
Chapter 1. Introduction

This manual describes the Cedar language. It is organized into three major parts:

Chapter 2: A description of a much simpler kernel language, in terms of which the current
Cedar language is explained. This description includes a precise definition (¶�32.2), and a
less formal explanation of the ideas of the kernel and the restrictions imposed by current
Cedar (¶¶�32.3-2.9). ¶�32.1 contains an overview or glossary, in which the major technical
terms used in the kernel are briefly defined.

Chapter 3: The syntax and semantics of the current Cedar language. The semantics is given
precisely by a desugaring into the kernel. It is also given more informally by English text.
This chapter also contains a number of examples to illustrate the syntax.

Chapter 4: The primitive types and procedures of Cedar. For each one, its type is given as
well as an English definition of its meaning. This chapter is organized according to the
hierarchy of the primitive types (¶�34.1).

In addition, there is a one-page grammar for the full language, a shorter grammar for the safe
language, and a two-page language summary which includes the grammar, the desugaring, and the
examples from ¶�3,  

The document you are reading is nearly complete. A fe missing sections contain
paragraphs in the style of this one.
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Chapter 2. The kernel language

This document describes the Cedar language in terms of a much smaller language, which we will
usually call the kernel or the Cedar kernel. Cedar differs from the kernel in two ways:

• It has a more elaborate syntax (¶�3). The meaning of each construct in Cedar is explained
by giving an equivalent kernel program. 

Often the kernel program is longer or less readable; the Cedar construct can be thought of as an idiom which
conveniently expresses a common operation. Sometimes the Cedar construct has no real advantage, and the
difference is the result of backward compatibility with the ten-year history of Mesa and Cedar.

• It has a large number of built-in types and procedures (¶�4). In the kernel language all of
these could in principle be programmed by the user, though in fact most are provided by
special code in the Cedar compiler. In general, you can view these built-in facilities much
like a library, selecting the ones most useful for your work and ignoring the others.

Unfortunately, the current Cedar language is not a superset of the kernel language. Many important
objects (notably types, declarations and bindings) which are ordinary values in the kernel that can
be freely passed as arguments or bound to variables, are subject to various restrictions in Cedar:
they can only be written in literal form, cannot be arguments or results of procedures, or whatever.
The long-term goal for evolution of the Cedar language is to make it a superset of the kernel
defined here. In the meantime, however, you should view the kernel as a concise and hopefully
clear way of describing the meaning of Cedar programs. 

To help in keeping the kernel and current Cedar separate, reserved words and primitives of the
kernel which are not available in current Cedar are written in SANS-SERIF SMALL CAPITALS, rather
than the SERIF SMALL CAPITALS used for these symbols in current Cedar. Operator symbols of the
kernel which are not in current Cedar are not on the keyboard.

The kernel is a distillation of the essential properties of the Cedar language, not an entirely separate
invention. Most Cedar constructs have simple translations into the kernel. Those which do not (e.g.,
some of the features of OPEN) are considered to be mistakes, and should be avoided in new
programs.

¶�2.2 defines the syntax and semantics of the Cedar kernel language, the former with a grammar,
and the latter by explaining how to take a program and deduce the function it computes and the
state changes it causes. The remainder of the chapter is a commentary which explains the concepts
behind the kernel. It also gives the restrictions imposed by the current Cedar language on the full
generality described here; for more on this subject, see ¶�3. The meaning of the various built-in
primitives is given in ¶�4. ¶�2.9 describes the incompatibilities between the kernel language
current Cedar, i.e., the constructs in Cedar which would have a different meaning in a kernel
program. For the most part, these are bits of syntax which do not have consistent meanings in
current Cedar; future evolution of the language will replace them with their kernel equivalents.

Usually, terms are defined and explained before they are used, but some circularity seems to be
unavoidable. ¶�2.1 gives a brief summary of each major idea which may be helpful as a reminder.
Both this and the explanations in ¶¶�2.3-2.7 are given under five major headings, as follows:

Values and computations: Application Value Variable Group Binding Argument 

The type system: Type Type-checking Mark Cluster Declaration Class

Programs: Name Expression Scope Constructors Recursion

Conveniences: Coercion Exception Finalization Safety Process

Miscellaneous: Allocation Static Pragma
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The kernel definition in ¶�2.2 follows the ordering of the kernel grammar given there.

2.1 Overview

This section gives a brief summary of the essential concepts on which the Cedar language is based.
The explanations are informal and incomplete. For more precise but more formal definitions, see
¶�2.2; for more explanation, see ¶�2.3-2.8.

2.1.1 Values and computations

Application: The basic mechanism for computing in Cedar is applying a procedure (proc for short) to
arguments. When the proc is finished, it returns some results, which can be discarded or passed as
arguments to other procs. The application may also change the values of some variables. In the
program an application is denoted by (the denotation of) the proc followed by square brackets
enclosing (the denotation of) the arguments: f [first~x, last~y]. There are special ways of writing
many kinds of application: x+1, person.salary, IF x<3 THEN red ELSE green, x: INT_7.

Value: An entity which takes part in the computation (i.e., acts as a proc, argument or result) is
called a value. Values are immutable: they are not changed by the computation. Examples: 3, 
"Hello", l x IN x+3; actually these are all expressions which denote values in an obvious way.

Variable: Certain values, called variables, can contain other values. The value contained by a
variable (usually called the value of the variable) can change when a new value is assigned
variable. In addition to its results, a proc may have side-effects by changing the values of variables.
Nearly every type T has a corresponding variable type VAR T; values of type VAR T contain values
of type T. Every VAR type has a NEW proc which creates a variable of the type. A variable is usually
represented by a single block of storage; the bits in this block hold the representation of its value.

Group: A group is an ordered set of values, often denoted by a constructor like this: [3, 
"Hello"]. Like everything else, a group is itself a value.

Binding: A binding is an ordered set of [name, value] pairs, often denoted by a constructor like this:
[x: INT~3, y: BOOL~TRUE], or simply [x~3, y~TRUE]. If b is a binding, b.n denotes the value of the
name n in b. 

Argument: A group or binding constructor written explicitly after an expression denotes application
of the value P denoted by the expression to the value a denoted by the constructor, called the
argument. P is usually a proc, and a is a group or binding, which is bound to its domain declaration
D to get the argument which is passed. In making this binding a is coerced, if necessary,
the declaration: 
If it is a group, the names from D are attached to its elements to turn it into a binding.
If a name in D is missing from a, a default value is supplied.
If a value in a doesn’t have the type required by D, it is coerced into another value which does.

2.1.2 The type system

Type: A type defines a set of values by specifying certain properties of each value in the set (e.g.,
integer between 0 and 10); these properties are so simple that the compiler can make sure that proc
arguments have the specified properties.  A value may have many types; i.e., it may be in many
these sets. A type also collects together some procs for computing with the value (e.g., add and
multiply).

More precisely, a type is a value which is a pair:

Its predicate, a function from values to the distinguished type BOOL. A value has type 
T’s predicate returns TRUE when applied to the value.
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Its cluster, a binding in which each value is usually a proc taking one argument of the type.
The expression e.f denotes the result of looking up f in the cluster of e’s syntactic
and applying the resulting proc to the value of e.

A proc’s type depends on the types of its domain and range; a proc with domain (argument type) 
and range (result type) R has the type D_R. Every expression e has a syntactic type denoted
e.g., the range declared for its outermost proc; in general this may depend on the arguments. The
value of e always has this type (satisfies this predicate); of course it may have other types as well.

Mark: Every value carries a set of marks (e.g., INT or ARRAY; think of them as little flags stuck on
top of the value). The predicate HASMARK tests for a mark on a value; it is normally used to write
type predicates. The set of all possible marks is partially ordered. 

The set of marks carried by a value must have a largest member m, and it must include every mark smaller than m
Hence all the marks on a value can be represented by the single mark m; we can say that m is the mark on the value.
This does not imply a total ordering on the marks.

Type-checking: The purpose of type-checking is to ensure that the arguments of a proc satisfy
predicate of the domain type; this is a special kind of pre-condition for executing the proc. The
proc body can then rely on the fact that the parameters satisfy their type predicates. It must
establish that the results satisfy the predicate of the range type; this is a special kind of post-
condition which holds after executing the proc. Finally, the caller can rely on the fact that the
results satisfy their type predicate. In summary:

Caller� establish pre-condition: arguments have the domain type;
rely on post-condition: results have the range type.

Body� rely on pre-condition: parameters have the domain type;
establish post-condition: returns have the range type.

Declaration: A declaration is an ordered set of [name, type] pairs, often denoted like this:
[x:� INT,� y:� BOOL]. If d is a declaration, a binding b has type d if it has the same set of names, and for
each name n the value b.n has the type d.n. A binding b matches d if the values of b can be 
to yield a binding b( which has type d.

A declaration can be instantiated (e.g., on block entry) to produce a binding in which each name is
bound to a variable of the proper type; instantiating the previous example yields 
[x: VAR INT~(VAR INT).NEW, y: VAR BOOL~(VAR BOOL).NEW]. 

Class: A class is a declaration for the cluster of a type. For instance, the class Ordered
PROC[T, T]_[BOOL], . . .]. C is a subclass of D if (loosely) C includes at least all the [name, type]
pairs in D.

2.1.3 Programs

Name: A name (sometimes called an identifier) appearing in a program denotes the value bound
the name in the scope that the name appears in (unless the name is in a pattern before a colon
(declaration) or tilde (binding), or after a dot or $). An atom is a value that can be used to refer to
a name; a literal atom is written like this: $alpha.

Expression: In a program a value is denoted by an expression, which is one of:
a literal value (3 or "Hello");
a name (x or salary); 
an application of a proc to other values(Sin[90];
GetProperties[directory, ReadFileName[input]]);
a l-expression, which yields a proc value (l [x: INT] IN (IF x<0 THEN � x ELSE x) );
a constructor for a declaration or binding ([x: INT~3, y: REAL~3.14]).

If a value is given for each free name in an expression, then it can be evaluated to produce a value.
Thus an expression is a rule for computing a value.
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Scope: A scope is a region of the program in which the value bound to a name does not change
(although the value might be a variable, whose contents can change). For each scope there is a
binding called ENV (for environment) which determines these values. A new scope is introduced (in
the kernel) by IN (after LET or l) or by a REC [...] constructor for a declaration or binding; e.g., 

LET x~3 IN x+5;
LET fact~l [n: INT] IN IF n=0 THEN 1 ELSE n*fact[n�1].

Constructors: Brackets delimit explicit constructors for group, declaration or binding values. They
all have the form [x

1
, x

2
, ...], and are distinguished by the form of the x

i
: 

an expression for a group;
n: e  for a declaration;
n~e or n: e~e for a binding.

Recursion: When names are introduced in a constructor in Cedar, this is done recursively: 
If v is bound to n in a binding constructor, then in expressions in the constructor n has the value 
rather than its value in the enclosing scope. Exception: argument bindings are non-recursive.
If n is declared in a declaration constructor, then it may not be used in the constructor, unless there is
an ordering of the declarations in the constructor such that a name is used only by later declarations.
Exception: declared names may be used in the bodies of l-expressions in the constructor (see
¶�3.3.4)

In the kernel, however, constructors are non-recursive unless preceded by REC

Dot notation: The form e.n looks up n in some binding associated with e, and does something
the result. There are three cases:
If e is a binding, e.n is just the value paired with n in e.
If e is a type, e.n is e.Cluster.n.
Otherwise, e.n is (De.n)[e], and e.n[more args] is usually (De.n)[e, more args].

In all cases you are supposed to think of n as some property or behavior associated with 
denotes that property or evokes that behavior.

2.1.4 Conveniences

Coercion: Each type cluster contains To and From procs for converting between values of the type
and values of other types (e.g., Float: PROC[INT]_[REAL]; this would be a To proc in REAL and a
from proc in INT). One of these procs is applied automatically if necessary to convert or 
argument value to the domain type of a proc; this application is a coercion. Each coercion has an
associated atom called its tag (e.g., $widen for INT_REAL or $output for INT_ROPE); several
coercions may be composed into a single one if they have the same tag. The tags thus serve to
prevent unexpected composition of coercions.

Exception: There is a set of exception values. An expression e denotes a value which is either of
type De or is an exception. Whenever an exception value turns up in evaluating an expression, it
immediately becomes the value of the whole expression, unless (in the kernel) the expression has
the form e BUT {...}. The {...} tests for exception values and can supply an ordinary value, or
another exception, as the value of the BUT expression. An exception value may contain an ordinary
value, called the argument of the exception, so that arbitrary information can be passed along with
an exception.

Finalization: When a variable is no longer accessible, the storage it occupies is freed (automatically
in the safe language). Before this is done, a finalization proc in the cluster of the variable’s type
called to do any other appropriate resource deallocation. The local variables of a proc or other
scope may also be finalized (using UNWIND).

Safe: The safety invariant says that all references are legal, i.e., each REF T value is 
a variable of type T. A proc is safe if it maintains the safety invariant whenever it is applied
arguments of the proper types. If a proc body (l-expression) is 
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checked, the compiler guarantees that the proc value is safe;
trusted, the programmer asserts that it is safe (but the compiler makes no checks), and the proc value
is treated as safe;
unchecked, the compiler makes no checks and the proc value is unsafe. 

It is best to write checked code whenever possible. However, checked code cannot call unsafe procs
(since the compiler then cannot guarantee safety). 

Process: Concurrency is obtained by creating a number of processes. Each process executes a single
sequential computation, one step at a time. They all share the same address space. Shared data
(touched by more than one process) can be protected by a monitor; only one process can execute
within the procs of the monitor at a time. So that each process can know what to rely on, it is
necessary to establish an invariant for the monitored data which is established whenever a monitor
proc returns or waits. A process can wait on a condition variable within a monitor; other
can then enter the monitor. The waiting process runs again when the condition is notified
timeout.

2.1.5 Miscellaneous

Allocation: Cedar has standard facilities for allocating new variables of any type (the NEW
primitive); related variables can be allocated in the same zone. Normally, variables are deallocated
automatically by the garbage collector when they can no longer be referenced; such variables can
only be referred to by REFs. It is also possible to have variables which are deallocated explicitly
FREE, but this is unsafe.

Static: An expression whose value is computed without executing the program is called static
Literals are static, as are names bound to literals, and any expression with static operands. Proc
bodies are never static unless they are inline

Pragma: Some language constructs do not affect the meaning of the program (except possible to
make a legal program illegal), but only its time and space costs; these are called pragmas
are INLINE for proc bodies and PACKED for arrays.

2.2 Kernel definition

This section gives the syntax and semantics of the Cedar kernel language. Motivation, and an
explanation of the relation between the kernel and the current Cedar language, can be found in
¶¶�2.3-2.7. The kernel is subdivided into 

A rather austere core; everything can be desugared into this, but it isn’t very readable.

A set of conveniences; with these, readable programs can be written.

Imperative constructs: statements and loops.

Exception handling.

The format of this section interleaves grammar rules which give the syntax of the language with text
which gives the meaning. The meaning of the core is given in English. For other parts of the
kernel, it is given by desugaring rules which show how to rewrite each construct in terms of others;
if rewriting is done repeatedly, the result is a core program, which may invoke some primitives. The
meaning of these is also given in English. There is also some English explanation of the desugaring,
but this is only a commentary and does not have the force of law.

See ¶�3.1 for the notation used in the grammar and desugaring.
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2.2.1 The core

In the core, there is syntax only for names, literals, application, l-expressions, a basic and a
recursive binding construction, and syntactic type; everything else is done with primitives. We never
write anything in the core, however, except to show the desugaring of a kernel construct. Thus the
reader need not struggle with programs in the ugly core syntax.

Syntax Syntactic type Meaning

expression ::=
n | Dn ENV[$n].val
literal | Dliteral
e
1
 Z e

2
 | (De

1
.RANGE)[e

2
] -- Standard application. |

l d
1
=> d

2
 IN e | d

1
_d

2
-- Standard proc constructor. |

L d
1
=> d

2
 IN e | d

1
_d

2
-- Unchecked standard proc constructor. |

[(n~e), ...] [(n: De), ...] -- Vanilla binding constructor. |
FIX d ~ e | d -- Recursive binding constructor. |
D e TYPE -- Syntactic type. 

type ::= e De --gTYPE-- -- A type is syntactically just an expression.
decl ::= e De --gDECL-- -- A decl is syntactically just an expression.

name ::= 
letter (letter | digit)...(DENV).n -- Appears as an e or in a pattern.

literal ::=   
$ n | ATOM -- ATOM literal. |
primitive Dprimitive

primitive ::=   
ARROW | [d: DECL, p: (d_DECL)]_[a: --arrow--TYPE]
   DOMAIN | RANGE |*[a: --arrow--TYPE]_[t: TYPE]
MKPAIR | [t

1
:: TYPE, first: t

1
, t

2
:: TYPE, rest: t

2
]_[v: t

1
Xt

2
]

GROUP | [t
1
: TYPE]_[t: TYPE] --tgTYPE

MKCROSS | [g: GROUP[TYPE]]_[c: --cross--TYPE] 
   CDOTG | *[t: --cross--TYPE]_[g: GROUP[TYPE]]
MKBINDD | [d: DECL, v: d.T]_[b: d]
   BDOTD | BDOTV | [b: BINDING]_[d: DECL] | [d:: DECL, b: d]_[v: d.T ]
MKBINDP | [p: PATTERN, t:: TYPE, v: t]_[b: MKDECL[p, t]]  --=MKBINDD[d~MKDECL[p, t], v~
LOOKUP | [d:: DECL, b: d, n: ATOM]_[v: DTOB[d].n]
THEN | [d

1
:: DECL, b

1
: d

1
, d

2
:: DECL, b

2
: d

2
]_[v: d

1
 THEND d

2
 ]

ENV | *BINDING
MKDECL | *[p: PATTERN, t: TYPE]_[d: DECL]
   DDOTP | *[d: DECL]_[p: PATTERN]
   DDOTT | *[d: DECL]_[t: TYPE]
DTOB | *[d: DECL]_[b: BINDING]--=MKBINDP[p~d.P, v~d.T.G] ]
BTOD | *[b: BINDING]_[d: DECL]--=MKDECL[p~b.D.P, t~MKCROSS[b.V] ]
THEND | [d

1
: DECL, d

2
: DECL]_[v: DECL]  --=BTOD[DTOB[d

1
] THEN DTOB[d

2
]] 

BOOL | ATOM | TYPE

TRUE | FALSE | BOOL 
TYPE | DECL | BINDING |TYPE -- DECLgTYPE, BINDINGgTYPE
PATTERN | TYPE --=GROUP[ATOM]
ANY TYPE -- TgANY for any type T

In the kernel we dress up the primitives as follows: 

A primitive denoted xDOTy is in the cluster of the type of its argument under the name 

A parameter to a primitive declared with :: is the type of some other argument; the
argument for this parameter may be omitted in an application of the primitive.
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A name not in a literal (or pattern, in the kernel) denotes the value to which it is bound in the
current environment ENV (A below). An ATOM literal is a value which stands for a name in the
primitives which deal with declarations and bindings. 

A literal denotes a value according to a rule which depends on its syntax. The core has only
numeric and ATOM literals, and the primitives enumerated above.

An expression denotes a value according to a rule which depends on its syntax. If the expression is
a name or literal, the value is the value of the name or literal. The remaining cases are discussed in
the following sub-sections. Most of these cases define the value of the expression in terms of the
value of its sub-expressions. The sub-expressions may be evaluated in any order. 

A. The current environment ENV

The current environment ENV is a binding. The value of the expression n is ENV.n. ENV for a sub-
expression is the same as ENV for its containing expression, except that:

For the b of a closure being applied, ENV is computed according to B below.

For the e of a FIX, ENV is computed according to E below.

Thus applying a closure and evaluating a FIX are the only ways to change ENV. 

B. Application

The value of a standard application is obtained by evaluating e
1
 and e

2
 to obtain v

1
 and v

applying v
1
 to v

2
. There are two cases for application:

v
1
 is a primitive. The value of the application is a function of v

2
 given in the definition of

the primitive. 

v
1
 is a closure c (C below), with domain declaration d, body b and environment E. The

value of the application is the value of the expression b in the environment MKBINDD

THEN E (D below). Note that if the closure was made with L, the body must be type-
checked when it is applied; a closure made with l was type-checked when it was made
below).

An application type-checks if De
2
 implies De

1
.DOMAIN (G below).

C. Lambda

The value of a l-expression is a closure, which has three parts:

A domain declaration d, equal to the value of d
1
.

A body b, which is the expression e (not the value of e).

An environment E, equal to the current environment ENV.

A l-expression type-checks if 

d
1
 evaluates to a declaration d.

For any x of type d.T, De implies d
2
.T in the environment MKBINDD[d, x] THEN E.

A L-expression type-checks if d
1
 evaluates to a declaration; type-checking of the body is deferred

until the closure is applied.
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D. Pairs, groups and cross types

A pair is the basic structuring mechanism. MKPAIR[x, y] yields the pair <x, y>. Bigger structures are
made, as in Lisp, by making pairs of pairs. When we are interested in the leaves of such a structure,
we call it a group and call the leaves its elements. A group has type GROUP[T] if all its elements
have type T or are NIL. A flat group is a pair in which first is not a group, and rest is a flat group or
NIL. 

The type of a pair is a cross type: MKPAIR[x, y] has type TXU iff x has type T and y has type 
Cross types are made with MKCROSS, which turns a GROUP[TYPE] into a cross type in the obvious
way:

MKCROSS[NIL]=???

MKCROSS[T]=T if T is a type.

MKCROSS[ MKPAIR[x, y] ]=MKCROSS[x]XMKCROSS[y]

Note that MKCROSS of a flat group is flat. CDOTG goes the other way, turning a cross type into a
GROUP[TYPE] in which no element is a cross type. Thus MKCROSS is the inverse of CDOTG, but not
necessarily the other way around.

E. Bindings

A binding is either NIL, or an <atom, value> tuple, or a <binding, binding> tuple. The primitive
MKBINDD constructs a binding from a declaration d and a matching value v, i.e. (as the type of
MKBINDD indicates), one with the type d.T. The resulting binding has type d, and consists of the
names from d paired with the corresponding values from v. Example:

MKBINDD[ [x: INT, b: BOOL], [3, TRUE] ] = [x~3, b~TRUE]
= < <$x, 3>, < <$b, TRUE>, NIL > >

In this example, d.T is INTXBOOL. 

The declaration and group in this example is written using the syntax of ¶ 2.2.2; in the core they would be
MKDECL[p~[$x, $b],  t~MKCROSS[[INT, BOOL]] ] and MKPAIR[first~3, rest~MKPAIR[first~TRUE, rest~NIL]], where we have written
the arguments of these primitives in the kernel syntax.

The primitives BTOD and BTOV return the arguments of the MKBINDD primitive that made the
binding. MKBINDP is redundant; it is like MKBINDD, but takes a type instead of a declaration, and
hence accepts any v with the right structure.

LOOKUP returns the value of the name n in the binding. THEN combines two bindings, giving
priority to the first one in case of duplicate names. It works only for flat bindings, in which the first
element of each <binding, binding> tuple is an <atom, value> tuple, and the second element is
another <binding, binding> tuple or NIL. The value of b

1
 THEN b

2
 is another flat binding, obtained

by first replacing any tuple <<a, v>, b> in b
2
 where a is equal to an atom in b

1
 by b, and then using

this binding to replace the final NIL in b
1
. 

The binding constructor [(n~e), ...] has the value MKBINDP[p~[n, ...], v~[e, ...] ]. 

FIX makes a recursive binding: the value of FIX d
1
~e is MKBINDD[d, v], where d is the value of 

ENV and v is the value of e in the environment (LET FIX d~e IN d~e) THEN ENV. Of course in general
this computation may not terminate; normally the names in d occur in e only with l-expressions,
and in this case it does terminate. Is this really right? The FIX typechecks if De in the latter
environment implies DTOT[d]. 
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F. Declarations

A declaration is either NIL, or an <atom, type> tuple, or a <declaration, declaration> tuple. The
primitive MKDECL constructs a decl from a pattern p and a value t of type GROUP[TYPE]. A pattern is
a GROUP[ATOM], i.e., either NIL, or an atom, or a pair of patterns; the ATOM elements must all be
different. An application of MKDECL typechecks if t matches p, i.e., if

both p and t are NIL, or

p is an atom and t has type TYPE, or

p is a pair [p
1
, p

2
] and t is a cross type t

1
Xt

2
 and p

1
 matches t

1
 and p

2
 matches t

2
.

The resulting declaration consists of the names from p paired with matching type values from 

The primitives DDOTP and DDOTT return the arguments of the MKDECL primitive that made the
declaration. Thus

DDOTT[NIL]=???; 

DDOTT[<$n, T>]=T; 

DDOTT[<d
1
, d

2
>]=DDOTT[d

1
]XDDOTT[d

2
]

DTOB is redundant; it converts a declaration to a binding in which each name has the corresponding
type as its value. Thus DTOB[[x: INT, y: REAL]]=[x~INT, y~REAL]. The inverse is BTOD, also
redundant; it is defined only if all the values in the binding are types. THEND combines two
declarations just as THEN combines two bindings: D(b

1
 THEN b

2
)=Db

1
 THEND Db

2

G. Types and type-checking

A type is a value consisting of a pair:

the predicate, a function from values to BOOL.

the cluster, a binding.

A value v has type T if T’s predicate applied to v is TRUE. 

T implies U iff (Ax) T.Predicate[x]gU.Predicate[x].

Typechecking consists of ensuring that the argument of an application has the type specified by the
domain of the proc (B above). The body of a l-expression can then be type-checked (or the
implementation of a primitive constructed) independently, assuming that the parameter satisfies
domain predicate. Symmetrically, the result of an application can be assumed to have the type
specified by the range of the proc.

To complete the induction, it is also necessary to check that the value of the body of a 
has the range type (C above).

The primitive types in the kernel are:

BOOL, with two values TRUE and FALSE.

ATOM, with values denoted by literals of the form$n.

TYPE, a predicate satisfied by any type value.

ANY, a precidate satisfied by any value.

DECL, the type of a declaration (F above).

BINDING, the type of any binding.
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Arrow types, the types of procs (C above). An arrow type has a domain type and a range
type.

Cross types, the types of pairs (D above). 

GROUP[T], the type of any pair in which all the elements have type T.

Declarations, the types of bindings (E and F above). 

There are no non-trivial implications among any of these types, except as follows:

DECLgTYPE; BINDINGgTYPE; GROUP[T]gTYPE.

ANYgT for any type T.

T
1
XT

2
gU

1
XU

2
 iff T

1
gU

1
 and T

2
gU

2
.

GROUP[T]gGROUP[U] iff TgU.

T
1
_T

2
gU

1
_U

2
 iff U

1
gT

1
 and (Ax: U

1
) (l T

1
 IN T

2
)[x]g(l U

1
 IN U

2
)[x]. Note the

reversal of the domains.

d
1
gd

2
 for declarations iff d

1
.P=d

2
.P and DTOB[d

1
].ngDTOB[d

2
].n for each n in d

1
.P.
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2.2.2 Conveniences

expression ::= coreExpression |
d
1
 _ d

2
 | ARROW Z [d

1
, l d

1
=>DECL IN d

2
] 

l ( | e
1
) ( | => e

2
) IN e

3
 | -- The domain defaults to [], the range to x: De

3
 |

LET e
1
 IN e

2
 | ( l De

1
 IN e

2
 ) Z e

1
.V -- e

1
 a binding |

LET b, ... IN e | LET [b, ...] IN e|
IF e

1
 THEN e

2
 ELSE e

3
 | ( IFPROC[De

2
, e

1
, l IN e

2
,  l IN e

3
] ) [] |

e . n | IF DegBINDING THEN LOOKUP Z [De, $n] 
ELSE IF DegTYPE THEN LOOKUP Z [De.cluster, $n]
 ELSE ( LOOKUPC Z [De.cluster, $n] ) Z [e] |

e
1
 [ b,  ... ] | e

1
 [ e

2
,  ... ] | e

1
 . APPLY  Z [b, ...] | e

1
 . APPLY  Z MKBINDD[De

1
.DOMAIN, [

e
1
 infixOp e

2
 | e

1
 . infixOp[e

2
] |

e
1
 AND e

2
 | e

1
 OR e

2
 | IF e

1
 THEN e

2
 ELSE FALSE | IF e

1
 THEN TRUE ELSE e

2
 |

[ ] | [ e
1
 ( | e

2
, !.. )] | NIL | MKPAIR[e

1
, [ ( | e

2
, !.. ) ]-- Group constructor. |

PATT p | -- Pattern constructor; see the rule for p below. |
[ b, ... ] | b PLUS ... PLUS NIL |
REC [ (p : t ~ e), ... ] | FIX [p, ...] : MKCROSS[[t, ...]]~[e, ...] |
[ d, ... ] | d PLUS ... PLUS NIL |
XX | xxxxxx | --Also recursive d maps into this?
statements | simpleLoop | -- See ¶�2.2.3
but -- See ¶�2.2.4.

infixOp ::=
X MKCROSS

PLUS

THEN

literal ::= coreLiteral |
digit digit ... | INT -- Numeric literal, giving the decimal representation.

declaration ::= -- A d is not an e; a d must be before ~ or after LET
p: t | MKDECL[ PATT p, t] |
[(p: t), ... ] [p, ...]: MKCROSS[[t , ...]]-- to separate names and types

binding ::= -- Only the [...] form is an e; a b must be written after 
p ~ e | MKBINDP[PATT p, e] |
d ~ e | MKBINDD[d, e] 

pattern ::= -- Note: a pattern is not an e; it can appear only before ~ or :,
       or after PATT in the kernel.

n | -- PATT n=$n 
[p

1
, ...] -- PATT [p

1
, ...]=[PATT p

1
, ...]

primitive ::= corePrimitive |
LOOKUP | LOOKUPC | -- Fill in types
PLUS |
IFPROC |

The precedence of operators in e is: (highest) [], Z, infixOps (all the same), BUT, IN (lowest). All are
left associative.

2.2.2.1 Expression syntax

Most of this is straightforward sugar. LET adds the binding e
1
 to ENV in evaluating e

2
. The separate

case for b, ... simply allows the [] which normally enclose a binding constructor to be omitted in this
case; see ¶�2.2.2.2. IF wraps e

2
 and e

3
 in l’s so that they don’t get evaluated; the IFPROC

chooses the one to evaluate and applies it.

The dot notation has three cases. 
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For a binding it just looks up n in the binding. 

For a type it looks up n in the type’s cluster.

For anything else, it looks up n in the cluster of De and applies the result to e. The
LOOPUPC primitive does something special if it finds a proc which takes more than one
argument: it splits the proc into one which takes the first argument and returns a proc
taking the remaining arguments. This ensures that if De.n is such a proc P, the expression
e.n[a, b] will desugar into something equivalent to P[e, a, b]. 

The usual syntax for application is a proc e
1
 followed by an explicit binding constructor. The kind

of application may depend on the type of e
1
, via the APPLY element of its type; for a proc applied

by the standard apply operator Z, APPLY is the identity. If e
1
 is followed by an group rather than a

binding constructor, the argument is obtained by binding the group to the declaration which is 

domain.

Infix operators desugar straightforwardly into application; note that the choice of proc is determined
by the type of the first operand only. AND and OR are not ordinary infix operators, since they
evaluate no more than necessary; this is expressed by the desugaring into IF.

The remaining expression syntax is various constructors, described in the next section, and
imperative and exception features described in later sections.

2.2.2.2 Group, binding and declaration constructors

A bracketted sequence of expressions (e.g., [1, 2, 3]) denotes a flat group with its elements in the
same order (e.g., MKPAIR[1, MKPAIR[2, MKPAIR[3, NIL]]]. Thus a group constructor is just like the
LIST function in Lisp. A pattern is a similar construct, except that it contains names which stand
for the corresponding ATOM literals; PATT yields the group obtained by replacing each name 
the literal $n. After desugaring a pattern always appears after PATT and hence is always desugared
into an atom or a GROUP[ATOM].

Brackets are also used to delimit binding and declaration constructors. They are distinguished from
each other, and from group constructors, by the presence of ~ in each element of a binding
constructor, and : in each element of a declaration constructor. The elements of a binding or
declaration constructor are sugar for applications of the MKDECL, MKBINDP and MKBINDD primitives.
The constructor itself strings the resulting declarations into a big one using the PLUS operator,
which is just like THEN except that it does not allow duplicate atoms; the motivation for this is to
allow the names and corresponding types or values to be written together, instead of factored as the
primitives require. As a result, values made from constructors are always flat.

Note that these constructors do not nest, except that a d can be [(p: t), ... ]. This is intended for the
d~e form of binding; e.g., if DivRem returns two INTs, you can write [d: INT, r, INT]~DivRem
instead of [d, r]: INTXINT~DivRem[...].

The REC binding constructor is sugar for FIX which exactly parallels the non-recursive one.

2.2.3 Imperatives

These constructs are generally used together with non-functional procs.

statements ::= { e; ... } IF (ISVOID[e]) AND ... THEN [] ELSE ERROR 
-- Ordering by non-prompt evaluation.

simpleLoop ::= SIMPLELOOP statements LET REC [loop(~(l IN { statements; loop([]  } ) ] IN loop([]
-- Only an exception (such as EXIT) will terminate the loop.
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Each e in the statements must evaluate to VOID; this is to catch mistakes like writing x+1 as a
statement. The definition of AND ensures that the e’s are evaluated left-to-right.

The simpleLoop is the standard way to express a loop in terms of recursion. You are supposed to
use an exception to get out of this loop; Cedar provides a number of convenient ways to do this,
such as EXIT and RETURN.

2.2.4 Exceptions

An exception is treated as a special value returned from an application. The exception value
contains an exception code and an args value which may be of any type. When an application sees
an exception value, it immediately abandons the application and returns the exception value; thus
application is strict. There has to be some way to stop this, or the first exception would be the value
of the program. The HIDE primitive takes any value and returns a variant record of type HEX
turns:

a normal value into the normal variant, with the value in its v field;

an exception into the exception variant, with the code in its code field and the arguments in
its args field.

UNHIDE takes a HEX value and returns the original unhidden value.

An exception code has the type EXCEPTION[T], where T is a declaration which is the type of the
args; it is the domain of the exception, and (DEXCEPTION[T]).DOMAIN=T. An exception value is
constructed by the primitive

RAISE: [T:: TYPE, code: EXCEPTION[T], args: T]
Thus the args always has the type demanded by the code.

This is dressed up with the following syntax. 

but ::= e BUT { butChoice; ... } LET v(~HIDE[e] IN  (
   IF ISTYPE[v(, HEX.normal] THEN UNHIDE[v(]
   ELSE IF ISTYPE[v(, HEX.exception] THEN
      LET h(~NARROW[v(, HEX.exception ] IN 
         LET selector(~h(.code IN butChoice ELSE ... ELSE UNHIDE[v(]
   ELSE ERROR )

butChoice ::= e
1
 => e

2
 | IF selector(=e

1
 THEN LET MKBINDD[De

1
.DOMAIN, h(.args] IN 

e
1
 , e

1
, !.. => e

2
 | IF (selector(=e

1
) OR ... THEN e

2
 |

ANY => e
2
 IF TRUE THEN e

2

A BUT expression evaluates e. If it is a normal value, that is the value of the BUT. If it is an
exception, each butChoice in turn gets a look at it. If one of them likes it, then it supplies the value
of the BUT; otherwise the exception is the value.

The e
1
 in a butChoice must evaluate to an exception code. If there is just one, and it matches 

in the exception, then args in the exception is bound to the domain of the code, and e
2
 is evaluated

in that environment. If there is more than one, then e
2
 is just evaluated in the current environment.

An ANY butChoice matches any exception, but of course doesn’t bind the arguments.



¶�2.3 DOING COMPUTATIONS 15

2.3 Doing computations

This section describes the basic mechanisms for doing computations, and the kinds of values which
can be manipulated by Cedar programs.

2.3.1 Application

The basic mechanism for computing in Cedar is applying a proc to argument values. A proc is a
mapping 

from argument values and the state of the computation, 

to result values, and a new state of the computation.

The state is the values of all the variables.

A proc is implemented in one of two ways:

By a primitive supplied as part of the language (whose inner workings are not open to
inspection).

By a closure, which is the value of a l-expression whose body in turn consists of an
expression, which may contain further applications of procs to arguments, e.g., l [
x+3. When a closure is applied, the parameters declared after the l are bound to the
arguments, and then the body after IN is evaluated in the new environment thus obtained.

In Cedar, each parameter value thus obtained is used to initialize a variable, which is the object
named by the parameter in the body. Thus the body can assign to the parameters. Use of this
feature is not recommended.

Note that when a l-expression is evaluated to obtain a closure its body is not evaluated, but is
saved in the closure, to be evaluated when the closure is applied. Some constructs (IF, SELECT
OR) are defined (see ¶�2.2.2 and ¶�3.8) by wrapping l-expressions around some arguments, and then
applying them only when certain conditions hold; e.g., IF b THEN f�[ x] ELSE g�[ y] evaluates 
is TRUE and g�[ y] iff b is FALSE.

Application is denoted in programs by expressions of the form f�[ arg, arg, ...]. If the value of 
closure, this expression is evaluated by evaluating f and all the arg’s, and then evaluating the body
of the closure with the formal parameters bound to the arguments (unless an exception value turns
up; see ¶�2.6.2). Thus to evaluate (l [ x: INT] IN x+3)[4]:

evaluate the l-expression to obtain a closure;

evaluate the argument 4 to obtain the number 4;

evaluate x+3 with x bound to 4 to obtain the number 7.

The first two evaluations can be done in either order.

To evaluate a primitive application such as x+3, evaluate the arguments, and then invoke the
primitive on those arguments to obtain the result and any state change. With a few exceptions (e.g.,
assignment and dereferencing or following references), primitives are functions and can be thought
of as tables which enumerate a result value for each possible combination of arguments. Invoking a
primitive can therefore be viewed as a simple table lookup using the arguments as the table index.

Actually there may be one more step in an application. If an argument doesn’t have the type
expected by the proc, the argument is coerced to the proc’s domain type if possible. If no coercion
can be found, there is a type error. Coercion is discussed further in ¶�2.6.1 and ¶�4.13. 

Most procs take a binding as argument, in which the various parts of the argument are named. E.g.,
OpenFile: PROC[name: ROPE, mode: Files.Mode] takes a binding with two values named name and mode
It might be applied like this: P[name~"Budget.memo", mode~$read]. If the names are missing, there
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is a positional coercion which supplies them left-to-right, see ¶�2.3.6. There is also a 
coercion that supplies missing parts of the binding; see ¶�4.11. 

If f is neither a primitive nor a closure, the meaning of applying it is defined by the APPLY
its type; this case is discussed further in ¶�4.4.

There are many ways of writing applications other than f�[ x]. In fact, many Cedar primitives cannot
be the values of expressions, and can only be applied by writing some other construct. The
desugaring rules show how large parts of the Cedar syntax denote various special kinds of
application. In each case, the meaning is defined by the standard meaning of application and the
specific meaning of the primitives involved; see ¶�4.1.

This is partly because of history, and partly because specialized syntax makes the program more readable. Future
evolution of the language will improve the situation. 

Functions and order of evaluation

An expression is functional if

its value does not depend on the state, but only on the values bound to its free variables,
and

evaluating it does not change the state.

As a consequence of this definition,

Two identical functional expressions in the same scope will always have the same value. 

A proc is a function if every application of it is functional. It doesn’t matter when or how many
times a function is applied; the order of evaluation doesn’t matter for functions. Thus Cedar
functions can be thought of as mathematical functions for many purposes. Note that a constant can
be regarded as an application of a function of no arguments.

Non-functional procs, on the other hand, are more complicated objects. Cedar makes no formal
distinction, either in syntax or in the type system, between functions and procs. However, it does
not define the order of evaluation in an expression, except that: 

all arguments are evaluated before a proc is applied;

because of the desugaring of IF, SELECT, AND and OR into l-expression, the order of
evaluation for these expressions is determined by the first rule;

statements separated by semi-colons are evaluated in the order they are written.

As a consequence, two applications of non-functions should not be written in the same statement
unless they don’t affect each other; if this is done the effect of the program is unpredictable. 

An expression is guaranteed to be functional if it only applies functions; thus if f is a function, 
non-functional proc, and x a variable, f�[3] is functional and p[3] and p[x] may not be. Furthermore,
f�[ x] may not be functional, because it is sugar for f�[ x.VALUEOF], and VALUEOF is not a function.
value of a l-expression is a function if its body is functional. There are more complicated ways of
guaranteeing that an expression is functional, just as for any other interesting property.

Because the values of variables constitute the state, it is only the existence of variables that allows
non-functional procs to exist. In particular, the VALUEOF proc which returns the value of a variable
is non-functional (because its result depends on the state), and the ASSIGN proc which changes the
value of a variable is non-functional (because it changes the state). 
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2.3.2 Values

A Cedar program manipulates values. Anything which can be denoted by a name or expression in
the program is a value. Thus numbers, arrays, variables, procedures, interfaces, and types are all
values. In the kernel language, all values are treated uniformly, in the sense that each can be:

passed as an argument, 

bound to a name, or 

returned as a result. 

These operations must work on all values so that application can be used as the basis for
computation and l-expressions as the basis for program structure. In addition, each particular kind
or type of value has its own primitive operations. Some of these (like assignment and equality) are
defined for most types. Others (like addition or subscripting) exist only for certain specific types
(numbers or arrays). None of these operations, however, is fundamental to the language. Formally,
assignment or equality has the same status as any operation on an abstract type supplied by its
implementor; thus INTEGER.ASSIGN has the same status as IO.GetInt. In practice, of course, special
syntax is usually used to invoke these operations, and the implementations are not Cedar programs
open to inspection by the editor or debugger. A complete description of the primitives supplied
the language can be found in Chapter 4, organized by the type of the main operand. Table 4�5 is
an alphabetized index of these descriptions.

Restrictions: In current Cedar, however, there are restrictions on values which are types, declarations
or bindings: they can only be arguments or results of modules, and hence are first-class values only
in the modelling language, and not within a module. Also, declarations and bindings cannot be
constructed or bound to identifiers within a module. Unions are also restricted: they can only
appear inside records. Nonetheless, it is simplest to emphasize the uniform treatment of all values,
and consider separately the restrictions on types, declarations, bindings and unions. Future evolution
will improve this situation.

Restriction: In current Cedar you can only use dot notation for some operations of built-in clusters:
the procs which access record fields, and others as noted in Table 4�5. As a substitute, there are
various syntactic forms which are sugar for dot notation: infix, prefix and postfix operators, built-in
functions, and funny applications.  These desugarings are given in rules 20-24 of the Cedar
grammar in ¶�3.

2.3.3 Variables

Certain values, called variables, can contain other values. A variable containing a value of type 
has type VAR T. If the variable doesn’t allow the value to be changed, the type is READONLY
is not the same as T, because there may be a VAR T value which is the same container. The value
contained by a variable (usually called the value of the variable) can be changed by assigning a new
value to the variable. The set of all variables accessible from the process array constitutes the state
of the computation; these are all the variables which can be reached from any process, and a
variable which cannot be reached cannot affect the computation. Note that a variable value is a
container, which like all values is immutable; it may help to think of it as (the address of) a block
of storage. The contents of a variable can be changed by assignment. Thus the value of a variable
can change, even though the value that is the variable is immutable.

A suitable abstract representation for a VAR T is a value of type [Get: []_T, Set: T_[]]. This
representation is not used in Cedar, but it clarifies the way in which variables fit into the
system: VAR TgVAR U only if T and U have the same predicate, because the Get proc requires
TgU and the Set proc requires UgT. READONLY T corresponds to  [Get: []_T] and a write-only
variable type would be [Set: T_[]].

There is a coercion (an automatically applied conversion; see ¶�2.6.1) from VAR T to T, so that a
variable can be passed without fuss as an argument to a proc which expects a value.
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Restriction: In current Cedar, variables generally cannot be passed as arguments or results. The only
exception is that an interface can declare a variable (called an exported variable) for which an
implementation supplies a value; this is normally written x: VAR INT in the interface, but for
historical reasons it is also possible to write just x: INT. Certain primitives (e.g., dereferencing
or POINTER) return variables, a variable can (indeed, must) be passed as the first argument to
ASSIGN, and a variable can be bound to a name by a declaration in a LET or block (LET x: INT
binds a VAR INT value to x). For the most part, however, a program which wants to handle variables
must do so at one remove, through procs or REFs (or, unsafely, POINTERs).

A variable is often represented by a block of storage; the bits in this block hold the representation
of its value. All the built-in VAR types are represented in this way. A variable u overlaps
variable v if assigning to u can change the value of v. The primitive ASSIGN procs have the property
that 

if r and s are REFs, then r^ overlaps s^ iff r=s. 

For any variables u and v with the same VAR type, u overlaps v iff u=v, provided that no unchecked
program has given overlapping blocks of storage to the two variables (if u and v have different
types, one might be contained in the other).

The role of variables in non-functional expressions is discussed in ¶�2.3.1.

2.3.4 Groups

There is a basic mechanism for making a composite value out of several simpler ones. Such a
composite value is called a group, and the simpler values are its components or elements.
x+1, "Hello"] denotes a group, with components 3, the value of x+1, and "Hello". The main use
of explicit groups is for passing arguments to procs without naming them (these are sometimes
called positional arguments). This is done by binding the group to the declaration which is the
domain type of the proc; the result is a binding which is the argument the proc expects. Thus, with
P: [x: INT, y: REAL]_[. . .], the application P� [2, 3.14] is sugar for P�[ [ x: INT, y: REAL]~[2, 3.14] ],
which is equivalent to P� [x~2, y~3.14].

A group has a type which is the cross type of its component types: if x has type T and y has type 
then [x, y] has type TXU. Thus for syntactic types, D[e

1
, e

2
, ... ]=De

1
XDe

2
X ... The X type

constructor is associative, and type implication (¶�2.4.2) extends to cross types elementwise.

are types, there is a coercion called MKCROSS from [T
1
, T

2
, ...] to T

1
XT

2
X ...; because of this, the

explicit cross type is usually not needed.

Restriction: Current Cedar provides no way of making cross types except as domain and range types
of a proc type (or other transfer type); e.g., PROC [INT, REAL]_[BOOL, ATOM]. There are no procs
taking groups except the group-to-binding coercions. Hence the only thing to do with a group is
pass it to one of the built-in coercion procs by writing it as a proc argument, or to a record or array
constructor as described in the next section. Current Cedar does not have X, but it does have the
MKCROSS to cross type coercion described in the last paragraph and illustrated in the example.

2.3.5 Bindings

A binding is a group in which each element has a name. Thus, it is an ordered set of [name, value]
pairs. There are three main uses for a binding:

• As an argument in an application. Thus, if P is a proc with type PROC[i: INT, b: BOOL
argument must be a binding such as [i~3, b~TRUE]. The application then looks like this:
P[i~3, b~TRUE]. A binding argument is sometimes called a keyword argument list. See the
next section for details.

• In a LET expression, to give names to values in the scope of the LET. Thus, 
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LET i~3, b~TRUE IN (IF b THEN i+5 ELSE 0)
has the value 8. Current Cedar doesn’t have LET expressions, but a binding at the beginning
of a block has the same effect. See ¶�2.5.4 on scopes for details.

• As a way of collecting and naming a set of related values. A value can be extracted from
the set using dot notation. Thus if b is the binding [i~3, b~TRUE], the value of b.i
current Cedar this only works for interfaces; see ¶�3.3.4 and ¶�4.14 for details.

A binding is usually denoted by a constructor, which takes the form
[i~3, b~TRUE]

or redundantly (if there are no coercions)
[i: INT~3, b: BOOL~TRUE]

in which the types are specified explicitly (but you can’t write the second form as the argument of
an application). See ¶�2.5.5 on constructors for details.

2.3.6 Arguments

When a group or binding is bound to a declaration (d~v), there are various conversions called
coercions which may be applied to the values. This usually happens when the arguments of a proc
application are bound to the parameter declaration.

First, if v is a group rather than a binding, it is coerced to a binding by attaching the names from 
to the elements of v in order. Thus in
[a: INT, b: REAL]~[2, 3.14]

the group constructor is coerced to [a~2, b~3.14].

Next, if v is shorter than d, elements of the form n~OMITTED are appended, where n is the
corresponding name from the declaration. Thus in
[a: INT, b: REAL]~[2]

the group constructor is coerced to [a~2, b~OMITTED].

Now the items of the binding are matched by name with the items of the declaration. There is an
error unless the names match exactly. The remaining coercions are done on individual items, 
from the declaration and the corresponding n~v from the binding. If v has type t, all is well.
Otherwise, if there is a sequence of coercions from the type of v to t, these are applied to 
such sequence exists, there is an error. In particular, there is a coercion from OMITTED to the 
value for t, if any. Thus in
[a: INT_0, b: REAL_1.1]~[b~3.14]

the group constructor is coerced to [a~0, b~3.14], and in
[a: INT_0, b: REAL_1.1]~[]

it is coerced to [a~0, b~1.1]. Coercions are discussed in ¶�2.6.1 and ¶�4.13, defaulting in ¶�4.14.

An important special case is constructors for record and array values. A record type has a
construction proc; e.g., 
R: TYPE=RECORD[a: INT, b: REAL_0.]

has a proc R.CONS of type PROC[a: INT, b: REAL_0.]_[R]. Thus R.CONS[a~2, b~3.1416] constructs a
record value. There is also a coercion from BINDING to the particular binding type RB which is the
domain type of R.CONS, so that 
r1: R_[a~2, b~3.1416]

is short for
r1: R_R.CONS[a~2, b~3.1416].

Composing the positional coercion from GROUP to RB with R.CONS makes 
r1: R_[2, 3.1416]

also short for the previous line.

The same scheme works for arrays, but only an array indexed by an enumeration has a
corresponding binding which can be written; the elements of an array indexed by numbers don’t
have names which can be written in a binding. However, the group constructor still works.
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2.4 The type system

This section describes the way in which types can be used to make assertions about the program
which the compiler can verify. It also discusses the role of types in organizing the names of the
program.

2.4.1 Types

Types serve two independent but related functions in Cedar:

• A type contains an assertion about some property of a value, e.g., that it is a whole number
between 0 and 10 represented in a single machine word. A value which has the property is
said to be of that type, or to have that type.

The assertion part of a type is called its predicate. It is a function which accepts a single
value (of any type) and returns TRUE iff the value satisfies the assertion.

• A type contains a collection of named procs (and perhaps other values) related in some
useful way. Most often, the procs of type T take a value of type T as their first argument.
For example, INT has PLUS, TIMES and MINUS procs (usually written as infix or prefix
operators) which can be applied to INTs. The dot notation (see ¶�2.4.4) makes it easy to
refer to the procs in a type’s collection.

The collection part of a type is called its cluster. It is simply a binding. No rules are
enforced about what kind of values are in the binding. However, the idea is that the cluster
is an interface for manipulating values of the type (perhaps the main or even only
interface). As with any interface, a tasteful choice of names and values is important.

The predicate and the cluster serve rather different purposes:

The predicate provides the basis for type-checking (¶�2.4.2). The most important function of
type-checking is to guarantee the integrity of abstract data types; this is done with basic
predicates called marks (¶�2.4.3).

The cluster provides the basis for convenient naming of a large collection of procs and
other values (¶�2.4.4).  Clusters are organized into a hierarchy of classes (¶�2.4.5).

Like everything else which can be named, a type is a value. Hence there is nothing special about
binding a type value to a name. If T is a type expression, the binding
U: TYPE~T

binds T’s value to U. In the scope of U, T and U are completely interchangeable (provided 
rebound). Furthermore, with two exceptions, all type expressions are functional: identical type
expressions in the same scope denote the same type value. The exceptions are the record and
enumeration type constructors, which make a distinct type each time they are used (by constructing
a new mark; see ¶�2.4.3).

Caution: The AMTypes interface does distinguish between T and U as a convenience in debugging,
but it also provides a procedure GetCanonicalType for obtaining the type value in the sense just
described.

Restriction: Current Cedar has a number of restrictions on the use of TYPE values, given in ¶�4.8.

2.4.2 Type predicates and type-checking

Type predicates provide a way of making assertions in the program which can be checked
mechanically. These assertions take the form of declarations for the formal parameters of procs. In
general the checking must be done during execution. Thus, if the program says
a: ARRAY [0..10] OF INT_ALL[0];
i: INT_s.ReadInt;
s.PutF[ a[i] ];
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there must be a check that i>0 and i<10 just before the expression a[i] is evaluated. This is called
a bounds check; if it fails there is an exception called Runtime.BoundsFault. Where did this check
come from? Note that a[i] is short for Da.APPLY[a, i], and Da.APPLY is SUBSCRIPT, the subscript
procedure for ARRAY [0..10] OF INT. The type of SUBSCRIPT is PROC[array: ARRAY [0..10] OF INT,
index: [0..10]]_[VAR INT]. So when i is passed as the index argument, the declaration of SUBSCRIPT
says it must have the type [0..10]. The predicate for this type is 
l [x: ANY] IN HASMARK[x, INT] AND LET y: INT~x IN y>=0 AND y<=10.

Leaving the HASMARK term for later discussion, we see that the rest of the predicate is the same as
the bounds check.

The type system is designed, however, so that most assertions can be checked statically (i.e., 
by examining the text of the program without running it. Static checking has three obvious
advantages:

It reports any errors after a single examination of the programming, leaving none (of this
kind) to be discovered later in Peoria.

It introduce no cost in time or space for run-time checking.

The compiler can take advantage of the assertions to generate better code.

Of course, there is a corresponding drawback: the assertions made by parameter declarations must
be simple enough that the compiler can reliably prove or disprove them. 

The proofs done for typechecking have exactly the same form as program correctness proofs based
on preconditions and postconditions. Consider a proc whose value is the l-expression 
l [x: T]=>[y: U] IN e. 

The domain declaration [x: T] is a precondition for the body e. This means that any application of
the proc must satisfy this condition. As a consequence, the body e can be analysed on the
assumption that the precondition holds, i.e., that x has type T. Similarly, the range declaration [
is a postcondition for the body. This means that given the precondition, any evaluation of 
produce a value y which has type U. In summary, for the body we assume the precondition and
must establish the postcondition.

To make this hang together, each application must establish the precondition; this means that the
argument must have the domain type. In return, the application can assume the postcondition; this
means that the result of the application has the range type. Thus we have a linkage:

argumentgdomaingrangegresult
The result in turn will be the argument of another application. In this way the proof is extended to
larger and larger expressions, and finally to the whole program. In summary:

Application� establish pre-condition: arguments have the domain type;
rely on post-condition: results have the range type.

Body� rely on pre-condition: parameters have the domain type;
establish post-condition: returns have the range type.

These proofs require showing that an expression always has a particular type T. This is done by
observing that every expression has a unique syntactic type U, which is the type of every evaluation
of that expression; e.g., an application always has the range type of its proc (see below for a
detailed discussion of syntactic type). If every value of type U has type T, we are done.
usefulness of type implication. One type implies another, TgU, iff (Ax) T[x]gU[x]. If two types
are equal, each implies the other. However, there are many other useful cases of implication. For
instance, VAR INT implies READONLY INT. The type implications in current Cedar are given in
¶�4.12.

Of course, not all arguments are applications. The kernel grammar gives the other possible forms of
argument expressions, and we enumerate the proof rules for each:

A literal is like a zero-argument proc: it has a known range (e.g., 3 has type INT, ’A has
type CHAR). 
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A name has the type specified in its declaration or binding. 

If there is only a declaration n: T (e.g., x: INT), it must be the domain declaration
of a l-expression, and we have already seen how to ensure that the n’s value has
type T when the resulting proc is applied. 

If there is a binding n: T~e for the name (e.g., x: INT~3), we must check that 
type T.

A l-expression l [x: T]=>[y: U] IN e has the type [x: T]_[y: U]. This works for the reason
discussed in the next paragraph.

A binding constructor [x~e, y~f] has the type of the corresponding declaration, [x: 
Df].

There is one more link in the chain. An application f�[ x] has an arbitrary expression for 
necessarily a l-expression. The requirement is that f must have a proc type, say D_R; D is the
domain type and R the range type. Since the type of l D=>R IN e is D_R, satisfying the
precondition D for the application is the same as satisfying the precondition D for the l
and similarly in reverse for the postcondition. The value of f may be a primitive rather than a
closure obtained from a l-expression. In this case, the implementation of the primitive can still
depend on the precondition and must still establish the postcondition, but since the implementation
cannot be examined (within the framework of Cedar) we can say nothing about how this is
accomplished. Example: INT.PLUS, which is implemented by the machines 32-bit add instruction.

In a proc type D_R, D and R may be declarations which provide names for the arguments and
results. In general, the expression R may include names declared in D. The range type of an
application then depends on the argument values. 

Restriction: In current Cedar only modules have such types; the type returned by an interface, or
the interfaces exported by an implementation, may depend on the interface and implementation
parameters.

As a by-product of the type-checking proof rules just given, a syntactic type is derived for every
expression e in the program. It is denoted by De, and computed as follows:

for a name, the declared type; 

for a literal, its type;

for an application, the range type (which may depend on the argument); 

for a l the obvious proc type;

for a binding constructor, the declaration obtained by pairing the names with the syntactic
types of the value expressions.

Typechecking ensures that whenever e is evaluated, the resulting value will have type De (though it
may have other types as well, i.e., it may satisfy other predicates). The main use of syntactic types is
in connection with dot notation (see ¶�2.4.4).

In order to carry out the proofs described above, the compiler must either compute the values of all
types, including those denoted by complex expressions such as ARRAY [i..j] OF INT, or it must be
able to prove the equality of unevaluated type expressions. For the most part, current Cedar
requires the former approach; hence a type expression must have value which the compiler can
compute. Such a value is called static; the rules for static values are given in ¶�3.9.1. 
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2.4.3 Marks

By this point you may have thought of asking why the assertions provided by type predicates are
worth all this fuss. The reason is simple: they are the basis for authenticating values of an abstract
type, so the implementation can be sure that it is working on properly formed values. Suppose you
are the implementer of an abstraction, e.g., Table. You provide operations to Lookup a key in the
table, to Insert a [key, value] pair, and to Enumerate the items in the table. A Table is implemented as
a REF to a record containing a sorted array a of items and an INT n which gives the number of
items. Lookup is implemented by binary search. All three operations are programmed on the
assumption that elements 0 through n�1 of a are sorted, and that n is smaller than the size of the
array. They will not work properly if these assumptions are not satisfied, and indeed they may try
to subscript the array with an out-of-bounds index or to violate other requirements of the
abstractions they depend on.

Here is a lower level, but perhaps more dramatic example. The dereferencing operation ^ for a 
REAL returns a VAR REAL, which can, for instance, be assigned to, as in the program fragment

r: REF REAL_NEW[REAL_1.0];
. . .
r^ _ 3.14159

A REF REAL is represented by the address of a four-byte block of storage which holds a REAL
the assignment to r^ stores the four bytes which represent 3.14159 into that block. If somehow a
REF BOOL finds its way into r, the assignment will still store four bytes, since it doesn’t know any
better. But the REF BOOL points to a two-byte block; the other two bytes that will be modified
belong to some unrelated variable, which will be clobbered without warning. 

The second example is scarier because the consequences of the bug seem more unpredictable. In
both cases, however, the fundamental problem is the same: even if the implementation is correct,
the wrong thing happens because it is given an improper value to work on. Or to make the same
point in different words, the implementation cannot be held responsible for bad results from one of
its operations, if it has no control over the validity of the arguments it receives.

So that the implementation of an abstraction can take responsibility for correct operation, there
must be a way to authenticate a value of the abstract type. In Cedar this is done by placing a 
on the value; think of it as a little flag stuck into the value. The mark uniquely identifies the
abstract type, and authority to affix it is under the control of the implementation. A correct
implementation will mark only values which have the properties needed for a representation of an
abstract value, and if no one else can affix the mark, the implementation can be sure that every
value with the mark has the desired properties.

A mark can be thought of as an abbreviation for an assertion or type invariant which characterizes a
proper abstract value, such as Table or REF REAL. Such an assertion can be quite complex. In the
Table example, it would say that the representation is a record of the proper form, that 
the array size, and that the first n array elements are sorted. In the REF REAL example, it would say
that the address points to a block of storage such that at least the first four bytes don’t overlap any
other blocks. Such assertions are not easy to write down formally, and proving them is certainly
beyond the power of any existing program. So the abbreviations are not a mere convenience, but a
necessity.

A new mark can be created on demand by the primitive
 CREATEMARK: PROC[Rep: TYPE, tag: UNIQUEID]_[m: MARK, Affix: [Rep]_[TYPEFROMMARK[m]] ]

The primitive HASMARK tests a value for the presence of a mark, so HASMARK[x, m] tests x for the
presence of the mark m. Affix adds the mark to a Rep value. 

Restriction: MARK, UNIQUEID, CREATEMARK, HASMARK and TYPEFROMMARK are not accessible in
current Cedar. Record and array type constructors provide some access to CREATEMARK, as
described below. The ISTYPE primitive, also described below, is closely related to HASMARK.
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With these facilities, it is easy to create a new abstract type. Choose its representation type, and
obtain a new mark m. TYPEFROMMARK[m] with an appropriate cluster added is the new abstract type.
The implementation must use Affix to mark only values which satisfy the properties it demands.

The type returned by TYPEFROMMARK[m] has the predicate 
l [x: ANY]=>[BOOL] IN HASMARK[x, m]

and an empty cluster. Except for subranges and bound unions, all types in current Cedar have a
predicate of this form. The built-in types (INT, BOOL etc.) come with such predicates, and the built-
in type constructor procs (ARRAY, RECORD etc.) obtain a mark from CREATEMARK. So that two
invocations of ARRAY [0..10] OF INT will produce the same type, ARRAY and most of the other
constructors use a canonical encoding of the constructor and its arguments for the UNIQUEID
hence are functional. RECORD and ENUMERATION produce a different type each time they are
invoked, so they obtain fresh unique identifiers. Since the program cannot invoke CREATEMARK
directly, we need not explain how to prevent forgery of UNIQUEIDs. Future versions of Cedar will address
this problem.

In current Cedar you make a new abstract type by declaring in as an opaque type in an interface:
T: TYPE[ANY]

This generates a new mark, and declares T to be a type which has that mark. You get such a type
by explicitly painting some other type, normally in an implementation which exports T to the
interface which declared it:
T: PUBLIC TYPE~Interface.T PAINTED RECORD [...].

See ¶�4.3.4 for more details.

The implementation actually stores a mark with each variable allocated by NEW. Such a variable can
be referenced by a REF, and in particular by a REF ANY value. The type of a REF ANY value can be
tested at runtime using the primitive 

ISTYPE: PROC[x: ANY, U: TYPE]_[BOOL]
If De is REF ANY and RT=REF T, then the value of ISTYPE[e, RT] is TRUE iff the predicate for 
just tests for mark m, and x^ has the mark VAR m. ISTYPE is described in detail in ¶�4.3.1, along
the WITH ... SELECT construct and the NARROW primitive, which are more powerful operations built
up from ISTYPE.

For other values, there is no mark actually stored; instead, types must be computable statically
using the methods described in the last section. The AMTypes interface, however, gives a way to
refer to any value in a uniform way, and to test its type at runtime.

There is only room for one mark on a variable, and this must encode all the marks that the value
actually carries. We arrange for this by imposing a partial order on the marks, and requiring that:

The set of marks on a value must have a maximal element.

Every mark smaller than the maximal one must be on the value.

With these rules, a single mark stored on the value is enough to code all the others.

In current Cedar, a value actually has only one mark, since:

The only way to create a new mark is with the record or enumeration type constructors, or
by declaring an opaque type.

When you paint a type T with the mark of an opaque type, T must be a record or
enumeration type, and the opaque type mark replaces the mark it had before.

Note that VAR T, READONLY T and T are different types with different marks, although VAR
TgREADONLY T, and there is a coercion VALUEOF from either one to T.
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2.4.4 Clusters and dot notation

It is convenient to associate with a type the procs supplied by its implementor for dealing with
values of the type. This is done by putting these procs into the type’s cluster. The cluster is simply a
binding which is part of the type value (the predicate is the other part). There are no rules enforced
about what goes into the cluster. However, there is a special dot notation which makes it desirable
to populate T’s cluster with procs which take a T as their first argument. The usual effect is like
this: t.n is sugar for Dt.n[t], and t.n[other args] is sugar for Dt.n[t, other args]. 

For example, if t has type T, and a proc [T, INT]_[BOOL] is in T’s cluster under the name P
the proc can be applied by an expression like t.P�[3], which is sugar for D t.P�[ t, 3]. The
looked up only in T’s cluster, not in the current scope. If Q: [T]_[INT] is also in the cluster, it can
be applied with t.Q, which is sugar for Dt.Q�[ t].

The general rule that makes this work is the following: t.n is sugar for LOOKUPC[Dt, $n][t].
LOOKUPC[Dt, $n] is just Dt.n, except that if Dt.n is a proc that takes several arguments, it is split
into a proc that takes the first argument and returns a proc taking the remaining ones. Thus
LOOKUPC[Dt, $n][t] will be a proc taking the remaining arguments, and t.n[other args]=LOOKUPC
$n][t][other args] will be the same as Dt.n[t, other args].

Dot notation can also be used to obtain values from a binding or from the cluster of a type without
any application: T.P would be the proc named P in the previous example. The possible cases of dot
notation in current Cedar are described in detail in ¶�4.14.

Restriction: There is currently no way to explicitly construct clusters. The built-in types
constructors have clusters; they are described in detail in ¶�4. In addition, there is a clumsy way to
provide a cluster for an opaque or record type in an interface: every proc name in the interface is
put into the type’s cluster. For a record, the procedures supplied by the record constructor are also
in the cluster, and they win if there are name conflicts. There is one of these clusters for each type
in each imported interface value; if a module imports more than one value of the same interface,
however, there are severe restrictions (see ¶�3.3.3).

2.4.5 Declarations

A declaration is the type of a binding. Thus, the binding [x~3, y~3.14] has the type of the decl [
INT, y: REAL]. All the relationships among types, and between types and values, are carried over
elementwise to decls and bindings; the elements are matched up by name rather than by position.
A decl itself simply has the type DECL.

A decl is made up of two parts: the names or pattern, and the types. The basic operation for
making decls, MKDECL, takes a pattern and a type. Thus MKDECL[ PATT[x, y], INTXREAL]=[x: INT, 
REAL]. In general, a pattern is one of NIL, a simple name, or a pair of patterns, just like a Lisp S-
expression. Similarly, a type argument to MKDECL is one of NIL, a type, or a cross type. The type
must decompose in a way which matches the pattern. Normally, as in Lisp, we deal only in flat
patterns, where the first element of a pattern is always a name. Such flat patterns are conveniently
denoted by constructors of the form [x, y, ...]. The reason for defining things in terms of pairs is
that it makes it much simple to write down precise rules for the semantics, using structural
induction on the values.

The main use of a decl is to type-check a binding. The basic binding constructor is MKBIND
where d is a decl and e is matching group or binding. If e is a binding, then its structure and names
must match the structure and names of d, and each element of e must have the type demanded by
the corresponding component of d, after a possible coercion. Thus MKBINDD[[x: INT, y: REAL], [
y~3.14]]=[x~3, y~3.14]. This may seem pointless, but it has two important uses:

Such a binding is used to bind the argument of a proc to the domain declaration. Even
though the resulting binding is the same as the argument, the type-checking is essential.
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There may be coercions involved, so that the resulting binding is not the same. Coercions
on the component values are discussed in ¶�2.6.1. There are also coercions on the binding
itself, which can default missing elements; these are discussed in ¶�2.3.6.

If e is a group, it is first coerced to a binding by attaching the names from the decl, as discussed in
¶�2.3.6. Thus in MKBINDD[[x: INT, y: REAL], [3, 3.14]] the second argument is coerced to [x~3,
y~3.14], and things then proceed as before.

Bindings may also be used in LET expressions. Here the types are often redundant, and it is better
to use the MKBINDP primitive to bind the value directly to a pattern. The syntactic type of the result
is the decl whose type is the syntactic type of the value. Thus [x~3, y~3.14] is short for
MKBINDP[PATT[x, y], [3, 3.14]]; its syntactic type is MKDECL[[x, y], D[3, 3.14]]=MKDECL[[x, y],
INTXREAL]=[x: INT, y: REAL].

A decl D in a block is interpreted somewhat differently. It becomes the argument of the NEWFRAME
primitive, which turns the type of the decl D.T into the corresponding VAR type VT=D.T.MKVAR
allocates a new value v of type VT, and makes the binding MKBINDP[D.P, v] over the scope of
block. Thus 
{x: INT; y: REAL; S} 

becomes
LET [x, y]~[VAR INT, VAR REAL].NEW IN S

Here D=[x: INT; y: REAL], VT=[VAR INT, VAR REAL], and v=[VAR INT, VAR REAL].NEW. Note that
the types might have defaults, which are used to initialize the values as part of the NEW

Actually this is a bit oversimplified, since NEWFRAME has to separate the bindings in the block from
the decls, construct the variable binding just described from the decl, and then combine it with the
binding from the block. Thus 
{x: INT; y: REAL; z~TRUE; S}

becomes
LET [x, y, z]~([VAR INT, VAR REAL].NEW PLUS [TRUE]) IN S

or more readably
LET x~VAR INT, y~VAR REAL, z~TRUE IN S

Anomaly: In Cedar the names in a block are introduced recursively, so that the d’s and b’s can
to each other. It is possible for a binding or type to refer to a value which has not yet
initialized, with undefined results. See ¶�3.4.1 for a further discussion of this point.

2.4.6 Classes

Another important use of a declaration is to characterize the cluster of a type. Since the cluster is
just a binding, it is characterized by its type, which is a decl. When used for this purpose, a
called a class. See ¶�4.1 for further discussion of classes, and an enumeration of the primitive classes
of Cedar.

2.5 Programs

This section describes how meaning is assigned to kernel programs.

2.5.1 Structure of programs

A kernel program is an expression, which is either atomic (a name or literal), or is an application
which involves sub-expressions: the proc being applied, and the arguments. The concrete syntax
treats certain kinds of expressions specially: modules, blocks (which introduce new variables and
return no value), and statements (which return no value). All desugar into simple expressions,
however, and are treated identically in the kernel.
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2.5.2 Names

A name is a part of a program which usually serves to denote a value. There are two contexts in
which the occurrence of a name n denotes a value:

It may occur as an expression. Then n denotes the value bound to it in the scope in which
the expression appears (see ¶�2.5.4 for details).

It may occur after a dot, as in e.n. Then the expression e.n denotes the binding for 
supplied by e (see ¶�2.4.4 and ¶�4.14 for details):

the value bound to n in e, if e is a binding;

the value bound to n in the cluster of e, if e is a TYPE;

roughly (De).n[e] otherwise.

There are also two defining contexts for a name n (see ¶�2.5.5 for details):

It may occur before a ~ in a binding constructor, as in n~e. The value of e is the value
bound to n in the binding denoted by the constructor (see ¶�2.3.5 for details).

It may occur before a : in a declaration constructor, as in n: t. The value of t is the type of
n in the declaration denoted by the constructor (see ¶�2.4.5 for details).

These constructors are usually recursive in Cedar; that is, the expression n elsewhere in the
constructor denotes the value bound to n in that constructor; see ¶�2.5.6 for details. In the kernel
they are non-recursive unless preceded by REC.

A name is not a value, but there are values of type ATOM which are related to names. An atom has
a print name which is a rope (an immutable sequence of CHARs). A name following a $ is an 
literal; $n denotes the atom with print name n. Other properties of atoms are described in ¶�4.5.1.1.

Caution: Current Cedar has several complications in its treatment of names:

•In an argBinding27, n: e may be written instead of n~e. The syntactic context distinguishes
this from a declaration, but this usage is not recommended.

An argBinding is not recursive: in {a~1; f[a~3, b~a+1]} b is bound to 2, not to 4.

The declaration in an import list is non-recursive: IMPORT M is short for IMPORT  M: 
and the second M denotes its binding in the currounding scope (i.e., the binding supplied
by the DIRECTORY). Inside the body of the module, of course, M denotes the imported
parameter. 

Names which appear in an enumerationTC54 are treated specially; see ¶�4.7.1.1 for details.

2.5.4 Scope

A scope is a region of the program in which all names retain the same meanings (note that many
names denote variables, which can change their values in the same scope, but each name continues
to denote the same variable). In the kernel there are only three constructs which introduce a new
scope, l, LET and REC. In current Cedar, these are sugared in a variety of ways: modules, import
lists, proc bindings, blocks, exit labels, open, iterators, safeSelects and withSelects. All
straightforward desugarings, however.

2.5.5 Constructors

The kernel has constructors, denoted [...], to make expressions which denote group, decl and
binding values more readable. There is one flavor of constructor for each class:

A binding constructor is a list of binding elements (b in the kernel syntax) of the form 
or d~e. The presence of the ~ distinguishes it from the others. Here d is a decl element
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(not a declaration), and p is a pattern, in which the names are being defined rather than
evaluated.

A decl constructor is a list of decl elements (d in the syntax) of the form p: t. The presence
of the : without any ~ distinguishes it from the others. Again, p is a pattern.

A group constructor is a list of expressions. Note that decl and binding elements are 
expressions, although constructors are expressions.

Constructors are useful for making decls and bindings where the names are literal. This is
normal case, and in fact the only case in current Cedar. If you want to make them out of other
decls, for instance to bind an expression to a decl which is tha value of a name dn, you cannot use a
constructor; [dn~e] would bind the value of e to the name dn, not to the decl which is its value.
You have to write the decl-constructing primitive directly: MKDECL[d, e].

The only kinds of constructor you can write in current Cedar are:

Decl constructors for proc domains and ranges, and for records and unions (fields43

syntax).

Binding constructors for arguments in an application, or as an expression alone if a record
or array value is needed (argBinding27 in the syntax).

2.5.6 Recursion

In the kernel, you get recursive definition of names only if you write REC (or the unsugared form
FIX) explicitly. In Cedar, on the other hand, decls and bindings are normally recursive, except for
argBindings and import lists.

The recursion is legal in a block or interface body (although anomalies are possible in some
when names are used before they are defined; see ¶�3.4.1). In fields it is illegal.

2.6 Conveniences

2.6.1 Coercion

A coercion is a proc which is automatically applied under some circumstances to map a value of
one type T (called the source) to a value of another type U (called the dest), e.g. from [0..5) to 
Coercions are obtained from the clusters of the types involved. The coercion mechanism adds no
new functionality, since the programmer could always write the applications himself, but it is
important in concealing some of the distinctions made by the type system when they are distracting
rather than helpful.

There is exactly one (desugared) context in which a coercion is applied: when an expression 
syntactic type T appears as an argument in an application which expects a value of type U
means that there is a binding n: U~e. Since nearly all Cedar constructs are desugared to application,
coercions are widely applicable. The only (desugared) context in which there is no coercion is for
the first operand of dot, since in that case the cluster of the operand is used to interpret the name
which is the second operand. Thus in the expression e.n, it is always De, the syntactic type of 
is used to look up n, regardless of the fact that this expression may appear as an argument to a
parameter of type U. If e is not a type or binding, however, then e.n desugars to P[e], where
P=LOOKUPC[De.Cluster, $n],and in the application of P, e does appear as an argument and can be
coerced. Usually the cluster for T is set up with procs which take an argument of type T, so the
domain of P is De and no coercion happens. This isn’t always true, though; a subrange T of 
inherits the arithmetic procs of INT, for example, and there is a coercion from T to INT when 
is applies.
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If TgU it is sometimes natural to think in terms of a coercion from T to U that is implemented by
the identity function. In fact, implication is stronger than that, since it propagates through many
type constructors, including PROC, when coercion does not. Implication is discussed in ¶�2.4.2 and
¶�4.12.

There is a rather general rule for finding coercions from the clusters of types, though it is not of
much practical importance in current Cedar, since there is no way for the user to define coercions.
The rule goes like this. Each cluster may have a From item and a To item. T.From should consist of
pairs with type [tag: ATOM, proc: T_U], and T.To of pairs with type [tag: ATOM, proc: U_T]. Ignore
the tags for the moment. Consider the binding n: U~e, where De=T, and TgU is false. For each
proc P in T.From or U.To  we try n: U~P[e]. 

If P: T_V is in T.From, it maps e to a value of type V, and we have to bind n: U~P[e
VgU we are done; otherwise we can recurse on this sub-problem.

If P: V_U is in U.To, we have to bind m: V~e. If TgV we are done; otherwise we can
recurse on this sub-problem.

The whole process fails if no path of coercion procs takes us from T to U. The search can terminate
when all paths have been explored, and a particular path can be abandoned when a type appears
on it for the second time. Since the search is done statically (by the compiler), and since the results
of an attempt to coerece T to U can be cached, the time required for the search is not a problem.

There are two obvious difficulties with this scheme. First, it may transform erroneous applications
into legal ones, but coercing an argument is ways not intended by the programmer. Second, more
than one path of coercion procs may exist, and different paths may give different results. The
second difficulty can be avoided, and the first minimized, if every coercion proc P is chosen so that
it has a (partial) inverse, and  P�1 [P{x]=x for all x in P.DOMAIN. This says that a coercion
lose information, and that different paths give the same answer. Sometimes this is not feasible, e.g.
for the narrowing coercion from INT to [0..5). The following rule gives the builder of clusters control
over proliferating coercions:

If two procs on a coercion path have non-nil tags, they must have the same tag.

In general, coercions that don’t lose information can have NIL tags, and others should have different
tags. 

The coercions in current Cedar are described in ¶�4.13. All have NIL tags, and none loses
information except the subrange narrowing. Note that coercions extend componentwise to groups
and bindings.

2.6.2 Exceptions

The basic idea behind exceptions is to extend the value space, so that it includes not only ordinary
values, but also a set of exception values. An exception value has the special property that whenever
it appears in an application, it becomes the value of the application, so that it propagates up
through the control stack of the program until it finally abecomes the value of the whole program.
Of course this isn’t always what is wanted, so there is a special HIDE construct which is not an
ordinary application, but takes its argument value, ordinary or exception, and bundles it in a variant
record which is a normal value. Then ordinary code can be used to test for the exception and take
appropriate action. This construct is sugared to give distinctive ways of catching an exception: in the
kernel with BUT (¶�2.2.4), and in Cedar with ENABLE, EXITS and REPEAT (¶�3.4.2). Cedar has two
kinds of exception: GOTO labels and ERRORs, which must be raised and caught separately, and
slightly different semantics. 

The main point of this treatment is that it does not require continuations or any other baroque
explanation of how control is transferred to catch an exception. The view is that exceptions are
simply a convenience feature; the same job could be done by returning a slightly larger result from
each proc, with an appropriate status code.
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An exception consists of a code and an optional argument value. The type of the code is ERROR
where T is the type of the argument which does with it. GOTO labels always have empty arguments.
The argument is a way of passing some information along in addition to the identity of the
exception.

A proper treatment of exceptions in the type system would require that each proc range include all
the exceptions that can emerge from an application of the proc. In fact, this is not required or even
possible in current Cedar.

Cedar also has signals, which historically were viewed as a kind of exception but now have a very
different interpretation, as a way of obtaining dynamic rather than static scoping for names. They
are discussed in ¶�3.4.3.1.

2.6.3 Finalization

This subject is discussed in ¶�3.4.3.1.

2.6.5 Concurrency

This subject is discussed in ¶�4.10, where the Cedar facilities for writing concurrent programs are
given. Writing good concurrent programs, or even correct ones, is another matter, which is beyond
the scope of this manual to more than hint at. Unfortunately, an adequate reference is lacking.

2.7 Miscellaneous

The different kinds of allocation are discussed in ¶�4.5. Static values are defined in ¶�3.9.1.

2.7.1 Pragmas

A pragma is a construct that does not change the meaning of the program, except perhaps to
something illegal which was legal without the pragma. Its purpose is to affect the implementation,
generally by requesting optimization to favor one criterion over others. The pragmas in current
Cedar are:

INLINE, which causes a proc body to be expanded inline when it is applied. See ¶�3.5.1 for
details.

PACKED, which causes array components that fit in 8 or fewer bits to be packed, and the
expense of more expensive code to access them.

CHECKED, which forbids application of unsafe procs in a block, and adds runtime checking
for some primitive procs which are otherwise unsafe (in particular, narrowing to a subrange,
and assigning a proc).

PRIVATE, which forbids access to items in an interface or instance except to modules which
EXPORT (or SHARE) it.

MACHINE DEPENDENT, which allows positions of record fields and representation values for
enumeration elements to be specified (strictly, it is the absence of MACHINE DEPENDENT
that is the pragma)
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2.8 Relations among groups, types, declarations and bindings

Cedar has are four closely related basic ways of building product values from simple values (all are
given precise meanings in ¶�2.2.1 and ¶�2.2.2):

a group is simply an n-tuple of values (see ¶�2.3.4);

a X-type is the type of a group (if x: T and y: U then [x, y]: TXU) (see ¶�2.4.5);

a binding is an n-tuple of [name, value] pairs (see ¶�2.3.5);

a declaration is the type of a binding, an n-tuple of [name, type] pairs (see ¶�2.4.5).

Figure 2�1 illustrates the relations among these kinds of objects. In current Cedar most of these
objects can be constructed and manipulated only as interfaces and instances. In the kernel and the
modeller, all of them are first-class citizens. The primitives which go between them are defined in
¶�2.2.

[a: T
a
~e

a
, b: T

b
~e

b
]: [a: T

a
, b: T

b
] [a: TYPE~T
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b
] 
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]

values types types as values

Figure 2�1: Relations among groups, types, bindings and decls

2.9 Incompatibilities with current Cedar

Most of the syntax is current Cedar is an extension (or sometimes a restriction) of kernel syntax.
There are a few things that have different meanings in the kernel, however, and these are potential
sources of confusion:

Type expressions in Cedar do not have the same syntax as ordinary expressions and cannot
appear in the same contexts, for the following reasons: 

The use of adjectives for variants (red Node).

The use of _ for specifying a default value for a type vs its use for assignment.

The use of {} for enumeration types vs its use for a block.

In addition to writing n: t~e for a binding, you can also write n: t=e (in a module header
or block) and n: e (in an argBinding). The most unfortunate consequence is that a Cedar
argBinding can look like a kernel decl constructor!

Target type overloading for enumeration identifiers (red instead of Color.red or $red
union constructors ([rator~$plus, rands~binary[...]]) is incompatible with the kernel’s simple
rules for the meaning of names.

It is now possible to avoid all the conflicting constructs except the relatively harmless ones: _ for
defaults, {} for enumeration, and union constructors.
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Chapter 3. Syntax and semantics

This chapter gives the concrete syntax for the current Cedar language, together with an informal
explanation of the meaning of each construct, and a precise desugaring of each construct into the
kernel language defined in ¶�2. The desugaring, together with the definitions of the kernel
primitives used in it, are the authority for the meaning; the informal explanation is just for your
reading pleasure. However, paragraphs beginning Anomaly or REstriction document properties of
Cedar not captured in the desugaring. The primitive procs and types of Cedar are specified in ¶�4. 

In addition to the grammar rules and desugaring, there are examples for each construct. These
intended to illustrate the constructs and do not form a meaningful program. The Cedar Manual has
longer examples which do something interesting, and also illustrate the use of the standard Cedar
packages.

There are several summaries which may be useful as references:

A two-page summary of all the syntax, desugaring and examples in this chapter
(CLRMSumm.press). 

A one-page summary of the full syntax (CLRMFullGram.press).

A shorter and less cluttered summary of the syntax for the safe language; it also omits a
number of constructs which are obsolete or intended only for efficiency hacking
(CLRMSafeGram.press). 

The chapter begins with a description of the notation (¶�3.1) The next sections deal systematically
with the rules of the grammar, explaining peculiarities of the syntax and giving the semantics:

¶�3.2, rules 56-61: The lexical structure of programs. 

¶�3.3, rules 1-5: Modules.

¶�3.4, rules 6-10: Blocks, OPEN, ENABLE, EXITS.

¶�3.5, rules 11-13: Declarations and bindings.

¶�3.6, rules 14-18: Statements.

¶�3.7, rules 19-27: Expressions.

¶�3.8, rules 28-35: Conditional constructs: IF and SELECT.

¶�3.9 treats various miscellaneous topics. ¶�4 deals with the syntax and semantics of types.

The order of the grammar rules is: 
module, block, declaration, statement,
expression, conditional
type, 
name, literal

and top-down within these. 



¶�3.1 NOTATION 33

3.1 Notation

This section describes the notation used in the grammar, the desugaring, and the commentary of
this chapter.

3.1.1 Notation for the grammar

The grammar is written in a variant of BNF:
Bold parentheses are for grouping: ( interface | implementation).
Item | item means choose one.
?item  means zero or one occurrences of item.
item; ... means zero or more occurrences of item separated by ";". The separator may also be  ",",
ELSE, IN, or OR, or it may be absent. If the separator is ";", a trailing ";" is optional. 
item; !..  is just like item; ... but there is at least one occurrence.
A terminal is a punctuation character other than bold ()?|, or any character underlined, or a word in
SMALL CAPS. Note that [] and {} are terminals, and do not denote optional occurrence and repetition as they do in many
other variants of BNF.

The rules are numbered sequentially. 
Special symbols mark constructs with special properties:

‚=unsafe;
•=obsolete;
„=machine-dependent;
µ=efficiency hack.

The grammar is written so that a non-terminal never expands to the empty string. When an element
of a rule is optional, that is always indicated explicitly by "?" or "..." .

The following non-terminals are so basic to the language and so frequently used, that they are
represented in the grammar by abbreviations:
b=binding13
d=declaration11
e=expression19
n=name56 (identifier)
s=statement14
t=type36

I’m afraid this means that you must learn the meaning of these six abbreviations in order to read
the grammar.

With the exception of these abbreviated non-terminals, each use of a non-terminal is cross-
referenced with a small superscript number59, unless the non-terminal is defined in one of the next
few rules. If a non-terminal (other than e, t or n) is used in more than one rule, then all the rules
that use it are listed in a comment after its definition. 

Except for the entries in Table 3�1, a terminal symbol appears in only one rule. These duplications
do not lead to ambiguity. In most cases they are harmless, since the symbol has essentially the same
meaning in each case, and the rules are separate only for greater readability, to highlight an unusual
use of a construct, or for historical reasons. In some cases, however, the symbol has quite different
meanings in different rules. These are marked on the left as follows

• The rules marked with • are obsolete and should be avoided.

6 In the rules marked with * the symbol has a different meaning than in the others, and
confusion is quite possible. The programmer should bear these cases in mind.

0 In the rules marked with * the symbol has a different meaning than in the others, but the
context is sufficiently clear that confusion is unlikely.

A superscriptxn indicates that the terminal is repeated n times in that rule.
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Symbols Rules Explanation

0 ( ) 19, 25, *51.1, *54expr, subrange, *position in record or enumeration
[ ] 19, 25, •37, 43, 51constructor/built-in/funnyAppl, subrange, 

application, •typeName, fields, mdFields
0 { } 2, 6, 8, 13, *54 interface body, block, enable, machine code,

*enumerationTC
, 2,�3, 6, 7, 9, 17, 27, see note in ¶�3.2.

29,�30,��32, 34, 35, 43, 
51, 52

; 6, 8,�10, 17, 27.1, 30,�see note in ¶�3.2.
33,�35

0 : 1, 2, 3, 5, •7, 11, 13,introducing names with types, except *51.1=position, 
• 18, •27, 33, •34, 51,•7=open, •27=argBinding •34=withSelect

*51.1, 53
. 19, 37 dot notation for e is repeated for types

0 .. 25x4, *51.1 subrange, *positiont0
* 21, *53 infixOp, *tag

+ 21, 58 infixOp, exponent
� 20, 21, 58 prefixOp, infixOp, exponent

• = •13, 22 •binding, infixOp
=> 6, 9, 17, 31, 33, 35, 52exits, enable, repeat, select choicesx4, unionTC

6 _ 14, 16, 18, 21, *55s, e_STATE, iterator, e, *defaultTC
0 ~ 2, 3, 13, 20, *22, *27interface,implementation,b,argBinding,*unaryOp,*relOp

~~ 7, 34 open, withSelect
6 ANY *9, 40, 43 *enable, variableTC, fields
6 CODE *13, 23 *new exception, convert t to e

ENDCASE 31, 52 select endChoice, unionTC
0 ERROR *19, *24, 41.1 *expression, *funnyAppl, transferTC

IMPORTS 2, 3 interface and implementation
IN 18, 22 iterator, relOp
LONG 38x2, 45.1, 48 cardinal/unspecified, pointer, descriptor
NOT 20, 22 prefixOp, relOp

• NULL 14, •27, •52, •55statement, •argBinding, •unionTC, •defaultTC
PACKED 44, 45 array, sequence
SELECT  FROM 29, 32, 34, 52 selectx3, unionTC
SHARES 2, 3 interface and implementation

0 SIGNAL *24, 41.1 *funnyAppl, transferTC
TRASH 27x2, 55x2 argBinding, defaultTC
TRUSTED 6, 13 block and machine code

6 USING 1, *5 directory, *locks
0 WITH *32, 34 *safeSelect, withSelect

Table 3�1: Terminal symbols appearing in more than one rule

3.1.2 Notation for desugaring

The right-hand column is desugaring into the Cedar kernel language, or in a few cases into
comments describing the meaning in English. This is a purely textual transformation; i.e., it is done
on the text of the program, not on the values. The rewriting is done one rule at a time; a single
step of rewriting involves elements from exactly one rule. The desugaring is specified by slightly
informal but straightforward rewriting rules, in which:

An occurrence of a non-terminal (written in bold) denotes the text produced by that non-
terminal in the grammar rule.

A | reflects a corresponding alternation in the grammar rule, ? reflects a corresponding
optional item in the grammar rule, and (bold parentheses) are for grouping as in a grammar
rule. As in grammar rules, literal parentheses are underlined.
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Everything else is taken literally.

An underlined non-terminal in the right column means that the desugaring specified for that non-
terminal must be done in order to obtain a legal program. Otherwise the transformations can be
done in any order, yielding a legal program at each step.

Every occurrence of e (expression) and t (type) in the desugaring is implicitly parenthesized, so that
the desugared program parses as the rewriting rule indicates. To reduce clutter, these parentheses
are not written in the desugaring rules.

For type options like PACKED, the desugaring of the construct in which they appear is a call on a
built-in a type constructor which takes a corresponding BOOL argument defaulting to FALSE; if the
attribute is present, the argument is supplied with the value TRUE.

Examples: the following rule for subranges:

subrange ::= ( typeName | )  (
( [ e

1
 .. e

2
 ] | [ e

1
 .. e

2
  ) ) | (typeName | INT).MKSUBRANGE ( [e

1
, ( e

2
 | e

2
.PRED ) ] ) 

( ( e
1
 .. e

2
 ] | ( e
1
 .. e

2
  ) ) )         [e

1
.SUCC, ( e

2
 | e

2
.PRED )

generates these desugarings

Index [ 10 .. 20 ] Index.MKSUBRANGE[10, 20]
Index [ 10 .. 20 ) Index.MKSUBRANGE[10, 20.PRED ]
( 1 .. 100 ) INT.MKSUBRANGE[1.SUCC, 100.PRED ]

Names introduced in the desugaring are written with one or more trailing prime ("(") characters.
Such names cannot be written in a Cedar program, and hence they are safe from name conflicts.
The desugaring is constructed so that the ordinary scope rules prevent multiple uses of these names
from being confused.

3.1.3 Notation for the commentary

Each section of the commentary begins with grammar rules, desugaring and examples for part
the language. It continues with text which explains the meaning of the constructs. Generally the
meaning is fairly clear from the desugaring, and this text is short. For blocks and especially for
modules, however, there are many non-obvious implications of the desugaring, and a number of
restrictions; these constructs have a lot of explanatory text.

Some kinds of information are put into specially marked paragraphs, which begin with one of the
following italicized words:

Anomaly: the meaning of this Cedar construct is not explained by desugaring into the
kernel, but by the special rule given here.

Caution: here is an implication of the definition which might surprise you.

Performance: facts about the time or space required by some construct.

Representation: the values of a data type are represented in terms of other types like this.

Restriction: a construct is not fully general, and will cause a static error unless the
additional conditions stated here are satisfied.

Style: advice about good Cedar style.

Symbols written in SANS-SERIF SMALL CAPITALS are in the kernel but not in current Cedar. The
superscript notation used to cross-reference non-terminals in the grammar is also used in the
examples, usually to point to a rule whose example introduces a name.
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 3.2 The lexical structure of programs

56 name ::= letter (letter | digit)...-- But not one of the reserved words in Table 3�2.
57 literal ::=  num ?( ( D|d | B|b ) ?num ) | -- INT literal, decimal if radix omitted or D, octal if B. 
digit (digit |A|B|C|D|E|F) ... ( H|h ) ?num | -- INT literal in hex; must start with digit. |
?num . num  ?exponent | -- REAL as a scaled decimal fraction; note no trailing dot.
num exponent | -- With an exponent, the decimal point may be omitted. 
’ extendedChar | • digit !.. C | -- CHAR literal; the C form specifies the code in octal. 
" extendedChar ... " ?•L | [ (’extendedChar), ...] -- Rope.ROPE, TEXT, or STRING. 
$ n -- ATOM literal.

58 exponent ::= (E|e) ?(+ | �) num -- Optionally signed decimal exponent.
59 num ::= digit !..
60 extendedChar ::= space | \ extension | anyCharNot’"Or\ 
61 extension ::= digit

1
 digit

2
 digit

3
 |-- The character with code digit

1
 digit

2
 digit

3
 B. |

                      (n|N | r|R) | (t|T) | (b|B) | -- CR, ’\015 | TAB, ’\011 | BACKSPACE, ’\010 | 
                      (f|F) | (l|L) | ’ | " | \ -- FORMFEED, ’\014 | LINEFEED, ’\012 | ’ | " | \

Examples

m, x1, x59y, longNameWithSeveralWords: INT;
n: INT~1+12D+2B3+2000B -- = 1+12+1024+1024
       +1H+0FFH; --  +1+255

r1: REAL~0.1+.1+1.0E�1 -- = 0.1+0.1+0.1
            +1E�1; --  +0.1

a1: ARRAY [0..3] OF CHAR~[’x, ’\N, ’\’, ’\141];
r2: ROPE~"Hello.\N...\NGoodbye\F";
a2: ATOM~$NameInAnAtomLiteral;

The main body of the grammar (rules 1-55) treats a program as a sequence of tokens. Rules 56-61
give the syntax of most tokens. A token is:

• A literal57. More information about literals of type T can be found in ¶�4, as part of the
treatment of type T.

• A name56, not one of the reserved words in Table 3�2. Note that case is significant in
names.

• A reserved word, which is a string of uppercase letters that appears in the list of reserved
words in Table 3�2. A reserved word may not be used as a name, except in an ATOM

literal.

• A punctuation symbol: any printing character not a letter or digit, and not part of one of
the two-character sequences below. The legal punctuation symbols in programs are: 

     ! @ # $ ~ * � + = | ( ) { } [ ] _ ^ ; : ’ " , . < > / 

The following ASCII characters are not legal punctuation symbols (and must not
appear in a program except in an extendedChar60): 

     % & \ ? 

Note that Cedar uses a variant of ASCII which includes the characters _ (instead of the underbar   ) and ^
(instead of the circumflex ‹  ). Note also that the character written � here is the ASCII minus character, code

55B, and not any of the various dash or typographer’s minus characters with other codes, which are not in the
standard ASCII set.
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• One of the following two-character symbols (used in the grammar rules indicated):
~= not equal22
<= less than or equal22
~< not less than22
>= greater than or equal22
~> not greater than22
=> chooses8,�17,�30,�31,�33,�35,�52
.. subrange constructor25,�51.1
~~ bind by name6,�34
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ABS
ALL
AND
ANY
ARRAY
ATOM
BASE
BEGIN
BOOL
BOOLEAN
BROADCAST
CARDINAL
CEDAR
CHAR
CHARACTER
CHECKED
CODE
COMPUTED
CONS
CONTINUE
DECREASING
DEFINITIONS
DEPENDENT
DESCRIPTOR
DIRECTORY
DO
ELSE
ENABLE
END
ENDCASE
ENDLOOP
ENTRY
ERROR

EXIT
EXITS
EXPORTS
FINISHED
FIRST
FOR
FORK
FRAME
FREE
FROM
GO
GOTO
IF
IMPORTS
IN
INLINE
INT
INTEGER
INTERNAL
ISTYPE
JOIN
LAST
LENGTH
LIST
LOCKS
LONG
LOOP
LOOPHOLE
MACHINE
MAX
MIN
MOD
MONITOR

MONITORED
NARROW
NEW
NIL
NOT
NOTIFY
NULL
OF
OPEN
OR
ORDERED
OVERLAID
PACKED
PAINTED
POINTER
PORT
PRED
PRIVATE
PROC
PROCEDURE
PROCESS
PROGRAM
PUBLIC
READONLY
RECORD
REF
REJECT
RELATIVE
REPEAT
RESTART
RESUME
RETRY
RETURN

RETURNS
SAFE
SELECT
SEQUENCE
SHARES
SIGNAL
SIZE
START
STATE
STOP
STRING
SUCC
TEXT
THEN
THROUGH
TO
TRANSFER
TRASH
TRUSTED
TYPE
UNCHECKED
UNCOUNTED
UNTIL
USING
WAIT
WHILE
WITH
ZONE

Table 3�2: Reserved words and predefined names

The program is parsed into tokens by starting at the beginning and successively taking from the
front the longest sequence of characters which forms a token according to the rules above, after first
discarding any number of initial whitespace characters or comments. 

The whitespace characters are space, tab, and carriage return. A Tioga node boundary is
also treated as a whitespace character.

A comment is one of:

A sequence of characters beginning with --, not containing -- or a carriage return,
and ending either with -- or with a carriage return.

A Tioga node with the comment property.

Note that whitespace and comments are not tokens, but may appear before or after any token; they
are token delimiters, and hence cannot appear in the middle of a token. Whitespace and comments
thus do not affect the meaning of the program except:

When they delimit a token.

Within a CHAR literal or a ROPE literal, where they are taken literally. Thus  ’  is equal to
’\040, and "I
am --not--" is equal to "I\Nam --not--" and different from "I\Nam ".
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Both reserved words (Table 3�2) and most names with predefined meanings (Table 4�5) are made
up entirely of upper case letters. They should not be rebound by the program; in some but not all
cases the compiler forbids their rebinding. All are at least three characters long except the
following:

DO  GO  IF  IN  OF  OR  TO.

A note on lists of items and their separators:

Semi-colons are used to separate declarations, bindings and statements in a body10, and to
separate choices in a select statement29,�32,�34  or in an exits6, 17 or enable8,�27.1 . 

Commas are used to separate declarations in fields43,�51  (i.e., in a proc domain or range, a
recordTC or a unionTC), bindings in an application27 or an open7, choices in a select
expression29,�32,�34  or in a unionTC52, expressions in a choice6,�9,�17,�30,�35,�52 , items in imports,
exports or shares lists2,�3 . 

In general these sequences may be empty, and an extra separator at the end is harmless when there
is some kind of closing bracket, except when the sequence is bracketed with [].

The braces which delimit a block6, interface body2, choices in an enable8, or MACHINE CODE body
may be replaced by BEGIN and END reserved words. BEGIN replaces "{" and END replaces "}". If
one brace is replaced, its matching partner must also be replaced. The braces delimiting an
enumTC54 may not be replaced by BEGIN and END.

3.3 Modules

 1 module ::= DIRECTORY (n
d
 (: TYPE  (n

t
 | ) | ) l [ (n

d
 : ( (TYPE n

t
 | TYPE n

d
) | TYPE n

d
), ... ] IN  

                                 ?(USING [ n
u
, ... ] ) ),  ... ;     LET (n

d
~RESTRICT[n

d
, [$n

u
, ... ] ] ), ...  

                    ( interface | implementation )IN ( interface | implementation )
 2 interface ::= n

m,
 !.. : ?CEDAR DEFINITIONS LET r(~[ n

m
: INTERFACETYPE[[ n

m
, ...]] ] IN (imports | l

?locks (imports | ) ?•(SHARES n
s
, ...)-- SHARES allows access to PRIVATE names in n

s
.

~ ?•access12 { ?open7 (d | b); !.. } .LET REC n
m
~open [ ?(l(~locks, ) (d | b), ... ]  IN MKINTTYPE

 3 implementation ::= n
m
 : ?CEDAR    LET r(~REC [(n

e
: n

e
)  , ... , FRAME: TYPE n

m
 , 

                       n
m
: FRAME,CONTROL: PROGRAM]  

?safety ( PROGRAM ?drType42  | IN (imports | l=>r() IN                                                  
                       MONITOR ?drType42  ( | locks) )( | ( LET LOCK:MONITORLOCK IN LET l(~(l IN LOCK) IN | ))
(imports | ) LET b(~NEWPROGINSTANCE[block].UNCONS IN
?(EXPORTS n

e
, ...)      [ (n

e
~BINDDFROM[n

e
, b(] ), ... , FRAME~MKINTTYPE[block], 

?•(SHARES n
s
, ...)        n

m
~b( , CONTROL~b(.n

m
] where the block body is desugared:

~ ?•access12 block .      [( | ( | l(~locks,)) (d | b), ... , n
m
: PROGRAM drType
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Examples

DIRECTORY -- For BufferImpl below.
Rope: TYPE USING [ROPE, Compare], -- There should always be a USING clause 
CIFS: TYPE USING [OpenFile,Error,Open,read],--   unless most of the interface is used
IO: TYPE IOStream,
Buffer: TYPE; --   or it is exported.

Buffer: DEFINITIONS ~
Handle: TYPE~REF BufferObject;
BufferObject: TYPE=Rope.ROPE
New: PROC RETURNS[h: Handle];
Get: PROC[h: Handle] RETURNS[BufferObject];
Put: PROC[h: Handle, o: BufferObject];

BufferImpl: MONITOR [f: CIFS.OpenFile] -- Implementations can have arguments.
LOCKS Buffer.GetLock[h]^ -- LOCKS only in MONITOR, to specify

USING h: Buffer.Handle --   a non-standard lock.
IMPORTS Files: CIFS, IO, Rope -- Note the absence of semicolons.
EXPORTS Buffer -- EXPORTS in PROGRAM or MONITOR.

~ { -- module body -- } . -- Note the final dot.

Modules serve a number of functions (which might perhaps better be disentangled, but are not):

A file of text (BufferImpl.mesa), or its translation into object code (BufferImpl.bcd).

The unit handled by the editor, named in DF files and models, and accepted by the
compiler, the binder, and the loader.

A set of related structures (types, procedures, variables) which are freely accessible to each
other, hiding secrets or irrelevant information from other modules.

A procedure which can accept interface types and bindings as arguments, and returns
interface values as results.

The first two uses are not relevant to the language definition, and are not discussed further here.
The others are the subject of this section. 

There are two kinds of modules: interface modules (written with DEFINITIONS) and implementation
modules (written with PROGRAM or MONITOR). They have the same header (except that interfaces
have no EXPORTS list); it defines the parameters and results of the module viewed as a proc (¶�3.3.1)
and specifies the name n

m
 of the module. The bodies (following the ~) are different. Table 3�3

summarizes the structure of modules and their types; it omits a number of details which are given
in rules 1-3 and explained in the text.

Example Module Module type Result Result type

DIRECTORY Rope, IO; Interface [Rope: TYPE Rope, IO: TYPE IO]InterfaceTYPE Match
  Match: DEFINITIONS~{...}module   _[TYPE Match]

DIRECTORY Match, Rope, IO;Implementation [Match: TYPE Match, ExportedMatch
  MatchImpl: PROGRAM module   IO: TYPE IO, Rope: TYPE Rope, instance
  IMPORTS R: Rope, I: IO   R: Rope, I: IO]_[Match]
  EXPORTS Match~{...}

Table 3�3: Interface and implementation modules
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The ensuing sub-sections deal in turn with:

¶�3.3.1: Modules as procedures, and the interface or instance values obtained by applying
them.

¶�3.3.2: How modules are applied.

¶�3.3.3: Module parameters: the DIRECTORY and IMPORTS lists; USING clauses.

¶�3.3.4: Interface module bodies and interfaces.

¶�3.3.5: Implementation module bodies; the EXPORTS list.

¶�3.3.6: SHARES and access12.

The meanings of the other parts of a module header are discussed elsewhere:

CEDAR in ¶�3.4.4.

MONITOR and LOCKS in ¶�4.10.

3.3.1 Modules and instances

A module is a proc which takes two kinds of arguments:

Interfaces, declared in the DIRECTORY list. These arguments are supplied by the model
on the compiler’s command line),

Instances of interfaces, declared in the IMPORTS list. These arguments are also supplied by
the model (or in a config file passed to the binder, or implicitly by the loader).

¶�3.3.3 discusses the types of these arguments and how they are declared. In addition, an
implementation may take PROGRAM arguments declared in the drType following PROGRAM or
MONITOR. These are ordinary values; they are discussed in ¶�3.3.2.1.

When a module is applied to its arguments, the resulting value is

For an interface module, an interface.

For an implementation module, a binding whose values are instances: 

one interface instance for each interface it exports;

one for the program instance, also called a global frame;

one for the program proc derived from the module body (¶�3.3.2.1), called
CONTROL.

This application cannot be written in the program, only in the model; it is described in ¶�3.3.2.

An interface (sometimes called an interface type) is a type, as the latter name suggests. This type is a
declaration (obtained from the declarations which constitute the module body), with an extended
cluster that includes all the bindings in the module body that don’t use declared names (¶�3.3.4). In
the example, the Buffer interface (obtained by applying the Buffer module to the arguments declared
in its DIRECTORY) has declarations for New, Get, and Put, and its cluster includes values for
and BufferObject.

An interface instance is a value whose type is an interface; such values are the results of
instantiating implementation modules. In the example, BufferImpl returns (exports) an instance of
Buffer.

A program instance or a global frame is a frame, as the latter name suggests, i.e., a binding obtained
from the bindings and declarations of an implementation (PROGRAM or MONITOR) module body,
just like any proc frame (¶�3.3.5). Normally code outside the module does not deal with the instance
directly, but only with the exported interface instances. In the example, BufferImpl exports a
program instance for the module and a CONTROL proc.
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In most cases, there is:

Exactly one application of each module, and hence exactly one interface or one instance. 

Only one module which exports an interface.

Only one interface exported by a module. 

Only one argument of the proper type for each module parameter (¶�3.3.3); hence it is
redundant to write the arguments explicitly. 

When these conditions hold, there is a close correspondence among the following four objects: 
an interface module;
the interface it returns (since its arguments need not be written explicitly); 
the implementation module which exports the interface;
its instance (again, since its arguments need not be written explicitly).

The distinctions made earlier in this section then seem needless; it is sufficient to simply consider
the interface and implementation modules, and identify them with the files which hold their text. In
more complicated situations, however, it is necessary to know what is really going on.

In the example at the start of this section, BufferImpl is an implementation module with seven
parameters:

Four interface parameters, declared in the DIRECTORY: Rope, CIFS, IO and Buffer.

Three instance parameters, declared in the IMPORTS: Files (of type CIFS), IO (of type 
and Rope (of type Rope). Since the instance parameters are declared in an inner scope, the
instance Rope is the one visible in the module body; the interface Rope is visible only in
header. The same is true for IO, but both the interface CIFS and the instance Files are
visible in the body.

When BufferImpl is compiled, the four interface parameters must be supplied, in the form of
(compiled) interface modules named Rope, CIFS, IO and Buffer. When BufferImpl is instantiated
(normally by loading it), the three instance parameters must be supplied, i.e. there must be other
instantiated implementation modules which export the Rope, CIFS, and IO interfaces. Normally
there will be one of each, and the entire program will consist of eight modules: 

the interface modules Rope, CIFS, IO and Buffer;

implementation modules normally named RopeImpl, CIFSImpl, IOImpl and BufferImpl, each
exporting an instance of the corresponding interface

The instantiated BufferImpl exports an instance of Buffer, which can then be used as a parameter by
some other module.

3.3.2 Applying modules

A module is not applied to all its arguments at once. Instead, the arguments are supplied in two
stages:

A module is applied to its interface (DIRECTORY) arguments by compiling it; the result is a
BCD (represented by a .bcd file). The bcd is still a proc, with instance parameters. Like any
proc, a module can be applied to different arguments (i.e., different interfaces) to yield
different BCDs.

A BCD is applied to its instance (IMPORT) arguments by loading (or binding) it; the result is
a program instance, together with any interface instances exported by the module. Again,
the BCD can be applied to different arguments (i.e., different interface instances) to
different instances. Indeed, because an instance may include variables, even two applications
to the same arguments will yield different instances.

These two stages are separated for several reasons:
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All the type-checking of a module can be (and is) done in the first stage, by the compiler.
The only type error possible in the second stage is supplying an unsuitable argument.

Compiling is much slower than loading, and a module needs to be recompiled only when
its interface arguments change, not when the interface values change. The latter are changes
in the implementations of the interfaces, and are much more common.

When there are multiple instances of the same module with the same interface parameters,
they automatically get the same code.

We’ve always done it that way.

3.3.2.1 Initializing a program instance

The statements in the body of an implementation module form the body of a proc called the
program procedure. The function of this proc is to initialize an instance of the module. A program
instance PI may be uninitialized, because no code in the module is executed when the instance is
made. It is the job of the program proc PP( to initialize PI, perhaps using the PROGRAM arguments
if there are any. Until PP( has been called, PI is not in a good state. It would be better to supply
the PROGRAM arguments along with the imported instances, and call PP( as part of making PI, so
that PI is never accessible in its uninitialized state. But it isn’t done that way; hence the
programmer must ensure that PP( is called before any use is made of PI. To confuse things, 
not an ordinary procedure but a PROGRAM, and it must be called using the START construct (see
¶�4.4.1). Note that in addition to the statements of the module body, PP( also contains the type-
specific initialization code for any variables or non-static values in the instance; e.g., if 
value of x will not be 3 until after PP( has been called.

There is some error detection associated with this kludge. If a proc in the instance is called before
the instance has been initialized by START, a start trap occurs. At this point, if PP( takes no
arguments it is called automatically, and the original call then proceeds normally; if PP
arguments, there is a Runtime.StartFault ERROR.

Caution: If the module is a monitor, PP( runs without the monitor lock; if another process calls into
the module while PP( is running, it will not wait, but will run concurrently with PP(. This is
unlikely to be right. It is unwise to rely on a start trap to initialize a monitor module; call 
explicitly with START.

Caution: If a variable in the instance is referenced before the instance has been initialized, no error
is detected, and the uninitialized value will be obtained. PP( can still be called to initialize the
instance, and may still be called automatically by a start trap.

The program proc is bound to the name CONTROL in the result of an implementation module if its
type is PROGRAM[] RETURNS[] (otherwise the proc Runtime.ReportStartFault is bound to CONTROL).
This allows the modeller (and binder) to get access to PP so as to control the order in which
modules are started.

3.3.3 Parameters to modules: DIRECTORY and IMPORTS

The interface parameters of a module are declared in the DIRECTORY. An interface I has type 
n, where n is any one of the names given before DEFINITIONS in the header of the interface module
that produced I. The INTERFACETYPE primitive in the desugaring takes a list of names and returns a
type which implies TYPE n for each n in the list. The reason for allowing several names is to aid
conversion of an interface from one name to another; both names can continue in use for a while.
The use of these names provides a clumsy check that the proper interface is supplied as an
argument. DIRECTORY n: TYPE and DIRECTORY n are both short for DIRECTORY n: TYPE n.

An interface is a type which can only be used:
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Before a dot (¶�4.14), to obtain a value from its cluster, which simply consists of
bindings in the interface module body (¶�3.3.4).

In an IMPORTS list as the type of an instance parameter to a module. 

The USING clause in the DIRECTORY, if present, restricts the cluster of the interface to contain only
items with the names n

u
, ... Thus in the example, only ROPE and Compare are in the cluster of 

in the BufferImpl module. This means that Rope.ROPE and Rope.Compare are legal, but Rope.n for any
other n will be an error. Note that USING affects only the cluster of the parameter; it does not affect
the clusters of any types or the bodies of any INLINE procs obtained from the interface. Thus
Rope, Compare might be bound by

Compare: PROC[r1, r2: ROPE] RETURNS [BOOL]~INLINE {
IF Length[r1]~=Length[r2] THEN ...  }

A call of Rope.Compare in BufferImpl is perfectly all right, even though Rope.Length in BufferImpl
would be an error.

In the example, CIFS, IO, and Rope are interfaces. They are the types of three IMPORTS parameters
named Files, IO, and Rope (if the IMPORTS clause gives no name for the parameter, the name of the
interface is recycled). An actual argument for an IMPORT parameter must be an interface instance,
i.e., a value whose type is an interface type. Such a value is obtained from one or more modules
which export the interface (¶�3.3.5). An instance is a binding; in this binding the value of a name
declared in the interface is provided by the exporter; the value of a name bound in the interface
(e.g., x~3) is just the value that the interface binds to the name (in this case, the value 3). This rule
has two effects:

The client can ignore the distinction between names bound and declared in the interface,
since both appear in the instance binding and are referenced uniformly with dot notation.
This means that the client is not affected, for example, when a proc is moved from an
INLINE in the interface to an ordinary definition in an implementation.

The client can often ignore the distinction between the interface and the instance, since all
the values in the interface are also in the instance, with the same names. This is the
motivation for the shorthand which allows the name of an IMPORT parameter to default to
the name of the interface; the interface is no longer accessible, but I.x has the same
meaning (namely 3) whether I is the interface or the instance.

Anomaly: Nmaes bound to inline procs in an interface do not appear in the interface binding, but
only in an instance. This somewhat duboius rule ensures that  clients won’t have to add to their
imports lists if a proc stops being an inline.

Restriction: An interface module may not import more than one instance of a given interface I. If an implementation
module P imports more than one instance of I, the principal instance of I is the one with no name in the IMPORTS list
(which is therefore named I by default). If P imports only one instance of type I, then that instance is the principal
instance.

Restriction: Often an interface module has no IMPORTS, because it only needs access to the static values (types and
constants) bound in its interface parameters, and does not need values for any names declared there (procs and interface
variables). If an interface module does have IMPORTS, however, and there is more than one instance of any imported
interface around, then there is a restriction on the argument values. Suppose that Int1 imports Int2, and that a program
module P imports Int1. Then Int1 may only import one instance of Int2, and if P also imports Int2, the principal instance
of Int2 in P must be the same as the value of Int2 imported by the Int1 imported by P. For example, with

DIRECTORY Int2; Int1: DEFINITIONS IMPORTS Int2V: Int2 ...
DIRECTORY Int1, Int2; P: PROGRAM IMPORTS Int1V: Int1, Int2V: Int2 ...

we must have in P that Int1V.Int2V=Int2V.

3.3.4 Interface module bodies

The body of an interface module I is a collection of bindings (e.g., x: INT~3) and declarations (e.g.,
y: VAR INT or P: PROC[a: INT] RETURNS [REAL]). 

Restriction: Only certain things may follow the ~ in one of the bindings13:
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If it is an expression, it must be static (¶�3.9.1).

If it is a block (providing the body of a proc), it must be INLINE (because there isn’t any
place to put the compiled code).

It may not be CODE.

The result of applying an interface module is an interface (¶�3.3.2), which is a type I obtained by
applying the primitive MKINTTYPE to the d’s and b’s of the body. This type is simply the declaration
obtained by collecting the declarations in the body, with a cluster which is extended to include all
the bindings of the body. However, MKINTTYPE omits any inline proc bindings from the type’s
cluster, instead leaving the proc declarations in I. It puts an extra item BINDING in I’s cluster with
the inline procs in it. When an instance Inst of I is imported, the binding actually imported
PLUS I.BINDING. This slightly dubious arrangement ensures that clients don’t have to change
lists if a proc stops being inline. This policy is not extended to other items, however, even though
they might change from being bound in the interface to being interface variables.

The interface returned by 
Red, Blue, Green: DEFINITIONS~...

has the types TYPE Red, TYPE Blue,  and TYPE Green.

The types and expressions in declarations and bindings may refer to other names in the bindings as
usual, but they may not refer to names introduced in the declaration, except that:

Any declared name may be used

in the body of an INLINE, or 

after a "_" in a defaultTC55 in the fields43 of a transferTC41 which is the type of a
decl in the interface’s body.

A declared (opaque) type may be used anywhere.

For example, if an interface contains
I: DEFINITIONS~
x: INT~3;
y: VAR INT;
T: TYPE[ANY]

then the following may also appear in the interface:
xx: INT~x+1;
P: PROC RETURNS[INT]~INLINE {RETURN[x+y]};
Q: PROC [INT_y];
V: TYPE~RECORD[f: REF T, g: U]

but the following are illegal:
xy: INT~y+1;
U: TYPE~INT_y;
W: TYPE~ARRAY [0..y] OF INT;

The values of the bindings can be accessed directly by dot notation in any scope in which the
interface value is accessible. Thus if the value of the previous interface module is bound to 
because J: TYPE I appeared in the DIRECTORY, then J.x is equal to 3. The declarations cannot be
accessed directly (J.y is an error). 

The declarations in an interface module are not quite like ordinary declarations. They are of three
kinds, depending on whether the type of a declaration is:

A transfer type; this is just like a declaration of a transfer parameter to an ordinary proc,
except that it is readonly. 

TYPE[ANY] or TYPE[e]; the type being declared is an opaque type or exported type, discussed
in ¶�4.3.4. The expression e must be static. TYPE[ANY] or TYPE[e] is not allowed in an
ordinary declaration; except in an interface, a type name must be bound to a type value
when it is introduced.
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VAR T, or READONLY T for any type T except TYPE; this is an interface variable; discussed
in ¶�3.3.4.1 below. •In an ordinary declaration in a block you can’t write VAR T, but must
write simply T; you can also write simply T here, but this is not recommended

An interface instance II has the interface type I if for each item n: T in the interface, there is an
item n~v in the instance, and v has type T. This is the same rule which determines that a binding
has the type of a declaration; e.g., that a proc argument has the domain type. In this respect there is
nothing special about an interface.

Note that a name can be declared PRIVATE in an interface, even though it must be declared 
in the exporter (¶�3.3.6). This can be useful if the name is used in a type constructor or inline proc
in the interface, but its value should not be accessible to the client.

3.3.4.1 Interface variables

An interface variable v gives clients of an interface direct access to a variable in a program module,
namely the variable which is exported to v. This is the only kind of variable parameter in current
Cedar.

•If you use the obsolete shorthand of T for VAR T in an interface variable declaration, you cannot
declare a transfer type variable as an interface variable, since that already means passing the transfer
value.

Caution: the variable which is exported to provide the value for an interface variable is not
initialized until its module is initialized (¶�3.3.2.1). However, there is nothing to stop it from being
accessed sooner.

Performance: An interface variable can be read and (if not READONLY) set directly, which is
significantly faster than Get and Set procs. Of course, the implementor gives up some control. It is
not quite as fast as access to an ordinary variable, since there is an extra level of indirection
costs one or two extra instructions each time. There is also one pointer per interface variable per
module which refers to it. If you use a private interface variable and inline Get and Set
pay nothing in performance, but retain the option of changing the proc definitions later.

•You can get direct access to all the variables of a module by using a POINTER TO FRAME type
(¶�4.5.3).

3.3.5 Implementation module bodies

The body of an implementation module Imp is simply a block. This block plays two roles. On the
one hand, it is an ordinary block, the body of an almost ordinary proc PP( called the PROGRAM
proc, which has parameters and results like any other. PP( is special in one way: it has a 
type rather than a PROC type. When PP( is applied (using the special construct START; see ¶�4.4.1),
its declarations and bindings are evaluated, its statements are executed, and its results are
as with any proc. The only difference is that the values bound to the names introduced in the block
(i.e., the frame of PP() are retained after the proc returns; in fact, forever (unless Runtime.Unnew
used to free the frame). Procs local to the block can access these values in the usual way, and
of exported names can also be accessed through interfaces, as explained below; see ¶�3.3.2.1.

As with any proc (¶�3.5.1), the frame of PP( includes the parameters and results from Imp
as well as the names introduced in the block’s d’s and b’s. It also includes an additional item:

Imp: PROGRAM T~PP(
where Imp is the name of the module and T is its drType.

The body of Imp has a second role: to supply values for the names declared in the interfaces
exported by Imp. For each interface Ex which Imp exports, an interface value ExI of type Ex
constructed. Each name n in ExI acquires a value as follows:



¶�3.3.5 IMPLEMENTATION MODULE BODIES 47

If n: T is in Ex and n: PUBLIC T~x is in the body of Imp, then n~x is in ExI. This is a
slightly peculiar kind of binding; as in an ordinary binding, x must be coerceable to 
(¶�4.13). Note that n must have PUBLIC access (¶�3.3.6) in the body.

If n is declared in Ex and not bound in the body of Imp, then n~UNBOUND is in ExI.
UNBOUND is a special value with the following properties:

For a proc P, it causes a Runtime.UnboundProcedure signal on any application of 

For a variable v, it causes a Runtime.PointerFault error on any reference to v.

For a type T, it causes no problem.

If n~x in Ex, then n~x in ExI. Thus any names bound in the interface are bound the same
way in any interface value.

Caution: A name can be exported to several interfaces without any warning, if it has a suitable type.
This is unlikely to be what is wanted.

The result of instantiating Imp is a binding with:

One item for each exported interface Ex, namely Ex: Ex~ExI, where ExI is the interface
value constructed above. Here Ex is the name n

d
 given to the interface in the DIRECTORY

One item CONTROL: PROGRAM[] RETURNS [], whose value is the program proc PP( if that
has no arguments, and otherwise Runtime.ReportStartFault.

•One item for the type of the module’s global frame, namely FRAME~TYPE Imp. 

•One item for Imp itself, namely Imp: FRAME. The value of this item is the program
instance, i.e., the frame of the module’s body.  

This binding is accessible in a model, where it can be used to get access to the interface instances,
the program proc, the global frame type, and the program instance.  

•You can pass FRAME as an argument to a DIRECTORY parameter I: TYPE Imp; like an interface; I
provides access to constants bound in the module, and allows you to declare an IMPORTS parameter
whose argument will be a program instance of the module. From I you can also obtain a first-class
Cedar type POINTER TO FRAME[I]; see ¶�4.3.5. I’s cluster includes a coercion from I to POINTER
FRAME[I], and the proc COPYIMPLINST (applied by the funnyAppl NEW), which is the same as the
proc of the same name in cluster of POINTER TO FRAME[I].

•You can import Imp into another module (by writing DIRECTORY Imp ... IMPORTS ImpInst: Imp ...),
and obtain access to all the variables and procs of the program instance.

3.3.6 PUBLIC, PRIVATE  and SHARES

Cedar has a rather complicated mechanism for controlling access to names. Most uses of it are now
considered to be obsolete, with the following exceptions:

Names to be exported must be declared PUBLIC.

Names included in an interface for use in inline procs etc., but not intended for use by
clients, should be declared PRIVATE.

Access to a name is declared by writing PUBLIC or PRIVATE right after the colon in a declaration of
a name:

x: PUBLIC T
In the Cedar syntax these colons occur in the declarations11 and bindings13 in bodies10, fields
and interface modules2, and in the tag53 of a unionTC. You can set a default access for all the
names in a module2, 3 or record50 by writing PUBLIC or PRIVATE just before the { or RECORD; this is
overridden by an explicit PUBLIC or PRIVATE inside. By default, an interface is PUBLIC and an
implementation is PRIVATE. 
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A PRIVATE name defined in module M can only be referenced:

from within M;

from a module which EXPORTS M.

•from a module which SHARES M; avoid this feature.

This does not mean that the name is invisible, but rather that it is an error to use it if, e.g., 
OPENed. Thus in

x: INT; {OPEN M; f�[ x]}
if x is bound in M (and not hidden by a USING clause), the call of f is equivalent to f�[ M.x
regardless of whether x is PUBLIC or PRIVATE. It is illegal if x is PRIVATE, but it never refers to
x declared by the x: INT. 

Furthermore, if a record has any PRIVATE components, a constructor or extractor for the record is
legal only in a module where use of the PRIVATE names is legal (even if the private components are
not mentioned and have defaults).

3.4 Blocks, OPEN and ENABLE

 6 block ::= ?(CHECKED | UNCHECKED | TRUSTED)  
{ ?open ?enable ?body open LET n((, ... : EXCEPTION~NEWLABEL[] , ...
   ?(EXITS (n, !..=>s); ...) }    IN ( ( body enable ) BUT { (n((, ... => s ); ... } )
--In 3, 13, 15. -- But n(( is not visible in s.

 7 open ::= OPEN ( n ~~ e | e ), !.. ; ( LET n~l
open

 IN e.DEREF |   --The IN before !.. is a separator.

In 2, 5, 17. •The ~~ may be written as :.   LET BINDP[D(e.DEREF).P,  
    OPENPROCS[(D(e.DEREF)).P, l IN e.DEREF] ] ) IN !.. IN

 8 enable::=ENABLE ( enChoice | BUT ( { enChoice } | 
                               {enChoice; ...});          { enChoice; ... } )
In 5, 17.

 9 enChoice ::=( e, !.. | ANY ) => s ( e | ANY ), ... => { s; REJECT; EXITS
In 7, 27.1.      Retry(=>GOTO Retry((14; Cont(=>GOTO Cont((14 }

 10 body  ::= (d | b); !.. ; s; ... | s; !..LET NEWFRAME[ REC [(d | b), ...] ].UNCONS IN { s; ...} 
In 5, 17. 

Examples

CHECKED { -- Unnamed OPEN OK for exported
OPEN Buffer, Rope; --   interface or one with a USING clause.
ENABLE  Buffer.Overflow=>GOTO HandleOvfl;-- A single choice needn’t be in {}.
stream: IO.Stream~IO.CreateFileStream["X"];-- Use a binding if a name’s value is fixed.
x: INT_7; -- Better to initialize declared names.
{OPEN b~~buffer; -- A statement may be a nested block.
  ENABLE  { -- Multiple enable choices must be in {}.
Files.Error--[error, file]--=>{ -- ERRORs can have parameters.
stream.Put[IO.rope[error]]; 
ERROR Buffer.Error["Help"] }; -- Choices are separated by semicolons.

ANY=>{ x_12; GOTO AfterQuit } }; -- ANY must be last. ENABLE ends with ;.
y: INT_9; ... }; -- Other bindings, decls and statements.

x_stream.GetInt; ... -- Other statements in the outer block.
EXITS -- Multiple EXIT choices are not in {}.
AfterQuit=>{...}; -- AfterQuit, HandleOvfl declared here, 
HandleOvfl=>{...} }; --   legal only in a GOTO in the block.

The main function of a block is to establish a new scope (¶�2.3.4) and to allow for the allocation of
variables declared in the block, as in Algol or Pascal. A Cedar block has four other features:
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attributes: CHECKED, UNCHECKED and TRUSTED are treated in ¶�3.4.4 on safety.

open7: a combination of sugar for LET and call by name; see ¶�3.4.2.

enable8: catches signal and error exceptions in the body; see ¶�3.4.3.1.

EXITS: catches GOTO exceptions in the body or enable; see ¶�3.4.3.2.

Note that the braces around a block may be replaced by BEGIN and END (¶�3.2).

The statements in a block are evaluated in the order they are written. The initialization expressions
in the d’s and b’s are also evaluated in the order they are written; this may be important if they
have side effects, although that should be avoided.

3.4.1 Scope of names and initialization

The names introduced in the block body’s d’s and b’s (i.e., appearing before a : or ~) are known in
the body with the values supplied by the d’s and b’s, except in inner scopes where they are
reintroduced; they are not known elsewhere in the block. The frame of the block is a binding with
a value for each such name.

Actually, the frame is a value of an opaque type which has a coercion (called UNCONS) to this binding. As the desugaring
for body indicates, the frame is constructed (by NEWFRAME), and then a LET makes the names in the binding known in
the statements of the body.

Anomaly: A name introduced by a binding, n: T~e, has the value of e throughout the body if 
static. If e is not static, it is evaluated after all preceding d’s and b’s, but before any following
This means that n.VALUEOF is trash in all the d’s and b’s before its binding. Symmetrically, if 
refers to a name introduced in a following decl or non-static binding, it will get a trash value.
Compiling with the "u" switch will yield a warning in this case. Note that only attempts to obtain
the value of n get trash; n may appear anywhere in a l-expression, and all will be well as long as
the l-expression is not applied before n’s binding is evaluated.

A name introduced by a declaration, n: T, is bound to a new VAR T. The variable bound to n
allocated, and its  before anything in the block is executed (this is done by the NEWFRAME
the desugaring). 

Anomaly: However, the INIT proc is executed (to set a REF or transfer value to NIL), and any
initialization specified by a defaultTC55 in T is done at the same time that a non-static binding
would be evaluated. As with a binding, n.VALUEOF is trash before this time. Furthermore, any
(unwise) assignment to n before this time will be overridden by the defaultTC.

Caution: The failure to initialize RC variables is a safety loophole, since the trash can be picked up
and used as an address.

Style: The expression in a binding or defaultTC should be functional, or at least it should have only
benign side-effects. There is no enforcement of this recommendation, unfortunately. In current
Cedar such an expression is evaluated exactly once, at the time described above. This may change
in the future, however.

The variables created by a declaration are deallocated when execution of the block is complete,
unless the block’s frame is retained. Currently only an implementation’s block3 has its frame
retained. There are two ways to hang on to a variable v after execution of the block is complete:

Obtain a pointer to v with @; this pointer value can survive the block.

Obtain a proc value for a local procedure which refers to v; this proc value can survive the
block.
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In the checked language both these dangling references are impossible: the @ operator, being
unsafe, is forbidden, and ASSIGN for proc values gives an error unless the proc is local to a program
instance (which has a retained frame). 

Caution: An unchecked program can get into trouble with dangling references to frames, however.

Performance: There is no overhead associated with block entry or exit, even if the block has an
open, enable or EXITS. The only cost is for initializing the variables bound to its names. It is
style to use blocks freely to limit the scope of names.

3.4.2 OPEN

There are two forms of open. The first, n~~e, binds the name n to l
open

 IN e.DEREF. This is just like

l IN e.DEREF, except that there is a coercion from n to n[]. In other words, every time n appears, its
value is obtained by evaluating e.DEREF. The effect is exactly like call by name in Algol; the ~~ is
to remind you that this is not ordinary value binding. The value of e.DEREF is 

e if the cluster of De does not include DEREFERENCE or UNWRAP;

e^.DEREF if it includes DEREFERENCE;

e.UNWRAP.DEREF if it includes UNWRAP.  

In other words, a reference value is dereferenced and a single-component record or binding
replaced by the component, repeatedly if necessary, to obtain a non-reference value. In an open,
e.DEREF must be a record, interface or instance.

The second, nameless, form of open gives an expression without binding it to a name: { OPEN
...}; e.DEREF must evaluate to a binding b:

A record value has a corresponding binding (returned by UNCONS in the desugaring) which
has the names of the record fields bound to the field values (or variables, for a VAR

An application returns a binding, though the call-by-name feature makes it unwise to use
an application in an open.

An interface or instance value is a binding (¶�3.4.2). 

The nameless open converts b into another binding bp in which each value is a l
open

 proc (see

above), and introduces bp’s names in the block with a LET. Thus in the program
R: TYPE~RECORD [a: INT_3, b: REAL_3.4]; r: R; 
{ OPEN r; ...}

the names a and b are known in the body of the block, and have exactly the same meaning as 
and r.b.

Style: Nameless open should be used with discretion, with the smallest practicable scope,
if the value being opened is very familiar, or heavily used, or both. Nameless open can cause
confusion, since it is not obvious from the text of the program where to find the bindings for the
names it makes known. It should never be used when evaluation of e has a side-effect.

The scope of an open is all the rest of the block, including any enable and any EXITS. A single
open may have several bindings or expressions. These are applied sequentially, so that the
bound by earlier ones are known to the later ones as well as to the rest of the block.
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3.4.3 ENABLE and EXITS

The ENABLE and EXITS constructs are two forms of sugar for exception handling (¶�2.2.4). ENABLE

catches signals and errors raised in the body (but not the open, enable, or exits). EXITS catches
GOTOs in the body or enable (but not the open or exits). Both are in the scope of the open, if any.
Neither is in the scope of any names introduced in the body.

3.4.3.1 ENABLE

An enable has a chance to catch any signal or error raised in the block (and not caught at a deeper
level). A nearly identical construct can appear in an application26; the following explanation covers
both cases. 

Each enable choice (enChoice9) has a list of expressions with exception values, •or ANY, before the
=>. If ANY appears, it must be the last enChoice. If the exception is equal to one of these values,
or if ANY appears, the statement after the => is executed. Control leaves this statement in one of
the following ways:

A REJECT statement causes the exception to be the value of the block; it will then be
propagated within the enclosing block, or if the block is a proc body it will be propagated
to the application.

A GOTO statement sends control to the matching choice in the EXITS. There are three
special cases16:

A RETURN is not allowed in an enChoice.

A CONTINUE statement ends execution of the current statement (in this case the
block); execution continues with the next statement following. If the block is a
body, the effect is the same as RETURN. You cannot write CONTINUE in a body’s
d’s or b’s.

•A RETRY statement begins execution of the current statement (in this case the
block) over again at the beginning. You cannot write RETRY in a body’s d’s or b’s.
The semantics of CONTINUE and RETRY follow from the desugaring of statement14.

A RESUME statement (signals only) is discussed below.

•If the statement finishes normally, a REJECT statement is then executed.

If a single expression e appears before the =>, then within the enChoice statement the names in
De.DOMAIN are declared and initialized to the arguments of the exception. With multiple
expressions, or ANY, the arguments are inaccessible. •The use of ANY is not recommended.

Note that an error is caught by an enChoice with a matching exception value, not by one with a
matching name. Normally an error E will be declared in some interface, its value will be supplied
by a binding of the form E: PUBLIC ERROR ... ~ CODE, and both the signaller and the enChoice will
refer to this value by the name E. In this case, it is natural to think of the binding as being by
name. However, it is possible to have a different name for this exception value, e.g. by writing 
ERROR ... ~ E. It is also possible to bind some other exception value to E in a scope which includes
some enChoice examined when the signal is raised. Thus in the silly program
E: ERROR~CODE;
F: ERROR~E;
{ENABLE E=>{--Handler 1--...};
E: ERROR~CODE;
{ENABLE E=>{--Handler 2--...};

IF switch THEN ERROR F ELSE ERROR E;
if switch is true handler 1 will be used, and if it is false handler 2 will be used.
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Finalization

You are supposed to think of an ERROR as an unusual value ev which can be returned from any
application; this value immediately stops the evaluation of the containing application, which
likewise returns ev as its value. This propagation is stopped only by an enable choice which catches
the ERROR. As each application is stopped, it is finalized. Aside from invisible housekeeping,
finalization confusingly consists of executing an enChoice which catches the ERROR UNWIND. The
programmer can write any cleanup actions he likes in this statement. 

Caution: If the finalization raises another ERROR which it does not catch, it will itself be stopped,
with very confusing consequences. It isn’t very useful to know exactly what happens then: avoid
this situation.

Anomaly: In fact, things are a bit more complicated. When a signal or error is propagated, the
enChoice statement is called as a proc from the SIGNAL or ERROR which raises the exception. When
control leaves the statement by a GOTO (including EXIT, CONTINUE, RETRY or LOOP, but not
RETURN, which is forbidden in an enChoice), the finalization is done. This means that the enChoice
statement is executed before any finalization. This is useful for signals, which often resume. In some
cases, however, notably if finalization would release monitor locks, this can cause trouble. Avoid the
problem by exiting from the enChoice immediately with a GOTO.

Caution: An enChoice can raise a second exception ex2 and fail to catch it. This will probably result
in confusion, and should be avoided. If it happens, ex2 is propagated just like the first exception
ex1; all the enChoices which saw ex1 will see ex2. This is because the enChoice statement for 
was called as a proc. Unless ex2 is a signal which is resumed, the enChoice which caught 
be finalized and abandoned.

Caution: ANY unfortunately catches UNWIND, and hence its statement will be taken as the
finalization. It is better not to use ANY. Also, it is possible to raise UNWIND explicitly; don’t.

Signals

Conceptually, a signal is quite different from an error; in fact, it is very much like an ordinary proc
call. The only differences are:

The proc to be called is an enChoice which is found exactly as though the signal were an
error. The effect of this is that SIGNAL P[args] binds the proc name P to the proc body
dynamically, by searching up the call stack for a binding of P. This is just the way
binds free variables, except that a binding for P can only be found in an enChoice,
the frame of a proc.

Actually this is not quite right. Like an error handler, the signal proc is not found by matching names
matching exception values. This point is discussed in detail above.

The enChoice can be terminated by a GOTO out of its body, unlike an ordinary proc. The
GOTO exception is treated exactly like a GOTO out of an enChoice for an error; it causes all
the intervening frames to be finalized.

The implementation, however, treats errors and signals in a very similar way; the only difference is
that you cannot resume an error (return from the enChoice). In fact, you can invoke a signal with
ERROR, which prevents it from being resumed; avoid this feature. In the future, however, the
distinction between signals and errors will be reflected more clearly in the implementation. 

Anomaly: The desugaring gives no explanation of how RESUME works, since it does not turn the
enChoice for a signal into a proc at all. This is a defect.
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3.4.3.2 EXITS

An EXITS construct (confusingly called REPEAT in a loop) declares one or more exceptions which are
local to its block, and also catches them. The syntax is just like an enable. However, names called
labels appear before the => rather than expressions, and the EXITS introduces these names in a
scope which includes the block body and any enable, but not an open and not the statements in the
EXITS itself. A label may only be used in a GOTO statement.

Anomaly: Actually labels have their own name space, disjoint from the other names known in the
block. Hence it is possible to declare a label n and still to refer to another n in the block. Avoid this
feature.

Like the raising of any exception, a GOTO n stops execution of the current statement. The statement
associated with n is executed. If it finishes normally, execution continues after the block in which 
was declared. If it raises an exception, that exception becomes the value of the block.

Anomaly: A GOTO skips any UNWIND enChoices that intervene between the GOTO and its matching
EXITS. This is the only way to escape from a block without executing the UNWIND. You can avoid
this anomaly by not nesting UNWIND enChoices within blocks that have EXITS.

3.4.4 Safety

A SAFE proc has the property that if the safety invariants hold before it is called, they also hold
afterwards. Roughly, these invariants ensure that the value of every expression has the syntactic type
of the expression, and that addresses refer only to storage of the proper type (¶�4.5.1). An unsafe
proc may lack this property. Hence a safe proc type implies the corresponding unsafe one.

We want to have confidence that the safety invariants hold. To this end, we want to have:

as few unsafe procs as possible;

a mechanical guarantee that a proc is safe, if possible.

Clearly, a proc whose body calls only safe procs will be safe.

Applying this observation, Cedar provides three attributes which can be applied to a block:

CHECKED: the compiler allows only safe procs to be applied; hence the block is
automatically safe, and any proc with the block as its body is safe.

UNCHECKED: there are no restrictions on the block, and it is unsafe.

TRUSTED: there are no restrictions on the block, but the programmer guarantees that it
preserves the safety invariants; the compiler assumes that the block is safe. This is a
restricted form of LOOPHOLE.

These attributes are defaulted as follows. 

A block is checked if its enclosing block is checked; otherwise it is unchecked.

If CEDAR appears in the module header, the outermost block is checked, and a transfer type
constructor anywhere in the module defaults the SAFE option to TRUE. Hence the resulting
type will be safe, and its initialization must be safe or there is a type error.

Otherwise, the outermost block is unchecked, and a transfer type constructor anywhere in
the module defaults the SAFE option to FALSE. Hence the resulting type will be unsafe, and
there is no safety restriction on its initialization.

Of course you can override these defaults by writing CHECKED, UNCHECKED or TRUSTED on any
block, and SAFE or UNSAFE on any transferTC (except ERROR, which is automatically safe). The
defaults are provided to make it convenient to:
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write new programs in the safe language;

continue to use old, unsafe programs without massive editing. 

An unsafe proc value never has a safe type, and hence cannot be bound to a name declared with a
safe type. This applies to enable choices for signals as well as to procs. In both cases, the body must
be checked or trusted if the type is safe. ERRORs are treated differently, however, because of the
view that an ERROR is a value returned from an application, unlike a signal which calls the
enChoice expression. Hence the enChoice for an ERROR is treated just like any statement in its
enclosing block, and is not considered to be bound to a proc when the ERROR is raised.

The following primitive procs are unsafe:

@, DESCRIPTOR and BASE.

^ or FREE applied to a pointer, and all pointer arithmetic.

APPLY of 

a descriptor (because it involves dereferencing a pointer);

a computed sequence;

a record containing a computed sequence;

a base pointer.

APPLY for process and port types (JOIN and port calls).

withSelect34.

The fields of an OVERLAID union.

ASSIGN of:

An unspecified type to anything other than the same unspecified type (¶�4.9).

A union or variant record.

LOOPHOLE which produces a RC value (¶�4.5.1).

3.5 Declaration and binding

11 declaration ::= n, !.. : ?access12 varTC40( n: varTC ), ...
In 2, 10, 43. VAR, READONLY only for interface var.

12 access ::= PUBLIC | PRIVATE
In 2, 3, 11, 13, 50, 51, 53.

13 binding ::= n, !.. : ?access12 t ~ ( n, ... ~LET x( : t ~ ( 
e |   e |
t
2
  -- if t=TYPE  |   t

2
  -- Same as e except for conflicting syntax. |

CODE |   NEWEXCEPTIONCODE[]  --tgSIGNAL or ERROR |
?INLINE ?(ENTRY | INTERNAL)  block6  |   l [d(: t.DOMAIN] IN LET r(~NEWFRAME[t.RANGE].UNCONS 

    IN  (LET r( IN {t.DOMAIN~d(; block; RETURN} 
        BUT {Return(((=>r(}) |

„‚ ?TRUSTED MACHINE CODE {(e, ...); ...}  MACHINECODE[(BYTESTOINSTRUCTION[e, ...]), ...]
) ) IN  x( -- e is evaluated only once.
In 2, 10. •The ~ may be written as =. 

Block or MACHINE CODE only for proc types. 
•ENTRY and INTERNAL can also be before t.
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Examples

HistValue: TYPE[ANY]; -- Interface: An exported type.
Histogram: TYPE~REF HistValue; -- A type binding.
baseHist: READONLY Histogram; -- An exported variable .
AddHists: PROC[x, y: Histogram] -- An exported proc.

RETURNS [Histogram];
LabelValue: PRIVATE TYPE~RECORD[ -- PRIVATE only for  secret 
   first,last:INT,s:ROPE,x:REAL,f,g:INT,r:REF ANY];--   stuff in an  interface.
Label: TYPE~REF LabelValue;
Next: PROC[l: Label] RETURNS[Label]~ -- An inline proc binding.

INLINE { RETURN [NARROW[l.r]] };

H: TYPE~Histogram11; Size: INT~10; -- Implementation:Binds a TYPE and INT.
HistValue: PUBLIC TYPE~HV40.1; -- PUBLIC for exports.
baseHist: PUBLIC H_NEW[HistValue_ALL[17]];-- An exported variable 
x, y: HistValue_[ 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 0];--   with initialization.
FatalError: ERROR[reason: ROPE]~CODE; -- Binds an error.
Setup: PROC [h: Handle3, a: INT]~ENTRY {...};-- Binds an entry proc.
i,j,k: INT_0; p,q: BOOL; lb: Label; main: Handle;

Declarations are explained in ¶�2.2.1F and ¶�2.4.5. Their peculiarities in the different contexts where
they can appear are explained elsewhere:

interfaces in ¶�3.3.4;

blocks in ¶�3.4.1;

fields in:

domains and ranges in ¶�4.4;

records and unions in ¶�4.6;

Access is explained in ¶�3.3.6.

Bindings are explained in ¶�2.3.5. There are several special forms of binding given in rule 13,
however, which are defined here. See also ¶�3.7 on argument bindings. Note that the e in a binding
is evaluated just once, even if several names are bound.

A TYPE binding is the only way in which a type value can be bound to a name, since types
cannot be passed as parameters. Unlike other bindings, this one expects a type36 rather than
an expression19 after the ~.

A name with a signal or error type can be bound to CODE; this use of CODE is not allowed
anywhere else. See ¶�4.4.1 for details on the meaning of this.

‚„A MACHINE CODE construct can be bound to a name with a proc type. This construct
allows machine instructions to be assembled into a proc value. The instructions are
separated by semicolons. Each instruction is assembled from a list of expressions separated
by commas. An expression in the list is evaluated to yield a [0..256) static value which
forms one byte of the instruction; successive expressions form successive bytes.

A l-expression derived from a block can be bound to a name with a proc type. The
complicated semantics of this construction are explained in the following subsection.

3.5.1 PROC bindings

A binding of the form n: T~{...} is the only way to construct a proc value and bind it to a
since you cannot write a l-expression in current Cedar.

There are other ways to construct proc values: 
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The expression in a defaultTC55 is turned into a parameterless proc which is bound to Default in the type’s
cluster (¶�4.11).

The expression following ~~ in an open or WITH ... SELECT is turned into a parameterless proc with a
deproceduring coercion (¶�3.4.2).

The statement in an enable choice for an exception is turned into a proc with domain and range given by the
exception type (¶�3.4.3.1).

The expression following LOCKS in a module heading is turned into a proc according to a peculiar rule (¶�4.10).

The l-expression is constructed from the block in the following way. Its domain and range are the
domain and range of the proc type T. Its body implicitly declares a variable for each item of
domain and range; these variables have the names of the domain and range items, and their scope
is the entire block, not just the block body. The domain variables are initialized to the parameters,
and the range variables in the usual way according to their types. Then the block, with a 
tacked on the end, is evaluated. A RETURN exception in the block is caught, and the current values
of the range variables are the result of the l-expression. The only other way out of the block is to
raise an ERROR.

A RETURN in the block is sugar for GOTO Return(, which is caught as described. RETURN e assigns 
to the range variables and then does a GOTO Return(.

Anomaly: It is an error to introduce the same name twice in the domain, range or block

Performance: A proc call and return is about 30% faster if the proc is local, i.e., denoted by a name
which was bound to a proc body in the same module as the call. A proc which is local to another
proc, rather than bound in the body of an implementation, is about 20% slower to call. It also
introduces some overhead when its parent proc is called, and its access to non-static names
introduced in its parent proc is slower than access to other names. A call and return for an
ordinary, non-local proc takes about 10 times as long as the statement x_y+z.

The attributes ENTRY and INTERNAL can be used only in a MONITOR; they are discussed in ¶�4.10.

The attribute INLINE has no effect on the meaning of the program, but it causes the proc body to
be expanded inline whenever it is applied. This saves the cost of a proc call and return and
sometimes the cost of argument passing, and it may allow constant arguments to participate
evaluation within the proc. 

Restrictions: An INLINE proc may not be:

Recursive.

Exported.

Used as a proc value except in an application. Thus you cannot, for example, assign it to a
proc variable.

The argument of FORK.

Accessed from the cluster of a POINTER TO FRAME type.

Anomaly: An inline proc binding in an interface is not accessible from a DIRECTORY argument; you
must import the interface.

Performance: Excessive application of inline procs will result in much larger compiled code.
Excessive definition of inline procs will result in much larger data structures in the compiler, and
hence in larger symbol table files, and a greater chance of overflowing the compiler’s capacity. The
following cases are efficient:

An inline proc in an implementation which is called zero or one times.

An inline proc which has a simple body, no locals, no named results, and no accesses to the
formals after potential side effects.
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3.6 Statements

14 statement ::= sS { SIMPLELOOP {sS; GOTO Cont((; EXITS  Retry((=>NULL};
In 6, 10, 17, 19.    EXITS Cont((=>NULL } 

15 sS ::=e
1
_e

2
 | e | block6 | escape | loop | NULL[e

1
_e

2
].TOVOID | e --must yield VOID-- | --all four yield VOID

16 escape ::= GOTO n | GO TO n | HEX[exception[code~ n((, args~NIL]] |
EXIT | CONTINUE | •LOOP | •RETRY | GOTO ( Exit(17 | Cont(9 | Loop(17| Retry(9) |
(RETURN | RESUME) ?e | { ?(r(13_e;) GOTO (Return(13 | Resume(13) } |
•REJECT | ‚„e _ STATE THISEXCEPTION[]  | DUMPSTATE[e]

17 loop ::= (iterator | ) { ( iterator ; | done(~FALSE; Next(: PROC~{}; )
(WHILE e | UNTIL e | )    { Test(~l IN (NOT e | e | FALSE);
DO  ?•open7 ?•enable8 ?body10       { open SIMPLELOOP { 

              IF Test([] OR done( THEN GOTO FINISHED; 
              { enable body EXITS Loop(=>NULL }; Next(

?(REPEAT (n, !..=>s); ...) ENDLOOP     EXITS Exit(gNULL; (n, !..gs); ...; FINISHEDgNULL}}}

18 iterator ::= THROUGH  e | FOR x(: e IN e |
                      FOR (n : t | µn) ( n: t; | )
                            ( ( | DECREASING) IN e | ( Range(: TYPE~e; done(: BOOL_Range(.ISEMPTY;

  Next(: PROC~{ IF n ( >Range(.LAST | <Range(.FIRST ) 
    THEN done(_TRUE ELSE n_n.(SUCC | PRED) };
  n_Range(.(FIRST | LAST); |  

                               _ e
1
 , e

2
)done(: BOOL~FALSE; Next(: PROC~{n_e

2
}; n_e

1
 ) ;

e is a subrange. In FOR n: t ... , n is readonly except for the assignment in the iterator’s desugaring.

Examples

x_AddHists[baseHist, baseHist]^; -- A statement can be an assignment,
Setup[bh~main, a~3]; -- or an application without results,
{ENABLE FatalError=>RETURN[0]; []_f[3];  ...};-- or a block,
IF i>3 THEN RETURN[25] ELSE GOTO NotPresent;-- or an IF or an escape statement,

FOR t:INT DECREASING IN [0..5) UNTIL f[t]>3 DO -- or a loop. Try to declare t  in the FOR 
u: INT_0; ... ; u_t+4; ... --   as shown. Avoid OPEN or ENABLE 

  REPEAT Out=>{...}; FINISHED=>{...} ENDLOOP;--   after DO (use a block). FINISHED 
--   must be last.

THROUGH [1..5) DO i_i*i ENDLOOP; -- Raises i to the 16th power.
FOR i: INT_1, i+2 WHILE i<8 DO j_j+i ...;-- Accumulates odd numbers in [1..8).
FOR l: Label_lb, l.Next WHILE l#NIL DO ...;-- Sequences through a list of Labels.

Cedar makes a distinction between expressions and statements. This distinction is most easily
defined in terms of a special type called VOID, which is equivalent to the empty declaration []. This
is the range type of a PROC [...]_[], and it is also the result type of a block, control, loop or 
statement. An expression whose value is a VOID can be used as a statement, and cannot be used as
an ordinary value in a binding (since it wouldn’t have the right type). If you want to call a proc
which returns values as a statement, you must assign the results to an empty group:

[]_f� [...]

Assignment is a special case; an assignment can be used as a statement even though its value is the
value of the right operand. This is explained in the desugaring15 using a special proc TOVOID
cluster of every assignable type; it takes a value of the type and returns a VOID. Note that the
grammar is ambiguous here, since there are two parsings of e

1
_e

2
 as a statement; the one written in

the rule for statement is preferred.
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Anomaly: In a select29 which is a statement (i.e., returns VOID), the choices are separated by
semicolons; in an ordinary select expression they are separated by commas.

Anomaly: •If you write an expression whose value is a proc taking no arguments as a statement, the
proc gets applied. Thus

P;
is the same as

P[];
This is the only situation in which an ordinary proc gets applied by coercion (but see ¶�3.4.2 for
open procs).

A statement14 is actually a rather complicated construct, as the desugaring shows. This is because
the CONTINUE and RETRY statements, which respectively terminate and repeat the statement
containing the enable9 in which they appear. The desugaring shows exactly what this means in
various obscure cases. CONTINUE and RETRY are legal only in an enable choice (¶�3.4.2), and they
may not appear in a declaration at all. •RETRY should be avoided everywhere, since it introduces a
loop into the program in a distinctly non-obvious way.

Escape16 consists mainly of the various flavors of GOTO (including EXIT, CONTINUE, LOOP, RETRY
RETURN and RESUME) which raise a local exception bound in an EXITS; this is explained in
¶�3.4.3.2. REJECT is explained in ¶�3.4.3.1. 

Anomaly: You cannot use a GOTO to escape from a proc body, even though the body is within the
scope of the label. Only normal completion, or a RETURN or ERROR exception (or a SIGNAL which
is not resumed) can terminate the execution of a proc body.

A loop17 is repeated indefinitely until stopped by an exception, or by the iterator18 or the
UNTIL test. It has a body, bracketted by DO and ENDLOOP, which is almost like a block, but with
some confusing differences: 

You catch GOTO exceptions with REPEAT, which is exactly like EXITS in a block immediately
around the loop, except for the different delimiting reserved word. Note that the scope of
the labels does not include the iterator or the test, even though these are evaluated
repeatedly during execution of the loop. This feature is best avoided, but unfortunately
necessary if you want to catch the FINISHED exception explained below.

•You can write an open or enable. This is also best avoided, since the scope is confusing. It
is better to write a block explicitly inside the DO if you need these facilities.

There are three special exceptions associated with loops:

EXIT is equivalent to GOTO Exit(, where Exit( is a label automatically declared in the 
of every loop. Its enable choice does nothing. Thus EXIT simply terminates the smallest loop
that encloses it.

FINISHED is raised when the iterator or the WHILE/UNTIL test terminates the loop. It can be
declared in the REPEAT like any label, but it must come last. If it is not declared, a
enable choice is supplied for it. 

•LOOP causes the next repetition of the loop to start immediately.

Anomaly: You cannot write GOTO FINISHED.

An iterator18 declares a control variable v which is initialized by the iterator and updated after each
execution of the loop; the scope of v is the entire loop, and it is read-only in the loop. After the
loop is terminated by the iterator (i.e., in the FINISHED clause), the value of v is undefined. •If you
omit the declaration and simply name an already declared variable, it will be used as the control
variable, and will not be read-only; it will still be undefined after the loop is terminated by the
iterator. Avoid this feature.
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There are three flavors of iterator:

THROUGH, which has no explicit control variable; THROUGH [0..k) is convenient when you
just want to loop k times.

FOR v: T IN [first, last] ...; v is initialized to first, and set to SUCC[v] after each repetition. The
iterator finishes the loop after a repetition which leaves v>last. The > case can only occur in
FOR v IN ..., when an out-of-range value is assigned to v in the loop body. DECREASING
reverses the order in which the elements of the subrange are used. The subrange need not
be static. Note that the subrange is evaluated only once, before execution of the loop
begins.

FOR v: T_first, next ...; v is initialized to first, and set to next after each repetition. This
iterator never finishes the loop. Note that the expression next is reevaluated each time
around the loop. The usual application is something like 

FOR v: List_header, v.next UNTIL v=NIL.

Note that the WHILE or UNTIL test is made with v equal to its value during the next repetition, and
that both tests are made before the first repetition, so that zero repetitions are possible.

3.7 Expressions

19 expression ::= n | literal57 | (e) | application26 | 
(e | typeName37) . (9) n | 
prefixOp e | e
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 infixOp e
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2
] | 

e
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2 
 | ( l [x(: De

1
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2
] IN relop ) [e

1
, e

2
] |

e
1
 AND (2) e

2 
 | e

1
 OR (1) e
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 | IF e

1
 THEN e
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 ELSE FALSE | IF e

1
 THEN TRUE ELSE e

2
 |

e ^ (9) | •STOP | ERROR | e . DEREFERENCE | STOP[] | ERROR NAMELESSERROR |
builtIn [ e
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 ?( , e

2
, !..) ?applEn27] | e

1
 . builtIn ?( [e

2
, ... ?applEn ] ) | 

funnyAppl e ?( [?argBinding27 ?applEn27] ) |e . funnyAppl ?( [argBinding ] ) |
[ argBinding27 ] | --Binding must coerce to a record, array, or •local string-- 
s | subrange25 | if28 | select29 | safeSelect32 | •withSelect34 
Precedence is in bold in rules 19-21.  All operators associate to the left except _, which associates 
to the right. Application has highest precedence. Subrange only after IN or THROUGH. s only in if� 28 and select choices

20 prefixOp ::= @ (8) | � (7) | (~ | NOT) (3)VARTOPOINTER | UMINUS | NOT
21 infixOp ::= * | / | MOD (6) | + | � (5) | _ (0)TIMES | DIVIDE | REM | PLUS | MINUS | ASSIGN
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--In 19, 30.                                           BUT {BoundsFault=> )

23 builtIn ::= -- These are enumerated in Table 4�5.
24 funnyAppl ::= FORK | JOIN | WAIT | NOTIFY | BROADCAST | 

SIGNAL | ERROR | RETURN WITH ERROR | 
•NEW | •START | •RESTART |„‚TRANSFER WITH | „‚RETURN WITH

25 subrange ::= (typeName37 | )  LET t(~(typeName | INT) , first(~( e
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26 application ::= e [?argBinding ?applEn]LET m(~e, a(~[argBinding] IN ( (m(. APPLY Za( ) ?applEn )
27 argBinding ::= (n ~ (e | | µ TRASH )), !.. |(n ~ (e | OMITTED | TRASH) ), !.. |
                         (e | | µ TRASH ), ...(e | OMITTED | TRASH ), ...
In 19, 26. •TRASH may be written as NULL, ~ as :.

27.1applEn ::= ! enChoice9; ...-- In 19, 26.BUT { enChoice; ... }
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Examples

lv: LabelValue13_[ i, 3, "Hello", 31.4E�1, (i+1),-- A constructor with some sample 
g[x]+lb.f+j.PRED, NIL ]; --   expressions.

p1: PROCESS RETURNS [INT]_FORK f[i, j]; -- FunnyAppls take one unbracketted 
ERROR NoSpace; WAIT bufferFilled; --   arg; many return no result, so 
RT: RTBasic.Type_CODE[LabelValue13]; --   must be statements.
h[�3, NOT(i>j), i*j, i_3, i NOT >j, p OR q, lb.r^];-- An application with sample expressions.
lv19_[first~0,last~5,x~3.2,g~2,f~5,r~NIL,s~"1"];-- Short for lv_LabelValue13[...].
[first~i, last~j]_lv19; -- Assignment to VAR binding 
               --   (extractor).

b: BOOL_i IN [1..10]; FOR x: INT IN (0..11) DO ...;-- Subrange only in types or with IN.
b_( c IN Color54(red..green] OR x IN INT[0..10) );-- The INT is redundant.

fh_Files.Open[name~lb.s, mode~Files.read-- Keywords are best for multiple args.
! AccessDenied=>{...}; FatalError=>{...}];-- Semicolons separate choices.

(GetProcs[j].ReadProc)[k]; -- The proc can be computed.
file.Read[buffer~b, count~k]; -- WFile.Read[file, b, k] (object notation).
f[i~3, j~ , k~TRASH]; f[i~3, k~TRASH]; -- j and k may be trash (see defaultTC55).
f[3, , TRASH]; -- Likewise, if i, j, and k are in that order.

Most of the forms of expression are straightforward sugar for application: prefix, infix and postfix
operators, explicit application of a primitive proc23, or the funnyAppl24 in which the first argument
follows the proc name without any brackets. All of these constructs desugar into dot notation
(¶�2.4.4, ¶�4.14); this means that the procs come from the cluster of the first argument. The
exceptions to this rule are ALL, CONS for variant records and lists, LIST, and the single-argument
forms of LOOPHOLE and NARROW, and VAL; all of these get the proc from the target type of the
expression (¶�4.2.3). All the primitive procs are described in ¶�4.

Note that AND and OR are not simply sugar for application. Rather, they are sugar for an if
expression, since the second operand is evaluated only if the first one is TRUE or FALSE respectively.

The order of evaluation for arguments of an application, and therefore for operands in an
expression is not defined (unless the operator is AND or OR). However, the arguments are evaluated
one at a time, and all arguments are evaluated before the proc is applied. In particular, an
assignment which executes completely behaves as though both left and right operands are
completely evaluated before any assignments are done, even if the left side is a binding such as
[a~x, b~y.f].

Rules 19-21 give the precedence for operators: ^ and . are highest (bind most tightly) and _ is
lowest. All are left-associative except _, which is right-associative. Application has still
precedence. 

Style: The precedence rules are sufficiently complex that it is wise to parenthesize expressions which
depend on subtle differences in precedence.

The first operand of assign can be an argBinding27 whose value is a variable group or binding, i.e.,
one whose elements are variables; this is sometimes called an extractor. The second argument will
typecheck if it is a group or binding with corresponding elements which can be assigned to the
variables. Usually the second argument is either an application which returns more than one result,
or a record-valued expression. You can omit elements of the left argBinding to discard the
corresponding values; however, you can’t write TRASH in the left operand. Note that the right
operand is fully evaluated before any variables are changed by the assignment.

The expresssion ERROR is short for raising a nameless ERROR exception. You should think of it as a
call to the debugger, appropriate for a state which "can’t occur".
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A funnyAppl which takes more than one argument has the extra arguments written inside brackets
in the usual way; e.g.,  START P�[3, "Help"]. RETURN WITH ERROR is explained in ¶�4.10.

Anomaly: The funnyAppl NEW e actually stands for e.COPYIMPLINST. See ¶�4.4.1 and ¶�4.5.3.

Anomaly: Enable choices are legal only for the following funnyAppls: FORK JOIN RESTART START
STOP WAIT. You can write empty brackets if necessary to get a place for the enChoices.

A subrange25 denotes a subrange type; see ¶�4.7.3. Standard mathematical notation for open and
closed intervals is used to indicate whether the endpoints are included in the subrange. A subrange
can also be used after IN in an expression or iterator; in these contexts it need not be static.

You can write enable choices9 after a ! inside the brackets of an application26, built-in23
funnyAppl24. See ¶�3.3.2 for the semantics of this. Note that only an exception returned by the
application is caught by these choices, not one resulting from evaluating the proc or arguments.

An argBinding27 denotes a binding for the arguments of an application. You can omit a
[name,�value] pair n~e in the binding if the corresponding type has a default, or you can write the
name without the value expression (e.g., n~ ) with the same meaning. You can also write TRASH
(•or NULL) for the value; this supplies a trash value for the argument (¶�4.11).

3.8 IF and SELECT

28 if ::= IF e
1
 THEN e

2
 (ELSE e

3
 | ) IF e

1
 THEN e

2
 ELSE (e

3
 | NULL)

29 select ::= SELECT e FROM LET selector(~e IN
     choice; ... endChoice       choice ELSE ... endChoice   
The ";" is  "," in an expression; also in 32 and 34.-- ELSE is a separator for repetitions of the choice.

30 choice ::= ( ( | relOp22 ) e
1
 ), !..=>e

2
IF ( (selector( (= | relOp ) e

1
) OR ... ) THEN e

2

31 endChoice ::= ENDCASE ( | => e
3
) ELSE (NULL | e

3
)

In 29, 32, 34.

32 safeSelect ::= WITH e SELECT FROM LET v(~e IN
     safeChoice; ... endChoice31      safeChoice ELSE ... endChoice

33 safeChoice ::= n : t => e
2

IF ISTYPE[v(, t] THEN LET n : t_NARROW[v(, t] IN e
2

34 •withSelect ::= WITH (n
1
 ~~ e
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1
 | NIL), type(~Dv(,
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1
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11
) IN withChoice ELSE ... endChoice

     withChoice; ... endChoice31 -- e
11
 must be defaulted except for a COMPUTED variant.

•The ~~ may be written as :.
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2
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, !.. => e

2
     (BINDP[n(, LOOPHOLE[v(,type(.n
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] ] |  BINDP[n(, v(] )
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Examples

i_(IF j<3 THEN 6 ELSE 8); -- An IF with results must have an ELSE.
IF k NOT IN Range THEN RETURN[7];
SELECT f[j] FROM -- SELECT expressions are also possible.
<7=>{...}; -- Wt:INT~f�[ j]; IF t<7 THEN {...} ELSE ... 
IN [7..8]=>{...}; -- 7, 8=> or =7, =8=>{...} is the same. 
NOT <=8=>{...}; -- ENDCASE=>{...} is the same here.
ENDCASE=>ERROR; -- Redundant: choices are exhaustive.

WITH r SELECT FROM -- Assume r: REF ANY in this example.
rInt: REF INT=>RETURN[Gcd[rInt^, 17]];-- rInt is declared in this choice only.
rReal: REF REAL=>RETURN[Floor[Sin[rReal^]]];
ENDCASE=>RETURN[IF r=NIL THEN 0 ELSE 1] -- Only the REF ANY r is known here.

nr: REF Node52~...; WITH dn~~nr SELECT FROM-- See rule 52 for the variant record Node.
binary=>{nr_dn.b}; -- dn is a Node.binary in this choice only.
unary=>{nr_dn.a}; -- dn is a Node.unary in this choice only.
ENDCASE=>{nr_NIL}; -- dn is just a Node here.

The kernel construct if28 evaluates the expression e
1
 to a BOOL value test, and then evaluates 

test=TRUE, or e
3
 if test=FALSE. In the expression

IF test
1
 THEN IF test

2
 THEN ifTrue

2
 ELSE ifFalse

2

the grammar is ambiguous about which IF the ELSE belongs to. It belongs to the second one.

A select29 is a sugared form of if which is convenient when one of several cases is chosen based
a single value. The selector expression e is evaluated once to yield a value selector(, and then each of
the choices is tested in turn. Within each choice, each expression e

1
 preceding the => is compared

in turn with selector(; the comparison is selector( relop e
1
 if e

1
 is preceded by a relop; otherwise it is

selector(=e
1
. If any comparison succeeds, the expression e

2
 following the => is evaluated to yield the

value of the select. If no comparison succeeds, the next choice is tried. If no choice succeeds, the
expression e

3
 following the ENDCASE is evaluated to yield the value of the select; e

3
 defaults to

NULL, and hence must be present when the select is not a statement to prevent a type error.

Style: It is good practice to arrange the tests so that they are disjoint and exhaust the possible
values of the selector. ENDCASE should be used to mean "in all other cases"; often the appropriate

e
2
 raises an error. Don’t use ENDCASE to mean another specific selector value which you don’t

bother to mention. Another acceptable form is SELECT TRUE FROM ..., which selects the first choice
that succeeds, and is sometimes easier to read than a long sequence of ELSE IF’s.

Performance: If the e
2
 are static and select subsets of the selector values, the average size of these

subsets is not too large, and the density of unselected values is not too high, a select compiles into
an indexed jump, which executes in a time independent of the number of choices.

A safeSelect32 is a special form for discriminating cases of unions or ANY. The selector must be a
value for which ISTYPE can be evaluated dynamically (¶�4.3.1): REF ANY, PROC ANY_T, PROC
T_ANY, V, REF V, or (LONG) POINTER TO V, where V is a variant record. Each choice specifies one
possible type that the selector might have, and declares a name which is initialized to the selector
value if it has that type. Thus, the example tests for r having the types REF INT and REF REAL
has REF INT, the first choice’s e is evaluated; within e, rInt is a variable initialized to the selector,
and has type REF INT. Likewise for REF REAL and the second choice. As with an ordinary select, the
ENDCASE expression is evaluated (with no new names known) if none of the other choices succeeds.
Note that safeSelect does ordinary binding by value, not the binding by name done in open and
withSelect.
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•‚A withSelect34 is an unsafe and rather tricky construction for discriminating cases of unions.
use should be avoided unless a safeSelect can’t do the job; this is the case for a COMPUTED
if the call by name feature of withSelect is required.

It incorporates an open (¶�3.4.2) of the e
1
 being discriminated. This means that e

1
 is

dereferenced to yield a variant record value. It also means that this value is not copied, and
hence it can change its type during execution of a choice, either by assignment to the
variant part of a variant record (itself an unsafe operation), or by a change in the value of

e
1
. 

If the union has a COMPUTED tag, the selector value to be used for the discrimination must
be given as e

11
 in the withSelect. It is entirely up to the programmer to supply a meaningful

value. If the tag is not COMPUTED, e
11
 must be omitted and the selector value is e

1
.TAG

The n
2
 preceding => in a choice are literals of the (enumerated) type (¶�4.7.1.1) which is

the tag type of the union (¶�4.6.3). They are compared with the selector, and if one
the e

2
 following => is evaluated as with an ordinary select. If exactly one is given, then the

e
2
 following => is in the scope of 

OPEN n
1
~~LOOPHOLE[e

1
.DEREF, V.n

2
];

or simply
OPEN LOOPHOLE[e

1
.DEREF, V.n

2
]

if no n
1
~~ followed the WITH. If several n

2
 are given, then there is no discrimination, and

the e
2
 following => is in the scope of

OPEN n
1
~~e

1
.DEREF     or     OPEN e

1
.DEREF

3.9 Miscellaneous

This section deals with various topics that are not naturally associated with particular types or
grammar rules.

3.9.1 Static values

An expression has a static value if the compiler can compute the value. In Cedar, an expression has
a static value (is static for short) if it is:

a literal;

a name bound to a static value;

an application to static arguments of 

a proc declared INLINE with a static body, or 

a primitive which is not a loop, a REAL primitive (except unary minus, ABS or
INTTOREAL), ASSIGN, @ or NEW. Note that IF and SELECT are evaluated.

Performance: The compiler evaluates all static expressions, not just type expressions. This is often
important for efficiency.

3.9.2 Size restrictions

Current Cedar has the following restrictions on the sizes of values:

• A record type T must have T.SIZE<216.

• A row type T must have T.SIZE<228 and T.RANGE.SIZE<216.
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• A type T with T.SIZE>216 lacks the following procs:
ALL

ASSIGN

CONS

DESCRIPTOR

INIT

NEW

• A subrange type T must have
0<T.LAST� T.FIRST<216

�2 15<T.FIRST<215

T.LAST<(IF T.FIRST THEN 215+T.FIRST ELSE 216)

2.9.3 Checking

Possible errors arising from certain primitive operations are checked, and cause ERROR exceptions if
they occur, in a CHECKED block, or if the compiler’s "u" switch is on:

Dereferencing NIL.

Narrowing an out-of-range value to a subrange type.

Assigning a local proc to a proc variable (in CHECKED blocks only).


