<> <> <> <> <> DIRECTORY CD USING [Number, DesignNumber, Position, DesignPosition, Rect, DesignRect]; CDVScale: CEDAR DEFINITIONS = BEGIN <<-- Non public chipndale interface to scaling of viewers. >> <<-->> <<-- Scaling must be real fast, therefore the crazyness.>> <<-- Design -> Viewer is the most speed critical operation done, used for drawing every rectangle...>> <<-- Viewer -> Design is speed critical for cursor tracking>> <<-- This interface is thought as an implementation module and freely recompiled to improve the>> <<-- inline procedures. Do never copy code from this module, because this module changes to>> <<-- often, but if new need for scaling appears, include it here.>> <<-- Analyzing compiler generated code showed that it is feasible to have a full record as >> <<-- parameter, since the optimization will get rid of copiing the record.>> scaleNum: CARDINAL = 19; ScaleRange: TYPE = [0..scaleNum); <<--A type describing scales; increasing a scale number means viewing a bigger part of the>> <<--chip in a viewer; (more overview, less detail).>> ScaleRec: TYPE = RECORD [ <<--data in this record must be gridded correctly, such that the origin of >> <<--the viewer lies on a grid point; otherwise the gridding would>> <<--require more complex and slower arithmetic.>> off: CD.DesignPosition, xx: PRIVATE INT, useMultiply: PRIVATE BOOL, sA, sB, sC, sD: PRIVATE CARDINAL, grid: INTEGER, --in DesignCoordinates nscale: INTEGER ]; DesignToViewerFactor: PROC [scale: ScaleRec] RETURNS [f: REAL] ~ INLINE { <<--without translation>> IF scale.useMultiply THEN f _ scale.xx ELSE f _ 1.0/scale.xx; }; DesignToViewerScalar: PROC [scale: ScaleRec, n: CD.DesignNumber] RETURNS [CD.Number] ~ INLINE { <<--without translation>> RETURN [IF scale.useMultiply THEN n*scale.xx ELSE n/scale.xx]; }; <<>> DesignToViewerPosition: PROC[scale: ScaleRec, designPos: CD.DesignPosition] RETURNS [viewerPos: CD.Position] ~ INLINE { <<--including translation to viewer origin>> RETURN[ IF scale.useMultiply THEN CD.Position[ (designPos.x-scale.off.x)*scale.xx, (designPos.y-scale.off.y)*scale.xx ] ELSE CD.Position[ (designPos.x-scale.off.x)/scale.xx, (designPos.y-scale.off.y)/scale.xx ] ] }; DesignToViewerRect: PROC[scale: ScaleRec, designRect: CD.DesignRect] RETURNS [CD.Rect] ~ INLINE { <<--including translation to viewer origin>> RETURN[ IF scale.useMultiply THEN CD.Rect[ x1: (designRect.x1-scale.off.x)*scale.xx, y1: (designRect.y1-scale.off.y)*scale.xx, x2: (designRect.x2-scale.off.x)*scale.xx, y2: (designRect.y2-scale.off.y)*scale.xx ] ELSE CD.Rect[ x1: (designRect.x1-scale.off.x)/scale.xx, y1: (designRect.y1-scale.off.y)/scale.xx, x2: (designRect.x2-scale.off.x)/scale.xx, y2: (designRect.y2-scale.off.y)/scale.xx ] ] }; ViewerToDesignScalar: PROC [scale: ScaleRec, v: LONG CARDINAL] RETURNS [CD.DesignNumber] = INLINE { <<--without translation, but gridded to the current grid>> RETURN [LOOPHOLE[(v*scale.sA+scale.sB)/scale.sC*scale.sD, CD.DesignNumber]] }; UngriddedViewerToDesignScalar: PROC [scale: ScaleRec, v: LONG CARDINAL] RETURNS [CD.DesignNumber] = INLINE { <<--without translation, without grid>> IF scale.useMultiply THEN RETURN [LOOPHOLE[(v*scale.sA+scale.xx-1)/scale.xx, CD.DesignNumber]] ELSE RETURN [LOOPHOLE[(v*scale.sA), CD.DesignNumber]] }; ViewerToDesignPosition: PROC[scale: ScaleRec, viewerPos: CD.Position] RETURNS [designPos: CD.DesignPosition] = INLINE { <<--with offset and grid>> RETURN[CD.DesignPosition[ ViewerToDesignScalar[scale, viewerPos.x]+scale.off.x, ViewerToDesignScalar[scale, viewerPos.y]+scale.off.y] ] }; MakeScale: PROC [off: CD.DesignPosition_[0, 0], nscale: ScaleRange_4, grid: INTEGER_-1] RETURNS [ScaleRec]; <<--given the grid, offset and nscale; makes a correctly gridded and initialized ScaleRec>> GetClipRecord: PROC[scale: ScaleRec, highX, highY: CARDINAL] RETURNS [CD.DesignRect]; --given the index of the (high-most) pixel in the viewer, compute an outside clipping --rectangle in design coordinates; (such that all outside the clipping area is invisible). END.