
General Notes:

For the cursor the two screens are logically next to each other, and the cursor is on one of them
at a time.  Moving the cursor off the right edge of the color screen moves it onto the
black&white screen, and moving it off the left edge of the B&W screen moves it onto the color
screen.  What the two screens display is two seperate windows into the same geometrical
structure, and in general you can point to the part of the structure to which you want to refer
on either screen.

Note that the bottom of the black & white screen (called the feed-back area) displays
information about what the program is doing, and various parameters.  Many of these
parameters can be changed.  As a general rule, pointing the cursor at a parameter and clicking
the red button will increment the value of the parameter.  The blue button will decrement it,
and the yellow button allows you to type a new value (terminated by <ESC> or <CR>).  A pair
of exceptions are the two "scale" parameters, where the yellow button sets the scale based on
the cursor position up and down the scale bar.  For more details, see the parameters section,
below.

Chipmonk thinks of the three main layers in the order: diffusion, poly, metal.  Some commands
refer to a layer by number, and in all such cases, Chipmonk consistently makes the association:
1=dif, 2=poly, 3=metal.

The mouse buttons have names, by which they will be referred to.  The left-most button is
called Mark, and is used for placing the "MARK" (a geometrical point reference) and for
commands which, in general, change objects already on the screen (there are exceptions -- aren’t
there always).  The middle button is called Draw, and is used for commands which draw new
things on the screen (again there are exceptions).  The right-most button is called Select, and is
used for selecting and de-selecting objects.  Selected objects are outlined (in white on the color
screen).

Commands take several forms.  Some consist of holding down <CTRL> while striking a key,
some consist of holding down a key while pushing a mouse button, some consist of holding
down <CTRL> and <TAB> and striking a key.  A few consist of holding down just <TAB> and
striking a key, a few requite <SHIFT> with <CTRL> and <TAB>, and a few are single key-
strokes (like <ESC>).

Commands fall into four basic groups.  One group is those commands which can be done in
two ways.  These commands have a character key associated with them, and typing
<CTRL>"key" causes the command to be applied to all selected objects; whereas holding "key"
down and pushing Mark (or Draw -- depending on the command) causes the command to be
applied to the object pointed to.  For example: <CTRL>D causes all selected objects to be
deleted, while D-Draw causes the object pointed to to be deleted.  Further, <CTRL>R causes
the selected objects to be rotated, while R-Mark causes the pointed-to object to be rotated.

The second group is the selection commands, most of which consist of clicking the Select button
while holding down some key.  Exceptions are Select by itself (no key) and the area selects
(q.v.) which can be started with A-Mark.

The third group are those commands of global significance, which usually require holding down
<CTRL> and <TAB> while striking some key.  The fourth group is "other".  There aren’t very
many of these, and many are fairly unimportant.

There are a number of commands which wait for a string to be typed.  When the program is
waiting for a string, it inverts the color table, so that the color screen looks funny, and prompts
on the black & white screen.  When the string has been typed (terminated by <CR> or <ESC>)
it puts the color screen back.  If you wish to abort one of these commands any time before the
<CR> or <ESC>, you can do so by hitting the "UNDO" key, which is the blank one below (and
to the right of) <DEL>.



2

Commands:
The following discussion of commands is organized in what attempts to be the order in which
one whould need to learn them.  The notation "<any>" means any non-null combination of
<CTRL>, <SHIFT>, or <TAB>.  Commands in quotes and underlined refer to parameters in the
feedback area at the bottom of the black & white screen.  It is strongly suggested that you
run Chipmonk (currently done by loading [Ivy]<Petit>Chipmonk.dm and then saying @pp), and try each
of the following commands, in the order described.  Some things are much clearer if you
see them happen than if you just read about them.

Drawing a few things:

1-Draw will Draw (place on the screen) a diffusion-to-metal contact of minimum
geometry, with its upper left corner at the location of the cursor when
the command was given.

2-Draw will Draw a poly-to-metal contact of minimum geometry, with its upper
left corner at the location of the cursor when the command was given.

3-Draw will Draw a butting contact of minimum geometry, with its upper left
corner at the location of the cursor when the command was given.

X-Draw  or
T-Draw will Draw a Transistor with its upper left corner at the location of the

cursor when the command was given.  The geometry ratio of the
transistor will be that specified by the "X-Ratio" parameters in the
feedback area.  The length will be the length parameter times 2 lambda,
and the width will be the width parameter times 2 lambda.  Note: these
parameters control the size at which the transistor is created.  Once it is
created, changing the parameters has no effect on it.

P-Draw will Draw a Pullup with its upper left corner at the location of the cursor
when the command was given.  The geometry ratio of the transistor will
be that specified by the "P-Ratio" parameters in the feedback area.  The
length will be the length parameter times 2 lambda, and the width will
be the width parameter times 2 lambda.

Selection:

Select will Select the object pointed to by the cursor (under the point of the
arrow), and de-select all other objects.  If there is more than one object
under the cursor, Chipmonk attempts to select a "new" one.  If you
place the cursor on top of n objects and, without moving the cursor, do
n selects, Chipmonk will cycle through the n objects, each being selected
once.

<any>-Select will extend-Select the object pointed to by the cursor, without de-
selecting other objects.  If there is more than one object under the
cursor, Chipmonk selects a "new" one (one which is not selected).  If
you place the cursor on top of n objects and, without moving the cursor,
do n <any>-selects, Chipmonk will select all n objects.  Note: <any>
means any non-null combination of <CTRL>, <SHIFT>, and <TAB>.

D-Select will De-Select (un-select) the object pointed to by the cursor, without
affecting other objects.  If there is more than one selected object under
the cursor, Chipmonk de-selects one of them.

Deletion:



3

D-Draw will Delete the object pointed to by the cursor at the time the command
was given.  If there is more than one object under the cursor, Chipmonk
will delete one of them.  Deleted objects go to list of such things, and
can be un-deleted, until they are flushed from the list.

<ctrl>D will Delete all selected objects.  Deleted objects go to list of such things,
and can be un-deleted, unless they have been flushed from the list --
which happens explicitly (there is a command) or when the list gets
unreasonably long.

<ctrl>U will Un-delete the object or objects on the top of the list of deleted
objects -- this is the object or group of selected objects deleted by the
most recent un-cancelled delete.  (Deleted objects are pushed onto the
un-delete stack, and un-delete pops them).  Un-deleted objects come
back selected, so that if nothing was selected when the un-delete was
done, <ctrl>D will un-do it.  The un-delete list (stack) gets objects
flushed from it when there are more than a few hundred.

Drawing Wires:

In Chipmonk, wiring is done by marking a starting point, then saying Draw ("draw wires"),
at which point Chipmonk shows you a pair of "virtual" wires from the starting point to the
cursor.  The virtual wires follow the cursor around.  When the virtual wires form a corner at
the desired place, you say Draw, and the "older" virtual wire (the one from the starting
point to the corner) gets made a real wire, and two new virtual wires extend from its end
(the "corner") to the cursor.  Each successive "Draw" will make one more virtual wire real.
Wiring can be terminated in one of two ways.  If the current two virtual wires will complete
the circuit to the desired point (under the cursor), you can say Mark, and both wires will be
made real (except if the second virtual wire is of zero length, in which case it is not made
real), and wiring will be terminated.  The second way out of wiring is to type <ESC> which
simply terminates wiring, (stops the virtual wires from being drawn), does not make any
virtual wires real, but leaves alone the real wires.  There are two ways the virtual wires could
be drawn -- with the first one vertical, or with the second one vertical.  The initial pair is
drawn such that the first (older) virtual wire is longer (at the time the command is given), so
that if the cursor is at the same level as the mark, and to its right when the Draw is given,
the first virtual wire will be horizontal.  Each successive Draw reverses the direction of the
virtual wires, so wires will alternate between vertical and horizontal (this is harder to
describe than to understand).  Note: each wire is an object, which can be selected, deleted,
etc.  Note: wires are drawn with the width specified under the appropriate layer name in the
"current layer" area of the feedback area.  These width parameters can be changed like other
parameters (see "Feedback Commands") and can be initiallized from the
"Chipmonk.Profile" file, q.v.

<ctrl>-1 or
1-Select Select diffusion as the "currently selected layer".

<ctrl>-2 or
2-Select Select poly as the "currently selected layer".

<ctrl>-3 or
3-Select Select metal as the "currently selected layer".

Mark If you are not drawing wires, places the "mark" at the cursor location.
The "mark" is indicated by a cursor-shape, drawn in a different color,
and a little smaller, and outlined in a third color.  What the colors are
depends on what is under the mark.  On the neutral background the
mark is a purple cursor outlined in black.  If you are already drawing
wires, makes both (usually) virtual wires real, and terminates drawing
wires.



4

Draw If you are not drawing wires, Draw will start drawing wires on the
currently selected layer.  This means that two virtual wires will be
shown from the mark to the cursor, and they will follow the cursor
around, showing you where wires will go if you create them.  If you are
already drawing wires, Draw will make the "older" virtual wire real, and
put virtual wires from its end to the cursor.  Thus each Draw after the
first creates one more real wire -- and also reverses the direction of the
virtual wire corner.

<ESC> If you are drawing wires, stop drawing wires.  Virtual wires are deleted,
but wires which have been made real are left.  Thus "Draw, <ESC>" is
a nop, and "Draw, Draw, <ESC>" will create one wire.  <ESC> does
other things -- it is a general "escape" from things you have gotten into,
and is also a terminator for strings.  In addition, <ESC> always forces a
complete update (re-write) of both screens.

Q-Draw If you are not drawing wires, Q-Draw will make one wire, from the mark
to the x or y of the cursor (i.e. either horizontal or vertical).  It will not
put you into wiring mode.  This is equvalent to "Draw, Draw, <ESC>",
except that the length of the wire is slightly different.  If you are already
drawing wires, Q-Draw will make one more wire, and quit drawing wires
(equivalent to "Draw, <ESC>").

A few random but necessary things:

<Ctrl><TAB>Q Quit.  Currently no attempt is made to ensure that files have been
written out, etc.

<Ctrl><TAB>O Write Output file.  The current drawing is output as a .Chip file.  Note
that if you have pushed into a cell, it is the drawing of that cell that is
output; structure above the cell will be lost if you then quit.  The
program forces the extension to be .Chip.  If you type the null string
(<CR>) when it asks for the file name, it uses the file name from the
most recent Input or Output.  Before writing the file, Chipmonk checks
to see if it already exists, and if it does, asks for confirmation (Y/N).

<Ctrl><TAB>I Input a .Chip file.  The program forces the extension to be .Chip.  The
stuff read in is merged with anything already present.

<Ctrl><TAB>R Restart.  Flushes all data structure and puts you back in the state you
were in when you first loaded the program (more or less).  No attempt
is made to ensure that files have been written out.

Moving and Copying:

In moving and copying what gets moved or copied is the set of all selected objects.  The
"source" reference point is the "mark", and the destination reference point is the location of
the cursor when the command is given.  In other words the relative offset caused by the
command is the relative offset between the "mark" and the cursor.

C-Draw Copy the selected items, with an offset such that the new stuff has the
same positional relationship to the cursor as the old stuff has to the
mark.  The old stuff is de-selected and the new stuff is selected; the
mark is moved to the cursor position.

M-Draw Move the selected items, by an amount equal to the offset between the
"mark" and the cursor.  The mark is moved to the cursor position.

<any or none>-= Move all selected items to the LEFT by one lambda..



5

<any or none>-\ Move all selected items to the RIGHT by one lambda..

<any or none>-<LF> Move all selected items UP by one lambda..

<any or none>-<DEL> Move all selected items DOWN by one lambda..

Window Control:

The two screens are two independent windows into the chip-layout space.  Each can be
scaled and moved independently of the other.

<Space>-Mark Move the color window so that the point under the cursor is at the
center of the color screen.  You may point to the desired center-point
on either screen.

<Space>-Select Move the black & white window so that the point under the cursor is at
the center of the B&W screen.  You may point to the desired center-
point on either screen.

<Space>-Draw This moves either screen by the amount the cursor moves between
pushing the middle (draw) button and releasing it.  The point under the
cursor when you push the button is moved to the position of the cursor
when you release the button.  Do not change screens while the button is
down!

"Scale" This is the "Scale" parameter in the feedback area.  There are two scale
parameters, one for the color window and one for the black & white
window.  Either may be incremented (by clicking the mark button),
decremented (by clicking the select button), or set to a value (by
pointing the cursor at the desired position on the scale bar and clicking
the draw button).  See the section on the feedback window for details.
An attempt is made to keep the screen centered in the same place as the
scale changes.

Area Selects:

Area selects require a sequence of two commands, one to mark one corner of the
(rectangular) area, and one to mark the other corner, and finish the command.  This
sequence can be done in two ways.  The first is to use the "Start area select" command (A-
Mark) to mark the first corner, and then one of the normal select commands (Select, with or
without a key) to finish the command and tell what kind it is (new stuff only, extend select,
or de-select).  The other way is to place the "mark" at one corner, then give one of the
select commands, while holding down the A key (doesn’t work for de-select), to indicate that
it is an area select, and its type.  One advantage of the first method ("start area select"
command) is that Chipmonk draws a box from the first corner to the cursor so you can see
what is inside the box.  The rule about what an area select refers to is (currently) that only
those things are referred to whose bounding box is fully within the select box.

A-Mark then Select or
"Mark" then A-Select will Select the objects wholly inside the selection box (from the "mark"

or A-Mark command, to the cursor when the Select is done), and de-
select all other objects.

A-Mark then <any>-Select or
"Mark" then A-<any>-Select will extend-Select the objects wholly inside the selection box,

without de-selecting other objects.  Note: <any> means any non-null
combination of <CTRL>, <SHIFT>, and <TAB>.

A-Mark then D-Select will De-Select (un-select) the objects wholly inside the selection box,



6

without affecting other objects.

Cells:

A cell is a collection of objects which is treated as an object itself.  It is usually a collection
of things which performs a function, such as an input pad cell, or a register bit.  (In Icarus
these were called "symbols" -- a singularly bad name).  Cells can contain other cells to any
depth (a cell cannot contain itself).  At the top level (when working on the main drawing)
the objects of which a cell is made cannot be manipulated; the cell is treated as an atomic
object.  It is possible to "push" into a cell, and make its definition (collection of objects) the
top level, and thereby modify the cell definition.  This pushing can be done to any level,
until there are no further levels of cells.  It is also possible to "expand" a cell, which means
that the cell instance is removed from the drawing, and replaced by instances of the objects
in the cell’s definition.

<ctrl>-C Define a cell.  The collection of all selected objects is turned into
the definition of the cell, and those instances are removed and replaced
by an instance of the cell.  The program promts for a name for the cell
(type a string, followed by <CR> or <ESC>).  Cell names are upper
case -- you can’t type lower case -- so there is no confusion about case.
If you type the null string (<CR> or <ESC>) the cell will have no name.
This is OK, but if all instances of the cell get deleted at some point,
there will be no handle for getting one, and the cell definition will fall
into the great black hole that is waiting for us all.

C-Mark Get a cell instance.  The program promts for a cell name (type a string,
followed by <CR> or <ESC>).  Naturally this command only works for
named cells.  Unnamed cells can be gotten by copying.  This can be a
little tricky if the only instance of an unnamed cell is inside some other
cell.

P-Mark Push into a cell definition, by pointing.  The drawing at the current level
is saved away (pushed) and the definition of the cell under the cursor is
made the current level.  You can now modify the cell (including
pushing into other cells in its definition).  All commands work.  In
addition to adding, deleting, and moving objects, you can define cells.
Be careful, however, not to do any I/O, as the drawing definition is
hidden, and an output will output the cell definition only.  When you
are through, you can leave the cell definition with a "pop" (<any>-^,
q.v.).

<ctrl>-P Push into a cell definition, by selection.  This is the same as P-Mark
(above) except that the cell pushed into is the one selected (if more than
one is selected, one of them is picked by the program).  Be careful,
however, not to do any I/O, as the drawing definition is hidden, and an
output will output the cell definition only.

<shift>-P Push into a cell definition, by name.  This is the same as P-Mark (above)
except that the cell pushed into is the one whose name you type in
response to the prompt.

<any>-^ Pop from a cell definition.  (Note: this is that same key as _, no case
distinctions are made in commands).  If you have made any changes to
this cell, the program promts you for a decision about what to do with
the changes.  You have three choices (respond with a single character):
You can flush the changes and go back to the orriginal definition; you
can replace the old definition with the new (changed) one; or you can
use the new definition to create a new cell, leaving the old cell as it was.



7

If you choose to make a new cell with the new definition, the program
prompts for a name (no name is OK), and also will replace certain
instances of the old cell with the new one -- specifically those instances
by which you pushed into the definition.  Which instances these are
depends on which psuh command was used.  If you pushed by pointing
at an instance (P-Mark), the instance that you pointed at will be
replaced (all others remain the old cell).  If you pushed by selection
(<ctrl>-P) then all selected instances of the old cell are replaced with the
new one.  If you pushed by name, no instances will be replaced.

E-Mark Expand a cell, by pointing.  The cell pointed to is deleted and replaced
by instances of each object in its definition (at the same location and
orientation  as when the cell was there -- so that an expand should have
no electrical effect).

<ctrl>-E Expand a cell, by selection.  The selected cell is expanded.  Currently
only one cell is expanded (this should change) so that if more than one
cell is selected, only one of them is expanded.

<ctrl>-Z Display all cell names.  This command currently works in a kludgey
fashion.  A drawing is created consisting of the cell names, and the
program goes into a mode in which that drawing is displayed on the
B&W screen.  The windowing and scaling commands are used to move
around in the drawing.  If there are a lot of cells, it can take a minute
to generate the drawing.  To get out of the mode, type UNDO (the
blank key below <DEL>).  The correct scale for looking at the names is
9, but you will probably need to find them using a smaller scale.  This
stuff is all going to change.  While in this mode, you can select cell
names.  <Ctrl>-D will then delete all selected cell definitions (usually
without killing the program -- it is suggested that you save your file
before doing this).

Rotation and mirroring commands:

R-Mark Rotate an object, by pointing.  The object pointed to is rotated to the
right by 90 degrees.  This is quite fast, so rotations of 180 or 270
degrees are done with repeated 90 degree rotations.  Four of these is a
nop.  The object is rotated in such a way that the upper left corner of
the result (bounding box) is in the same place as the upper left corner
was before.

<ctrl>-R Rotate selected object(s).  The set of selected objects is rotated to the
right by 90 degrees.  The set of objects is rotated as a unit, maintaining
their relative positions.  The unit is rotated such that the resulting upper
left corner of the unit (bounding box) is in the same place as the upper
left corner of the unit was before.  If there is only one object selected,
this command has the same effect as pointing to the object and doing
R-Mark.  However, if more than one object is selected, it is not
equivalent to doing R-Mark to each of them, as that would rotate each
one in place, whereas <ctrl>-R rotates them as a unit.

M-Mark Mirror an object, by pointing.  The object pointed to is mirrored
(reflected) left to right (about the Y axis) and its center remains the
same.  Two of these is a nop.

<ctrl>-M Mirror selected object(s).  The set of selected objects is mirrored
(reflected) left to right (about the Y axis) as a unit, maintaining their
relative positions.  The unit is mirrored such that the center of the
bounding box of the unit remains the same.



8

Width & Length commands:

Some types of objects have widths and/or lengths which are parameters.  For those objects,
it is possible to change those parameters with some or all of the five following commands:
Widen, Narrow, Lengthen, Shorten, Default.  Wires have both length and width, contacts
(except butting contacts) have length, and transistors and pullups have both length and
width.  Cells have neither.  Most of these parameters have defauls, which are parameters in
the feed-back window.  The "Default" command sets a parameter which has a default to that
default value.  The following table summarizes these parameters:

Width Length
Type of Object Width Length Default Default
Wire Y Y Layer/Wd none
Contact N Y -- 4 lambda
Xstr Y Y X-ratio X-ratio
Pullup Y Y P-ratio P-ratio
Cell N N -- --

L-Mark Lengthen an object, by pointing.  The object pointed to is lengthened by
one lambda if it has length as a parameter (wire, contact, xstr, or
pullup).

<ctrl>-L Lengthen selected object(s).  All selected objects which have length as a
parameter are lengthened by one lambda.

S-Mark Shorten an object, by pointing.  The object pointed to is shortened by
one lambda if it has length as a parameter (wire, contact, xstr, or
pullup).  There is a minimum length below which an object will not be
shortened.

<ctrl>-S Shorten selected object(s).  All selected objects which have length as a
parameter are shortened by one lambda.  There is a minimum length
below which an object will not be shortened.

W-Mark Widen an object, by pointing.  The object pointed to is widened by one
lambda if it has width as a parameter (wire, xstr, or pullup).

<ctrl>-W Widen selected object(s).  All selected objects which have width as a
parameter are widened by one lambda.

N-Mark Narrow an object, by pointing.  The object pointed to is narrowed by
one lambda if it has width as a parameter (wire, xstr, or pullup).  There
is a minimum width.

<ctrl>-N Narrow selected object(s).  All selected objects which have width as a
parameter are narrowed by one lambda.  There is a minimum width.

0-Mark (zero) Default width/length of an object, by pointing.  The object pointed to
has its width and/or length set to the default if there is a default.  If
there is not a default for a parameter, that parameter is not changed.
This will set the width of a wire to the value in the feed-back window
for the width of a wire on that layer.  Wire length is unchanged.
Transistors and pullups get both width and length set to the value in the
X-Ratio or P-Ratio paramters.  Contacts (except butting) get their length
set to 4 lambda.  Butting contacts are unchanged.

<ctrl>-0 Default width/length of selected object(s).  All selected objects have their
width and/or length set to the default if there is a default.  If there is



9

not a default for a parameter, that parameter is not changed.

S-Draw Stretch a wire.  This applies to all wires which are selected.  Selected
objects which are not wires are ignored.  The "Mark" must be touching
a selected wire when this command is given.  The command causes one
end of all selected wires to be shortened or lengthened by the difference
between the "mark" and the cursor.  The end which is changed is the
one which the mark is nearest.  For horizontal wires only the horizontal
difference between the "mark" and the cursor is relevant.  For vertical
wires only the vertical difference is relevant.  For example, if you select
a group of horizontal wires and put the mark exactly on the left end of
one of them, then move the curosr so it is to the left of the mark and
give this command, the wire which had the mark on it will be stretched
to meet the cursor, and all the other selected wires will be stretched by
the same amount.  If the cursor had been to the right of the mark, the
wires would have been shortened. If the mark had been on the right
end, that end would have been stretched/shrunk to meet the cursor.  If
both vertical and horizontal wires are selected, the effects will be
(probably) undesirable.

Random commands:

<Ctrl><TAB>C Write CIF file.  A CIF file is made from the current drawing.  Note that
if you have pushed into a cell, it is the drawing of that cell that is
output; structure above the cell will not appear in the CIF file.  The
program forces the extension to be .CIF.

<Ctrl><TAB>H Write Hardcopy file.  A press file is created containing the part of the
drawing which is currently begin displayed on the Color screen.  The
program forces the extension to be .Press.

B-Mark Make burried contact.  A rectangle on the "Burr" layer is created.  If the
cursor is touching the intersection of a Dif line and a Poly line, the
rectangle will be centered on the intersection and will be of a size and
shape to meet the minimum design rules for such a contact.  If the
cursor is not touching such an intersection, the rectangle will be a
minimun square.  The rectangle can be changed in shape and size using
the width and length commands.

<ctrl>-<space> Flip wires.  Reverses the direction of the corner of the temporary wires
when drawing wires (q.v.).

<Ctrl><TAB><Shift>F Flush un-delete list.  When objects are deleted (q.v.) they go to a list of
deleted objects, rather than being destroyed completely, so that they can
be un-deleted (q.v.).  This command flushes (destroys) everything on
that list.  That list normally gets old things flushed when it grows very
big.  This command allows you to recover some space.

<TAB>O Make overglass rectangle.  The programs hunts for a metal wire
(rectangle) under the cursor.  When it finds one, it creates an overglass
rectangle centered on the metal one, and smaller in both dimensions by
a standard amount (8 lambda, or 4 lambda on each edge).  Once the
rectangle has been made, its dimensions can be changed with the width
and length commands.

T-Mark Enter text.  If the cursor is on a wire or contact, the program waits for
you to type a string (terminated by <CR> or <ESC>) which it then
attaches as a property to the wire or contact.  The text appears on the
Black&White screen.  On the color screen, its position is indicated by a



10

small white rectangle in the upper left corner of the object.  The text
gets put into the CIF file, so it can be used to give a node a name (the
CIF extractor finds it).  The text currently does not get put into a press
file written with the Hardcopy command (but will show up in one made
with the CIF printer program).

<Ctrl><TAB>S Output Spice file.  The program asks for a file name, then writes a .CKT
file, which can be input to spice.  The file will contain transistors, and
capacitors to simulate the capacitance (in addition to that associated with
the gates of transistors) for each node.  The generation of this
information is currently both slow and n-squared.  For a circuit with 50
transistors (which is probably larger than spice will accept) it takes 5 to
30 minutes to generate the file.  The circuit is generated for whatever is
currently at the top level, so, to keep things small, it is suggested that
you gather everything you want in the spice file into a cell and push
into the cell, then generate the file.  Eventually a new algorithm will be
used and this stuff will become faster, more accurate, and more reliable.

<Ctrl><TAB>E Open error file.  The program asks for a file name, then opens that file,
ready to display its error messages (see <TAB>E below).  The file should
consist of error lines, each of which starts with two numbers which are
the coordinates of the error.

<TAB>E Display next error line.  This causes the program to display (on top of
part of the feed-back area) the next line from the file opened with
<Ctrl><TAB>E (above).  If the line begins with two numbers, they are
taken to be the coordinates of the error in CIF units (the current setting
of "Cif Lambda" is used) and the Mark is placed at that point, and that
point is centered on the color screen.  If the line does not begin with
two numbers, the mark and screen are not moved.  Then the line
(without the coordinates, if any) is displayed.  Note: you can go back to
the first line of the file by simply re-opening it.

<TAB>F Change font.  This causes the program to change which font it uses for
displaying the feedback information (and any text).  There are three
fonts it can use, and this cycles it through them.

<TAB>C Change color table.  This causes the program to enter a mode in which it
is possible to change the settings of the current color table (which
controls how the vaious layers are displayed).  The command language
for doing this is described below.  If you get into this mode accidentally,
you can get back to regular mode by typing "Q" or <UNDO>.

Color Table Control:

At the left side of the feedback window (bottom of black and white screen) is a pattern of
square dots.  Each dot represents a "color table".  The program uses the color display in
such a way that it has four bits per pixel, and it uses a particular four bit code for each layer
(as well as some combinations of layers, and outlines for selection, etc.).  The color table tells
the display what color to use for each of the 16 four-bit codes.  Consequently, changing the
color table changes how the various layers (etc.) look.  The dot for the color table currently
selected is made larger than the others.  A new color table can be selected by pointing at its
dot and clicking the "Mark" button.  Clicking the "Select" button anywhere in the color
table area will select the default color table (upper left).  The "Draw" button is used to copy
color tables around and create new ones.  The first click selects a table to move, and the
second selects the point to move it to.  If there is already a table at the destination, it is
overwritten.

Color Table Editing:



11

<TAB>C gets you into the color table editor, editing the currently selected color table.  The
color screen displays a collection of objects, including 16 rectangles (one for each pixel code)
at the top.  It also displays three color bars at the lower right.  Above the color bars is a
rectangle of the currently selected color, to which the color bars refer.  Note: color 0 is the
background color and is fairly hard to see against the background.  A color can be selected
by pointing at an example of it in any of the objects on the screen and clicking the Select
button (the invisible color-0 rectangle at the upper left is used to select the background
color).  The Mark button is used to move the markers up and down the color bars, and
hence change the color associated with the selected pixel code.  The marker will track the
cursor as long as Mark is held down.  If you are sloppy and cross over to another color bar,
its mark will jump to the cursor.  The Draw button causes the screen to be erased and re-
written.  When you have finished editing the color table, typing "Q" will exit the table
editor.

Parameter Feedback Summary:

Following is a summary of the things in the feedback area (bottom of the black & white
screen) and what they mean and how to change those that can be changed.  Many of the
changeable parameters are changed with a standard protocol.  Such a parameter can be
incremented by 1 (+1) by pointing at it and clicking the mark (left) button; can be
decremented (-1) by pointing and clicking the select (right) button; can be given a new value
by pointing and clicking the draw (middle) button, then typing the new value, followed by
<CR> or <ESC>.

"Scale" There are two scale parameters, one for the color window and one for
the black & white window.  Either may be incremented (by clicking the
mark button), decremented (by clicking the select button), or set to a
value (by pointing the cursor at the desired position on the scale bar
and clicking the draw button).  The scales run from 1 to 20, 1 being too
small to be useful, and 20 being ridiculously large.  The particular scales
are chosen to be those for which the conversion is easy, so intermediate
scales are not available.  When the scale is changed,  an attempt is made
to keep the screen centered in the same place.

"Wiring Layer:/wd" This indicates which layer is currently selected for making wires, as well
as the default width for wires on each layer.  The selection is indicated
by a dark box drawn around the name of the layer.  The default width
is shown directly below the layer name, and is in lambda.  The selection
can be changed by pointing at the name of the layer and clicking any
button, or by any of a number of other commands described elsewhere
(see the "Drawing Wires" section).  The width parameters can each be
changed with the standard button protocol (mark for +1, select for -1,
draw to type in a new value).

"Curs Grid" The cursor in Chipmonk is gridded, which means that it caonnot be
moved to points not on the grid.  This parameter is the grid point
spacing, and is in points, each point being 1/2 lambda.  This parameter
starts out being set to 2 points (1 lambda) and it is recomended that you
not change it unless you really need to.  It can be changed using the
standard protocol, but the change does not take effect until the screen
scale is changed.

"Ticks" Chipmonk puts up a grid of white dots on the color screen and this
parameters controls their spacing.  The parameter is in lambda.  Setting
it to 0 turns the dots off (which can save screen refresh time).  It can be
changed using the standard protocol.

"Size Cutoff" This is two parameters: one (labelled "B") for the black & white screen,
and one (labelled "Color" on the line below) for the color screen.  This



12

parameter controls the cutoff size below which a cell is displayed as a
box, instead of having all its contents displayed.  Displaying as a box
makes screen refresh much faster, but doesn’t convey as much
information.  The range of values are from 1 to 200, with 1 meaning
display everything and 200 meaning display only cells which fill the
screen (more or less).  The units are arbitrary.  These parameters can be
changed using the standard protocol.

"Cif Lambda" This parameter controls the lambda in 1/100th micron at which a Cif file
is created.  It starts out at 250, which means lambda is 2.5 micron.
Since Chipmonk works in lambda, the setting of this parameter is
relevant only during the actual writing of the Cif file.  Several Cif files
may be written from the same layout, at different scales.  This
parameter can be changed using the standard protocol.

"Select New" This parameter controls a mode in which newly created objects are
selected, and all others de-selected.  If the mode is off, creation of
objects does not change what is selected.

"Orientation" This parameter controls the orientation at which new transistors and
contacts are created.  0 is standard, 2 is rotated 90 degrees to the right, 4
is 180 degrees, etc.  Only even values are allowed.  Creating a transistor
in orientation 4 is exactly equivalent to creating it in orientation 2 and
rotating it once.  This parameter can be changed using the standard
protocol.

"Pushes" This parameter displays the number of levels deep you have pushed into
cells.  It starts at 0, which is the top level, and increments with each
push and decrements with each pop.  This parameter cannot be
changed, as it displays an internal condition.

"Currently in Cell" This parameter displays the name of the cell into which you have pushed
(the bottom level, if you have pushed more than one level).  This is the
name of the cell you are changing.  This parameter cannot be changed,
as it displays an internal condition.

"X-Ratio" This set of parameters (width, length, and implant) controls the default at
which new (non-pullup) transistors are created.  Width and length are in
lambda and can be changed with the standard protocol.  Implant is
boolean, and can be set true with the mark button and false with the
select button.

"P-Ratio" This set of parameters (width and length) controls the default at which
new pullups are created.  Width and length are in lambda and can be
changed with the standard protocol.

"Items Selected" This parameter displays a count of the number of items selected.  This
parameter cannot be changed, as it displays an internal condition.

"Core Used" This parameter displays a count of the number of words currently in use
by the data structure holding the drawing.  There are two numbers, the
first is MDS words used (used mostly for strings) and the second is
"Long Pointer" space words used (for everything else). items selected.
These parameters cannot be changed, as they display internal conditions.

"Mark X, Y" This displays the current location of the "mark", in lambda, in the
internal coordinate system of Chipmonk.  These absolute values are not
of too much use (except for debugging), but differences can tell you
sizes of things (see next parameter).  These parameters cannot be



13

changed, except of course by moving the "mark".

"Mark DX, DY" This displays the difference between the current location of the "mark"
and its previous location, in lambda.  This is useful for finding out how
bit some cell or other feature (or the whole drawing) is.  Placing the
mark at one corner, then placing it at the opposite corner will cause the
object’s size (with or without minus sign(s), depending on the corners
chosen, and the order) to appear in this parameter.

New Stuff Summary:
For those who have read the previous release of this write-up, the following is a re-listing of
the paragraphs which have changed since then.

Q-Draw If you are not drawing wires, Q-Draw will make one wire, from the mark
to the x or y of the cursor (i.e. either horizontal or vertical).  It will not
put you into wiring mode.  This is equvalent to "Draw, Draw, <ESC>",
except that the length of the wire is slightly different.  If you are already
drawing wires, Q-Draw will make one more wire, and quit drawing wires
(equivalent to "Draw, <ESC>").

<Ctrl><TAB>O Write Output file.  The current drawing is output as a .Chip file.  Note
that if you have pushed into a cell, it is the drawing of that cell that is
output; structure above the cell will be lost if you then quit.  The
program forces the extension to be .Chip.  If you type the null string
(<CR>) when it asks for the file name, it uses the file name from the
most recent Input or Output.  Before writing the file, Chipmonk checks
to see if it already exists, and if it does, asks for confirmation (Y/N).

<any or none>-= Move all selected items to the LEFT by one lambda..

<any or none>-\ Move all selected items to the RIGHT by one lambda..

<any or none>-<LF> Move all selected items UP by one lambda..

<any or none>-<DEL> Move all selected items DOWN by one lambda..

<ctrl>-Z Display all cell names.  This command currently works in a kludgey
fashion.  A drawing is created consisting of the cell names, and the
program goes into a mode in which that drawing is displayed on the
B&W screen.  The windowing and scaling commands are used to move
around in the drawing.  If there are a lot of cells, it can take a minute
to generate the drawing.  To get out of the mode, type UNDO (the
blank key below <DEL>).  The correct scale for looking at the names is
9, but you will probably need to find them using a smaller scale.  This
stuff is all going to change.  While in this mode, you can select cell
names.  <Ctrl>-D will then delete all selected cell definitions (usually
without killing the program -- it is suggested that you save your file
before doing this).

T-Mark Enter text.  If the cursor is on a wire or contact, the program waits for
you to type a string (terminated by <CR> or <ESC>) which it then
attaches as a property to the wire or contact.  The text appears on the
Black&White screen.  On the color screen, its position is indicated by a
small white rectangle in the upper left corner of the object.  The text
gets put into the CIF file, so it can be used to give a node a name (the
CIF extractor finds it).  The text currently does not get put into a press
file written with the Hardcopy command (but will show up in one made
with the CIF printer program).



14

<Ctrl><TAB>S Output Spice file.  The program asks for a file name, then writes a .CKT
file, which can be input to spice.  The file will contain transistors, and
capacitors to simulate the capacitance (in addition to that associated with
the gates of transistors) for each node.  The generation of this
information is currently both slow and n-squared.  For a circuit with 50
transistors (which is probably larger than spice will accept) it takes 5 to
30 minutes to generate the file.  The circuit is generated for whatever is
currently at the top level, so, to keep things small, it is suggested that
you gather everything you want in the spice file into a cell and push
into the cell, then generate the file.  Eventually a new algorithm will be
used and this stuff will become faster, more accurate, and more reliable.

<Ctrl><TAB>E Open error file.  The program asks for a file name, then opens that file,
ready to display its error messages (see <TAB>E below).  The file should
consist of error lines, each of which starts with two numbers which are
the coordinates of the error.

<TAB>E Display next error line.  This causes the program to display (on top of
part of the feed-back area) the next line from the file opened with
<Ctrl><TAB>E (above).  If the line begins with two numbers, they are
taken to be the coordinates of the error in CIF units (the current setting
of "Cif Lambda" is used) and the Mark is placed at that point, and that
point is centered on the color screen.  If the line does not begin with
two numbers, the mark and screen are not moved.  Then the line
(without the coordinates, if any) is displayed.  Note: you can go back to
the first line of the file by simply re-opening it.

<TAB>F Change font.  This causes the program to change which font it uses for
displaying the feedback information (and any text).  There are three
fonts it can use, and this cycles it through them.

<TAB>C Change color table.  This causes the program to enter a mode in which it
is possible to change the settings of the current color table (which
controls how the vaious layers are displayed).  The command language
for doing this is described below.  If you get into this mode accidentally,
you can get back to regular mode by typing "Q" or <UNDO>.

Color Table Control:

At the left side of the feedback window (bottom of black and white screen) is a pattern of
square dots.  Each dot represents a "color table".  The program uses the color display in
such a way that it has four bits per pixel, and it uses a particular four bit code for each layer
(as well as some combinations of layers, and outlines for selection, etc.).  The color table tells
the display what color to use for each of the 16 four-bit codes.  Consequently, changing the
color table changes how the various layers (etc.) look.  The dot for the color table currently
selected is made larger than the others.  A new color table can be selected by pointing at its
dot and clicking the "Mark" button.  Clicking the "Select" button anywhere in the color
table area will select the default color table (upper left).  The "Draw" button is used to copy
color tables around and create new ones.  The first click selects a table to move, and the
second selects the point to move it to.  If there is already a table at the destination, it is
overwritten.

Color Table Editing:

<TAB>C gets you into the color table editor, editing the currently selected color table.  The
color screen displays a collection of objects, including 16 rectangles (one for each pixel code)
at the top.  It also displays three color bars at the lower right.  Above the color bars is a
rectangle of the currently selected color, to which the color bars refer.  Note: color 0 is the
background color and is fairly hard to see against the background.  A color can be selected



15

by pointing at an example of it in any of the objects on the screen and clicking the Select
button (the invisible color-0 rectangle at the upper left is used to select the background
color).  The Mark button is used to move the markers up and down the color bars, and
hence change the color associated with the selected pixel code.  The marker will track the
cursor as long as Mark is held down.  If you are sloppy and cross over to another color bar,
its mark will jump to the cursor.  The Draw button causes the screen to be erased and re-
written.  When you have finished editing the color table, typing "Q" will exit the table
editor.

"Select New" This parameter controls a mode in which newly created objects are
selected, and all others de-selected.  If the mode is off, creation of
objects does not change what is selected.


