
SimMOS
by Martin Newell

Version of December 5, 1980 12:27 PM

[Ivy]<DA>SimMOS>SimMOS.bravo,.press

PREFACE

SimMOS is a mixed mode switch level and functional simulator for n-channel MOS circuits.
No timing information is represented in the simulator, although sequential circuits, and even
some asynchronous circuits, can be simulated. Parts of a circuit can be replaced with user-
written procedures that model the behaviour of those parts. This permits the simulation of
critically timing dependent subcircuits, enhances efficiency, and permits top down development
of circuits by starting with only their functional simulation, and substituting implementations of
parts of the circuit as they are developed.

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road
Palo Alto California 94304

SimMOS 2

CONTENTS

1. INTRODUCTION

1.1 Background

1.2 Acknowledgements

2. OPERATION

2.1 Input Formats

2.2 Usage

2.3 Where to find SimMOS

3. COMMANDS

3.1 Initialization

3.2 Circuit Definition

3.3 Setting and Reading Values

3.4 Running a Simulation

3.5 Saving and Restoring State

3.6 Other

4.0 EXAMPLES

4.1 Nor Gate

4.2 Shift Register

4.3 Two Phase Clock Generator

4.4 Functional Simulation

5.0 REFERENCES

6.0 INDEX OF COMMANDS

SimMOS 3

1. INTRODUCTION

SimMOS is a mixed mode switch level and functional simulator for n-channel MOS circuits.
No timing information is represented in the simulator, although sequential circuits, and even
some asynchronous circuits, can be simulated. Parts of a circuit can be replaced with user-
written procedures that model the behaviour of those parts. This permits the simulation of
critically timing dependent subcircuits, enhances efficiency, and permits top down development
of circuits by starting with only their functional simulation, and substituting implementations of
parts of the circuit as they are developed. However, use of this technique is not yet
documented.

1.1 Background

SimMOS is based on the switch level simulator MOSSIM from MIT. MOSSIM was originally
written by Randy Bryant to support the VLSI course given at MIT by Lynn Conway in the Fall
of 1978. Since then it has been further developed by Randy Bryant and has been adapted by
several people into various versions in several languages. A version by Chris Terman, written in
Lisp, was used to diagnose the design of the Scheme79 microprocessor. It is this version that
formed the basis for the Mesa implementation, SimMOS.

1.2 Acknowledgements

To Randy Bryant and Chris Terman at MIT, and to Alan Bell, for several long discussions and
help in sorting out the basic algorithms. Voluminous feedback from the first heavy user, Jim
Cherry, was instrumental in getting SimMOS into a usable state.

2. OPERATION

SimMOS is implemented as a set of programs in Mesa. Several versions are available for
running on different configurations of machines, ranging from a single bank Alto version,
through an XM Alto version using high memory for data storage, to D0 and Dorado versions
that make efficient use of high memory. The D version on the Dorado is about 60 times faster
than the XM Alto version. Only the XM Alto and D machine versions are distributed.

While the basic SimMOS functions are implemented in Mesa, the user interface is provided by
running SimMOS under the interactive programming system JaM [JaM]. JaM provides a
simple interpreter that supports the JaM programming language, and from which Mesa
programs can be called. This programmibility of the user interface proves to be invaluable for
developing test procedures for circuits being simulated. (It also provides the basic mechanism
by which functional simulation can be implemented along with the switch level simulation).
For the purposes of this document the term SimMOS will be used to cover the combination of
the basic implementation and the JaM user interface.

2.1 Input Formats

Circuits can be specified to SimMOS in one of two formats: the .sim format or as a JaM
program, or as a combination of both. The .sim format is provided to allow input from Clark
Baker’s circuit extractor, developed at MIT. This is a simple keyword format in which every
node and every transistor is explicitly listed. Apart from that the format is fairly compact. It is
unlikely that anyone will want to create a specification of a circuit in .sim format, except from
the circuit extractor.

The other format, a JaM program, is typically used for making incremental changes to a circuit
that has been read in from .sim format. Since JaM programs can be executed from files, this
format also provides a way of storing such changes, or even whole circuits. An advantage of
using the JaM format is that procedural descriptions are available, so that repeated

SimMOS 4

parameterized structures can be efficiently represented.

2.2 Usage

While many different scenarios are possible, one is given here to indicate one way in which
SimMOS can be used. SimMOS is first obtained and initialized by executing the relevant
command file for the machine being used. A circuit specification, typically obtained from the
circuit extractor is read from a .sim file into the internal data structures of SimMOS. Initially,
to check out some small part of the circuit, certain named nodes might be set to chosen values
(hi or lo) using JaM commands, and the circuit solved. (This can take anywhere between
instantaneous for a small circuit, through a few seconds for a large circuit on a Dorado, to a few
minutes for a large circuit on an Alto). Other node values can now be examined individually to
determine whether the right behaviour was obtained. If anomolous behaviour is observed, the
cause can usually be found by running other small tests and looking at other nodes, and then
the circuit can be reconfigured interactively.

It soon gets tedious having to set and examine individual node values. Consequently a few
utilities are provided to deal with sequences of values for sets of nodes. One of these allows a
vector of input node names to be defined, together with a string of values for each node name.
A similar vector of output node names can be defined. The procedure arraysim takes these
vectors and for each set of values in the input vector it sets up those inputs, solves the circuit,
and collects the outputs named in the output vector. This mechanism allows sets of test
patterns to be applied to a circuit. However, depending on the size of circuit and the length of
the test strings each such test can take a considerable amount of time. To relieve some of this
burden, it is possible to break such a test from the keyboard, examine the output strings
collected thus far, modify the circuit/input vectors/node values/etc., and then to resume the test
where it left off. Of course, the test can be restarted from the beginning if desired.

When a session is over, the entire state of SimMOS can be saved, including the state of an
interrupted test for resumption at some later date. Much of this state is saved automatically in
JaM’s virtual memory which is always saved and restored from run to run. However, the circuit
is held in the SimMOS data structure and if it has been modified then it must be saved
separately. This can be done in a number of ways. First, a new .sim file can be written.
Alternatively, a JaM file whose subsequent execution will recreate the circuit, can be written.
Both of these methods can consume large amounts of disk space, and are inefficient if only a
small part of the circuit has been modified. With foresight it is possible to automatically log all
JaM commands that modify the circuit, using the logchanges command. Given this log the
modified circuit can be reconstructed by reading whatever definition was read on the previous
session, and then replaying the log of commands that modified the circuit. This method has the
added advantage of allowing backing up to previous versions of the circuit, by removing the last
part of the log file using a text editor.

Other scenarios are possible. For example, using the ability to mix switch level and functional
simulation it is possible to read in a JaM specification of the functional behaviour of a system.
Selected parts of the system can then be disabled, and replaced with circuit specifications that
implement the disabled parts. In this way, individual pieces of a system can be diagnosed
independently and efficiently.

2.3 Where to find SimMOS

SimMOS can be obtained and initialized by executing one of the command files:

[Ivy]<DA>Alto>SimMOS>SimMOS.cm
[Ivy]<DA>DStar>SimMOS>SimMOS.cm

for the XM Alto and D machine versions respectively. Also on that directory is a file:

SimMOS 5

[Ivy]<DA>SimMOS>cleanupSimMOS.cm

that will delete most of the files created during a run. This is useful for cleaning up after using
a Dorado.

3. COMMANDS

The available commands are from three sources - commands directed to JaM, primitive
SimMOS commands, and JaM procedures. While users need not be concerned with these
distinctions, it may be helpful to note that online documentation of most commands that are
implemented as JaM procedures can be obtained using the JaM utility command "?", e.g.
(arraysim)?. Moreover, these commands can be used as a starting point for new commands
tailored to a particular need.

The commands are presented here in six categories: Initialization, Circuit Definition, Setting
and Reading Values, Running a Simulation, Saving and Restoring State, and Other.

3.1 Initialization

First get and initialize SimMOS as described under 2.3 "Where to find SimMOS". From here
on the operating procedures for both Alto and D machine versions are the same. SimMOS is
normally started by typing:

jam simmos

When loaded SimMOS should prompt with the message:

SiMMOS
>>

at which time it is ready for commands. The initial getting and initializing if SimMOS will
leave SimMOS in this same state.

Note that commands in JaM are executed when a carriage return is typed. Several commands
can be put on one line.

simreset
Usage: simreset
Initialize the stored circuit to null. The circuit is automatically initialized on start-up, so
simreset need be called only to clean out an existing circuit. e.g.

simreset

Fine point: while simreset is implemented in all versions, it doesn’t currently release the space used in all
versions, so its use for large circuits is to be discouraged - get out of SimMOS and start again.

3.2 Circuit Definition

simread
Usage: <filename> simread
Read the definition of a circuit in .sim format from the indicated file. e.g.

(mycircuit.sim)simread

.run
Usage: <filename> .run

SimMOS 6

Run the indicated file as a JaM program. This JaM primitive is included here since it is
used for creating a circuit specified as a JaM program. e.g.

(mycircuit.jam).run

simnode
Usage: <nodename> simnode
Create a node having the given name. If a node of the given name already exists this does
nothing. Note that the nodes (VDD) and (GND) are always defined in SimMOS, and have
the expected values. Node names are stored as originally specified, but their recognition is
case shift independent. For example (vdd), (Vdd), and (VDD) are all equivalent. e.g.

(newnode)simnode

would create a node having the name "newnode".

etrans
Usage: <gate><source><drain> etrans
Create an enhancement mode transistor connecting the nodes having the specified names.
Any node that doesn’t already exist is created. e.g.

(input)(GND)(pulldown)etrans

dtrans
Usage: <gate><source><drain> dtrans
Create a depletion mode transistor connecting the nodes having the specified names. Any
node that doesn’t already exist is created. e.g. to create a pullup for node bus0:

(bus0)(bus0)(VDD)dtrans

listetrans
Usage: <gate><term1><term1> listetrans
List all enhancement mode transistors having the specified gate, and source and drain being
term1 and term2 in either order. Output is in the form of a list of etrans commands. A
null string for a node name acts as a wild card, e.g. to list all enhancement mode
transistors (not to be used indiscriminately):

()()()listetrans

or to list all enhancement mode transistors with gates connected to the node PHI1:

(PHI1)()()listetrans

listdtrans
Usage: <gate><term1><term1> listdtrans
Same as listetrans except that only depletion mode transistors matching the given names are
listed.

Note that depletion mode pullups are not represented explicitly in the SimMOS data
structure. Consequently super buffer pullups will be reported as regular depletion mode
pullups. Other types of depletion mode transistors, such as in function blocks, are correctly
reported.

listtrans
Usage: <gate><term1><term1> listtrans
A combination of listetrans and listdtrans.

SimMOS 7

redefinetrans
Usage: <gate><term1><term1> <gate><source><drain> redefinetrans
Redefine the transistor specified by the first three parameters to be connected as given by
the last three parameters. The first three parameters are used as in listtrans, using wild
cards etc. If the first three parameters do not define a unique transistor then no action is
taken. e.g. to reconnect the drain of a given transistor from node (n1) to (n2):

(g0)(n0)(n1) (g0)(n0)(n2) redefinetrans

logchanges
Usage: <stream> logchanges
Arrange to log on <stream> all JaM commands that modify the circuit, for later replaying of
such modifications. The stream must be set up using the JaM command .bytestream, e.g.

(changesstream)(changes.log) 4 .bytestream .def
changesstream logchanges

This opens the file changes.log and sets it up for logging changes. The parameter, 4, to
.bytestream creates the stream for appending. This is useful for adding to an existing log of
changes. Use of 6 instead would rewrite or create the file afresh.

unlogchanges
Usage: unlogchanges
Switch off logging of changes.

3.3 Setting and Reading Values

circuitreset
Usage: <value> circuitreset
Charge every node that is connected to at least one gate to <value>, for <value> = (0) | (1)
| (X). (X) indicates "undefined". e.g.

(0)circuitreset

would charge all gate nodes to low.

hi
Usage: <nodename> hi
Tie the indicated node to VDD. e.g.

(input1)hi

lo
Usage: <nodename> lo
Tie the indicated node to GND. e.g.

(input1)lo

x
Usage: <nodename> x
Remove VDD or GND from the indicated node. The value of the node will not change
even if it is not a storage node. This is useful for initialization. e.g.

(trinode)hi (trinode)x

SimMOS 8

chhi
Usage: <nodename> chhi
Charge the indicated node to high. The node must be connected to the gate of at least one
transistor for this to have any effect. e.g.

(bit5)chhi

chlo
Usage: <nodename> chlo
Charge the indicated node to low. The node must be connected to the gate of at least one
transistor for this to have any effect. e.g.

(bit5)chlo

gatestorage
Usage: <switch> gatestorage
Set mode for charge storage. If switch=.true then charge can be stored only on the gates
of transistors. If switch=.false then charge can be stored on any node. In either case,
charge cannot be stored on a node that is either an input or is pulled up.

getnodevalue
Usage: <nodename> getnodevalue => <nodevalue>
Get the current value of the indicated node as a string. The <nodevalue> is left on the JaM
stack as a string = (1) | (0) | (X) . e.g. (input1)getnodevalue might leave the string (1) on
the stack. This string could be printed with the JaM command "=", e.g.

(input1)getnodevalue =

might print

0

getbit
Usage: <nodename> getbit => <nodevalue>
Get the current value of the indicated node as an integer. The <nodevalue> is left on the
JaM stack as an integer = (-1 | 0 | 0) for (hi | lo | x), respectively (notice that x results in
0). e.g. (input1)getbit might leave the integer -1 on the stack. This integer could be
printed with the JaM command "=", i.e.

(input1)getbit =

would print

-1

This value is useful for subsequent JaM logical operations, such as .bitand, .bitor, .bitnot,
.bitxor, for functional simulation.

putbit
Usage: <nodename><value> putbit
Set the indicated node to the indicated value. The node is set to lo | hi for <value> = zero
| non-zero, respectively. e.g.

(input1) 1 putbit

SimMOS 9

would set input1 to hi.

getword
Usage: <wordspecifier> getword => <word>
Construct a word from the current values of the nodes defined by <wordspecifier>, and
leave that word on the JaM stack. The <wordspecifier> is a JaM array of node names,
typically set up using the JaM utilities "[", "]", and ".def", e.g.

(aluoutput) [(out4)(out3)(out2)(out1)(out0)] .def

Spaces around the "[" and "]" are necessary. Then

aluoutput getword

will leave an integer on the JaM stack made up of the values of the indicated nodes, right
justified in the word, i.e. in the above example, out0 will be represented as the lsb of the
result.

putword
Usage: <wordspecifier><value> putword
Set the nodes defined in <wordspecifier> to the corresponding bits in the integer <word>.
The <wordspecifier> is as defined in getword. e.g.

(bus) [(in2)(in1)(in0)] .def

then

bus 6 putword

would set: in2 to hi, in1 to hi, in0 to lo.

arraynames
Usage: <nodename array> arraynames
List the names of the nodes given in <nodename array>. This command is for use with
arraysim and for looking at wordspecifiers (see getword, putword). e.g.

outarray arraynames

might generate

(out1)(out2)

arraystrings
Usage: <nodename array> arraystrings
List the current values of all the node strings in <nodename array>. This command is for
use with the command arraysim. More than one array can be listed by giving two
commands consecutively, e.g.

inarray arraystrings outarray arraystrings

might generate

01010101 = in0
00110011 = in1
00001111 = in2

01101001 = out1

SimMOS 10

10110101 = out2

If each string will not fit on one line then the whole set is continued below. This is to
make it easier to establish correspondence between values.

arrayvalues
Usage: <nodename array> arrayvalues
List the current values of the nodes given in <nodename array>. This command is for use
with arraysim and for looking at wordspecifiers (see getword, putword). e.g.

outarray arrayvalues

might generate

out1 = 1
out2 = 0

3.4 Running a Simulation

simstep
Usage: simstep
Run the simulator to solve the circuit for the current set of input values. See also
maxmicrosteps. In case of long or unterminating computations, simstep can be interrupted
using the JaM break key (rightshift-swat). Fine point: currently it is inadvisable to hold the break key
down for an extended period, or you will get a stack overflow. Better to strike the key firmly, then have
patience, since the break will not actually happen until the next microstep has completed.

simsolve
Usage: simsolve => <number of iterations>
Same as simstep except that the number of iterations needed to achieve convergence is left
on the JaM stack. Zero iterations means that the state of the circuit did not change. This
is useful for including functional simulation. See also maxmicrosteps.

maxmicrosteps
Usage: <number> maxmicrosteps
Set maximum number of iterations that will be attempted in simstep and simsolve. The
default is 100.

microstep
Usage: microstep => <#changes>
Run one iteration of the simulator, and leave the number of nodes that changed on the
stack.

reportshorts
Usage: <boolean> reportshorts
Control reporting of shorts in microstep. Default is .true.

reportchanges
Usage: <boolean> reportchanges
Control reporting of changes in microstep. Default is .false. If .true then nodes that
change during a microstep are listed. This is useful for diagnosing circuits that do not
stabilize.

arraysim
Usage: <inputarray><outputarray> arraysim
For each set of values in the input vector, set up the inputs, solve the circuit, and collect
the outputs named in the output vector. The input and output arrays are JaM arrays of

SimMOS 11

node names, typically set up using the JaM utilities "[", "]", and ".def", e.g.

(inarray) [(in0)(in1)(in2)] .def
(outarray) [(out1)(out2)] .def

Each of the names specified in the input array must be defined as JaM strings representing
the sequence of values required for each input node, e.g.

(in0)(01010101).def
(in1)(00110011).def
(in2)(00001111).def

The node names specified in the output array will be associated with the collected output
strings and need not be initialized. Given the above definitions, the command:

inarray outarray arraysim

will solve the circuit 8 times, having set up the inputs in2, in1, in0 to 000, 001, 010, 011,
100, 101, 110, 111, and will collect the outputs at each step as strings in the JaM variables
out1 and out2. These strings can be examined using the JaM command =, e.g.

out1 =

might generate

01101001

It is often convenient to have all the inputs and outputs listed together. See the commands
arraystrings, arrayvalues, and arraynames under 3.3.

While various clocking schemes etc. can be implemented using arraysim as described, it is
sometimes more convenient to be able to do several things between setting up each set of
inputs and collecting the corresponding outputs. For this reason, arraysim actually works as
follows. For each set of values in the inputarray arraysim does the following 4 steps:

1) set up the input values,
2) invoke the JaM procedure clock1,
3) collect the outputs, and,
4) invoke the JaM procedure clock2.

At initialization the procedure clock1 is set up to simply call simstep, and the procedure
clock2 is a nop. These procedures can be redefined to implement more elaborate schemes.
For example, to implement a 2 phase, non-overlapping clock, PHI1 and PHI2, to be cycled
after each input is set up, clock1 could be redefined as follows:

(clock1)
((PHI1)hi simstep
 (PHI1)lo simstep
 (PHI2)hi simstep
 (PHI2)lo simstep
).cvx .def

Incidentally, for this example it is normally adequate, and more efficient, to define clock1 to
be:

SimMOS 12

(clock1)
((PHI1)hi (PHI2)lo simstep
 (PHI1)lo (PHI2)hi simstep
).cvx .def

arraysim can be interrupted during operation by pressing the JaM break key (rightshift-
swat). Fine point: currently it is inadvisable to hold the break key down for an extended period, or you will
get a stack overflow. Better to strike the key firmly, then have patience, since the break will not actually
happen until the next simulation cycle has completed. Having interrupted arraysim, almost all of the
commands can be safely used for e.g. examining node values, setting node values,
modifying the circuit, changing the input array strings (but not the list of names in the
input and output arrays), and even for leaving SimMOS completely. The simulation can be
restarted using resumearraysim (see below).

resumearraysim
Usage: resumearraysim
Resume the running of an arraysim after it has been interrupted.

3.5 Saving and Restoring State

simwrite
Usage: <filename> simwrite
Write a .sim file describing the circuit currently stored in the SimMOS data structure. e.g.

(newcircuit.sim)simwrite

A circuit thus saved can be restored later using simread.

writestate
Usage: <filename> writestate
Write a JaM file describing the current state of the circuit stored in the SimMOS data
structure. This file takes the form of a list of invocations of hi,lo,x,chhi,chlo. e.g.

(circuitstate.jam)writestate

Subsequent use of the .run command on this file will cause the state of all the nodes to be
restored. After such a restoration, one call to simstep should be made, to drive non-storage
nodes to their correct values.

3.6 Other

This section contains miscellaneous commands from JaM and SimMOS that might be found
useful.

inverter
Usage: <inputnode><outputnode> inverter
Create a pair of transistors implementing an inverter for the given pair of nodes.

nand
Usage: <in1><in2><out> nand
Create 3 transistors to implement a nand circuit.

nor
Usage: <in1><in2><out> nor
Create 3 transistors to implement a nor circuit.

SimMOS 13

pullup
Usage: <nodename> pullup
Create a depletion mode pullup transistor to pull up the indicated node. e.g.

(bus0) pullup

gensym
Usage: gensym => <uniquename>
Leaves a unique node name as a string on the JaM stack. This is useful for generating
names of interior nodes in procedurally defined circuits.

gennames
Usage: <string of names> gennames
Declares JaM variables having the given names, and assigns to them their own names
concatenated with the result of a single common call to gensym. This command is useful in
procedural definitions of circuits in which local names that can later be identified are
needed. e.g.

(in out int)gennames

generates the 3 JaM variables, in, out, and int, with the string values (in#), (out#), and
(int#), respectively, where # is the result of a single call to gensym.

/getargs
Usage: <a1><a2>...<an>(<name1> <name2>...<namen>) /getargs
This JaM command expects a string of names separated by spaces. It creates JaM
variables having the given names, and assigns to them the values preceding the string on
the stack in a one to one correspondence. e.g.

3 1.5 (hello) (i r s) /getargs

would create the JaM variables i,r, and s, and assign to them the values 3, 1.5, and the
string hello, respectively. This command is useful as the first command in a JaM
procedure, to get the arguments from the stack.

.print
Usage: <string> .print
This JaM command prints the given <string>. e.g.

(hello).print

/print
Usage: <string> /print
This JaM command prints the given <string> followed by a carriage return.

.def
Usage: <name><value> .def
This is the JaM assignment command, and assigns <value> to <name>. .def is used to set
up both ordinary variables and procedures. e.g.

(numbervariablename) 23 .def
(stringvariablename)(this is a string, not a procedure) .def
(procedurename)((hello).print).cvx .def

.cvx
Usage: <object> .cvx
This JaM command changes the execution interpretation of the given <object>. When

SimMOS 14

applied to a string, subsequent execution of that string will cause it to be interpreted.

.rept
Usage: <number><object> .rept
This is the JaM iteration command, and will execute the given <object> <number> times.
e.g.

5 (procedurename (!).print).cvx .rept

would print, (given the definition of procedurename given under the description of .def):

hello!hello!hello!hello!hello!

.quit
Usage: .quit
This is the JaM termination command, and must be used for leaving JaM in a controlled
way with virtual memory saved.

4.0 EXAMPLES

First get and initialize SimMOS as described under section 3.1 Initialization.

4.1 Nor Gate

Simulation of this simple circuit will be covered in some detail to show the various possibilities.
The circuit is a simple 2 input nor gate. The inputs will be nodes in1 and in2 and the output
will be node out. First of all it is necessary to define the circuit. In .sim format this might be
represented on the file norcircuit.sim by:

e in1 gnd out
e in2 gnd out
d out out vdd

and in JaM:

(in1)(GND)(out)etrans
(in2)(GND)(out)etrans
(out)(out)(VDD)dtrans

This latter definition could be typed directly to SimMOS or could be put on a file, say
norcircuit.jam.

We now start SimMOS. This is done by typing

jam simmos

to the Alto executive, and waiting for the prompt ">". If we wish to read the circuit definition
from the .sim file, type:

(norcircuit.sim)simread

or to read it from the JaM file:

(norcircuit.jam).run

SimMOS 15

or you may just want to type it in directly as JaM commands. You may want to convince
youself of the presence of the circuit. Try:

()(GND)()listtrans

to get a list of all transistors with either source or drain connected to GND. Let us now carry
out a simple test of the circuit. Set in1 high and in2 low:

(in1)hi (in2)lo

Now solve the circuit:

simstep

and look at the output:

(out)getnodevalue =

which should print

0

The setting of individual inputs like this rapidly gets tedious, so let us create a set of test
vectors. First define an array, inarray, of names of nodes to be considered inputs:

(inarray) [(in1)(in2)] .def

Spaces around "[" and "]" are needed. Now define the JaM variables in1 and in2 to be the
required sequences of values:

(in1)(0011).def
(in2)(0101).def

Note that the names in1 and in2 are serving two purposes: as node names in SimMOS, and as
string variables in JaM. However, no confusion should arise. Now set up an array of outputs
to be collected. In this case it has only one entry:

(outarray) [(out)] .def

Now a sequence of simulations can be run:

inarray outarray arraysim

We can now look at the outputs using arraystrings. It is convenient to have the inputs and
outputs listed together, so type two commands together:

inarray arraystrings outarray arraystrings

which should produce:

0011 = in1
0101 = in2

1000 = out

SimMOS 16

We may now want to save the state of the circuit and terminate the session. To save the values
of the various nodes do:

(norcircuit.state)writestate

Later on during this session, or in a subsequent session, the state of the circuit can be restored
by:

(norcircuit.state).run

To leave SimMOS in a controlled way, type:

.quit

4.2 Shift Register

We shall define a 4 stage shift register in JaM. It is built up of 4 instances of a shiftcell, which
is itself built up of 2 instances of a halfshiftcell:

(halfshiftcell)
((hsc.clock hsc.in hsc.out)/getargs
 (hsc.internal) gennames
 hsc.clock hsc.in hsc.internal etrans
 hsc.internal hsc.out inverter
).cvx .def

(shiftcell)
((sc.in sc.out)/getargs
 (sc.internal) gennames
 (phi1) sc.in sc.internal halfshiftcell
 (phi2) sc.internal sc.out halfshiftcell
).cvx .def

(in)(s0)shiftcell
(s0)(s1)shiftcell
(s1)(s2)shiftcell
(s2)(s3)shiftcell

The /getargs command assigns the relevant number of arguments to the JaM variables given.
Now set up input and output node arrays:

(inarray) [(in)] .def
(outarray) [(s0)(s1)(s2)(s3)] .def

and define a test vector for in

(in)(010011000111).def

Note that we could have defined the two phase clocks, PHI1 and PHI2, as inputs. However,
since we are interested in what results after each whole clock cycle we shall do the clocking in
the clock1 procedure. Therefore redefine clock1 to be:

(clock1)
((phi1)hi (phi2)lo simstep
 (phi1)lo (phi2)hi simstep
).cvx .def

SimMOS 17

Now run a simulation and look at the results:

inarray outarray arraysim
inarray arraystrings outarray arraystrings

Incidentally, since the above three commands are often used it may be worth setting up a JaM
command to do them. This should produce:

010011000111 = in

010011000111 = s0
X01001100011 = s1
XX0100110001 = s2
XXX010011000 = s3

Notice the unknowns, X, that in this case get flushed out of the circuit. Unknowns can be a
source of great difficulty in SimMOS, especially in circuits involving feedback, where such
unknowns may never get flushed out. The more recent versions of SimMOS are able to
correctly resolve a large class of problems involving propogation of unknowns. However the
technique works on a single microstep basis, so that unknowns that can be resolved only by
analyzing several microsteps will not be eliminated.

Several strategies have been developed for dealing with unknowns. First, if your circuit has a
reset line then use it. Indeed, it may well be worth considering a reset line on any circuit
anyway, as part of your design philosophy, just to be sure that the circuit can always be set to a
known state. However, this is not always desirable. In such cases, another remedy that has
been used is to build a definition of a reset circuit to be used together with the circuit under
test. This can consist of transistors that gate VDD or GND onto selected nodes. Another
method that has been used successfully by Jim Cherry applies to two-phase clocked circuits.
Simply set both phases of the clock high and run a simstep. This "opening of the sluices"
usually flushes out any unwanted X’s. Perhaps the most obvious remedy is to build a JaM
procedure that uses chhi and chlo to charge or discharge specific nodes. Finally, the procedure
circuitreset can be used to set all charge storing nodes to some given value. Since this normally
leaves the circuit in an inconsistent state it is usually best to follow it with a simstep.

4.3 Two Phase Clock Generator

While SimMOS is basically designed to handle combinatorial circuits, possibly including charge
storage, it turns out that the iterative solution used has the effect of modelling every transistor
as a switch having a unit delay. Consequently some timing dependent circuits can be simulated.
Indeed, the detailed behaviour of a circuit modelled as unit delay switches can be observed by
using the microstep command. (This command is used by simstep to achieve a converged
solution).

As an illustration of the simulation of such circuits, consider the two phase non-overlapping
clock generator given in [Mead and Conway] in Figure 7.6(b) on page 229. While this may not
be the best way to generate clocks for SimMOS, it is important that SimMOS can handle it in
case one is using such a generator as part of an existing circuit. The circuit can be modelled as:

(int) gensym .def
(clk) int inverter
(clk)(phi2)(phi1) nor
(phi1) int (phi2) nor

where int is the one internal node, clk is the input single phase clock, and phi1 and phi2 are the
generated output clocks. You can readily verify that this circuit behaves properly at the simstep
level, by trying the two possible values of clk, running a simstep and looking at the generated

SimMOS 18

clocks. However, it may be interesting to examine the behavior at the microstep level, as
follows. Define the clock1 procedure to be:

(clock1)
(microstep .pop
).cvx .def

and set up the input and output arrays:

(inarray) [(clk)] .def
(outarray) [(phi1)(phi2)] .def
(clk)(000001111100000111110000011111).def

This is a case where it is necessary to initialize the node values, so do:

(0)circuitreset
simstep

After running an arraysim the result should be:

000001111100000111110000011111 = clk

111110000000111000000011100000 = phi1
000000111110000011111000001111 = phi2

This exercise can be extended to make a ring oscillator to generate the single phase clock phi1.
Set up 4 inverters:

(clk)(a) inverter
(a)(b) inverter
(b)(c) inverter
(c)(d) inverter

and initialize them:

simstep

Now connect the last one to the first with another inverter, thereby making a 5 stage ring
oscillator, and stop driving clk externally (left over from previous simulation):

(d)(clk) inverter
(clk) x

Take care not to issue a simstep command now, since the circuit will never converge. This
clock generator can now be run for, say, 10 cycles, printing the values of clk, phi1 and phi2, as
follows:

10
(microstep .pop
 (clk)getnodevalue .print ().print
 (phi1)getnodevalue .print
 (phi2)getnodevalue /print
).cvx .rept

which should generate

SimMOS 19

0 01
0 01
0 00
0 10
0 10
1 10
1 00
1 01
1 01
1 01

This last example is included only to illustrate something of the operation of SimMOS. To
simulate a circuit of any size by such a method would be inefficient, and would probably give
misleading results since time is not modelled at all realistically in SimMOS.

4.4 Functional Simulation

<"in preparation">

5.0 REFERENCES

[JaM] JaM, John Warnock and Martin Newell, [Ivy]<JaM>JaM.bravo.

[Mead and Conway] Introduction to VLSI Systems, Carver Mead and Lynn Conway, Addison
Wesley, 1980.

SimMOS 20

6.0 INDEX OF COMMANDS

<nodename array> arraynames 3.3
<inputarray><outputarray> arraysim 3.4
<nodename array> arraystrings 3.3
<nodename array> arrayvalues 3.3
<nodename> chhi 3.3
<nodename> chlo 3.3
<value> circuitreset 3.3
<object> .cvx 3.6
<name><value> .def 3.6
<gate><source><drain> dtrans 3.2
<gate><source><drain> etrans 3.2
<switch> gatestorage 3.3
<string of names> gennames 3.6
gensym => <uniquename> 3.6
<nodename> getbit => <nodevalue> 3.3
<nodename> getnodevalue => <nodevalue> 3.3
<wordspecifier> getword => <word> 3.3
<nodename> hi 3.3
<inputnode><outputnode> inverter 3.6
<gate><term1><term1> listetrans 3.2
<gate><term1><term1> listdtrans 3.2
<gate><term1><term1> listtrans 3.2
<nodename> lo 3.3
<stream> logchanges 3.2
<number> maxmicrosteps 3.4
microstep => <#changes> 3.4
<in1><in2><out> nor 3.6
<string> .print 3.6
<string> /print 3.6
<nodename> pullup 3.6
<nodename><value> putbit 3.3
<wordspecifier><value> putword 3.3
.quit 3.6
<gate><term1><term1> <gate><source><drain> redefinetrans 3.2
<boolean> reportchanges 3.4
<boolean> reportshorts 3.4
<number><object> .rept 3.6
resumearraysim 3.4
<filename> .run 3.2
<nodename> simnode 3.2
<filename> simread 3.2
simreset 3.1
simsolve => <number of iterations> 3.4
simstep 3.4
<filename> simwrite 3.5
unlogchanges 3.2
<filename> writestate 3.5
<nodename> x 3.3

