
Inter-Office Memorandum

To Cedar Interest Date Oct 1, 1982

From Dave Gifford, revised by MDS Location Palo Alto

Subject CIFS Manual (3.4) Organization PARC/CSL

XEROX

Filed on: [Indigo]<Cedar>Documentation>CIFSManual.(tioga press)

Cedar Interim File System

Abstract

The Cedar Interim File System provides basic file storage and directory services in support of the
Cedar Programming Environment. This manual describes the Cedar Interim File System’s concepts,
facilities, and interface in two parts. The first part of the manual is intended for the casual Cedar
user and describes basic file system concepts. The second part is intended for programmers who
will make direct use of the CIFS programming interface. The appendix contains an example program
that uses CIFS.

Part A: Users Guide

A.1 Concepts

CIFS is a client file system ; it runs with Cedar and provides a unified view of server file systems
such as IFS, Juniper, and Maxc. Like other file systems, CIFS implements the file as the basic
object for long-term information storage. In CIFS a file is an array of 512 byte pages. Clients can
create, read, alter, and delete files.

Files are cataloged in directories. A directory is a set of entries, and every entry has an entry name
that is unique within its directory. An entry describes either a file, a directory, or a link (links will
be discussed later). Every entry can include a comment , which is a text string that is not interpreted
by CIFS. Like files, directories can be created, examined, altered, and deleted by a client. Whenever
a directory is created it must be permanently cataloged in a single parent directory. This requirement
causes directories to be arranged in a tree, and appropriately enough the root of the tree is called

1

the root directory. Every directory and file can be reached from the root directory.

An object’s absolute path name specifies the way the object is reached from the root. Thus, absolute
path names are unambiguous. Examples of absolute path names are:

/indigo/cedar/top/rigging.df!2

/phylum/lad/bookpress/

By convention the leading slash on these names means they are relative to the root directory.
Subsequent slashes cause CIFS to walk down the tree of directories.

Directories that are children of the root directory correspond to file servers. This correspondence
determines where a child of the root and its descendants are physically stored. Thus, / iris/mesa is
stored on the file server named iris.

A link is a directory entry that points to another directory entry. The entry pointed to is called the
target of the link. Links are named by absolute path names in the same manner as files and
directories. An example of a link is:

/ivy/cassatt/history/paint.tioga

target / louvre/renoir/paint.tioga

A reference to / ivy/cassatt/history/paint.tioga will be resolved to / louvre/renoir/paint.tioga by CIFS.
Once a link is established its target can be changed. Thus, links are the basic indirection mechanism
of CIFS. CIFS restricts links to point at file entries.

This would be the end of the concepts section except that it is very cumbersome to always type
absolute path names. Thus, CIFS has a mechanism called path name expansion built into it that
allows clients to abbreviate names. If a path name does not begin with slash it is called a relative
path name . Such names are interpreted relative to a context that includes search rules (described
later) and a single working directory. Relative path names are interpreted relative to the working
directory. For example, if the working directory is / ivy/jefferson then the relative path name
congress/constitution.tioga is expanded by CIFS to the absolute path name

/ivy/jefferson/congress/constitution.tioga

In addition to traversing the tree of directories out from the root directory CIFS is also willing to
work the other way. The backslash character causes CIFS to traverse in reverse. Consider the path
name:

/ivy/jefferson\\indigo/franklin/kite.tioga

The first backslash tells CIFS to go back up to / ivy and the second backslash causes it to go back
one more level to the root. This facility is intended for use in relative path names. For example,
if the working directory is / ivy/freud then CIFS expands \ skinner/rat.mesa to:

/ivy/skinner/rat.mesa

A client can thus go up and down the directory tree and use the working directory as a convenient
reference point.

There is one final mechanism that is brought into play for relative path names that only consist of
an entry name (e.g. the path letter.tioga) . If the path names a file, and the file is not found in the
working directory, a list of other directories is tried in turn. This list of directories is called the
search rules. Logically the working directory is the first member of the search rules because it is
tried before any of the other directories. For example, if the search rules are:

/ivy/ravel (working directory)

/ivy/beethoven [1]

/ivy/debussy [2]

2

Then emperor.music would be expanded to

/ivy/beethoven/emperor.music

and LaMer.music would be expanded to

/ivy/debussy/LaMer.music

assuming my musical history is correct.

A.2 Pragmatics

It would be nice if you did not need to know anything about how CIFS worked, but alas there are
a few important things that will help you comprehend what is going on when something funny
happens.

CIFS makes copies of files and directories on the local disk of the machine you are using. These
copies are cataloged by an invisible directory called the local system directory (or LSD). The lsd
command can be used to list the contents of the LSD.

When you alter a file, the changes are not reflected at the file’s permanent home until you issue a
backup command (see Section A.3). This has two important consequences. First, if two people
modify a file or update a directory at the same time the last one to do a backup wins. The catalog
command will fix any directory problems that might result, but in general concurrent modification
of a file or a directory is not a good idea. Second, if you modify a file that you can not write on
CIFS will not complain at the time. When backup runs it will be unable to copy your modification
to the file’s permanent home, and you will have to copy your modifications out of the file and use
the reset command to flush the changes.

CIFS supplements the directory systems of file servers with its own set of directories. If the absolute
path name of a directory is path , then the CIFS directory is stored in a file called path/dir.bt . The
catalog command will initialize existing directories for use with CIFS. The mkdir command
automatically initializes CIFS directories and catalog is not needed in this case.

In order to use files in non-CIFS directories the file’s absolute path name must be given. For
example:

/iris/redell/pilot/paper.press

For compatibility, the directory / local refers to the Pilot Common Software Directory.

A.3 How to use CIFS

CIFS is in the Cedar boot file. To use CIFS commands, type:

run filesystemcommands

The User Exec will then understand the following set of simple file system commands:

asr path

Adds the directory path to the beginning of the search rules.

backup

Copies all of the files that have been modified to permanent storage.

catalog path

Initialize a CIFS directory system on the directory tree that starts at path . If there already
is a CIFS directory system, it is checked for consistency and repaired if necessary.

comment path comment

Replaces the comment on the entry path by comment . If comment is not specified, the
comment on path is deleted.

3

cd path

Changes the working directory to be path.

CIFSDelete path

If path is a file it is deleted. If path is a link it is deleted but its target is not. If path is a
directory an error is signalled

dd path

Deletes the directory path.

dsr path

Deletes the directory path from the search rules .

groupreset prefix

Reset all files that whose names begin with prefix.

link path target

Creates a link called path , and makes its target path target.

ls [pattern] [-dir path] [-pat pattern]

List the entries in directory path. If -dir is not specified, the working directory is assumed.
The pattern can contain regular characters and the reserved characters "*" (match any
sequence of characters) and "#" (match any one character).

lsd

List the contents of the local system directory. The listing is printed in the following
format:

AbsolutePathname (time last modified) {Dirty}

If {Dirty} is not present, then the local copy of the file has not been modified.

lsr

List the search rules.

make path

A simple way of creating a text file.

mkdir path

Creates a directory called path.

pbf

Prints the number of pages that CIFS will try to keep free.

pwd

Prints the working directory.

CIFSRename fromPath toPath

Renames the file named fromPath to be named toPath.

reset absolutePath

Discards any updates that have been made to absolutePath that have not been permanently
recorded with backup. absolutePath must be an absolute path name.

sbf pages

4

Set base free pages sets the number of pages that CIFS will try to keep free. If no argument
is supplied, CIFS will ensure that there are enough free pages according to the current
setting. Setting the number of base free pages to be more than the size of the local disk
will cause CIFS not to cache files.

swap filea fileb

Swap the contents of filea and fileb.

where path

Applies path name expansion to path and prints the result.

type path

Types the contents of path.

unlock

Emergency brute force unlock of all files.

A.4 The Salvager

CIFS includes a salvager that will rebuild the LSD from the leader pages of all files on the disk.
The salvager is invoked by booting Cedar with the "l" switch and answering the questions in the
obvious way. Salvaging can take several minutes on a Dorado.

Part B: Programmers Guide

The programmer’s interface to CIFS is implemented by three definitions files: CIFS, CIFSFeedback,
and FileLookup. These files are reproduced below, with the comments in the files serving as its
documentation. The file CIFS contains the interfaces of most use to the applications programmer.
CIFSFeedback is for use by the "Watcher". FileLookup provides access to a generally useful single
packet protocol for interrogating IFS file servers.

-- CIFS.mesa June 2, 1982 6:55 pm
-- Interface to the Cedar Interim File System.
-- Coded August, 1981 by D. Gifford
-- Last edited by
-- MBrown on August 30, 1982 1:06 pm

DIRECTORY
Ascii: TYPE USING [NUL],
File: TYPE USING [Capability],
Rope: TYPE USING [ROPE];

CIFS: CEDAR DEFINITIONS = {

-- Public Procedures
-- Operations that everyone will want to use

OpenFile: TYPE = REF FileObject;
FileObject: TYPE;

-- This type represents an open file.
-- If an instance is not NIL, it represents an open file.

Context: TYPE = REF ContextObj;
-- If NIL is supplied as a context, CIFS will use its default context

5

ContextObj: TYPE;

Mode: TYPE = CARDINAL;
-- any combination of modes can be used, but useful sets
-- of combinatatons are:
-- {read}, {write}, {write, create}, {write, replace}, {write, create, replace}
-- dontCheck can be included in any of these sets
read: Mode = 1;

-- read mode sets a non-exclusive lock on the file
write: Mode = 2;

-- write mode sets an exclusive lock on the file
-- includes read by default

create: Mode = 4;
-- create mode will create a file if it doesn’t exist
-- normally write and create modes are used together

replace: Mode = 8;
-- Imagine that the file opened is "foo"
-- and the file that "foo" is stored in is F
-- replace mode does the following:
-- (1) it creates a new empty file F’ at Open time
-- (2) this is the file returned to the client by GetFC
-- (3) at close time it makes "foo" point to F’
-- (4) F is made temporary so it will be deleted at the
-- next boot

dontCheck: Mode = 16;
-- If file is on the local disk, assume that the copy is current and don’t
-- check the remote sever
-- Useful as a performance optimization for files that are "immutable"

maxPath: CARDINAL = 200;
-- Maximum path length is 200 characters

maxComment: CARDINAL = 300;
-- Maximum comment length is 300 characters

Close: PROC [fh: OpenFile];
-- Close a file
-- Errors: None

Connect: PROC [name, password: Rope.ROPE];
-- Set connect credentials
-- Errors: None

CreateDir: PROC [name: Rope.ROPE, c: Context _ NIL];
-- Create a directory
-- Errors: {illegalFileName, localDiskFull, noSuchDirectory, ConnectionErrors,
-- CredentialsErrors}

Delete: PROC [name: Rope.ROPE, c: Context _ NIL];
-- Delete a file
-- Files are created by Open
-- Errors: {illegalFileName, noSuchFile, requestRefused, localDiskFull,
-- fileBusy, noSuchDirectory, ConnectionErrors, CredentialsErrors}

6

DeleteDir: PROC [name: Rope.ROPE, c: Context _ NIL];
-- Delete a directory
-- Errors: {noSuchDirectory, directoryNotEmpty, ConnectionErrors, CredentialsErrors}

GetFC: PROC [fh: OpenFile]
RETURNS [fc: File.Capability];

-- Returns the Pilot File Capability of an open file
-- Errors: None

GetPathname: PROC [fh: OpenFile]
RETURNS [path: Rope.ROPE];

-- Returns the pathname of an open file
-- Errors: None

Open: PROC [name: Rope.ROPE, mode: Mode, c: Context _ NIL]
RETURNS [fh: OpenFile];

-- Open a file
-- Errors: {ConnectionErrors, CredentialsErrors, FileErrors, localDiskFull, fileBusy,
-- noSuchDirectory}

Rename: PROC [from: Rope.ROPE, to: Rope.ROPE, c: Context _ NIL];
-- Rename a file
-- Errors: {ConnectionErrors, CredentialsErrors, FileErrors, localDiskFull, fileBusy,
-- noSuchDirectory, fileAlreadyExists}

Swap: PROC [filea: Rope.ROPE, fileb: Rope.ROPE, c: Context _ NIL];
-- Swap the contents of filea and fileb
-- Errors: {ConnectionErrors, CredentialsErrors, FileErrors, localDiskFull, fileBusy,
-- noSuchDirectory}

-- Public Procedures
-- Operations that some people will want to use

AddSearchRule: PROC [path: Rope.ROPE, before: BOOLEAN, c: Context _ NIL];
-- Add a search rule
-- If before is T it will add it before the other search rules
-- Errors: {ConnectionErrors, CredentialsErrors, localDiskFull, noSuchDirectory}

CopyContext: PROC [from: Context _ NIL]
RETURNS [c: Context];

-- Copy a context
-- If from is omitted, CopyContext will return a copy of the default
-- context.
-- Errors: None

CreateContext: PROC
RETURNS [c: Context];

-- Create a new context for the interpretation of names
-- The "Jerry Brown" Operation
-- Errors: None

CreateLink: PROC [path, targetPath: Rope.ROPE, c: Context _ NIL];
-- causes path to point to targetPath
-- whenever path is used as a file name, it will be resolved to

7

-- targetPath
-- Errors: {ConnectionErrors, CredentialsErrors, localDiskFull, noSuchDirectory,
-- linkAlreadyExists}

DeleteContext: PROC [c: Context _ NIL];
-- Destroy a context for the interpretation of names.
-- The "Edward Kennedy" Operation
-- Errors: None

DeleteSearchRule: PROC [path: Rope.ROPE, c: Context _ NIL];
-- Delete a search rule
-- Errors: None

EProc: TYPE = PROC [name, link, comment: REF TEXT]
RETURNS [stop: BOOLEAN];

-- Procedure that is called for dir enumeration
-- name is the entry name
-- if link.length#0 then link is the path that name will be resolved to
-- if comment.length#0 then comment is a comment for name

Enumerate: PROC [dir: Rope.ROPE, pattern: Rope.ROPE, p: EProc, c: Context _ NIL];
-- Enumerate the contents of a directory
-- pattern can contain "*" and "#"
-- a pattern of "*" enumerates the entire directory.
-- If dir = NIL or dir = "" Enumerate assumes the wdir
-- Errors: {ConnectionErrors, CredentialsErrors, localDiskFull, noSuchDirectory}

GetSearchRules: PROC [c: Context _ NIL]
RETURNS [LIST OF Rope.ROPE];

-- Returns the list of paths in the search rules
-- Errors: None

GetWDir: PROC [c: Context _ NIL]
RETURNS [path: Rope.ROPE];

-- Return the path of the working directory
-- Errors: None

Login: PROC [name, password: Rope.ROPE];
-- Set credentials
-- Errors: None

SetDefaultContext: PROC [c: Context];
-- Set the default context
-- Errors: None

SetComment: PROC [path, comment: Rope.ROPE, c: Context _ NIL];
-- Sets the comment on the specified path to be comment
-- Errors: {ConnectionErrors, CredentialsErrors, FileErrors, localDiskFull,
-- noSuchDirectory}

SetWDir: PROC [path: Rope.ROPE, c: Context _ NIL];
-- Set working directory
-- Errors: {ConnectionErrors, CredentialsErrors, localDiskFull,
-- noSuchDirectory}

8

-- Public Procedures
-- Operations that hardly anyone will want to use

Expand: PROC [name: Rope.ROPE, c: Context _ NIL]
RETURNS [path: Rope.ROPE];

-- Expands a name into a full path name
-- May raise CIFS.Error if the file is not in the dir
-- system.
-- Errors: {ConnectionErrors, CredentialsErrors, FileErrors, localDiskFull,
-- noSuchDirectory}

ExplicitBackup: PROC [name: Rope.ROPE, c: Context _ NIL]
RETURNS [version: INT];

-- Explicit backup of the named file to its remote server home
-- The server’s version number for the backing file is returned
-- If name has a version number then ExplicitBackup will use
-- that number for the backing file
-- Errors: {ConnectionErrors, CredentialsErrors, FileErrors, fileBusy}

GetBaseFreeSpace: PROC RETURNS[pages: INT];
-- Gets the number of free pages that should be maintained
-- on the local disk
-- Errors: None

OpenButDontHandleError: PROC [name: Rope.ROPE, mode: Mode, c: Context _ NIL]
RETURNS [fh: OpenFile];

-- Open a file
-- Same as Open, except that it will not automatically handle
-- a credential error.
-- Errors: {ConnectionErrors, CredentialsErrors, FileErrors, localDiskFull, fileBusy,
-- noSuchDirectory}

Reset: PROC [name: Rope.ROPE, c: Context _ NIL];
-- Reset a file from its backing store
-- name must be an absolute path name
-- Errors: {noSuchFile}

SetBaseFreeSpace: PROC[pages: INT _ 0];
-- Sets the number of free pages that should be maintained
-- on the local disk
-- If pages is omitted, CIFS will just ensure that there are
-- enough free pages according to the current setting
-- Errors: None

-- Exceptional conditions
-- Unfortunately, everyone has to know about these
-- In each CIFS call the most likely errors are listed. However, a client
-- should be prepared for variant of ErrorCode. The message "error" is
-- essential, and should be shown to the user.

HandleError: PROC [code: ErrorCode, error: Rope.ROPE, reply: CHARACTER _ Ascii.NUL]
RETURNS [resume: BOOLEAN];
-- Attempts to handle a credential error. The usage of this procedure is:

9

-- CIFS.Operation[args !
-- CIFS.Error => {IF CIFS.HandleError[code, error, reply] THEN RESUME}];
-- NOTE: The above code is included in CIFS, so a client does not have
-- to write it. This procedure is exported only for completeness.

Error: SIGNAL [code: ErrorCode, error: Rope.ROPE, reply: CHARACTER _ Ascii.NUL];
-- error usually contains an interesting message
-- reply is the code passed from server (see STPReplyCode.mesa)

ErrorCode: TYPE = {
-- connection errors
noSuchHost, noRouteToNetwork, noNameLookupResponse, alreadyAConnection,
noConnection, connectionClosed, connectionRejected,
connectionTimedOut,
-- credentials errors
accessDenied, illegalUserName, illegalUserPassword, illegalUserAccount,
illegalConnectName, illegalConnectPassword, credentialsMissing,
-- protocol errors
protocolError,
-- file errors
illegalFileName, noSuchFile, requestRefused,
-- remote stream errors
accessError,
-- catch all
undefinedError,
-- local disk full
localDiskFull,
-- file is locked
fileBusy,
-- file already exists for a rename command
fileAlreadyExists,
-- directory does not exist
noSuchDirectory,
-- directory contains files and can not be deleted
directoryNotEmpty,
-- link alrady exists
linkAlreadyExists
};

ConnectionErrors: TYPE = ErrorCode[noSuchHost..connectionTimedOut];
CredentialsErrors: TYPE = ErrorCode[accessDenied..credentialsMissing];
FileErrors: TYPE = ErrorCode[illegalFileName..requestRefused];

}..

-- CIFSFeedback.mesa
-- Interface for CIFS to report STP activities
-- Coded by M. D. Schroeder, July 16, 1982 1:49 pm
-- Last edited by
-- MBrown on August 30, 1982 1:24 pm

DIRECTORY

10

Rope: TYPE USING [ROPE];

CIFSFeedback: CEDAR DEFINITIONS = {

Register: PROC [p: PROC [Rope.ROPE] _ NIL];
-- CIFS will call the registered procedure with a Rope describing each
--file manipulation activity on a remote server. Registering p ~ NIL will
--stop such reporting.
-- The style of use is: pass a non-empty rope at the start of an activity,
--pass an empty rope (e.g. NIL) at the end of the activity.

}..

-- FileLookup.mesa
-- M. D. Schroeder, September 7, 1982 11:54 am

DIRECTORY
Rope: TYPE USING [ROPE],
System: TYPE USING [GreenwichMeanTime];

FileLookup: CEDAR DEFINITIONS = BEGIN

Result: TYPE = {noResponse, noSuchPort, noSuchName, ok};

LookupFile: PROC [server, file: Rope.ROPE]
RETURNS [result: Result, version: CARDINAL,

create: System.GreenwichMeanTime, count: LONG CARDINAL];

-- This procedure uses the LookupFile packet exchange protocol to obtain the
-- version number, create time, and byte length of a file on a remote file server.
-- The file name may be specified complete with version number, with "!h", with "!l",
-- or with no version. The file names can be specified either with the "<..>..>.." syntax
-- or with the ".../.../..." syntax (be sure that the name does not start with a ’/).

-- If the result is "ok" then the requested file exists with the returned
-- version number, create time, and byte length. "noSuchName" means that either
-- the server name was nonsense or that the file does not exist on that server.
-- "noSuchPort" means that the server responded with a no-such-port error packet
-- when prodded on the LookupFile socket. "noResponse" means that either the NLS
-- didn’t respond to the server name lookup, the LookupFile packet didn’t get to the
-- server, or the server did not respond to it.

-- LookupFile caches the state of the server as derived from previous lookup attempts.
-- If the cached state for a server is either "noResponse" or "noSuchPort" then
-- LookupFile immediately returns that result without attempting any communication.
-- Such negative cache entries are flushed after five minutes. Positive cache entries
-- contain the Pup address of the server, eliminating the need to do a NLS lookup
-- on the server name.

-- The longest that you should have to wait for a response is ~ 4*(2 + 0.5*MIN[8,hopCount])
-- seconds. This is the time it will take to decided that a server isn’t going to respond in the
-- case of an uncached down server. Most answers are determined much more quickly.

11

END...

Appendix: Example Program

-- CType.mesa
-- L. Stewart 25-Mar-82 11:52:42

DIRECTORY
CIFS,
UserExec: TYPE USING [RegisterCommand, UserAbort, ResetUserAbort, CommandProc],
FileIO: TYPE USING [StreamFromOpenFile],
IO,
Rope,
UECP;

CType: PROGRAM
IMPORTS CIFS, UECP, UserExec, FileIO, IO
= {

-- Type a file
typeC: Rope.ROPE = "Type Usage:
type path

The contents of path will be typed.";

Type: UserExec.CommandProc = {
fh: CIFS.OpenFile;
riS: IO.Handle;
argv: UECP.Argv _ UECP.Parse[exec.commandLine];
n: NAT;
h: IO.Handle = exec.out;
buffer: REF TEXT _ NEW[TEXT[256]];
IF argv.argc=1 THEN RETURN;
{
ENABLE {

CIFS.Error => {
h.PutF["%s\n", IO.rope[error]];
CONTINUE;
};

IO.EndOfStream => {
h.PutChar[’\n];

CONTINUE;
};

};
fh _ CIFS.Open[name: argv[1], mode: CIFS.read];
riS _ FileIO.StreamFromOpenFile[openFile: fh];;
DO

IF UserExec.UserAbort[] THEN EXIT;
n _ riS.GetBlock[buffer];
h.PutBlock[buffer];
IF n # 256 THEN EXIT;

12

ENDLOOP;
IF n>0 AND buffer[n-1]#’\n THEN h.PutChar[’\n];
};
UserExec.ResetUserAbort[];
IF riS#NIL THEN riS.Close[];
IF fh#NIL THEN CIFS.Close[fh];
};

-- Mainline
UserExec.RegisterCommand["Type.~", Type, "Type file", typeC];

}.

13

