginning of PhaseB.

7. The delay from when the Instruction Fetch machine
causes fPCAtEndOfPage to be set until it can be
used to cause an IBDispTrap must be less than the
delay from the beginning of PhaseF to the beginning
of the next PhaseB.

7. If a Mesa jump lands on the last byte of a page (actually
any of the last 4 bytes) we must have an IBDispTrap
before starting that first bytecode. The Emulator is
written assuming an IBDispTrap will occur whenever the
IB can’t fetch any more without crossing a page boundry.
It is quite likely that the jump microcode will execute a
PCs_ followed by an IBDisp. The IBDisp will not trap then
because fPCAtEndOfPage should be false. Instead, the
IBDisp will stall as the IFU fetches the last double word
of the page. At the end of the fetch, the IFU will
increment the new fPCd, which starts to set fPCAtEndOfPage.
It will also set one of the Full bits, which resets IBEmpty
and allows PhaseF of the microinstruction BEFORE the
IBDisp to proceed. The actual IBDispTrap takes place
in the next PhaseB. There, the vPC, uvPC and Full counters
are held and the proper trap address is generated
in NIA. While we have until the end of PhaseB to generate
the trap address, we cannot begin to increment the
counters in PhaseB, then go back.

Full bit is set which is when IBEmpty is reset which is
when Pause’ goes HI which is when the fixed delay section

by the beginning of the next PhaseB.

Note that if we attempt to fix the problem shown in #6

the trap logic to be active by the beginning of PhaseA.
condition becomes more restrictive. We would require

Hence, if the fPCd counter is incremented when the

of PhaseF begins, fPCAtEndOfPage*IBDisp must
inable the trap logic which disables the counter updates

above by incrementing the IB counters in PhaseA, this

8/18/83

PageDateRevDesignerProject File

SDD A
XEROX

Daisy

Reference

Garner, Davies 8/19/83 54IBIPSim54.silyMiscellaneous Points

32. As seen on IBIPSim41.sily, the least significant bit
of the A1 address group is F.15. This is a problem
because the A1 bits should be ready by the end of
PhaseA and the F bus bits aren’t normally ready
until the beginning of PhaseF. To fix this, a special
circuit has been added that computes F.15 in PhaseA.
To make the circuit fast, it only performs arithmetic
operations (addition and subtraction). Thus, all
microinstructions containing a MAR_ must form the
address using some sort of arithmetic operation.
Adding 0 is a legal arithmetic operation. The
Dandelion allowed one to also send addresses via
A-Bypass and one could use an OR operation.
The A-Bypass has already disappeared, there is
simply no data path from the A side of the R
registers to the F Bus that avoids the ALU or
LRot box. The OR operation was fairly rare anyway.

33. If the clocks are held too long, a time out signal starts
them and causes a trap (IBIPClocking.sil, IBIPControl.sil).
This time out can be disabled by some external pin.
This is viewed as a debugging aid. Its a little difficult
to see what the IBIP will do in the TimeOut trap since
its only communication port (the AP Bus) is busted
and the bus state is undefined.

