
Inter-Office Memorandum

To Cedar Interest Date January 15, 1981

From Dan Swinehart Location Palo Alto

Subject Cedar Terminal Input Facilities Organization CSL

XEROX

Filed on: [Ivy]<CedarDocs>User>InscriptImplementation.memo
[Ivy]<CedarDocs>User>InscriptImplAppendix.memo

Reference: [Ivy]<CedarDocs>User>InscriptDesign.memo (what I intended to do)

These will currently all be found on [Ivy]<Swinehart>Inscript>6.0>. They have also been released as part of
Cedar.bcd.

Definitions files:
ClassInstream.bcd,
ClassIncreek.bcd,
Interminal.bcd,
Intime.bcd
InDiag.bcd
InOS.bcd

Implementation:
Instream.bcd, exports above interfaces, includes symbols
Instream.config
other source files, configs, etc.

Introduction

This memo describes the existing facilities for obtaining user terminal input. The most accurate
interface description can be found in the cited definitions files; this discussion is intended to present
both the main ideas and the details, but it may lag behind the truth from time to time.

User information is recorded in a file called an Inscript. The inscript conceptually contains a time-
stamped record of every activity, or action, the user has ever performed at the terminal. In reality, old
information may be removed from this record, and it is possible that during some intervals not all user
input is recorded (e.g., the detailed trajectories of the mouse.)

Most clients will obtain information from the inscript by creating an Instream, which provides quite
a bit of help with the interpretation of the user’s activities -- primarily filtering and code-conversion
assistance. Any number of instreams can be created, each of which may be examining different epochs
in the input history.

Clients that wish to deal more directly with the recorded actions, perhaps to create a high-level input
stream with different behavior from the Instream defined here, may create a lower-level stream-like
object called an Increek. The Increek provides operations for time-based positioning within the
Inscript, and for examining Inscript actions.

Cedar Terminal Input Facilities 2

Instreams

An Instream provides a stream of Events, currently confined to keyboard, keyset, and mouse button
(henceforth shortened to "key") activations. Instream provisions for tracking the mouse in the
absence of key activations are TBD, although complete facilities exist at the Increek level. Not all
user activities, or Actions, result in Events, and some Events are not the immediate result of user
activity. The Instream client can control to some extent which Actions result in Events.

The client can choose to obtain and examine Events directly from the Instream, or to obtain
derivative data types based on the type of Event (keyboard characters, mouse button clicks, etc.)
After obtaining an Event or a derivative, the client can also examine the state of the Instream to
obtain time stamp information, the position of the mouse, or the state of various keys (shift, lock,
control, etc., or any other key for that matter) at the time of the event.

Data Types

What follows is a discussion of the more important data types used or viewed by Instream and
Increek clients.

From ClassInstream

ClassInstream.Instream: TYPE = REF InstreamObject;

This is an object that implements the operations described below.

ClassInstream.Device: TYPE = {nullDevice, char, button, paddle, motion};

An Instream delivers Events to its clients. A field in each Event identifies which device generated
it (keyboard, mouse, mouse motion only, or keyset), and what kind of activity caused it. Motion events are
not yet implemented.

ClassInstream.Cause: TYPE = MACHINE DEPENDENT {none(0),
strobeDown(1), strobeUp(2), heldDown(4), heldUp(10B), canBeChord(20B)};

ClassInstream.Causes: TYPE = -- Powerset of -- Cause;

The Instream client uses values of type Causes to specify which of the user activities are of interest
for each of the three devices (there are standard defaults.) strobeDown means that an Event will
occur whenever a key is depressed. strobeUp means that an Event will accompany the release of a
key on the selected device. heldDown and heldUp will occur only after a key has been depressed
(released) for a specified duration, in the absence of additional keystrokes. This is in support of
multiple click (and later "typeamatic") Events, described further in a later section. For simple situations
one merely specifies strobeDown, strobeUp, or both.

Events also contain Cause fields, to indicate to the client which kind of activation occurred.

Cause has its values explicitly specified so that values can be ORed together to specify multiple
activations. There are "powerset" functions, described below, for creating the desired configurations.

ClassInstream.Event: TYPE = RECORD [
 device: Device,
 keyName: Interminal.KeyName,
 cause: Cause,
 clicks: CARDINAL
];

The Event records which device was involved, what kind of activation occurred, and which key was
depressed (using names assigned from a space containing them all). Each Event also contains a
clicks field, described further in the Clicks section. The stream stores additional information about
the current state of all the input devices just after the Event occurred. This state includes the current
activation state of all of the keys, the mouse position at the time of the Event, the time of the Event,

Cedar Terminal Input Facilities 3

the "clicks" information, and a chord field that has collected all key depressions since the last time all
keys were undepressed. The Instream provides operations for obtaining these values.

ClassInstream.EventTime: TYPE=Intime.EventTime;

Intime.EventTime: --(effectively)-- TYPE[3];

This is not really an exported type at present, being fully specified in the definitions file. But its
internal fields are not meaningful to clients. An EventTime represents the number of milliseconds
since some specific time early in the century. Functions exist (in the Intime interface) for converting
the present time to an EventTime, for performing simple arithmetic and comparisons on these times,
etc. EventTimes may be used to denote positions within the Instream.

ClassInstream.MousePosition: TYPE = Interminal.MousePosition;

Interminal.MousePosition: TYPE = MACHINE DEPENDENT RECORD [
mouseX: CARDINAL, mouseY: CARDINAL];

These are expressed in Alto screen coordinates, at present. Expect these representations to change in
order to adapt to Cedar graphics’ more abstract view of things.

ClassInstream.PosResult: TYPE = ClassIncreek.PosResult;

ClassIncreek.PosResult: TYPE = {tooEarly, tooLate, onTime};

Describes the nature of the results of some of the Instream operations below.

ClassInstream.MsTicks: TYPE = Intime.MsTicks;

Intime.MsTicks: TYPE = Process.Milliseconds -- ... = CARDINAL --;

Describes the nature of the results of some of the Instream operations below.

From Interminal

Interminal.KeyView: TYPE = {keyNames, keyFields, words, bits};
Interminal.KeyState: TYPE = MACHINE DEPENDENT RECORD [
 SELECT OVERLAID KeyView FROM
 bits => [bits: PACKED ARRAY KeyName OF updown],
 words => [words: KeyArray],
 keyNames => [keyNames: KeyNames],
 keyFields=> [keyFields: KeyFields],
 ENDCASE];

Interminal.KeyName: TYPE = {
 x0, x1, ..., x7,
 Keyset1,Keyset2,...,Keyset5,
 Red,Blue,Yellow,
 Five,...,U,V,
 ...
 Lock,Space,...,FR5};

There are a number of useful ways to look at a representation of the keyboard state; these are the ones
that have been chosen for Cedar input. The bits array can be indexed by the KeyName values,
which are also the values that are stored in Actions and Events. The keyNames variant lets you
treat the key state as a record of named bits. keyFields breaks the state up into smaller records, by
device, once you know which device you’re interested in. The client of Instreams and Events will
normally require only KeyNames, but may need to access other values to examine the control, shift,
shift lock keys, or other "non-strobing" situations in efficient ways.

Interminal.PaddleKeyName, KeyArray, KeyNames, KeyFields, Buttons,
ButtonNames, Paddles, PaddleNames: TYPE = ...;

Cedar Terminal Input Facilities 4

These types are used to implement the ones described above. Every implementor of an Instream or
Increek client should read through them and pick out the types that seem relevant to the particular
way the client code is going to use the package; the implementor will probably settle on a fairly small
number of them.

Interminal.Spare1: CHARACTER=LOOPHOLE[201B];
Interminal.Spare2: CHARACTER=LOOPHOLE[202B];
Interminal.Spare3: CHARACTER=LOOPHOLE[203B];
Interminal.ShiftSpare1: CHARACTER=LOOPHOLE[204B];
Interminal.ShiftSpare2: CHARACTER=LOOPHOLE[205B];
Interminal.ShiftSpare3: CHARACTER=LOOPHOLE[206B];

These definitions provide representations in the "Ascii" domain for the three spare keys and their
shifted versions. They were arbitrarily chosen.

Procedures and Operations

Some of these functions are currently implemented as INLINE procedures, and are thus tied to a particular
implementation of the Instream data record type. These will be changed if necessary.

ClassInstream.EventIncorrect: ERROR[e: Event];

ClassInstream.EventVanished: ERROR[eT: Intime.EventTime];

ClassInstream.NewStdInstream: PROCEDURE RETURNS [ClassInstream.Instream];

Creates an Instream on the standard Inscript that is filled with user terminal actions. It is possible to
produce Instream implementations that obtains actions from a different source, in which case this function would not be used
to create them. The result is an Instream object. It will have been positioned at the end of (the latest
point in) the Inscript (corresponding to "now".)

The implementation does not enforce a limit on the number of Instreams that may be created to
examine the same Inscript. This design will make more sense if at least two Instreams get created by somebody in
some set of Cedar applications;.

ClassInstream.GetEvent: PROCEDURE[self: ClassInstream.Instream] RETURNS [e:
ClassInstream.Event];

Returns the next Event from the stream that satisfies the client’s specifications (see below.) If the
stream is currently positioned at the end of the Inscript, this operation will wait as necessary until
actions constituting an acceptable Event have occurred. The client program should not be able to
detect a difference between waiting and non-waiting situations, unless the client is also keeping track of
real time.

Raises ClassInstream.EventVanished if the Events denoted by the current Instream position have
disappeared to make room for newer ones. This will only happen if the Instream is reviewing ancient
history. The EventTime parameter denotes the time of the earliest Action remaining in the
Inscript.

ClassInstream.GetChar: PROCEDURE[self: ClassInstream.Instream, event:
ClassInstream.Event_nilEvent] RETURNS [c: CHARACTER];

If event is nilEvent (not supplied in the call), an event is obtained from the Instream. If the
event represents a keyboard keystroke, its Ascii code is returned. Otherwise GetChar raises
ClassInstream.EventIncorrect, with the Event as a parameter. The intent is that a "character loop"
can call GetChar repeatedly, acting on the incoming characters until an event occurs that is not a
character event. Alternatively, the client can obtain an Event using GetEvent, determine that it is a
char event, then obtain the corresponding Ascii code using GetChar.

Cedar Terminal Input Facilities 5

There may never be any "character loop" types of applications, in which case we should simplify this interface. The original
plan also called for leaving the stream positioned at its pre-call location when EventIncorrect was raised, returning just the
event type as an error value, so that the client could retry the operation. The current implementation does not do this, on
the grounds of expense. The plan also called for functions to reposition the stream by small integral numbers of Events in
either direction, and other such (hopefully) nonsense.

ClassInstream.GetPaddle: PROCEDURE[self: ClassInstream.Instream, event:
ClassInstream.Event_nilEvent] RETURNS [e: ClassInstream.Event];

ClassInstream.GetButton: PROCEDURE[self: ClassInstream.Instream, event:
ClassInstream.Event_nilEvent] RETURNS [e: ClassInstream.Event];

These are like GetChar, but directed at the other input devices. Each returns the full Event that
GetEvent would return, but only if the Event is caused by the requested device; otherwise, they raise
EventIncorrect.

ClassInstream.GetPaddleName: PROCEDURE[self: ClassInstream.Instream, keyName:
Interminal.KeyName]
RETURNS [name: Interminal.PaddleName];

ClassInstream.GetButtonName: PROCEDURE[self: ClassInstream.Instream, keyName:
Interminal.KeyName]
RETURNS [name: Interminal.ButtonName];

These apply appropriate offsets to the keyName values to produce values from smaller ranges specific
to their devices. They should, but do not, complain when they produce values that are out of range.

ClassInstream.GetMousePosition: PROCEDURE[self: ClassInstream.Instream]
RETURNS [mP: ClassInstream.MousePosition];

Returns the mouse position that obtained just after the (occurrence of the) Last Action (in the most
recently obtained Event).

ClassInstream.GetEventTime: PROCEDURE[self: ClassInstream.Instream]
RETURNS [eT: ClassInstream.EventTime];

Returns the time at which the Last Action occurred.

ClassInstream.GetCurrentTime: PROCEDURE[self: ClassInstream.Instream]
RETURNS [eT: ClassInstream.EventTime];

Defines "now" so that you can come back to it later. There are a number of functions defined in
Intime that allow for calculations on and comparisons of EventTimes. This function is not
dependent on Instream position.

ClassInstream.GetStateOfKey: PROCEDURE[self: ClassInstream.Instream, keyName:
Interminal.KeyName]
RETURNS [state: Interminal.updown];

Returns the state of the selected key just after the Last Action.

ClassInstream.GetKeyState: PROCEDURE[self: ClassInstream.Instream]
RETURNS [keyState: Interminal.KeyState];

ClassInstream.GetChordState: PROCEDURE[self: ClassInstream.Instream]
RETURNS [chordState: Interminal.KeyState];

GetKeyState returns the entire state of the key devices just after the Last Action. GetChordState
is similar, returning a KeyState representing all the the keys that have been depressed since they
were all up (downCount was last zero).

Cedar Terminal Input Facilities 6

ClassInstream.GetDownCount: PROCEDURE[self: ClassInstream.Instream,
device: ClassInstream.Device_nullDevice] RETURNS [downCount: CARDINAL];

Returns the number of keys that were depressed just after the Last Action, for the specified device.
If device is omitted or is nullDevice, returns the number of keys were depressed for all devices
(this is somewhat more efficient.)

ClassInstream.GetChord: PROCEDURE[self: ClassInstream.Instream] RETURNS [s:
keyFields Interminal.KeyState];

This procedure is not yet implemented, nor is it fully designed. Its intent is to provide a high-level
method for obtaining the complete value of the "next chord", once the client detects that a chord-like
activity is in progress.

ClassInstream.SetAtEarliest: PROCEDURE[self: ClassInstream.Instream];

Positions the stream preceding the earliest known action. For reviewing the history of the universe. In
some implementations (this one, for example), one is well-advised to proceed with dispatch to examine
these earlier actions before they go away to make room for new ones; if that occurs, the Get...
routines will raise a signal, but this aspect of the implementation is not worked out very well yet.

ClassInstream.SetAtLatest: PROCEDURE[self: ClassInstream.Instream];

Positions the stream to "now".

ClassInstream.SetAtTime: PROCEDURE[self: ClassInstream.Instream, eventTime:
ClassInstream.EventTime] RETURNS [pR: PosResult];

Positions the stream to the first point at or following the specified time. The PosResult return value
indicates whether the specified time preceeds the earliest known action, follows the last known action,
or lies somewhere within the known history. In any case, the stream is positioned at the nearest
approximation to the selected time.

SetEventSpecifications: PROCEDURE[self: ClassInstream.Instream,
device: ClassInstream.Device, causes: ClassInstream.Causes, clickTime:
ClassInstream.MsTicks_0];

device is used to specify the device, causes the Actions that are to result in Events for that device,
and clickTime the timeout value, in milliseconds, that will subsequently be used to control "click"
computations for all the devices (see the section on multiple clicks). The initial defaults for the devices
are:

[device: char, causes: strobeDown]
[device: button, causes: {strobeDown, strobeUp}] (e.g., PowerSet[sD, sU])
[device: paddle, causes: {strobeDown, strobeUp}]
[device: motion, causes: <not applicable, not implemented.>]

This produces Events only when keyboard keys are depressed, and when mouse/keyset keys are
activated one way or the other.

Some Inlines defined in ClassInstream

ClassInstream.PowerSet: PROCEDURE [e1, e2, e3, e4: ClassInstream.Cause_none] RETURNS
[ClassInstream.Causes] = ...;

ClassInstream.In: PROCEDURE[candidate: ClassInstream.Cause, target: ClassInstream.Causes]
RETURNS [BOOLEAN] = = ...;

PowerSet[...] creates a Causes value, given two or more Cause or Causes values. The result
represents a set of Causes. What really happens is that the bits are OR’ed together; Cause is
defined so that the named values are powers of 2.

Cedar Terminal Input Facilities 7

In[...] determines whether the candidate is a member of the set of Causes in the target. If the
candidate is a Causes value, all of its members must be in the target. (TRUE iff
LOGAND[candidate, target] = candidate.)

These functions use inline definitions available in Powerset.Mesa/bcd, redefining their input and
output types.

Multiple "Clicks"

Many user interfaces, including Tioga’s, use the concept of multiple activations of the mouse, typically
within a given time and without excess motion of the mouse, to increase the number of interpretations
that can be assigned to mouse buttons. In the Inscript world, with its emphasis on the recording of
actions, and the ability to respond to them more than once, and perhaps long after they occur, it
seemed prudent to capture as much of the complexity of multi-click activities as possible at the
Instream level of the user input facilities.

The current interpretation is based almost entirely on Tioga’s needs. Most of the extensions that come to mind could be
readily accommodated.

The client uses SetEventSpecifications to specify, for each device, what kinds of events are
interesting. If either heldDown or heldUp is specified, the client must also supply a time, in
milliseconds, that is used as follows.

Suppose that all keys are "up", and have been for some time. The client has specified that, on the
mouse, only heldDown and heldUp Events are interesting (at present, specifying one is equivalent to
specifying both -- an implementation expedience), with a clickTime of 100 ms. The user now depresses a
mouse button. The Instream would not immediately interpret this Action as an Event, but would
"start a timer" to expire in 100 ms. If the user moves the mouse "too far" (currently a constant -- what
should it be?) within that 100 ms., or depresses or releases some other key, or does not perform any more
Actions within the 100 ms., a heldDown event results. If the user releases the button within the 100
ms., the timer is restarted, and no event results. When the user finally waits long enough, moves far
enough, or activates some other key, a heldDown or heldUp event results.

If strobeDown and/or strobeUp had also been specified in the above example, each of the actual
key activations would also have resulted in an Event; these additional events would have been
properly interleaved with exactly the same held-style Events that occurred in the example.

If held... events have been specified, each event will include, in the clickCount field, the number
of key activations (down or up), including the one that resulted in the event, that have occurred within
the same multi-click sequence. Otherwise, the clickCount field will always contain a 1 or something.

Note that all of these time-related operations use the times that are recorded in the Inscript; the
semantics of the click activities are independent of the celerity with which the client is examining the
Inscript. However, the amount of real time that a given call on, say, GetEvent will require is
dependent on whether the stream is positioned at "end of script."

There may well be other useful things to say about this implementation; what are they?

Cedar Terminal Input Facilities 8

Increeks

An Increek is a lower-level object that can be used to gain access to an Inscript. The Instream
implementation, in fact, simply provides interpretations for collections of low-level individual user
Actions which are extracted using Increeks. Increek operations largely parallel the Instream
operations. Details and discussion of the Increek level follow.

Data Types

From ClassIncreek

One obtains Actions by invoking operations in an object called an Increek. The kind field of the
Action indicates what happened, and the other fields provide the details.

ClassIncreek.Increek: TYPE = REF IncreekObject;

ClassIncreek.ActionKind: TYPE = {deltaEventTime, eventTime, deltaMouseX,
deltaMouseY, mousePosition, keyDown, keyUp, keyStillDown};

ClassIncreek.Action: TYPE = LONG POINTER TO ClassIncreek.ActionBody;

ClassIncreek.ActionBody: TYPE = RECORD [
deltaDeltaTime: Intime.DeltaDeltaTime _ 0,
contents: SELECT kind: ClassIncreek.ActionKind FROM

deltaEventTime => [value: Intime.DeltaTime _ NULL],
deltaMouseX, deltaMouseY =>

[value: ClassIncreek.DeltaMouseValue _ NULL],
keyDown, keyStillDown, keyUp =>

[value: Interminal.KeyName _ NULL],
eventTime => [eventTime: Intime.EventTime _ NULL],
mousePosition => [mousePosition: Interminal.MousePosition _ NULL],
ENDCASE

];

If the time between Actions is short enough, the time difference can be recorded in the
deltaDeltaTime field of the next Action. Otherwise it will appear as a separate Action preceding
the "real" one, either as a deltaEventTime Action if the interval is not too long, or as a full
eventTime value. Similarly, mouse motions are recorded either as small incremental mouseX and
mouseY Actions or as full mousePosition values. The keyUp and keyDown Actions
correspond to actual user keyboard activities.

keyStillDown is used to record efficiently the entire keyboard state at the beginning of each
"session", and at the beginning of each inscript page; one Action appears for each key that is "still
down", typically zero, one, or two. This allows the state to be recreated efficiently without scanning
the entire history. The full time and full mouse position are also inserted into the inscript at these
times. keyStillDown[value: allUp] should be interpreted as a request to clear the state to indicate
no depressed keys.

As with an Instream, an Increek defines a position within its Inscript. This position represents an
EventTime at which the input devices were in a particular state, defined by the type
InscriptPosition (ViewPosition was intended as a READONLY version of this type, but I couldn’t
get it to work right.)

ClassIncreek.InscriptPosition: TYPE = REF ClassIncreek.InscriptPositionBody;

ClassIncreek.ViewPosition: TYPE = REF -- can’t get READONLY to work right --
ClassIncreek.InscriptPositionBody;

Cedar Terminal Input Facilities 9

ClassIncreek.InscriptPositionBody: TYPE = RECORD [
-- location in inscript file --
inscript: PRIVATE ClassInscript.Inscript, -- for releasing
inscriptPage: PRIVATE ClassInscript.InscriptPageDescriptor,

-- absolute state at that point --
eventTime: Intime.EventTime _ NULL,
mousePosition: Interminal.MousePosition _ NULL,
keyState: Interminal.keyState _ NULL,
chordState: Interminal.keyState _ NULL,
downCount: INTEGER _ 0
];

chordState is cleared to allUp whenever keyState is about to leave the allUp condition;
keyDown and keyStillDown events cause the corresponding chordState bits to be set, but
keyUp events do not effect chordState. Probably the shift lock key should not participate in the chordState.

PosResult describes the nature of the results of some of the Increek operations below.
Acceptance is a client-provided parameter to GetAction. DeltaTime and DeltaDeltaTime are
time values of differing lengths, in units corresponding to the process-scheduling "tick" interval.
Intervals at this resolution can be represented in fewer bits. Unless the client examines these Action
fields directly, it will not have to deal with these units, since most of the time-related functions convert
these times back to millisecond-resolution units. MousePosition, KeyState, etc., are as defined in
the Instreams section. DeltaMouseValue is a short, incremental version of the components of
MousePosition. WaitMode determines the timeout behavior of the GetAction operation.

ClassIncreek.PosResult: TYPE = {tooEarly, tooLate, onTime};

ClassIncreek.Acceptance: TYPE = {clicks, clicksAndMotion, all};

ClassIntime.DeltaTime: TYPE = ... CARDINAL [0..256);

ClassIntime.DeltaDeltaTime: TYPE = DeltaTime [0..32);

ClassIncreek.DeltaMouseValue: TYPE = [-128..128);

ClassInscript.WaitMode: TYPE = {forever, dontWait, timed};

Procedures and Operations

ClassIncreek.IncreekError: ERROR[code: ClassIncreek.IncreekErrorCode];

ClassIncreek.IncreekErrorCode: TYPE = {
outOfBounds -- position no longer valid during ReadAction
};

NewStdIncreek provides the standard Increek implementation. Its Actions are obtained from
the standard Inscript implementation, which directly records user terminal events. If the template
argument is NIL, the result is a new Increek on which the SetAtLatest operation has just been
performed.

One can also call this function to obtain an Increek that is a copy of another Increek, the
template; the copy represents another source of Actions, positioned at the same point in the script.
This "produce copy" function should be an object operation.

The CopyIncreek operation is equivalent to SetAtTime[self, GetTime[template]];

Cedar Terminal Input Facilities 10

ClassIncreek.NewStdIncreek: PROCEDURE[template: ClassIncreek.Increek_NIL] RETURNS
[ClassIncreek.Increek];

ClassIncreek.Release: PROCEDURE [self: ClassIncreek.Increek] RETURNS [nilIncreek:
ClassIncreek.Increek];

ClassIncreek.CopyIncreek: PROCEDURE [self: ClassIncreek.Increek, template:
ClassIncreek.Increek];

The SetAt... functions in the ClassInstream interface parallel the ones provided here. Each of
these functions positions the Increek such that the next Action is the earliest in the Inscript that
occurred after the specified time. In the process of positioning the Increek, it updates the Increek’s
ViewPosition (state record) to represent the state of the terminal corresponding to the new position.

The Get...Time functions return the same values as the corresponding functions in the
ClassInstream interface. GetPositionFrom returns the ViewPosition record describing the
terminal state at the current position. It is provided in lieu of the slew of functions (as in
ClassInstream) that would otherwise be required; the ClassIncreek interface is intended for use
by system implementors to provide higher-level interfaces.

ClassIncreek.SetAtEarliest: PROCEDURE [self: ClassIncreek.Increek];

ClassIncreek.SetAtLatest: PROCEDURE [self: ClassIncreek.Increek];

ClassIncreek.SetAtTime: PROCEDURE [self: Increek, eventTime: Intime.EventTime]
RETURNS [pR: ClassIncreek.PosResult];

ClassIncreek.GetTime: PROCEDURE [self: ClassIncreek.Increek]
RETURNS [eT: ClassIncreek.EventTime];

ClassIncreek.GetCurrentTime: PROCEDURE [self: ClassIncreek.Increek]
RETURNS [eT: ClassIncreek.EventTime];

ClassIncreek.GetPositionFrom: PROCEDURE [self: ClassIncreek.Increek]
RETURNS [p: ClassIncreek.ViewPosition];

Finally, to examine the next action in the Inscript, use GetAction. It returns an Action that is
extremely unsafe -- it is a LONG POINTER to an ActionBody whose data is guaranteed not to change
only until the next call on GetAction or SetAt... Copy it if you want it to last longer. The
waitMode and waitInterval parameters allow for the implementation of higher level abstractions
that involve timeouts. They operate based on the times recorded in the file, rather than the present real
time. Thus, GetAction may return with a timeout indication immediately after the client calls it. If
waitMode is forever, GetAction will not return until an Action has occurred; if dontWait, return
is immediate unless additional Actions remain in the Inscript. If waitMode is timed, the next
Action will be returned only if it occurred within waitInterval ticks following the preceding Action.
Exception: if the Increek is at "end of file", GetChar will wait the indicated interval (in the absense of new Actions) before
returning; and this interval begins at the real time of the call. These semantics are considered to be a compromise.

GetAction will raise IncreekError[outOfBounds] if the Increek is examining sufficiently old
Actions that their storage must be released to make way for new ones.

ClassIncreek.GetAction: PROCEDURE [self: ClassIncreek.Increek, waitMode:
ClassInscript.WaitMode _ forever, waitInterval: Intime.MsTicks _ 100,
acceptance: ClassIncreek.Acceptance _ clicks]
RETURNS [a: ClassIncreek.Action];

Cedar Terminal Input Facilities 11

GetAction returns NIL if the timeout criteria hold or if it encounters an Action not requested by the
acceptance parameter. This makes it very difficult, without rechecking the timeout criteria in the client, to determine
why a NIL resulted; for some reason this state of affairs is acceptable to the current implementation, but it should probably
be changed.

How to Use

The entire package is available as Instream.bcd, on the above-cited directory. The definitions files of
interest to the client are also available there. It imports the CWF package rather than including it; all
other imports (it is claimed) come from the system.

Start the system by creating an Instream via ClassInstream.NewStdInstream (or, if you’re not
using Instreams, ClassIncreek.NewStdIncreek. It will take several seconds and will create a file
"Inscript.Inscript." This file is made to reflect "truth" every few seconds; subsequent "runs" will find
the current position in this file.

Once the package has started, the standard Mesa keyboard/cursor packages have been disabled (but
not necessarily removed from storage.) The <shift>SWAT, <ctrl>SWAT, and <ctrl><shift>SWAT
functions still work, although they also cause Actions to be recorded, and will not work on replay.

Current Shortfalls

1. There’s no way to reduce the number of actions placed into the inscript by the terminal code -- i.e.,
by eliminating or reducing the frequency of mouse motion actions, when not accompanied by clicks, at
times when such actions are not of interest (most of the time.) Implementing this feature would not
be without risk -- during type ahead situations, there might not be enough available information.

2. There is currently no event filtering based on mouse coordinates. This could be supplied elsewhere,
but it was always intended to provide such facilities here. I believe that the clipping capabilities of
Cedar graphics can be used to make this filtering very efficient and effective. Whether this is done at
this level depends to some extent on how many independent processes end up "pulling." I’ll discuss
this further with relevant parties. Mouse coordinates are also currently expressed in screen units,
rather than any device-independent manner. They clearly should be recorded this way, but may want
to be presented to clients differently.

3. There is currently no version that records actions forever. This should perhaps be done, if at all, at
the event level, after it is determined which actions are interesting. The current inscript is a circular
buffer of (now a constant 100 Alto pages, soon to be variable) length, which can capture about a
minute’s worth of reasonable continuous activity on each page.

4. There is no specific mechanism included for changing cursor shape based on mouse position (and
perhaps the state of the mouse buttons.) Is this needed? If so, I can treat it along with point 2.

5. Chord-fetching operations are perhaps still too primitive. ClassInstream.GetChord is not
implemented, nor is it very well defined. ClassInstream.GetChordState, along with
ClassInstream.GetDownCount, leave one with not much work remaining, however. If Shift lock is
locked down, simple algorithms for dealing with chords will fail.

The interfaces described here should be sufficient for most clients of the Inscript system, except for
those who desire to implement the interfaces for different sources, or using different filing methods.
For the more adventurous, an appendix follows. It describes the Intime and Interminal interfaces in
more detail, and discusses some aspects of the current implementation.

The Interminal Definitions

The definitions module Interminal supplies a set of data types that describe the "Alto" terminal input
configuration: keyboard, keyset, and mouse. The InterminalImpl module, part of the current
implementation, does not export anything to Interminal, so the names are in that sense coincidental.
A later section discusses this implementation.

The intent of the Interminal types is indicated in the previous Instreams sections; the details are
included here for completeness.

Data Types

Interminal.MousePosition: TYPE = MACHINE DEPENDENT RECORD [
mouseX: INTEGER, mouseY: INTEGER];

Interminal.updown: TYPE = {down, up};

Interminal.KeyView: TYPE = {keyNames, keyFields, words, bits};

Interminal.KeyState: TYPE = MACHINE DEPENDENT RECORD [
SELECT OVERLAID KeyView FROM

bits => [bits: PACKED ARRAY Interminal.KeyName OF Interminal.updown],
words => [words: Interminal.KeyArray],
keyNames => [keyNames: Interminal.KeyNames],
keyFields => [keyFields: Interminal.KeyFields],
ENDCASE

];

Interminal.KeyName: TYPE = {
x0, x1, x2, x3, x4, x5, x6, x7, Keyset1, Keyset2, Keyset3, Keyset4, Keyset5, Red, Blue, Yellow,
Five, Four, Six, E, Seven, D, U, V, Zero, K, Dash, P, Slash, BackSlash, LF, BS,
Three, Two, W, Q, S, A, Nine, I, X, O, L, Comma, Quote, RightBracket, Spare2, BW,
One, ESC, TAB, F, Ctrl, C, J, B, Z, LeftShift, Period, SemiColon, Return, Arrow, DEL, FL3,
R, T, G, Y, H, Eight, N, M, Lock, Space, LeftBracket, Equal, RightShift, Spare3, FL4, -- FR5, -- allUp
};

This implementation has purloined the code for FR5 -- "Cedar" terminals do not use it -- in order to
obtain a code for the use of the implementation. The client may see this code, renamed allUp, as part
of a stillDown action -- see the Increeks section.

The following INLINE functions are just pretty loopholes for the implementation’s benefit.

Interminal.Kn: PROCEDURE [value: UNSPECIFIED] RETURNS [kN: KeyName] = INLINE {
kN _ LOOPHOLE[value]};

Interminal.Kv: PROCEDURE [value: UNSPECIFIED] RETURNS [kV: CARDINAL] = INLINE {
kV _ LOOPHOLE[value]};

Interminal.KbdKeyName: TYPE = KeyName [Five..allUp];

Interminal.ButtonKeyName: TYPE = KeyName [Red..Yellow];

Interminal.PaddleKeyName: TYPE = KeyName [Keyset1..Keyset5];

Interminal.KeyArray: TYPE = ARRAY [0..5) OF WORD;

Interminal.KeyNames: TYPE = MACHINE DEPENDENT RECORD [

Appendix: Cedar Terminal Input Facilities 2

blank: [0..377B],
Keyset1, Keyset2, Keyset3, Keyset4, Keyset5: updown, Red, Blue, Yellow: updown,
Five, Four, Six, E, Seven, D, U, V, Zero, K, Dash, P, Slash, BackSlash, LF, BS: updown,
Three, Two, W, Q, S, A, Nine, I, X, O, L, Comma, Quote, RightBracket, Spare2, BW: updown,
One, ESC, TAB, F, Ctrl, C, J, B, Z, LeftShift, Period, SemiColon, Return, Arrow, DEL, FL3: updown,
R, T, G, Y, H, Eight, N, M, Lock, Space, LeftBracket, Equal, RightShift, Spare3, FL4, -- FR5 -- allUp:

updown
];

Interminal.KeyFields: TYPE = MACHINE DEPENDENT RECORD [
mesaMemorialBlankField: [0..377B],
paddles: Interminal.Paddles,
buttons: Interminal.Buttons,
keys: ARRAY [0..3] OF WORD];

Interminal.ButtonView: TYPE = {buttonChord, buttonNames, buttonValue};

Interminal.Buttons: TYPE = MACHINE DEPENDENT RECORD [
SELECT OVERLAID ButtonView FROM

buttonChord => [buttonChord: [0..10B)],
buttonNames => [buttonNames: Interminal.ButtonNames],
buttonValue => [buttonValue: Interminal.ButtonValue],
ENDCASE

];

Interminal.ButtonNames: TYPE = MACHINE DEPENDENT RECORD
[Red, Blue, Yellow: updown];

Several of the enumerated types that follow specify their implementation representations explicitly so
that said representations can be powers of two. This allows them to be used in conjunction with the
PowerSet functions, described with Instreams.

Interminal.ButtonName: TYPE = MACHINE DEPENDENT{Red(0), Blue(1), Yellow(2)};

Interminal.ButtonValue: TYPE = MACHINE DEPENDENT{
RedYellowBlue(0), RedBlue(1), RedYellow(2), Red(3), BlueYellow(4),
Blue(5), Yellow(6), None(7)};

Interminal.PaddleView: TYPE = {paddleChord, paddleNames, paddleValue};

Interminal.Paddles: TYPE = MACHINE DEPENDENT RECORD [
SELECT OVERLAID PaddleView FROM
paddleChord => [paddleChord: [0..40B)],
paddleNames => [paddleNames: Interminal.PaddleNames],
paddleValue => [paddleValue: Interminal.PaddleValue],
ENDCASE];

Interminal.PaddleNames: TYPE = RECORD [
Keyset1, Keyset2, Keyset3, Keyset4, Keyset5: updown];

Interminal.PaddleName: TYPE = MACHINE DEPENDENT{
Keyset1(0), Keyset2(1), Keyset3(2), Keyset4(3), Keyset5(4)};

Interminal.PaddleValue: TYPE = MACHINE DEPENDENT{
Keyset1(17B), Keyset2(27B), Keyset3(33B), Keyset4(35B), Keyset5(36B),
None(37B)};

Appendix: Cedar Terminal Input Facilities 3

Interminal.allUp: KeyState;

Interminal.Spare1: CHARACTER=LOOPHOLE[201B];

Interminal.Spare2: CHARACTER=LOOPHOLE[202B];

Interminal.Spare3: CHARACTER=LOOPHOLE[203B];

Interminal.ShiftSpare1: CHARACTER=LOOPHOLE[204B];

Interminal.ShiftSpare2: CHARACTER=LOOPHOLE[205B];

Interminal.ShiftSpare3: CHARACTER=LOOPHOLE[206B];

Appendix: Cedar Terminal Input Facilities 4

Intime

Intime provides data types for representing EventTime values in a number of sizes; all represent
times, or time increments, expressed in milliseconds. There are also some incremental time values
expressed in a courser grain (the actual value stored in Increek Actions.) This interface also
supplies a number of procedures for manipulating these various times and their incremental
derivatives.

Data Types

Intime.MsTicks: TYPE = Process.Milliseconds;

Intime.MSTicks: TYPE = LONG CARDINAL; -- long milliseconds --

Intime.DeltaTicks: TYPE = Process.Ticks; -- probably 1/60 sec.

Intime.DeltaTime: TYPE = Intime.DeltaTicks [0..256);

Intime.maxDeltaTime: Intime.DeltaTime = LAST[Intime.DeltaTime];

Intime.msPerDeltaTick: Intime.MsTicks; -- converts between the representations

Intime.deltaTicksPerSecond: Intime.DeltaTicks;

Intime.DeltaDeltaTime: TYPE = Intime.DeltaTime [0..32);

Intime.maxDeltaDeltaTime: Intime.DeltaDeltaTime = LAST[Intime.DeltaDeltaTime];

Intime.Overlap: TYPE = {loShort, hiShort};

Client should think of EventTime as TYPE[3].

Intime.EventTime: TYPE = PRIVATE MACHINE DEPENDENT RECORD
[
SELECT OVERLAID Overlap FROM

loShort => [lo: MsTicks, hi: LONG CARDINAL],
hiShort => [lower: MSTicks, higher: CARDINAL],
ENDCASE

];

ReadEventTime returns the current time of day, as an EventTime.

Intime.ReadEventTime: PROCEDURE RETURNS [EventTime];

These functions perform arithmetic on EventTimes, or answer questions about them. IsLaterTime
is TRUE if t1 is later than t2. The result of EventTimeDifference is positive under the same
circumstances.

MsTicksToDeltaTicks returns its input, converted to DeltaTicks units; the rem return value is
approximately rem_s-(dT*msPerDeltaTick). This is clearly intended for a very specialized use, to
which it is put in IncreekImpl.mesa.

Intime.EventTimeDifference: PROCEDURE [t1, t2: LONG POINTER TO READONLY Intime.EventTime]
RETURNS [Intime.MsTicks];

Appendix: Cedar Terminal Input Facilities 5

Intime.IsLaterTime: PROCEDURE [t1, t2: Intime.EventTime] RETURNS [BOOLEAN] ;

Intime.AddDeltaTimeToEventTime: PROCEDURE [eT: Intime.EventTime, dT:
Intime.DeltaTime] RETURNS [rT: Intime.EventTime];

Intime.SubtractMsTicksFromEventTime: PROCEDURE [
eT: LONG POINTER TO Intime.EventTime, ticks: Intime.MsTicks];

Intime.MsTicksToDeltaTime: PROCEDURE [s: Intime.MsTicks]
RETURNS [dT: Intime.DeltaTicks, rem: Intime.MsTicks];

Appendix: Cedar Terminal Input Facilities 6

InOS

The Inscript facilities have been implemented for both the Alto/Mesa and the Pilot/Mesa versions of
Cedar. The source changes have been limited to two implementation modules: the implementation of
ClassInscript, and the implementation of an interface intended to confine operating system
dependent functions, InOS.

InOS contains redefinitions of most of the CWF formatted-write functions, for two reasons. The first
is that different initialization procedures are needed to use these functions in the two OS worlds (the
implementation of InOS is responsible for providing default initialization if the functions are to be
used). The second is that a "production" implementation may choose to supply dummy procedures
for these operations -- they are used only for diagnostic purposes in the Inscript package.

Procedures

InOS.WF0: PROC [s: STRING];

. . .

InOS.WF4: PROC [s: STRING, a,b,c,d: LONG POINTER];

InOS.WF: PROC [s: STRING, a,b,c,d: LONG POINTER _ NIL];

InOS.WFN: PROC [s: STRING, array: DESCRIPTOR FOR ARRAY OF LONG POINTER];

InOS.WFC: PROC [CHARACTER];

InOS.WFCR: PROC;

InOS.SetCode: PROC[CHARACTER, PROC[LONG POINTER, STRING, PROC[CHARACTER]]];

InOS.SetWriteProcedure: PROC [PROC[CHARACTER]] RETURNS [PROC[CHARACTER]];

InOS.WFError: ERROR;

The remainder of this interface will be of interest only to those providing new implementations of
ClassInscript and/or Interminal. It supplies procedures for dealing with the keyboard hardware,
the real time facilities, and the high-priority process activities required to provide the keyboard
"interrupt" process (supplied by InterminalImpl.)

These functions merely return the fixed long addresses that point to the states of the keyboard, mouse,
and cursor. They appear here because Pilot supplies functions obscuring the absolute locations, while
the Alto world assumes that the client knows the addresses.

InOS.GetKeyboard: PROC RETURNS[LONG POINTER TO READONLY UNSPECIFIED];

InOS.GetMousePosition: PROC RETURNS[LONG POINTER TO READONLY UNSPECIFIED];

InOS.GetCursorPosition: PROC RETURNS[LONG POINTER TO UNSPECIFIED];

Similarly, the following functions return the current values of the high-resolution interval timer
(ReadFastClock), and the long-term seconds-resolution clock (GetTimeParameters). The latter
function also returns a value corresponding to the number of interval-timer ticks in a second; in
addition, it should perform any initialization required to perform these two functions (an issue in the
current Alto implementation).

InOS.ReadFastClock: PROC RETURNS [LONG CARDINAL];

InOS.GetTimeParameters: PROC RETURNS [seconds: LONG CARDINAL,
fastOneSecond: LONG CARDINAL]; -- pulses per second

SetupTerminalHandler must perform any OS-dependent activities related to shutting off any
existing terminal handlers and starting ours. WaitForTick provides a non-busy wait until the next
process-scheduling interval (approx. 60 hz.). MakeCallerResident must lock the code segment of

Appendix: Cedar Terminal Input Facilities 7

the caller into physical memory.

InOS.SetupTerminalHandler: PROC;

InOS.WaitForTick: PROC;

InOS.MakeCallerResident: PROC;

Appendix: Cedar Terminal Input Facilities 8

ClassInscript and Interminal

The ClassInscript interface provides an Inscript object, whose function is to record variable-length
entries in a disk file, and to supply these entries on request at a later time. In addition, the Inscript
(with the help of its clients) periodically records sufficient information to allow the current output
position to be reestablished after a system crash or other uncontrolled termination of the package.
Beyond that, the Inscript knows little of the semantics of the entries it records. For the courageous
implementor, there follows a brief description of the ClassInscript interface. Following that is an
even briefer exposition of the current implementation.

Data Types

An Inscript object represents the inscript file as a whole, along with all the operations pertaining to
it. The InscriptPageDescriptor describes a particular page within the file, and a position within
that page; there may be more than one of them. It does not supply any operations. In retrospect,
probably the InscriptPageDescriptor should become the Inscript object. This would reduce considerably the clumsiness
of some of the following specifications.

There are two kinds of Inscript clients; those who wish to record into the inscript -- recording
clients -- and those who wish to read entries from them -- plain old clients. At present there is but
one recording client for an inscript, although that is not a requirement. Recording clients will typically
wish to read as well.

An InscriptPageNumber is a "virtual page number" of a page in the Inscript file.

ClassInscript.Inscript: TYPE = REF InscriptObject;

ClassInscript.InscriptPageDescriptor: TYPE = REF InscriptPageDescBody;

ClassInscript.InscriptPageNumber: TYPE = INTEGER;

During initialization, the recording client must supply a COmProc and a KEyProc to assist in
reestablishing the current "end of file" position within the inscript file. KEyProc should assume that
descriptor is positioned at the beginning of a page, and should extract an OrderKey from that
page (this clearly requires that the client must record an OrderKey at a known place within each
page as it writes the page.) COmProc, given two OrderKeys, should return TRUE iff a is "less
than" b. In the Increek implementations, OrderKeys are EventTimes. The Increek implementation knows
nothing about OrderKeys except their size.

ClassInscript.OrderKey: TYPE = RECORD [a, b, c: WORD];

ClassInscript.COmProc: TYPE = PROCEDURE [a, b: ClassInscript.OrderKey] RETURNS [aLessB:
BOOLEAN];

ClassInscript.KEyProc: TYPE = PROCEDURE [
inscript: ClassInscript.Inscript, descriptor: ClassInscript.InscriptPageDescriptor]
RETURNS [ClassInscript.OrderKey];

In order to read entries from the inscript, the client must supply a ReadAssignment procedure. Its
job is to coerce the LONG POINTER argument, assumed to denote an entry of interest to the client, into
a comprehensible data type, determine the entry’s length, copy the entry to a new location if desired,
and return the length of the entry to the caller, for use in advancing to the next entry..

ClassInscript.ReadAssignment: TYPE = PROCEDURE [p: LONG POINTER TO UNSPECIFIED]
RETURNS [wordsToAdvance: CARDINAL];

WaitMode is used in the primitive WaitForEntry function used to implement the waiting activities
in ClassIncreek.GetAction. Its use is described in detail in the Increek section.

ClassInscript.WaitMode: TYPE = {forever, dontWait, timed};

Appendix: Cedar Terminal Input Facilities 9

ClassInscript.InscriptErrorCode: TYPE = {
entryOutOfBounds, -- trying to position out of bounds or old stuff has disappeared
invalidInscriptSpecs, -- bad arguments to NewStd...
invalidInscriptFile, -- while opening old inscript file
descriptorUninitialized -- in AdvancePage--,
invalidPageKey -- in KeyProc during intitialization --};

Procedures

NewStdInscript creates an Inscript using the standard implementation, discussed below. In
addition to the obvious parameters, initializeFile will force a reinitialization of the inscript file even
if it already exists, the inscript file will contain 2^lnFileSize data pages, and the inscript history will
be discarded in groups of 2^lnGroupSize pages to make room for new entries. The Release
operation cleanly terminates an input session (no one calls this one, in current implementations.)
GetPageLimits returns the "virtual page numbers" of the pages that currently exist within the
inscript file. Functions like ClassIncreek.SetAtTime use this information to initialize their search
activities.

ClassInscript.NewStdInscript: PROCEDURE [fileName: STRING,
KeyProc: ClassInscript.KEyProc, ClassInscript.ComProc: COmProc, initializeFile:
BOOLEAN _ FALSE,
lnFileSize: CARDINAL_7, lnGroupSize: CARDINAL_4]
RETURNS [ClassInscript.Inscript];

ClassInscript.Release: PROCEDURE [self: ClassInscript.Inscript] RETURNS [nilInscript:
ClassInscript.Inscript];

ClassInscript.GetPageLimits: PROCEDURE [self: ClassInscript.Inscript]
RETURNS [earliestPage: ClassInscript.InscriptPageNumber, latestPage:
ClassInscript.InscriptPageNumber] ;

An InscriptPageDescriptor, when created, does not refer to any inscript page; other operations
make it valid. CopyPageDescriptor copies the information of one descriptor into another,
maintaining any necessary internal reference counts (don’t perform this function any other way.)
ReleasePageDescriptor discards one.

ClassInscript.CreatePageDescriptor: PROCEDURE [self: ClassInscript.Inscript]
RETURNS [rDescriptor: ClassInscript.InscriptPageDescriptor];

ClassInscript.CopyPageDescriptor: PROCEDURE [self: ClassInscript.Inscript, dest:
InscriptPageDescriptor,
source: ClassInscript.InscriptPageDescriptor];

ClassInscript.ReleasePageDescriptor: PROCEDURE [self: Inscript, descriptor:
InscriptPageDescriptor]
RETURNS [nilPageDescriptor: InscriptPageDescriptor];

Using the KEyProc and the COmProc, the ClassInscript implementation must establish a valid
output position when the Inscript object is created. Subsequently, the only valid recording operations
are SetWritePage and WriteEntry.

WriteEntry records the value of the entry array into the next available locations in the current page
(using internally maintained page descriptors), failing if there is not enough room. The recording
client must then call SetWritePage in order to move on. Things are done this way so that the client
can record per-page information (e.g., the page’s OrderKey) at the beginning of each page. After
initialization, the client should call WriteEntry without any initial call to SetWritePage, and the
initialization must take care of guaranteeing that this works -- the output position must be set at "end
of file".

SetWritePage will advance to the next "virtual" page, increasing the value of
GetPageLimits[...].latestPage by one, and possibly increasing ditto.earliestPage, thus
destroying some history. It will fail only under the circumstances (which should be made vanishingly

Appendix: Cedar Terminal Input Facilities 10

unlikely) that no physical page in the inscript file is available for use. On return, the page descriptor
will represent the first data position within the new page.

ClassInscript.WriteEntry: PROCEDURE [self: ClassInscript.Inscript, entry: LONG DESCRIPTOR FOR
ARRAY OF WORD]
RETURNS [success: BOOLEAN];

ClassInscript.SetWritePage: PROCEDURE [self: ClassInscript.Inscript] RETURNS [success:
BOOLEAN];

To read from the inscript, a client performs ReadEntry operations, supplying a ReadAssignment
procedure in order to interpret the entries and determine their length. When ReadEntry fails, no
more entries remain in the current page; the client should next call SetPage or AdvancePage.
Again, this is done to allow the client to do something special at page boundaries. If the
InscriptPageDescriptor’s page disappears to make way for new entries, ReadEntry will raise
InscriptError[code: entryOutOfBounds].

SetPage adjusts its InscriptPageDescriptor to the beginning of the indicated "virtual" page,
failing if that page no longer exists or doesn’t exist yet. AdvancePage performs SetPage of
"current plus one." If AdvancePage fails, it is because no further entries exist in the file. The
client might then call WaitForEntry, which will return only if a timeout condition (described in the
Increek section) is satisfied, or if one or more new entries have been added to the inscript since the
operation was invoked.

ClassInscript.ReadEntry: PROCEDURE [self: ClassInscript.Inscript, descriptor:
ClassInscript.InscriptPageDescriptor, Read: ClassInscript.ReadAssignment]
RETURNS [success: BOOLEAN];

ClassInscript.SetPage: PROCEDURE [self: ClassInscript.Inscript, descriptor:
ClassInscript.InscriptPageDescriptor,
pageNumber: ClassInscript.InscriptPageNumber] RETURNS [success: BOOLEAN];

ClassInscript.AdvancePage: PROCEDURE [self: ClassInscript.Inscript, descriptor:
ClassInscript.InscriptPageDescriptor]
RETURNS [success: BOOLEAN];

ClassInscript.WaitForEntry: PROCEDURE [self: ClassInscript.Inscript, waitMode:
ClassInscript.WaitMode, waitInterval: Intime.MsTicks _ 1000,
waitStartTime: LONG POINTER TO Intime.EventTime _ NIL]
RETURNS [moreEntries: BOOLEAN];

ClassInscript.InscriptError: ERROR [code: ClassInscript.InscriptErrorCode];

In the existing package, InscriptImplAlto and InscriptImplPilot provide two functionally
equivalent implementations of ClassInscript. InterminalImpl acts as the recording client, polling
the terminal hardware once a tick and recording any changes it sees. This implementation records its
Actions into a disk file that behaves as a large ring buffer, filling seldom more than one Alto-sized
page per minute under normal conditions. Thus Actions are remembered for quite some time, but
not indefinitely (the standard Increek uses a 128 page file.) Both implementations run the recording
client at high priority. They both lock inscript pages into memory to prevent page fault delays. They
seem to perform efficiently, without losing events. They are monitored so that clients from more than
one process can access their inscripts.

The interfaces were designed so that other implementations of Inscripts could be provided, for
instance to immutably record user Actions, possibly condensed (retaining fewer actions), to supply an
application with Actions from a source other than the attached terminal, etc. These possibilities are
discussed in more detail in the design document cited as a reference.

