-- file PGSParse.mesa -- last modified by Satterthwaite, June 18, 1982 1:29 pm DIRECTORY PGSConDefs: TYPE USING [ AcquireZone, ReleaseZone, outchar, outeol, outnum, outstring, resetoutstream], PGS1: TYPE USING [ ActionSeq, ActionStack, LinkSeq, LinkStack, StateSeq, StateStack, Token, Value, ValueSeq, ValueStack, AssignDescriptors, Atom, ErrorContext, ProcessQueue, ResetScanIndex, ScanInit, ScanReset, TokenValue], ParseTable: FROM "PGSParseTable" USING [ ActionEntry, ActionTag, NActionsRef, NLengthsRef, NStartsRef, NSymbolsRef, NTIndex, NTState, NTSymbol, NTDefaultsRef, ProdDataRef, State, TableRef, TActionsRef, TIndex, TLengthsRef, TStartsRef, TSymbol, TSymbolsRef, VocabularyRef, DefaultMarker, EndMarker, FinalState, InitialState, InitialSymbol]; Parser: PROGRAM IMPORTS PGSConDefs, PGS1 EXPORTS PGS1 = { -- Mesa parser with error recovery OPEN ParseTable, PGS1; ErrorLimit: CARDINAL = 25; Scan: ActionTag = [FALSE, 0]; inputSymbol: TSymbol; input: PROC RETURNS [token: Token]; inputLoc: CARDINAL; inputValue: PGS1.Value; lastToken: Token; NullSymbol: TSymbol = 0; zone: UNCOUNTED ZONE ← NIL; s: PGS1.StateStack; l: PGS1.LinkStack; v: PGS1.ValueStack; top: CARDINAL; q: PGS1.ActionStack; qI: CARDINAL; lalrTable: ParseTable.TableRef; -- transition tables for terminal input symbols tStart: TStartsRef; tLength: TLengthsRef; tSymbol: TSymbolsRef; tAction: TActionsRef; -- transition tables for nonterminal input symbols nStart: NStartsRef; nLength: NLengthsRef; nSymbol: NSymbolsRef; nAction: NActionsRef; ntDefaults: NTDefaultsRef; -- production information prodData: ProdDataRef; -- initialization/termination ParseInit: PROC [tablePtr: ParseTable.TableRef] = { zone ← PGSConDefs.AcquireZone[]; lalrTable ← tablePtr; -- for error reporting PGS1.ScanInit[tablePtr]; tStart ← @tablePtr[tablePtr.parseTable.tStart]; tLength ← @tablePtr[tablePtr.parseTable.tLength]; tSymbol ← @tablePtr[tablePtr.parseTable.tSymbol]; tAction ← @tablePtr[tablePtr.parseTable.tAction]; nStart ← @tablePtr[tablePtr.parseTable.nStart]; nLength ← @tablePtr[tablePtr.parseTable.nLength]; nSymbol ← @tablePtr[tablePtr.parseTable.nSymbol]; nAction ← @tablePtr[tablePtr.parseTable.nAction]; ntDefaults ← @tablePtr[tablePtr.parseTable.ntDefaults]; prodData ← @tablePtr[tablePtr.parseTable.prodData]; s ← NIL; q ← NIL; ExpandStack[100]; ExpandQueue[50]}; ParseReset: PROC = INLINE { EraseQueue[]; EraseStack[]; PGSConDefs.ReleaseZone[zone]; zone ← NIL}; InputLoc: PUBLIC PROC RETURNS [CARDINAL] = {RETURN [inputLoc]}; -- * * * * Main Parsing Procedures * * * * -- Parse: PUBLIC PROC [table: ParseTable.TableRef] RETURNS [complete: BOOLEAN, nTokens, nErrors: CARDINAL] = { currentState: State; lhs: NTSymbol; i, valid, k, m: CARDINAL; -- stack pointers tI: TIndex; nI: NTIndex; action: ActionEntry; ParseInit[table]; input ← PGS1.Atom; nErrors ← 0; complete ← TRUE; i ← top ← valid ← 0; qI ← 0; s[0] ← currentState ← InitialState; lastToken.class ← NullSymbol; inputSymbol ← InitialSymbol; inputValue ← 0; inputLoc ← 0; WHILE currentState # FinalState DO BEGIN tI ← tStart[currentState]; FOR tI IN [tI .. tI + tLength[currentState]) DO SELECT tSymbol[tI] FROM inputSymbol, DefaultMarker => EXIT; ENDCASE; REPEAT FINISHED => GO TO SyntaxError; ENDLOOP; action ← tAction[tI]; IF ~action.tag.reduce THEN { -- scan or scan reduce entry IF qI > 0 THEN { FOR k IN (valid..i] DO s[k] ← s[top+(k-valid)] ENDLOOP; PGS1.ProcessQueue[qI, top]; qI ← 0}; IF (top ← valid ← i ← i+1) >= s.length THEN ExpandStack[25]; lastToken.class ← inputSymbol; v[i] ← inputValue; l[i] ← inputLoc; [inputSymbol, inputValue, inputLoc] ← input[].token}; WHILE action.tag # Scan DO IF qI >= q.length THEN ExpandQueue[25]; q[qI] ← action; qI ← qI + 1; i ← i-action.tag.pLength; currentState ← s[IF i > valid THEN top+(i-valid) ELSE (valid ← i)]; lhs ← prodData[action.transition].lhs; BEGIN IF currentState <= LAST[NTState] THEN { nI ← nStart[currentState]; FOR nI IN [nI..nI+nLength[currentState]) DO IF lhs = nSymbol[nI] THEN { action ← nAction[nI]; GO TO nFound}; ENDLOOP}; action ← ntDefaults[lhs]; EXITS nFound => NULL; END; i ← i+1; ENDLOOP; IF (m ← top+(i-valid)) >= s.length THEN ExpandStack[25]; s[m] ← currentState ← action.transition; EXITS SyntaxError => { lastToken.value ← v[top]; lastToken.index ← l[top]; top ← top - 1; complete ← SyntaxError[(nErrors←nErrors+1)>ErrorLimit]; i ← valid ← top; qI ← 0; lastToken.class ← NullSymbol; currentState ← s[i]; [inputSymbol, inputValue, inputLoc] ← input[].token; IF ~complete THEN EXIT}; END; ENDLOOP; PGS1.ProcessQueue[qI, top]; nErrors ← nErrors + ([nTokens: nTokens] ← PGS1.ScanReset[nErrors]).nErrors; ParseReset[]; RETURN}; ExpandStack: PROC [delta: CARDINAL] = { oldSize: NAT = IF s = NIL THEN 0 ELSE s.length; newSize: NAT = oldSize + delta; newS: PGS1.StateStack = zone.NEW[PGS1.StateSeq[newSize]]; newL: PGS1.LinkStack = zone.NEW[PGS1.LinkSeq[newSize]]; newV: PGS1.ValueStack = zone.NEW[PGS1.ValueSeq[newSize]]; FOR i: NAT IN [0..oldSize) DO newS[i] ← s[i]; newL[i] ← l[i]; newV[i] ← v[i] ENDLOOP; EraseStack[]; s ← newS; l ← newL; v ← newV; PGS1.AssignDescriptors[qd:q, vd:v, ld:l, pp:prodData]}; EraseStack: PROC = { IF s # NIL THEN {zone.FREE[@v]; zone.FREE[@l]; zone.FREE[@s]}}; ExpandQueue: PROC [delta: NAT] = { oldSize: NAT = IF q = NIL THEN 0 ELSE q.length; newSize: NAT = oldSize + delta; newQ: PGS1.ActionStack = zone.NEW[PGS1.ActionSeq[newSize]]; FOR i: NAT IN [0..oldSize) DO newQ[i] ← q[i] ENDLOOP; EraseQueue[]; q ← newQ; PGS1.AssignDescriptors[qd:q, vd:v, ld:l, pp:prodData]}; EraseQueue: PROC = {IF q # NIL THEN zone.FREE[@q]}; -- * * * * Error Recovery Section * * * * -- -- parameters of error recovery MinScanLimit: CARDINAL = 4; MaxScanLimit: CARDINAL = 12; InsertLimit: CARDINAL = 2; DiscardLimit: CARDINAL = 10; TreeSize: CARDINAL = 256; CheckSize: CARDINAL = MaxScanLimit+InsertLimit+2; -- tree management NodeIndex: TYPE = CARDINAL [0..TreeSize); NullIndex: NodeIndex = 0; StackNode: TYPE = RECORD[ father: NodeIndex, last: NodeIndex, state: State, symbol: TSymbol, aLeaf, bLeaf: BOOLEAN, link: NodeIndex]; TreeSpace: TYPE = ARRAY [0..TreeSize) OF StackNode; tree: LONG POINTER TO TreeSpace; nextNode: CARDINAL [0..TreeSize]; maxNode: NodeIndex; treeLimit: CARDINAL [0..TreeSize]; TreeFull: SIGNAL = CODE; Allocate: PROC [parent, pred: NodeIndex, terminal: TSymbol, stateNo: State] RETURNS [index: NodeIndex] = { IF (index ← nextNode) >= treeLimit THEN SIGNAL TreeFull; maxNode ← MAX[index, maxNode]; tree[index] ← StackNode[ father: parent, last: pred, state: stateNo, symbol: terminal, aLeaf: FALSE, bLeaf: FALSE, link: NullIndex]; nextNode ← nextNode+1; RETURN}; HashSize: INTEGER = 256; -- should depend on state count ? HashIndex: TYPE = [0..HashSize); HashSpace: TYPE = ARRAY HashIndex OF NodeIndex; hashTable: LONG POINTER TO HashSpace; HashValue: PROC [s: State] RETURNS [HashIndex] = INLINE { RETURN [s MOD HashSize]}; ParsingMode: TYPE = {ATree, BTree, Checking}; parseMode: ParsingMode; LinkHash: PROC [n: NodeIndex] = { htIndex: HashIndex = HashValue[tree[n].state]; tree[n].link ← hashTable[htIndex]; hashTable[htIndex] ← n}; DelinkHash: PROC [n: NodeIndex] = { htIndex: HashIndex = HashValue[tree[n].state]; p: NodeIndex ← NullIndex; FOR i: NodeIndex ← hashTable[htIndex], tree[i].link UNTIL i = NullIndex DO IF i = n THEN GO TO delete; p ← i; REPEAT delete => IF p = NullIndex THEN hashTable[htIndex] ← tree[n].link ELSE tree[p].link ← tree[n].link; ENDLOOP}; ExistingConfiguration: PROC [stack: StackRep] RETURNS [NodeIndex] = { n1, n2: NodeIndex; s1, s2: State; htIndex: HashIndex; aTree: BOOLEAN; SELECT parseMode FROM ATree => aTree ← TRUE; BTree => aTree ← FALSE; ENDCASE => RETURN [NullIndex]; htIndex ← HashValue[stack.extension]; FOR n: NodeIndex ← hashTable[htIndex], tree[n].link UNTIL n = NullIndex DO IF (IF aTree THEN tree[n].aLeaf ELSE tree[n].bLeaf) THEN { s1 ← stack.extension; s2 ← tree[n].state; n1 ← stack.leaf; n2 ← tree[n].father; DO IF s1 # s2 THEN EXIT; IF n1 = n2 THEN RETURN [n]; s1 ← tree[n1].state; s2 ← tree[n2].state; n1 ← tree[n1].father; n2 ← tree[n2].father; ENDLOOP}; ENDLOOP; RETURN [NullIndex]}; FindNode: PROC [parent, pred: NodeIndex, stateNo: State] RETURNS [index: NodeIndex] = { index ← ExistingConfiguration[[leaf:parent, extension:stateNo]]; IF index = NullIndex THEN { index ← Allocate[parent, pred, 0, stateNo]; SELECT parseMode FROM ATree => {tree[index].aLeaf ← TRUE; LinkHash[index]}; BTree => {tree[index].bLeaf ← TRUE; LinkHash[index]}; ENDCASE => NULL}; RETURN}; TrimTree: PROC [newNext: NodeIndex] = { WHILE nextNode > newNext DO nextNode ← nextNode-1; DelinkHash[nextNode] ENDLOOP}; -- parsing simulation ExtState: TYPE = [FIRST[State] .. LAST[State]+1]; NullState: ExtState = LAST[ExtState]; StackRep: TYPE = RECORD [ leaf: NodeIndex, extension: ExtState]; GetNTEntry: PROC [state: State, lhs: NTSymbol] RETURNS [ActionEntry] = { nI: NTIndex; IF state <= LAST[NTState] THEN { nI ← nStart[state]; FOR nI IN [nI..nI+nLength[state]) DO IF lhs = nSymbol[nI] THEN RETURN [nAction[nI]] ENDLOOP}; RETURN [ntDefaults[lhs]]}; ActOnStack: PROC [stack: StackRep, action: ActionEntry, nScanned: [0..1]] RETURNS [StackRep] = { currentNode, thread: NodeIndex; currentState: State; count: CARDINAL; currentNode ← thread ← stack.leaf; count ← nScanned; IF stack.extension = NullState THEN currentState ← tree[currentNode].state ELSE {currentState ← stack.extension; count ← count + 1}; UNTIL action.tag = Scan DO IF count > action.tag.pLength THEN { -- can be one greater currentNode ← FindNode[currentNode, thread, currentState]; count ← count - 1}; UNTIL count = action.tag.pLength DO currentNode ← tree[currentNode].father; count ← count + 1; ENDLOOP; currentState ← tree[currentNode].state; count ← 1; action ← GetNTEntry[currentState, prodData[action.transition].lhs]; ENDLOOP; IF count > 1 THEN currentNode ← FindNode[currentNode, thread, currentState]; stack.leaf ← currentNode; stack.extension ← action.transition; RETURN [stack]}; ParseStep: PROC [stack: StackRep, input: TSymbol] RETURNS [StackRep] = { currentState: State; tI: TIndex; action: ActionEntry; count: [0..1]; scanned: BOOLEAN ← FALSE; currentState ← IF stack.extension = NullState THEN tree[stack.leaf].state ELSE stack.extension; WHILE ~scanned DO tI ← tStart[currentState]; FOR tI IN [tI..tI+tLength[currentState]) DO SELECT tSymbol[tI] FROM input, DefaultMarker => EXIT; ENDCASE; REPEAT FINISHED => RETURN [[NullIndex, NullState]]; ENDLOOP; action ← tAction[tI]; IF ~action.tag.reduce THEN { -- shift or shift reduce count ← 1; scanned ← TRUE} ELSE count ← 0; stack ← ActOnStack[stack, action, count]; currentState ← stack.extension; ENDLOOP; RETURN [stack]}; -- text buffer management Insert: TYPE = ARRAY [0 .. 1+InsertLimit) OF Token; newText: LONG POINTER TO Insert; insertCount: CARDINAL; Buffer: TYPE = ARRAY [0 .. 1 + DiscardLimit + (MaxScanLimit+InsertLimit)) OF Token; sourceText: LONG POINTER TO Buffer; scanBase, scanLimit: CARDINAL; Advance: PROC = { sourceText[scanLimit] ← input[]; scanLimit ← scanLimit + 1}; Discard: PROC = {scanBase ← scanBase+1}; UnDiscard: PROC = {scanBase ← scanBase-1}; RecoverInput: PROC RETURNS [token: Token] = { IF insertCount <= InsertLimit THEN { token ← newText[insertCount]; IF (insertCount ← insertCount+1) > InsertLimit THEN zone.FREE[@newText]} ELSE { token ← sourceText[scanBase]; IF (scanBase ← scanBase+1) = scanLimit THEN { zone.FREE[@sourceText]; input ← PGS1.Atom}}; RETURN}; -- acceptance checking best: RECORD [ nAccepted: CARDINAL, nPassed: [0..1], node: NodeIndex, mode: ParsingMode, nDiscards: CARDINAL]; RightScan: PROC [node: NodeIndex] RETURNS [stop: BOOLEAN] = { stack: StackRep; state: State; nAccepted: CARDINAL; savedNextNode: NodeIndex = nextNode; savedMode: ParsingMode = parseMode; savedLimit: CARDINAL = treeLimit; parseMode ← Checking; treeLimit ← TreeSize; nAccepted ← 0; state ← tree[node].state; stack ← [leaf:node, extension:NullState]; FOR i: CARDINAL IN [scanBase .. scanLimit) DO IF state = FinalState THEN { nAccepted ← IF (sourceText[i].class = EndMarker) THEN scanLimit-scanBase ELSE 0; EXIT}; stack ← ParseStep[stack, sourceText[i].class]; IF stack.leaf = NullIndex THEN EXIT; nAccepted ← nAccepted + 1; state ← stack.extension; ENDLOOP; TrimTree[savedNextNode]; treeLimit ← savedLimit; SELECT (parseMode ← savedMode) FROM ATree => IF nAccepted + 1 > best.nAccepted + best.nPassed THEN best ← [nAccepted, 1, node, ATree, scanBase-1]; BTree => IF nAccepted > best.nAccepted + best.nPassed THEN best ← [nAccepted, 0, node, BTree, scanBase]; ENDCASE; RETURN [nAccepted >= MaxScanLimit]}; -- strategy management RowRecord: TYPE = RECORD [ index, limit: CARDINAL, stack: StackRep, next: RowHandle]; RowHandle: TYPE = LONG POINTER TO RowRecord; NextRow: PROC [list: RowHandle] RETURNS [row: RowHandle] = { s, t: TSymbol; row ← NIL; FOR r: RowHandle ← list, r.next UNTIL r = NIL DO IF r.index < r.limit THEN { s ← tSymbol[r.index]; IF row = NIL OR s < t THEN {row ← r; t ← s}}; ENDLOOP; RETURN}; FreeRowList: PROC [list: RowHandle] = { r: RowHandle ← list; UNTIL r = NIL DO next: RowHandle ← r.next; zone.FREE[@r]; r ← next; ENDLOOP}; Position: TYPE = {after, before}; Length: TYPE = CARDINAL [0..InsertLimit]; levelStart, levelEnd: ARRAY Position OF ARRAY Length OF NodeIndex; AddLeaf: PROC [stack: StackRep, s: TSymbol, thread: NodeIndex] RETURNS [stop: BOOLEAN] = { saveNextNode: NodeIndex = nextNode; stack ← ParseStep[stack, s]; IF stack.leaf = NullIndex OR ExistingConfiguration[stack] # NullIndex THEN { TrimTree[saveNextNode]; stop ← FALSE} ELSE { newLeaf: NodeIndex = Allocate[stack.leaf, thread, s, stack.extension]; SELECT parseMode FROM ATree => tree[newLeaf].aLeaf ← TRUE; BTree => tree[newLeaf].bLeaf ← TRUE; ENDCASE => ERROR; LinkHash[newLeaf]; stop ← RightScan[newLeaf]}; RETURN}; GrowTree: PROC [p: Position, n: Length] RETURNS [stop: BOOLEAN] = { tI: TIndex; tLimit: CARDINAL; stack: StackRep; state: State; rowList, r: RowHandle; s: TSymbol; rowList ← NIL; FOR i: NodeIndex IN [levelStart[p][n-1] .. levelEnd[p][n-1]) DO IF tree[i].symbol # 0 OR n = 1 THEN { ENABLE UNWIND => FreeRowList[rowList]; rowList ← NIL; stack ← [leaf:i, extension:NullState]; state ← tree[i].state; DO tI ← tStart[state]; tLimit ← tI + tLength[state]; s ← tSymbol[tLimit-1]; r ← zone.NEW[RowRecord]; r↑ ← RowRecord[index:tI, limit:tLimit, stack:stack, next:rowList]; rowList ← r; IF s # DefaultMarker THEN EXIT; r.limit ← r.limit - 1; stack ← ActOnStack[stack, tAction[tLimit-1], 0]; state ← stack.extension; ENDLOOP; UNTIL (r ← NextRow[rowList]) = NIL DO IF AddLeaf[r.stack, tSymbol[r.index], i] THEN GO TO found; r.index ← r.index + 1; ENDLOOP}; REPEAT found => stop ← TRUE; FINISHED => stop ← FALSE; ENDLOOP; FreeRowList[rowList]; rowList ← NIL; RETURN}; CheckTree: PROC [p: Position, n: Length] RETURNS [stop: BOOLEAN] = { FOR i: NodeIndex IN [levelStart[p][n] .. levelEnd[p][n]) DO ENABLE TreeFull => CONTINUE; IF RightScan[i] THEN GO TO found; REPEAT found => stop ← TRUE; FINISHED => stop ← FALSE; ENDLOOP; RETURN}; Accept: PROC = { s: TSymbol; discardBase: CARDINAL = best.nPassed; insertCount ← 1+InsertLimit; FOR p: NodeIndex ← best.node, tree[p].last WHILE p > rTop DO IF (s ← tree[p].symbol) # 0 THEN { insertCount ← insertCount-1; newText[insertCount] ← Token[s, PGS1.TokenValue[s], inputLoc]}; ENDLOOP; scanBase ← discardBase; IF best.nDiscards # 0 THEN { OPEN PGSConDefs; outstring["Text deleted is: "L]; FOR j: CARDINAL IN [1 .. best.nDiscards] DO TypeSym[sourceText[scanBase].class]; scanBase ← scanBase + 1; ENDLOOP}; IF insertCount <= InsertLimit THEN { OPEN PGSConDefs; IF scanBase # discardBase THEN outeol[1]; outstring["Text inserted is: "L]; FOR j: CARDINAL IN [insertCount .. InsertLimit] DO TypeSym[newText[j].class] ENDLOOP}; IF discardBase = 1 THEN { insertCount ← insertCount-1; newText[insertCount] ← sourceText[0]}; IF insertCount > InsertLimit THEN zone.FREE[@newText]; IF scanBase + best.nAccepted < scanLimit THEN PGS1.ResetScanIndex[sourceText[scanBase+best.nAccepted].index]; scanLimit ← scanBase + best.nAccepted; input ← RecoverInput; -- outeol[1]--}; TypeSym: PROC [sym: TSymbol] = { OPEN PGSConDefs, t: lalrTable.scanTable; vocab: VocabularyRef = @lalrTable[t.vocabBody]; outchar[' ,1]; IF sym IN [1..EndMarker) THEN FOR i: CARDINAL IN [lalrTable[t.vocabIndex][sym-1]..lalrTable[t.vocabIndex][sym]) DO outchar[vocab.text[i],1] ENDLOOP ELSE outnum[sym,1]}; --stack node indices rTop: NodeIndex; Recover: PROC = { ModeMap: ARRAY Position OF ParsingMode = [ATree, BTree]; place: Position; level: Length; inserts, discards: CARDINAL; stack: StackRep; threshold: CARDINAL; treeLimit ← TreeSize - CheckSize; hashTable↑ ← ALL[NullIndex]; rTop ← NullIndex; nextNode ← maxNode ← 1; best.nAccepted ← 0; best.nPassed ← 1; best.mode ← ATree; sourceText[0] ← lastToken; sourceText[1] ← Token[inputSymbol, inputValue, inputLoc]; scanBase ← 1; scanLimit ← 2; THROUGH [1 .. MaxScanLimit) DO Advance[] ENDLOOP; FOR i: CARDINAL IN [0 .. top) DO rTop ← Allocate[rTop, rTop, 0, s[i]]; ENDLOOP; parseMode ← BTree; levelStart[before][0] ← rTop ← FindNode[rTop, rTop, s[top]]; tree[rTop].bLeaf ← TRUE; levelEnd[before][0] ← nextNode; parseMode ← ATree; stack ← ParseStep[[leaf:rTop, extension:NullState], lastToken.class]; rTop ← FindNode[stack.leaf, rTop, stack.extension]; tree[rTop].symbol ← lastToken.class; tree[rTop].aLeaf ← tree[rTop].bLeaf ← TRUE; levelStart[after][0] ← rTop; levelEnd[after][0] ← nextNode; FOR level IN [1 .. LAST[Length]] DO FOR place IN Position DO parseMode ← ModeMap[place]; IF place = before THEN UnDiscard[]; -- try simple insertion (inserts=level) levelStart[place][level] ← nextNode; IF GrowTree[place, level !TreeFull => CONTINUE] THEN GO TO found; levelEnd[place][level] ← nextNode; -- try discards followed by 0 or more insertions FOR discards IN [1 .. level) DO Discard[]; IF CheckTree[place, level] THEN GO TO found; ENDLOOP; Discard[]; IF place = after THEN Advance[]; FOR inserts IN [0 .. level] DO IF CheckTree[place, inserts] THEN GO TO found; ENDLOOP; -- undo discards at this level FOR discards DECREASING IN [1..level] DO UnDiscard[] ENDLOOP; IF place = before THEN Discard[]; ENDLOOP; REPEAT found => NULL; FINISHED => { threshold ← (MinScanLimit+MaxScanLimit)/2; FOR discards IN [1..LAST[Length]] DO Discard[]; Advance[] ENDLOOP; UNTIL scanBase > DiscardLimit DO IF best.nAccepted >= threshold THEN GO TO found; Discard[]; FOR inserts IN Length DO FOR place IN Position DO parseMode ← ModeMap[place]; IF place = before THEN UnDiscard[]; IF CheckTree[place, inserts] THEN GO TO found; IF place = before THEN Discard[]; ENDLOOP; ENDLOOP; Advance[]; threshold ← IF threshold > MinScanLimit THEN threshold-1 ELSE MinScanLimit; REPEAT found => NULL; FINISHED => IF best.nAccepted < MinScanLimit THEN { best.mode ← ATree; best.nPassed ← 1}; ENDLOOP}; ENDLOOP}; SyntaxError: PROC [abort: BOOLEAN] RETURNS [success: BOOLEAN] = { OPEN PGSConDefs; IF abort THEN { PGS1.ErrorContext["Syntax Error"L, inputLoc]; outstring["... Parse abandoned."L]; outeol[1]; success ← FALSE} ELSE { sourceText ← zone.NEW[Buffer]; newText ← zone.NEW[Insert]; tree ← zone.NEW[TreeSpace]; hashTable ← zone.NEW[HashSpace]; Recover[ ! TreeFull => CONTINUE]; zone.FREE[@hashTable]; PGS1.ErrorContext["Syntax Error"L, sourceText[IF best.mode=BTree THEN 0 ELSE 1].index]; outeol[1]; IF (success ← best.nAccepted >= MinScanLimit) THEN Accept[] ELSE { outstring["No recovery found."L]; zone.FREE[@newText]; zone.FREE[@sourceText]}; zone.FREE[@tree]; outeol[1]}; outeol[1]; resetoutstream[]; RETURN}; }.