-- File: RedBlackTreeImpl.mesa -- Last edited by MBrown on October 20, 1983 11:37 pm -- Notes on the data structure -- The color of a node should be thought of as the color of the edge coming into the --node. The general color invariants for red-black trees are that (1) all external nodes --are black, while internals are red or black, and (2) all paths from an internal node --to an external node contain the same number of black arcs. -- The tree edges of a 2-3-4 tree become black arcs in the binarized red-black --representation, while the internal 2-, 3-, and 4-nodes are represented by connected --red subtrees: the degenerate one with one node, both of the possible two node trees, --and the completely balanced tree on three nodes. Another way of stating this --invariant is to say that no path contains two consecutive red arcs. -- The top-down insertion algorithm below is from Program 5 of "A Dichromatic Framework --for Balanced Trees" by Leo Guibas and Bob Sedgewick. The deletion algorithm --incorporates several changes to the algorithm in that paper. This program was --originally adapted from Dave Gifford's StringStorageImpl.Mesa. DIRECTORY Basics USING [Comparison], OrderedSymbolTable USING[ Node, Key, GetKey, Compare, Table, ErrorType]; RedBlackTreeImpl: CEDAR MONITOR IMPORTS OrderedSymbolTable EXPORTS OrderedSymbolTable SHARES OrderedSymbolTable = BEGIN OPEN OrderedSymbolTable; Comparison: TYPE = Basics.Comparison; RedBlack: TYPE = BOOL; Red: BOOL = TRUE; Black: BOOL = FALSE; DuplicateKey: PUBLIC ERROR = CODE; Error: PUBLIC ERROR [ec: ErrorType] = CODE; doChecking: BOOLEAN = TRUE; -- forces extra validity checking of inputs. -- Shared variables y: Node; z: Node ← NIL; -- Procedures exported to OrderedSymbolTable Initialize: PUBLIC ENTRY PROC [sentinel1, sentinel2: Node] = { sentinel1.rbColor ← Red; sentinel1.rbLLink ← sentinel1.rbRLink ← NIL; sentinel2.rbColor ← Black; sentinel2.rbLLink ← sentinel2.rbRLink ← sentinel1; y ← sentinel1; z ← sentinel2 }; CreateTable: PUBLIC ENTRY PROC[header: Node] RETURNS[Table] = { IF z = NIL THEN ERROR Error[notInitialized]; header.rbColor ← Black; header.rbLLink ← NIL; header.rbRLink ← z; RETURN [[header]] }; Insert: PUBLIC ENTRY PROC[self: Table, nodeToInsert: Node, insertKey: Key] = { -- Requires self.rbColor = self.rbRLink.rbColor = z.rbColor = Black, y.rbColor = Red. x, gg, g, f: Node; keyAlreadyPresent: BOOLEAN ← TRUE; c: Comparison ← greater; --since actual tree sits in right subtree of header node... -- search the tree, rebalancing on the way down. IF doChecking AND self.rbLLink # NIL THEN ERROR Error[badTable]; f ← self; x ← f.rbRLink; DO IF (x.rbLLink.rbColor=Red) AND (x.rbRLink.rbColor=Red) THEN { IF x=z THEN { -- an external node has been found; check to be sure that a duplicate key is not present. IF c = equal THEN EXIT; -- perform the insertion. x ← nodeToInsert; keyAlreadyPresent ← FALSE; x.rbLLink ← z; x.rbRLink ← z; IF c = less THEN f.rbLLink ← x ELSE f.rbRLink ← x; c ← equal; };--IF x is external -- do color flip. x.rbLLink.rbColor ← Black; x.rbRLink.rbColor ← Black; x.rbColor ← Red; IF f.rbColor=Red THEN { -- two reds in a row, so rebalance (gg may be self). g ← Balance[gg, g, f, x]; x ← g; };--IF parent is red };--IF both children are red IF c = equal THEN EXIT; gg ← g; g ← f; f ← x; x ← IF (c ← Compare[insertKey, x]) = less THEN x.rbLLink ELSE x.rbRLink; ENDLOOP; self.rbRLink.rbColor ← Black; --root is always black IF keyAlreadyPresent THEN RETURN WITH ERROR DuplicateKey; };--Insert Delete: PUBLIC ENTRY PROC[self: Table, deleteKey: Key] RETURNS [deletedNode: Node] = { f, result, parentOfResult: Node; x, g, b: Node; c: Comparison; result ← NIL; IF doChecking AND self.rbLLink # NIL THEN ERROR Error[badTable]; f ← self; x ← f.rbRLink; IF x = z THEN RETURN[NIL]; y.rbColor ← Black; --children of external nodes have no red to contribute to rebalancing. -- Inject a red node at the root if necessary. IF (x.rbLLink.rbColor = Black) AND (x.rbRLink.rbColor = Black) THEN x.rbColor ← Red; IF (c ← Compare[deleteKey, x]) = equal THEN { result ← x; parentOfResult ← f; }; -- Search the tree for the symmetric order succecessor of the node containing key --(or the node itself if its RLink is z) DO BEGIN g ← f; f ← x; IF c = less THEN { b ← x.rbRLink; x ← x.rbLLink; } ELSE { b ← x.rbLLink; x ← x.rbRLink; }; -- If x is the node we're to return, save pointers to it and its parent for later. IF (c ← Compare[deleteKey, x]) = equal AND x # z THEN { result ← x; parentOfResult ← f; }; -- Note that if x is Red, no rotations happen now; this is what re-establishes the --properties of g and f eventually... IF x.rbColor=Red OR x.rbLLink.rbColor=Red OR x.rbRLink.rbColor=Red THEN LOOP; IF b.rbColor=Red THEN { -- Single rotation to move the red link b onto the search path. IF b = f.rbLLink THEN { f.rbLLink ← b.rbRLink; b.rbRLink ← f; } ELSE { f.rbRLink ← b.rbLLink; b.rbLLink ← f; }; f.rbColor ← Red; b.rbColor ← Black; IF f = g.rbLLink THEN g.rbLLink ← b ELSE g.rbRLink ← b; -- Move back up the path to allow g and f to get re-established x ← b; GOTO FixCompare; };--IF b.rbColor=Red IF x=z THEN EXIT; -- It is essential that this exit test be right here - after the single rotation, --but before the double rotations. x.rbColor ← Red; IF b.rbLLink.rbColor = Red THEN { b.rbLLink.rbColor ← Black; x ← Balance[g, f, b, b.rbLLink]; GOTO FixCompare; }; IF b.rbRLink.rbColor = Red THEN { b.rbRLink.rbColor ← Black; x ← Balance[g, f, b, b.rbRLink]; GOTO FixCompare; }; -- "Color flip" f.rbColor ← Black; b.rbColor ← Red; EXITS FixCompare => c ← Compare[deleteKey, x]; END ENDLOOP; self.rbRLink.rbColor ← Black; z.rbColor ← Black; y.rbColor ← Red;--undo the color mess -- If search has been successful, f is now the symmetric order successor of result --(or result itself if result.rbRLink = z), and g is its parent. f is Red, unless --it is also the root. x and b are irrelevant. IF result # NIL THEN { -- detach f from the tree. IF g.rbLLink = f THEN g.rbLLink ← z ELSE g.rbRLink ← z; -- if f is not the result node, splice f into tree in place of result. IF f # result THEN { IF parentOfResult.rbLLink = result THEN parentOfResult.rbLLink ← f ELSE parentOfResult.rbRLink ← f; f.rbLLink ← result.rbLLink; f.rbRLink ← result.rbRLink; f.rbColor ← result.rbColor; };--IF f # result };--IF result # NIL RETURN[result]; };--Delete Lookup: PUBLIC ENTRY PROC[self: Table, lookupKey: Key] RETURNS [equalNode: Node] = { c: Comparison; IF doChecking AND self.rbLLink # NIL THEN ERROR Error[badTable]; equalNode ← self.rbRLink; DO IF equalNode = z THEN RETURN [NIL]; IF (c ← Compare[lookupKey, equalNode]) = equal THEN RETURN [equalNode]; IF c = less THEN equalNode ← equalNode.rbLLink ELSE equalNode ← equalNode.rbRLink; ENDLOOP }; Lookup3: PUBLIC ENTRY PROC[self: Table, lookupKey: Key] RETURNS[leftNode, equalNode, rightNode: Node] = { c: Comparison; IF doChecking AND self.rbLLink # NIL THEN ERROR Error[badTable]; equalNode ← self.rbRLink; DO IF equalNode = z THEN RETURN[leftNode, NIL, rightNode]; IF (c ← Compare[lookupKey, equalNode]) = equal THEN EXIT; IF c = less THEN { rightNode ← equalNode; equalNode ← equalNode.rbLLink } ELSE { leftNode ← equalNode; equalNode ← equalNode.rbRLink; }; ENDLOOP; IF equalNode.rbLLink # z THEN { leftNode ← equalNode.rbLLink; WHILE leftNode.rbRLink # z DO leftNode ← leftNode.rbRLink ENDLOOP }; IF equalNode.rbRLink # z THEN { rightNode ← equalNode.rbRLink; WHILE rightNode.rbLLink # z DO rightNode ← rightNode.rbLLink ENDLOOP }; RETURN[leftNode, equalNode, rightNode] }; LookupSmallest: PUBLIC ENTRY PROC[self: Table] RETURNS[smallestNode: Node] = { IF doChecking AND self.rbLLink # NIL THEN ERROR Error[badTable]; smallestNode ← self.rbRLink; IF smallestNode=z THEN RETURN[NIL]; UNTIL smallestNode.rbLLink=z DO smallestNode ← smallestNode.rbLLink ENDLOOP; RETURN[smallestNode] }; LookupNextLarger: PUBLIC ENTRY PROC[self: Table, lookupKey: Key] RETURNS[largerNode: Node] = { x: Node ← self.rbRLink; IF doChecking AND self.rbLLink # NIL THEN ERROR Error[badTable]; largerNode ← NIL; UNTIL x=z DO IF Compare[lookupKey, x] = less THEN { largerNode ← x; x ← x.rbLLink } ELSE x ← x.rbRLink; ENDLOOP; RETURN[largerNode] }; LookupLargest: PUBLIC ENTRY PROC[self: Table] RETURNS[largestNode: Node] = { IF doChecking AND self.rbLLink # NIL THEN ERROR Error[badTable]; largestNode ← self.rbRLink; IF largestNode=z THEN RETURN[NIL]; UNTIL largestNode.rbRLink=z DO largestNode ← largestNode.rbRLink ENDLOOP; RETURN[largestNode] }; LookupNextSmaller: PUBLIC ENTRY PROC [self: Table, lookupKey: Key] RETURNS[smallerNode: Node] = { x: Node ← self.rbRLink; IF doChecking AND self.rbLLink # NIL THEN ERROR Error[badTable]; smallerNode ← NIL; UNTIL x=z DO IF Compare[lookupKey, x] = greater THEN { smallerNode ← x; x ← x.rbRLink } ELSE x ← x.rbLLink; ENDLOOP; RETURN[smallerNode] }; DestroyTable: PUBLIC--EXTERNAL--PROC [self: Table] = { IF doChecking AND self.rbLLink # NIL THEN ERROR Error[badTable]; [] ← CreateTable[self] }; EnumerateIncreasing: PUBLIC ENTRY PROC [ self: Table, procToApply: PROC [Node] RETURNS [--stop--BOOLEAN]] = { -- quick and dirty recursive implementation, has overhead of one procedure call --per call to procToApply. VisitSubtree: INTERNAL PROC [root: Node] RETURNS [--stop--BOOLEAN] = { -- never called with root = z; this saves half of the procedure calls. IF root.rbLLink # z AND VisitSubtree[root.rbLLink] THEN RETURN [TRUE]; IF procToApply[root] THEN RETURN [TRUE]; IF root.rbRLink # z THEN RETURN [VisitSubtree[root.rbRLink]] ELSE RETURN [FALSE] }; IF doChecking AND self.rbLLink # NIL THEN ERROR Error[badTable]; IF self.rbRLink = z THEN RETURN; [] ← VisitSubtree [self.rbRLink] }; Assert: PROC[p: BOOLEAN] = { IF NOT p THEN ERROR Error[badTable] }; CheckTable: PUBLIC PROC [self: Table] = { -- ERRORs Error[badTable] if the table t is not well-formed. Check1: PROC[x: Node, maxKey: Key] RETURNS[Key, INTEGER, BOOLEAN] = { -- Returns largest key in subtree rooted at x, number of black arcs on paths to --external nodes from x, and whether or not this node is red. ERRORs if it finds --two reds in a row, finds different distances to the external nodes (counting --only red arcs), or finds keys out of order. If x is an internal node, --increments count. dl, dr: INTEGER; redChild: BOOLEAN; IF x = z THEN BEGIN RETURN[maxKey, 0, FALSE]; END; [maxKey, dl, redChild] ← Check1[x.rbLLink, maxKey]; Assert[~(redChild AND (x.rbColor=Red))]; Assert[Compare[maxKey,x] = (IF count=0 THEN equal ELSE less)]; count ← count + 1; [maxKey, dr, redChild] ← Check1[x.rbRLink, GetKey[x]]; Assert[~(redChild AND (x.rbColor=Red))]; Assert[dl=dr]; RETURN[maxKey, dl+(IF x.rbColor=Black THEN 1 ELSE 0), x.rbColor=Red]; };--Check1 count: LONG INTEGER ← 0; -- check structure of the table header, sentinels, etc. Assert[self.rbLLink=NIL]; Assert[z.rbLLink=y]; Assert[z.rbRLink=y]; -- The following assertions may fail during intermediate states of Delete. -- Assert[z.rbColor=Black]; -- Assert[y.rbColor=Red]; -- Assert[self.rbRLink.rbColor=Black]; -- check structure of table. IF self.rbRLink # z THEN [] ← Check1[self.rbRLink, GetKey[LookupSmallest[self]]] }; RootNode: PUBLIC ENTRY PROC [self: Table] RETURNS [rootNode: Node] = { IF doChecking AND self.rbLLink # NIL THEN ERROR Error[badTable]; RETURN [IF self.rbRLink = z THEN NIL ELSE self.rbRLink] }; -- Private procedure, used by Insert (1 call), Delete (2 calls). Balance: INTERNAL PROC [gg, g, f, x: Node] RETURNS [Node] = { -- Balances a local portion of the tree. -- g is a child of gg (it may be either child). -- if g -rlink-> f -rlink-> x, or x <-llink- f <-llink- g, then only a single --rotation is needed; otherwise two rotations are used. -- when called from insert, g is black and both f and x are red. -- after rebalancing, the new g is black, and is the parent of both the new f and --the new x, which are both red. t: Node; tc: RedBlack; -- do first rotation if necessary IF f=g.rbLLink THEN { IF x=f.rbRLink THEN { f.rbRLink ← x.rbLLink; x.rbLLink ← f; t ← f; f ← x; x ← t; }; } ELSE { IF x=f.rbLLink THEN { f.rbLLink ← x.rbRLink; x.rbRLink ← f; t ← f; f ← x; x ← t; }; }; -- do second rotation IF x=f.rbLLink THEN { g.rbLLink ← f.rbRLink; f.rbRLink ← g; } ELSE { g.rbRLink ← f.rbLLink; f.rbLLink ← g; }; -- update link in great grandparent IF g = gg.rbRLink THEN gg.rbRLink ← f ELSE gg.rbLLink ← f; -- do color swap (when called from Insert, g is always Black and f is always Red) tc ← g.rbColor; g.rbColor ← f.rbColor; f.rbColor ← tc; -- return g, new child of gg (name changed in second rotation) RETURN[f] }; END.--RedBlackTreeImpl CHANGE LOG Created by MBrown on January 18, 1980 10:58 AM -- It worked the first time! Changed by MBrown on January 19, 1980 8:50 PM -- Implemented EnumerateIncreasing. Fixed a bug in CheckTable that defeated checking of --key order. Made changes to allow MinusInfinity as a Key. Changed Insert to use --keyPresent flag, as in Guibas-Sedgewick Program 5. Changed by MBrown on 20-Jan-80 13:28 -- Changed Balance to compare pointers rather than keys, and eliminated the code for --"swap g and f" since only g is returned from Balance. Changed by MBrown on March 4, 1980 2:17 PM -- Moved inline definitions of Node structure to OrderedSymbolTable, which we now OPEN. Changed by MBrown on April 13, 1980 4:21 PM -- Coded Delete. Made LookupSmallest and LookupNextLarger PUBLIC, since they may be --useful in testing Delete. Changed by MBrown on April 13, 1980 6:01 PM -- Delete seemed to work the first time, a surprise. I removed some the redundant --checks that were there for debugging; the old version will be called --RedBlackCheckedImpl. Changed by MBrown on May 1, 1980 10:03 PM -- Changed Delete to avoid a search from the root to find the parent of the result node. --This involved actually understanding the algorithm; "cleaning up" the way rebalancing --is done introduced several bugs. Changed by MBrown on May 7, 1980 6:36 PM -- Added DestroyTable and Size. We now allocate/free TableObjects using procs in the --OrderedSymbolTable interface. Renamed module. Changed by MBrown on August 11, 1980 10:17 PM -- Major revisions (prompted by first real client, the Juniper locks code, which will --make further changes for its special needs). We take the key comparison function from --the interface, instead of requiring "<" to be applicable. This means that comparisons --may be expensive, so we save the result in a local variable to avoid doing twice the --required number. MinusInfinity is no longer treated specially in the code. We do --explicit field selections for the links and color fields, instead of using inline --procs from the interface. Added Lookup3 proc for Juniper locks application. We now --pass in ALL storage, including storage for table objects. y and z now point to nodes --in the global frame of this module, rather than being replicated for each table; thus --it is now unsafe for multiple processes to be inside of an instance of this module, --even if they operate on distinct tables (it was always unsafe to perform concurrent --operations on a single table). Changed by MBrown on October 29, 1980 8:42 PM -- Eliminated all reference to MinusInfinity (it was being used in CheckTable). Changed by MBrown on January 7, 1981 9:47 PM -- Changes for collectible storage, module monitor. Changed by MBrown on March 1, 1982 3:30 pm -- New version for use in Alpine. No allocation done in package, even for sentinels. No --more "AssignKey[,]", which was used only for sentinels; instead, check for z explicitly. No --more "Key[]", and Compare now takes a Key and a Node. A Table is just a Node; no count --of number of nods in a table is kept in the table. -- Other variants that are possible (but hopefully are not required): -- (1) use < and = instead of 3-way compares. -- (2) use object monitor (requires replicating z and y per-table), or no monitor. -- (3) Table and Node are different types (this is required for object monitor, to hold y and z.) Changed by MBrown on March 2, 1982 4:20 pm -- Table is a RECORD [Node]. Clean up errors in interface. Changed by MBrown on June 28, 1982 11:12 am -- CEDAR implementation. Changed by MBrown on August 26, 1982 11:11 pm -- Use Environment.Comparison. Changed by MBrown on November 10, 1982 6:34 pm -- DuplicateKey is now an ERROR. Changed by MBrown on October 20, 1983 11:38 pm -- Conversion to Cedar 5.0.