Chapter 1. Introduction

Thi s manual describes the Cedar |anguage. It is organized into three major parts:

Chapter 2: A description of a nmuch sinpler kernel |anguage, in terns of which the
Cedar | anguage is explained. This description includes a precise definition (Y32.2
| ess formal explanation of the ideas of the kernel and the restrictions inposed by
Cedar (1132.3-2.9). 132.1 contains an overview or glossary, in which the mgjor te
terns used in the kernel are briefly defined.

Chapter 3: The syntax and semantics of the current Cedar |anguage. The semantics
precisely by a desugaring into the kernel. It is also given nore infornmally by Eng
This chapter also contains a nunber of exanples to illustrate the syntax.

Chapter 4: The prinitive types and procedures of Cedar. For each one, its type is
well as an English definition of its meaning. This chapter is organi zed according
hi erarchy of the primtive types (134.1).

In addition, there is a one-page grammar for the full |anguage, a shorter grammar for th
| anguage, and a two-page | anguage sunmmary whi ch includes the grammar, the desugaring, an
exanmpl es from | 3,

The docunent you are reading is nearly conplete. A fe m ssing sections co
paragraphs in the style of this one.

2 THE KERNEL LANGUAGE 12

Chapter 2. The kernel | anguage

Thi s docunent descri bes the Cedar |anguage in ternms of a much snaller |anguage, which we
usual ly call the kernel or the Cedar kernel. Cedar differs fromthe kernel in tw ways:

e It has a nore elaborate syntax (13). The nmeani ng of each construct in Cedar is exf
by giving an equival ent kernel program
Oten the kernel programis |longer or |ess readable; the Cedar construct can be thought of as an idiom

conveni ently expresses a conmpn operation. Sonetinmes the Cedar construct has no real advantage, and t he
difference is the result of backward conpatibility with the ten-year history of Mesa and Cedar.

e It has a large nunber of built-in types and procedures (f4). In the kernel | anguag
these could in principle be programred by the user, though in fact nost are provid
special code in the Cedar conpiler. In general, you can view these built-in facil
like a library, selecting the ones nost useful for your work and ignoring the othe

Unfortunately, the current Cedar |anguage is not a superset of the kernel |anguage. Many
obj ects (notably types, declarations and bindings) which are ordinary values in the kern
be freely passed as argunents or bound to variables, are subject to various restrictions
they can only be witten in literal form cannot be argunents or results of procedures,
The I ong-term goal for evolution of the Cedar |anguage is to make it a superset of the k
defined here. In the nmeantime, however, you should view the kernel as a concise and hope
cl ear way of describing the neaning of Cedar prograns.

To help in keeping the kernel and current Cedar separate, reserved words and primtives
kernel which are not available in current Cedar are witten in SANS-SERIF SMALL CAPITALS, r at
than the SerRF smaLL cAPITALS used for these synbols in current Cedar. Operator synbols of t
kernel which are not in current Cedar are not on the keyboard.

The kernel is a distillation of the essential properties of the Cedar |anguage, not an e
i nvention. Most Cedar constructs have sinple translations into the kernel. Those which d
sone of the features of oOPEN) are considered to be m stakes, and should be avoi ded in new
prograns.

12.2 defines the syntax and semantics of the Cedar kernel |anguage, the forner with a gr
and the latter by explaining howto take a program and deduce the function it conputes a
state changes it causes. The renmi nder of the chapter is a commentary which explains the
behind the kernel. It also gives the restrictions inposed by the current Cedar |anguage
general ity described here; for nmore on this subject, see §3. The nmeani ng of the various
primtives is givenin 4. 2.9 describes the inconpatibilities between the kernel |ang
current Cedar, i.e., the constructs in Cedar which would have a different neaning in a k
program For the nost part, these are bits of syntax which do not have consistent meanin
current Cedar; future evolution of the |anguage will replace themw th their kernel equ

Usual ly, ternms are defined and expl ai ned before they are used, but sone circularity seen
unavoi dable. 2.1 gives a brief summary of each major idea which nmay be hel pful as a rer
Both this and the explanations in Y2.3-2.7 are given under five major headings, as fol

Val ues and conputations: Application Value Variable G oup Bindi ng Argument
The type system Type Type-checking Mark C uster Declaration C ass
Prograns: Nane Expression Scope Constructors Recursion

Conveni ences: Coercion Exception Finalization Safety Process

M scel | aneous: Allocation Static Pragma

12 THE KERNEL LANGUAGE 3

The kernel definitionin 2.2 follows the ordering of the kernel granmar given there.

2.1 Overview

This section gives a brief summary of the essential concepts on which the Cedar | anguage
The expl anations are informal and inconplete. For nore precise but nmore formal definitio
12.2; for nore explanation, see §2.3-2.8.

2.1.1 Values and conputations

Application: The basic nmechani smfor conputing in Cedar is applying a procedure (proc fo
argunents. Wen the proc is finished, it returns sone results, which can be discarded or
argunents to other procs. The application nay al so change the val ues of sone vari abl es.
program an application is denoted by (the denotation of) the proc followed by square bra
encl osing (the denotation of) the arguments: f [first~x, last~y]. There are special ways
many ki nds of application: x+1, person.salary, IF x<3 THEN red ELSE green, Xx:. INT_7.

Val ue: An entity which takes part in the conmputation (i.e., acts as a proc, argunment or
called a value. Values are i mutable: they are not changed by the conputation. Exanpl es:
"Hello", | x IN x+3; actually these are all expressions which denote values in an obvi ous

Variable: Certain values, called variables, can contain other values. The val ue contai ne
variable (usually called the value of the variable) can change when a new value is assig
variable. In addition to its results, a proc may have side-effects by changi ng the val ue
Nearly every type T has a corresponding variable type varR T; val ues of type VAR T contain
of type T. Every vaR type has a New proc which creates a variable of the type. A variable
represented by a single block of storage; the bits in this block hold the representation

Group: A group is an ordered set of values, often denoted by a constructor like this: [3
"Hell 0"]. Like everything else, a group is itself a val ue.

Bi nding: A binding is an ordered set of [nane, value] pairs, often denoted by a construc
[x: INT~3, y: BOOL~TRUE], or sinply [x~3, y~TRUE]. If b is a binding, b.n denotes the val ue
nane n in b.

Argument: A group or binding constructor witten explicitly after an expression denotes
of the value P denoted by the expression to the value a denoted by the constructor, call
argunent. P is usually a proc, and ais a group or binding, which is bound to its domain
D to get the argunent which is passed. In naking this binding a is coerced, if necessary
the decl aration:

If it is a group, the nanmes fromD are attached to its elenents to turn it into a bind

If aname in Dis mssing froma, a default value is supplied.

If a value in a doesn’t have the type required by D, it is coerced into another val ue v

2.1.2 The type system

Type: A type defines a set of values by specifying certain properties of each value in t
i nteger between 0 and 10); these properties are so sinple that the conpiler can make sur
argunents have the specified properties. A value may have many types; i.e., it may be
these sets. A type also collects together sone procs for computing with the value (e.qg.
mul tiply).

More precisely, a type is a value which is a pair:

Its predicate, a function fromvalues to the distinguished type Boo.. A value has t
T s predicate returns TRUE when applied to the val ue.

4 THE KERNEL LANGUAGE 12

Its cluster, a binding in which each value is usually a proc taking one argument o
The expression e.f denotes the result of looking up f in the cluster of e's syntact
and applying the resulting proc to the value of e.

A proc’s type depends on the types of its donmain and range; a proc with donain (argunent
and range (result type) R has the type D R Every expression e has a syntactic type denot
e.g., the range declared for its outernost proc; in general this may depend on the argun
val ue of e always has this type (satisfies this predicate); of course it may have other

Mark: Every value carries a set of marks (e.g., INT or ARRAY; think of themas little flac
top of the value). The predicate HASMARK tests for a mark on a value; it is nornally used
type predicates. The set of all possible marks is partially ordered.

The set of marks carried by a value nust have a |largest menber m and it nust include every mark smaller than
Hence all the narks on a value can be represented by the single mark mi we can say that mis the nark on the v.
This does not inply a total ordering on the marks.

Type-checki ng: The purpose of type-checking is to ensure that the argunents of a proc sa
predi cate of the domain type; this is a special kind of pre-condition for executing the
proc body can then rely on the fact that the parameters satisfy their type predicates.
establish that the results satisfy the predicate of the range type; this is a special ki
condition which holds after executing the proc. Finally, the caller can rely on the fact
results satisfy their type predicate. In sunmary:
Caller establish pre-condition: argunments have the domain type;
rely on post-condition: results have the range type.
Body rely on pre-condition: paraneters have the domain type;
establish post-condition: returns have the range type.

Decl aration: A declaration is an ordered set of [nane, type] pairs, often denoted like t
[x: INT, y: BoA]. If dis a declaration, a binding b has type d if it has the sane set of
each nane n the value b.n has the type d.n. A binding b natches d if the values of b can
to yield a binding b(which has type d.

A decl aration can be instantiated (e.g., on block entry) to produce a binding in which e
bound to a variable of the proper type; instantiating the previous exanple vyields
[x: VAR INT~(VAR INT).NEW y: VAR BOOL~(VAR BOOL) . NEW .

Class: Aclass is a declaration for the cluster of a type. For instance, the class Odere
PROC[T, T] [BOOL], . . .]. Cis a subclass of Dif (loosely) Cincludes at least all the |
pairs in D

2.1.3 Prograns

Nane: A nane (sonetines called an identifier) appearing in a programdenotes the value b
the nane in the scope that the nane appears in (unless the nane is in a pattern before a
(declaration) or tilde (binding), or after a dot or $). An atomis a value that can be u
a name; a literal atomis witten like this: $alpha.

Expression: In a programa value is denoted by an expression, which is one of:

aliteral value (3 or "Hello");

a nane (x or salary);

an application of a proc to other val ues(Sin[90];

Get Properties[directory, ReadFileName[input]]);

a | -expression, which yields a proc value (I [x: INT] IN (IF x<O THEN x ELSE x));

a constructor for a declaration or binding ([x: INT~3, y: REAL~3.14]).
If a value is given for each free nane in an expression, then it can be evaluated to pro
Thus an expression is a rule for conputing a val ue.

12.1 OVERVI EW 5

Scope: A scope is a region of the programin which the value bound to a nane does not ch
(al though the val ue might be a variable, whose contents can change). For each scope ther
bi nding called env (for environment) which determines these values. A new scope is introc
the kernel) by IN (after LET or I) or by a Rec [...] constructor for a declaration or binc
LET x~3 IN x+5;
LET fact~l [n: INT] INIF n=0 THEN 1 ELSE n*fact[n1].

Constructors: Brackets delimt explicit constructors for group, declaration or binding v
all have the form[x,, x,, -], and are distinguished by the formof the x:

an expression for a group
n: e for a declaration;
n~e or n: e~e for a binding.

Recursi on: When nanes are introduced in a constructor in Cedar, this is done recursively
If v is bound to n in a binding constructor, then in expressions in the constructor n t
rather than its value in the encl osing scope. Exception: argunment bindings are non-re
If nis declared in a declaration constructor, then it nmay not be used in the construct
an ordering of the declarations in the constructor such that a name is used only by I
Exception: declared nanmes may be used in the bodies of |-expressions in the construct
13.3.4)

In the kernel, however, constructors are non-recursive unless preceded by Rec

Dot notation: The forme.n looks up n in sonme binding associated with e, and does soneth
the result. There are three cases:

If eis a binding, e.nis just the value paired with nin e.

If eis atype, e.nis e Cluster.n.

O herwise, e.nis (De.n)[e], and e.n[nore args] is usually (De.n)[e, nore args].
In all cases you are supposed to think of n as some property or behavi or associated with
denotes that property or evokes that behavior

2.1.4 Conveni ences

Coercion: Each type cluster contains To and From procs for converting between val ues of
and val ues of other types (e.g., Float: PROCINT] _[REAL]; this would be a To proc in REAL ar
fromproc in INT). One of these procs is applied automatically if necessary to convert or
argunent value to the domain type of a proc; this application is a coercion. Each coerc
associated atomcalled its tag (e.g., $widen for INT_REAL or $output for INT_ROPE); several
coercions nay be conposed into a single one if they have the sanme tag. The tags thus ser
prevent unexpected conposition of coercions.

Exception: There is a set of exception values. An expression e denotes a value which is

type De or is an exception. Wienever an exception value turns up in evaluating an expres
i mredi ately becones the val ue of the whole expression, unless (in the kernel) the expres
the forme Bur {...}. The {...} tests for exception values and can supply an ordi nary va
anot her exception, as the value of the BUT expression. An exception value may contain an
val ue, called the argunent of the exception, so that arbitrary information can be passed
an exception.

Fi nalization: Wen a variable is no | onger accessible, the storage it occupies is freed
in the safe | anguage). Before this is done, a finalization proc in the cluster of the va
called to do any other appropriate resource deallocation. The | ocal variables of a proc
scope may al so be finalized (using UNWND).

Safe: The safety invariant says that all references are legal, i.e., each Rer T value is
a variable of type T. Aproc is safe if it maintains the safety invariant whenever it is
argurents of the proper types. If a proc body (I-expression) is

6 THE KERNEL LANGUAGE 12

checked, the conpiler guarantees that the proc value is safe;
trusted, the programrer asserts that it is safe (but the conpiler nmakes no checks), ant
is treated as safe;
unchecked, the conpil er makes no checks and the proc value is unsafe.
It is best to wite checked code whenever possible. However, checked code cannot call un
(since the conpiler then cannot guarantee safety).

Process: Concurrency is obtained by creating a nunber of processes. Each process execute
sequential conputation, one step at a tinme. They all share the sane address space. Share
(touched by nore than one process) can be protected by a nmonitor; only one process can e
within the procs of the nonitor at a tinme. So that each process can know what to rely on
necessary to establish an invariant for the nonitored data which is established whenever
proc returns or waits. A process can wait on a condition variable within a nonitor; othe
can then enter the nonitor. The waiting process runs again when the condition is notifie
ti meout .

2.1.5 M scel |l aneous

Al l ocation: Cedar has standard facilities for allocating new variables of any type (the

primtive); related variables can be allocated in the sane zone. Normally, variables are
automatically by the garbage coll ector when they can no | onger be referenced; such varia
only be referred to by Rers. It is also possible to have variabl es which are deal |l ocat ed
FREE, but this is unsafe.

Static: An expression whose value is conputed w thout executing the programis called st
Literals are static, as are nanes bound to literals, and any expression with static oper
bodi es are never static unless they are inline

Pragnma: Sone | anguage constructs do not affect the neaning of the program (except possib
make a |l egal programillegal), but only its time and space costs; these are called pragn
are INLINE for proc bodi es and PACKED for arrays.

2.2 Kernel definition

This section gives the syntax and semantics of the Cedar kernel |anguage. Mdtivation, an
expl anation of the relation between the kernel and the current Cedar | anguage, can be fo
112.3-2.7. The kernel is subdivided into

A rather austere core; everything can be desugared into this, but it isn't very re

A set of conveniences; with these, readable prograns can be witten.

| nperative constructs: statenents and | oops.

Excepti on handl i ng.
The format of this section interleaves grammar rules which give the syntax of the |angua
whi ch gives the neaning. The neaning of the core is given in English. For other parts of
kernel, it is given by desugaring rules which show howto rewite each construct in ternm
if rewiting is done repeatedly, the result is a core program which rmay invoke some pri

nmeani ng of these is also given in English. There is also sone English explanation of the
but this is only a conmentary and does not have the force of |aw.

See 3.1 for the notation used in the granmmar and desugari ng.

12.2.1 THE CORE 7

2.2.1 The core

In the core, there is syntax only for nanes, literals, application, |-expressions, a bas
recursive binding construction, and syntactic type; everything else is done with priniti
wite anything in the core, however, except to show the desugaring of a kernel construct
reader need not struggle with prograns in the ugly core syntax.

Synt ax Syntactic type Meani ng
expression .=
n | Dn ENnV[$n] . val
literal | Diteral
e, Ze, | (De,. RANGE) [€] -- Standard application. |
| d=>d, INe | d_d, -- Standard proc constructor. |
Ld=>d,iNne| d_d, -- Unchecked standard proc constructor. |
[(n~e), ...] [(n: De), ...] -- Vanilla binding constructor. |
FIXd~ e | d -- Recursive binding constructor. |
De TYPE -- Syntactic type.
type ::= € De --QTYPE- - -- Atype is syntactically just an expression.
decl = e De --gDECL- - -- A decl is syntactically just an expression.
Name @ .=
letter (letter | ODEN)) N. . -- Appears as an e or in a pattern.
literal ::=
$n | ATOM -- ATov literal. |
primtive Dprimtive
primtive ::=
ARROW | [d: DECL, p: (d_DEcL)]_[a: --arrow -TYPE]
DOMAIN | RANGE |*[a: --arrow-TYPE] [t: TYPE]
MCPAI R | [t, TYPE, first: t,, t,o: TYPE, rest: t,]_[v: t Xt]
GROUP | [t,: TYPE] _[t: TYPE] --tgTYPE
MKCRCSS | [9: GroUP[TYPE]] [c: --cCross--TYPE]
CDOTG | *[t: --cross--TyPE] _[g: GROUP[TYPH]]
MKBI NDD | [d: DECL, v: d.T]_[b: d]
BDOTD | BDOTV | [b: BINDING _[d: DeECL] | [d:: DECL, b: d] _[v: d.T]
M<BI NDP | [p: PATTERN, t:: TYPE, v: t] _[b: MDECL[pP, t]] --=MBINDD[d~MKDECL[P, t], Vv
LOOKUP | [d:: DeEcL, b: d, n: AtoM [v: Drog[d].n]
THEN | [d;:: DECL, b;: d, dy: DECL, b,: d,]_[v: d THEND d,]
ENV | * Bl NDI NG
MKDECL | *[p: PATTERN, t: TYPE] [d: DECL]
DDOTP | *[d: DECL] _[p: PATTERN]
DDOTT | *[d: DECL] _[t: TYPE]
DTOB | *[d: DECL] _[b: BIND NG=MBINDP[p~d. P, v~d.T.q]
BTOD | *[b: BINDING _[d: DEG]=MKDECL[p~b.D.P, t~MKCROSS[b.V]]
THEND | [d;: DECL, d, DECL]_[v: DECL] --=BTOD DTOB[d,] THEN DTOB[d,]]
BOOL | ATOM | TYPE
TRUE | FALSE | BOOL
TYPE | DECL | BI NDI NGHE - - DECLQTYPE, BI NDI NGQTYPE
PATTERN | TYPE - - =GROUP[ATOM
ANY TYPE -- TgAany for any type T

In the kernel we dress up the prinitives as foll ows:
A primtive denoted xpory is in the cluster of the type of its argument under the n

A paraneter to a primtive declared with :: is the type of some other argunent; th
argurent for this parameter may be omitted in an application of the primtive.

8 KERNEL DEFI NI TI ON 12.2

A nane not in aliteral (or pattern, in the kernel) denotes the value to which it is bou
current environnent Env (A below). An Atov literal is a value which stands for a nanme int
primtives which deal with declarations and bi ndi ngs.

A literal denotes a value according to a rule which depends on its syntax. The core has
nuneric and AtTov literals, and the primtives enumerated above.

An expression denotes a value according to a rule which depends on its syntax. If the ex
a nane or literal, the value is the value of the name or literal. The renmai ning cases ar
the foll owi ng sub-sections. Mst of these cases define the value of the expression in te
val ue of its sub-expressions. The sub-expressi ons nmay be evaluated in any order

A. The current environnent ENv
The current environment ENv i s a binding. The value of the expression n is EN.n. ENv for
expression is the sane as ENv for its containing expression, except that:

For the b of a closure being applied, ENv is conputed according to B bel ow.

For the e of a FIX, ENV i s conputed according to E bel ow

Thus applying a closure and evaluating a FIx are the only ways to change ENv.

B. Application

The value of a standard application is obtained by evaluating e, and e, to obtain v, and
applying v, to v,. There are two cases for application

v, is aprimtive. The value of the application is a function of v, given in the de

the primtive.

v, is a closure ¢ (C below), with donain declaration d, body b and environment E. T

value of the application is the value of the expression b in the environnment MBI ND

THEN E (D below). Note that if the closure was made with L, the body nust be type-
checked when it is applied; a closure made with | was type-checked when it was nad
bel ow) .

An application type-checks if De, inplies De,. DOVAN (G bel ow).

C. Lanbda

The value of a |-expression is a closure, which has three parts:
A domain declaration d, equal to the value of d,.
A body b, which is the expression e (not the value of e).
An environnent E, equal to the current environment ENv.

A | -expression type-checks if
d, evaluates to a declaration d.
For any x of type d. T, De inplies d,.T in the environment wasiNDD[d, x] THEN E

A L-expression type-checks if d; evaluates to a declaration; type-checking of the body is
until the closure is applied.

12.2.1 THE CORE 9

D. Pairs, groups and cross types

A pair is the basic structuring nechanism MPAIR[x, y] yields the pair <x, y> Bigger str
made, as in Lisp, by naking pairs of pairs. Wien we are interested in the | eaves of such
we call it a group and call the leaves its elements. A group has type croup[T] if all its
have type T or are NL. A flat group is a pair in which first is not a group, and rest is
NI L.

The type of a pair is a cross type: MPAIR[x, y] has type TXU iff x has type T and y has t
Cross types are nmade with Mcross, which turns a GROUP[TYPE] into a cross type in the obviol
way:

MKCROSS[NI L] =277
MKCROSS[T]=T if T is a type.
MKCROSS[MKPAIR[X, y]] =MKCROSS[x] XMKCROSS[y]

Note that mcross of a flat group is flat. cborG goes the other way, turning a cross type i
GROUP[TYPE] in which no elenent is a cross type. Thus MKCRosS is the inverse of cborg, but n
necessarily the other way around.

E. Bi ndi ngs

A binding is either NL, or an <atom value> tuple, or a <binding, binding>tuple. The pr
MKBINDD constructs a binding froma declaration d and a matching value v, i.e. (as the tyg
M<BINDD i ndi cates), one with the type d.T. The resulting binding has type d, and consists
nanes fromd paired with the corresponding values fromv. Exanpl e:

MBINDD[[x: INT, b: Boo], [3, TRUE]] = [x~3, b~TRUg

= < <$x, 3>, < <$b, TRUE>, NL > >
In this exanple, d.T is INTXBOOL.
The declaration and group in this exanple is witten using the syntax of 1 2.2.2; in the core they wuld be

woECL] p~[$x, $b], t~mcross[[INT, Boo]]] and wrPAaIR[first~3, rest~wPAIR[first~TRUE, rest~NL]], where we have witten
the argunents of these primtives in the kernel syntax.

The primtives BToD and BTOv return the argunents of the mBINDD prinmitive that nade the
bi nding. wBINDP is redundant; it is |ike wmBINDD, but takes a type instead of a declaratio
hence accepts any v with the right structure.

LOXUP returns the value of the name n in the binding. THEN conbi nes two bi ndi ngs, givVing

priority to the first one in case of duplicate nanmes. It works only for flat bindings, i
el enent of each <binding, binding> tuple is an <atom value> tuple, and the second el ene
anot her <binding, binding> tuple or NL. The value of b, THEN b, i s another flat binding,
by first replacing any tuple <<a, v> b>in b, where a is equal to an atomin b, by b, an

this binding to replace the final NL in b,.
The bi nding construaete), [.(..] has the value »BINDP[p~[n, ...], v~[e, ...]].

FIX makes a recursive binding: the value of Fix d~e is wBINDD[d, v], where d is the value

ENv and v is the value of e in the environment (LET FIX d~e IN d~e) THEN ENv. OF course in g
this conmputation nay not terminate; nornally the nanes in d occur in e only with |-expre:
and in this case it does terminate. |s this Teal#i)x tiygethecks if De in the latter
environnent inplies pror[d].

10 KERNEL DEFI NI TI ON 2.2

F. Decl arati ons

A declaration is either NL, or an <atom type> tuple, or a <declaration, declaration> tt
primtive MmDECL constructs a decl froma pattern p and a value t of type GROUP[TYPE]. A pal
a GROP[ATOM, i.e., either NL, or an atom or a pair of patterns; the ATov el ements nust
different. An application of mpDecL typechecks if t matches p, i.e., if

both p and t are NL, or

pis an atomand t has type TYPE, or

pisapair [p, p)J] andt is a cross type t Xt, and p, matches t, and p, matches t,.
The resulting declaration consists of the nanes fromp paired with matching type val ues -

The primtives pbotP and DDOTT return the argunents of the MKDecL primtive that nmade the
decl aration. Thus

DDOTT[NI L] =??7;

DDOTT[<$n, T>] =T;

pDoTT[<d,, d,>] =bpOrT[d,] XDDOTT[d,]
DroB i s redundant; it converts a declaration to a binding in which each nane has the corr
type as its value. Thus Drog[[x: INT, y: REAL]]=[x~INT, y~REAL]. The inverse is BTOD, also

redundant; it is defined only if all the values in the binding are types. THEND comnbi nes
declarations just as THEN combines two bindings: D(b, THEN b)) =Db, THEND Db,

G Types and type-checking

A type is a value consisting of a pair:
the predicate, a function fromvalues to Boa..
the cluster, a binding.
A value v has type T if T s predicate applied to v is TRUE

Tinmplies Uiff (Ax) T.Predicate[x]guU. Predicate[x].

Typechecki ng consists of ensuring that the argunment of an application has the type speci
domain of the proc (B above). The body of a |-expression can then be type-checked (or th
i mpl enentation of a primtive constructed) independently, assunming that the paraneter sa
domai n predicate. Symetrically, the result of an application can be assuned to have the
specified by the range of the proc.

To conplete the induction, it is also necessary to check that the value of the body of a
has the range type (C above).
The primtive types in the kernel are:

BOOL, With two val ues TRUE and FALSE.

ATOM Wi th val ues denoted by literals of the fornn.

TYPE, a predicate satisfied by any type val ue.

ANY, a precidate satisfied by any val ue.

DECL, the type of a declaration (F above).

BINDING, the type of any binding.

12.2.1 THE CORE 11

Arrow types, the types of procs (C above). An arrow type has a domain type and a r
t ype.

Cross types, the types of pairs (D above).
GROWP[T], the type of any pair in which all the elenments have type T.
Decl arations, the types of bindings (E and F above).

There are no non-trivial inplications anong any of these types, except as foll ows:
DECLQTYPE, BI NDI NGJTYPE; GROUP[T] QTYPE.
ANYgT for any type T.
T, XT,guXxu, iff T,gu and T,gu,.
GROUP[T] gGroupP[U] i ff Tgu.
T,_Tou_ U, iff ugT and (Ax: U) (I T, INT)[x]g(l U INU)[x]. Note the
reversal of the domains.

d,gd, for declarations iff d,.p=d,.P and prog[d,].ngDToB[d,].n for each n in d,.P

12 KERNEL DEFI NI TI ON 2.2

2. 2.2 Conveni ences

expression ::= coreExpression |
d _d, | ARROW Z [d,, | d;=>DECL IN d,]
(1 e) (| =>e) INe;| -- The domain defaults to [], the range to x: De, |
LET €, IN e, | (I De,iINefZ)e,.v-- e a binding |
LET b, ... IN e | LET [b, ...] IN €
IF e, THEN e, ELSE e, | (1FPROC[De,, €, | INe, _[]iNe])
e . n | IF DegBINDING THEN LOOKUP Z [De, $n]
ELSE | F DegTYPE THEN LOXUP Z [De. cluster, $n]
ELSE_(Lookurc Z [De. cluster, Z$hE]) |
e, F b: ol e ey oo 1L e APPEY Z[b, ...] | e . ApPLY Z wxeiNDD[De,. DOvAIN
e, infixOp e, | e, . infipeGp |
e, ANDe, | e Re,| IF e THEN e, ELSE FALSE | IF e, THEN TRUE ELSE e,
[T 1 [e Cl e, teo)] | NL | wpPaiR[e,, [(|-e,Glaup)cdnstructor.
PATT p | -- Pattern constructor; see the rule for p bel ow
[b, ... 1| b PLUS ... PLUS NIL |
REC] (p:t ~¢€), ... 1| FX[p, ---] @ MKcross[[t, ...]11~[e, ...1 |
d, ... 1 | d PLUS ... PLUS NIL
XX | XXXXXX | --Al'so recursive d maps into this?
statenents | sinplelLoop | -- See 72.2.3
but -- See 72.2.4
infixQOp ::=
X MKCROSS
PLUS
THEN
literal ::= coreLiteral
digit digit ... | I NT -- Nurmeric literal, giving the decimal re
declaration ::= -- Adis not an e; a d nust be before ~ or after LE
p: t | MKDECL[PATT p, t] |
[(p: t), ... 1] [p, ...]: MKCROSS[[t ,--..t.d]separate names and types
binding ::= -- Only the [...] formis an e; a b nmust be witten
p ~ e | MKBI NDP[PATT p, €]
d ~ e | MBI NDD[d, €]
pattern ::= -- Note: a pattern is not an e; it can appear only
or after PATT in the kernel
n | -- PATT n=$%n
[Py, -] -- PATT [p,, ...]=[PATT p,, ...]
primtive ::= corePrimtive
LOOKUP | LOOKUPC | -- Fill in types
PLUS |
| FPRCC |

The precedence of operators in e is: (highest) [], Z infixOps (all the sane), Bur, IN (I
| eft associative.

2.2.2.1 Expression syntax

Most of this is straightforward sugar. LET adds the binding e, to Ew in evaluating e, Th

case for b, ... sinply allows the [] which normally enclose a binding constructor to be

case; see 12.2.2.2. IFwaps e, and e, in |'s so that they don't get evaluated; the IFPRO

chooses the one to evaluate and applies it.

The dot notation has three cases.

12.2.2 CONVENI ENCES 13

For a binding it just | ooks up n in the binding.
For a type it looks up nin the type's cluster.

For anything else, it looks up nin the cluster of De and applies the result to e.
LoopupC primtive does something special if it finds a proc which takes nore than ot
argument: it splits the proc into one which takes the first argunment and returns a
taki ng the remnai ning argunents. This ensures that if De.n is such a proc P, the exy
e.n[a, b] will desugar into sonmething equivalent to P[e, a, b].

The usual syntax for application is a proc e, followed by an explicit binding constructor

of application may depend on the type of e, via the APy el ement of its type; for a pro

by the standard apply operator Z, APPLY is the identity. If e is followed by an group rat
bi ndi ng constructor, the argunent is obtained by binding the group to the declaration wh

domai n.

Infix operators desugar straightforwardly into application; note that the choice of proc
by the type of the first operand only. AND and OrR are not ordinary infix operators, since
eval uate no nore than necessary; this is expressed by the desugaring into IF.

The renmai ning expression syntax is various constructors, described in the next section,
i nperative and exception features described in |later sections.

2.2.2.2 Goup, binding and declaration constructors

A bracketted sequence of expressions (e.g., [1, 2, 3]) denotes a flat group with its ele
sane order (e.g., WMPAIR[1, WKPAIR[2, MKPAIR[3, NiL]]]. Thus a group constructor is just lik
LI ST function in Lisp. A pattern is a simlar construct, except that it contains nanmes w
for the corresponding ATov literals; PATT yields the group obtained by replacing each nane
the literal $n. After desugaring a pattern always appears after PATT and hence is al ways
into an atom or a GrRouP[ATOM .

Brackets are also used to delimt binding and declaration constructors. They are disting
each other, and from group constructors, by the presence of ~ in each elenent of a bindi
constructor, and : in each elenment of a declaration constructor. The el ements of a bindi
decl arati on constructor are sugar for applications of the MDECL, MBINDP and MKBINDD primt
The constructor itself strings the resulting declarations into a big one using the PLUS
which is just |ike THEN except that it does not allow duplicate atons; the notivation for
al | ow the nanes and corresponding types or values to be witten together, instead of fac
primitives require. As a result, values nmade from constructors are always flat.

Note that these constructors do not nest, except that a d can be [(p: t), ...]. This is
d~e formof binding; e.g., if DivRemreturns two INTS, you can wite [d: INT, r, INT]~DivRel
instead of [d, r]: INTXINT~DivRen{...].

The Rec bi nding constructor is sugar for FIx which exactly parallels the non-recursive on

2.2.3 Inperatives

These constructs are generally used together with non-functional procs.

statements ::={ e; ... } IF (1svaDe]) AND ... THEN [] ELSE ERROR
-- Ordering by non-pronpt eval uation.
si npl eLoop ::= sIMPLELOOP statements LET REC [l oopd~(N { statenents; | oop([N | dop([]

-- Only an exception (such as ExiT) will ternminate t

14 KERNEL DEFI NI TI ON 2.2

Each e in the statenents nust evaluate to vaD, this is to catch mstakes |like witing x+
statenment. The definition of AND ensures that the e’'s are evaluated left-to-right.

The sinpleLoop is the standard way to express a loop in ternms of recursion. You are supp
use an exception to get out of this |oop; Cedar provides a nunber of convenient ways to
such as ExiT and RETURN.

2.2.4 Exceptions

An exception is treated as a special value returned froman application. The exception v
contai ns an exception code and an args val ue which nmay be of any type. \When an applicati
an exception value, it imediately abandons the application and returns the exception va
application is strict. There has to be sone way to stop this, or the first exception wou
of the program The HDE primtive takes any value and returns a variant record of type H
turns:

a normal value into the normal variant, with the value inits v field;

an exception into the exception variant, with the code in its code field and the ar¢
its args field.

UNHIDE t akes a HEx val ue and returns the original unhi dden val ue.

An exception code has the type EXCEPTION[T], where T is a declaration which is the type of
args; it is the domain of the exception, and (DexceptioN T]).DowalN=T. An exception value i:
constructed by the primtive

RAISE: [T:: TYPE, code: EXCEPTION][T], args: T]
Thus the args al ways has the type demanded by the code.

This is dressed up with the foll owi ng syntax.

but ::= e Bur { butChoice; ... } LET v(~HDE[€] _IN (
IF ISTYPE[V(, HEX. normal] THEN UNHI DE[V(]
ELSE | F ISTYPE[V(, HEX. exception] THEN
LET h(~NarRROW V(, HEX. exception] IN
LET sel ector (~h(. code Ensbut.ChaLse UNHI DE[V(]

ELSE ERROR)
butChoice ::= e, => e, | IF sel ector(=e, THEN LET MBI NDD[De,. DOVAIN, h(.args] IN
| = =
e, , e, .. =>e,| IF (selector(=e;) R ... THEN e, |
ANY => e, IF TRUE THEN e,

A BUT expression evaluates e. If it is a nornmal value, that is the value of the Bur. If it
exception, each butChoice in turn gets a look at it. If one of themlikes it, then it su
of the Bur;, otherw se the exception is the val ue.

The e, in a butChoice nmust evaluate to an exception code. If there is just one, and it m
in the exception, then args in the exception is bound to the donmain of the code, and e, i
in that environnent. If there is nore than one, then e, is just evaluated in the current

An ANy but Choi ce matches any exception, but of course doesn’t bind the argunents.

12.3 DO NG COVPUTATI ONS 15

2.3 Doing conputations

This section describes the basic nechanisns for doing conputations, and the kinds of va
can be nmani pul ated by Cedar prograns.

2.3.1 Application

The basic mechani sm for computing in Cedar is applying a proc to argunent values. A proc
nappi ng
from argunent values and the state of the conputation
to result values, and a new state of the computation
The state is the values of all the variables.
A proc is inplenmented in one of two ways:

By a primitive supplied as part of the | anguage (whose inner workings are not open
i nspection).

By a closure, which is the value of a |-expression whose body in turn consists of
expression, which nay contain further applications of procs to argunents, e.g., |
x+3. When a closure is applied, the paraneters declared after the | are bound to t
arguments, and then the body after INis evaluated in the new environnment thus obt:

In Cedar, each paraneter value thus obtained is used to initialize a variable, which is
naned by the paraneter in the body. Thus the body can assign to the paranmeters. Use of t
feature is not recomended.

Note that when a | -expression is evaluated to obtain a closure its body is not eval uated
saved in the closure, to be evaluated when the closure is applied. Sone constructs (IF, ¢
or) are defined (see 12.2.2 and 13.8) by wapping | -expressions around sonme argunents, &
appl ying them only when certain conditions hold; e.g., IF b THEN f [x] ELSE g[y] eval uat es
is TRUE and g[y] iff b is FALSE

Application is denoted in prograns by expressions of the formf [arg, arg, ...]. If the v
closure, this expression is evaluated by evaluating f and all the arg’s, and then eval uat
of the closure with the formal paraneters bound to the argunments (unless an exception va
up; see 12.6.2). Thus to evaluate (I [x: INT] IN x+3)[4]:

eval uate the | -expression to obtain a closure;
eval uate the argunment 4 to obtain the nunber 4,
evaluate x+3 with x bound to 4 to obtain the nunber 7.

The first two eval uati ons can be done in either order

To evaluate a prinmtive application such as x+3, evaluate the argunents, and then invoke
primtive on those argunments to obtain the result and any state change. Wth a few excep
assignment and dereferencing or following references), primtives are functions and can
of as tables which enunerate a result value for each possible conbination of arguments.
primtive can therefore be viewed as a sinple table | ookup using the argunents as the ta

Actually there may be one nore step in an application. If an argunent doesn't have the t
expected by the proc, the argunent is coerced to the proc’s domain type if possible. If
can be found, there is a type error. Coercion is discussed further in 12.6.1 and Y4. 13.

Most procs take a binding as argunent, in which the various parts of the argument are na
OpenFile: PROC[nane: ROPE, node: Files.Mde] takes a binding with two val ues named nanme and r
It might be applied like this: P[name~"Budget.nmenp", node~$read]. |If the nanmes are m ssin

16 THE KERNEL LANGUAGE 2.3

is a positional coercion which supplies themleft-to-right, see 12.3.6. There is also a
coercion that supplies mssing parts of the binding, see 74.11.

If f is neither a prinitive nor a closure, the nmeaning of applying it is defined by the
its type; this case is discussed further in 74.4.

There are many ways of witing applications other than f[x]. In fact, many Cedar primt
be the val ues of expressions, and can only be applied by witing sone other construct. T
desugaring rul es show how | arge parts of the Cedar syntax denote various special kinds o
application. In each case, the neaning is defined by the standard neani ng of application
specific neaning of the primtives involved; see f4.1.

This is partly because of history, and partly because specialized syntax makes the program nore readable. Futu
evol ution of the language will inprove the situation.

Functi ons and order of eval uation

An expression is functional if

its value does not depend on the state, but only on the values bound to its free v
and

evaluating it does not change the state.
As a consequence of this definition

Two identical functional expressions in the same scope will always have the sanme v

A proc is a function if every application of it is functional. It doesn’'t matter when or
times a function is applied; the order of evaluation doesn’t matter for functions. Thus

functions can be thought of as mathenatical functions for many purposes. Note that a con
be regarded as an application of a function of no argunents.

Non-functional procs, on the other hand, are nore conplicated objects. Cedar makes no fo
distinction, either in syntax or in the type system between functions and procs. Howeve
not define the order of evaluation in an expression, except that:

all argunments are evaluated before a proc is applied;

because of the desugaring of IF, SELECT, AND and OR into |-expression, the order of
eval uation for these expressions is determned by the first rule;

statements separated by sem -colons are evaluated in the order they are witten.

As a consequence, two applications of non-functions should not be witten in the same st
unl ess they don’t affect each other; if this is done the effect of the programis unpred

An expression is guaranteed to be functional if it only applies functions; thus if f is
non-functional proc, and x a variable, f[3] is functional and p[3] and p[x] may not be.
f[x] may not be functional, because it is sugar for f [x.VALUECF], and VALUECF i s not a ful
value of a |-expression is a function if its body is functional. There are nore conplica
guaranteeing that an expression is functional, just as for any other interesting propert

Because the val ues of variables constitute the state, it is only the existence of variab
non-functional procs to exist. In particular, the VALUECF proc which returns the val ue of
is non-functional (because its result depends on the state), and the AssiaN proc whi ch chi
val ue of a variable is non-functional (because it changes the state).

12.3 DO NG COVPUTATI ONS 17

2.3.2 Val ues

A Cedar program mani pul ates val ues. Anyt hing which can be denoted by a nane or expressio
the programis a value. Thus nunbers, arrays, variables, procedures, interfaces, and typ
values. In the kernel |anguage, all values are treated uniformy, in the sense that each

passed as an argunent,
bound to a nane, or
returned as a result.

These operations nust work on all values so that application can be used as the basis fo
conputation and | -expressions as the basis for programstructure. In addition, each part
or type of value has its own primtive operations. Sone of these (like assignnent and eq
defined for nost types. Others (like addition or subscripting) exist only for certain sp
(numbers or arrays). None of these operations, however, is fundanental to the | anguage.
assignment or equality has the same status as any operation on an abstract type supplied
i mpl enentor; thus INTEGER ASSIGN has the same status as 10 Getint. In practice, of course, s
syntax is usually used to invoke these operations, and the inplenmentations are not Cedar
open to inspection by the editor or debugger. A conplete description of the primtives s
t he | anguage can be found in Chapter 4, organized by the type of the main operand. Table
an al phabeti zed i ndex of these descriptions.

Restrictions: In current Cedar, however, there are restrictions on values which are type
or bindings: they can only be arguments or results of nodules, and hence are first-class
in the nodel ling | anguage, and not within a nodule. Al so, declarations and bi ndi ngs cann
constructed or bound to identifiers within a nodule. Unions are also restricted: they ca
appear inside records. Nonetheless, it is sinplest to enphasize the uniformtreatmnment of
and consider separately the restrictions on types, declarations, bindings and unions. Fu
will inmprove this situation.

Restriction: In current Cedar you can only use dot notation for sonme operations of built
the procs which access record fields, and others as noted in Table 45. As a substitute
various syntactic forms which are sugar for dot notation: infix, prefix and postfix oper
functions, and funny applications. These desugarings are given in rules 20-24 of the Ce
grammar in 3.

2.3.3 Variabl es

Certain values, called variables, can contain other values. A variable containing a valu
has type vaR T. If the variable doesn't allow the value to be changed, the type is READONL
is not the sane as T, because there may be a vaR T val ue which is the sane container. The
contained by a variable (usually called the value of the variable) can be changed by ass
value to the variable. The set of all variables accessible fromthe process array consti

of the conputation; these are all the variables which can be reached from any process, a
vari abl e whi ch cannot be reached cannot affect the conputation. Note that a variable va

container, which like all values is inmutable; it may help to think of it as (the addres
of storage. The contents of a variable can be changed by assignnent. Thus the value of a
can change, even though the value that is the variable is inmmutable.

A suitable abstract representation for a VAR Tis a value of type [Get: []_T, Set: T[]].

representation is not used in Cedar, but it clarifies the way in which variables fit int
system VAR TgvAR U only if T and U have the sane predicate, because the Get proc requires
TgU and the Set proc requires UJT. READONLY T corresponds to [Get: []_T] and a wite-only

variable type would be [Set: T []].

There is a coercion (an autonatically applied conversion; see 12.6.1) from VAR T t0o T, S
vari abl e can be passed w thout fuss as an argunent to a proc which expects a val ue.

18 THE KERNEL LANGUAGE 2.3

Restriction: In current Cedar, variables generally cannot be passed as argunents or resu
exception is that an interface can declare a variable (called an exported variable) for

i mpl ementation supplies a value; this is normally witten x: VAR INT in the interface, but
historical reasons it is also possible to wite just x: INT. Certain primtives (e.g., de
or PONTER) return variables, a variable can (indeed, nust) be passed as the first arguner
ASSIGN, and a variable can be bound to a nane by a declaration in a LET or block (LET x: IN
binds a var INT value to x). For the nost part, however, a program which wants to handl e \
nmust do so at one renove, through procs or Rers (or, unsafely, PO NTERS).

A variable is often represented by a block of storage; the bits in this block hold the r
of its value. Al the built-in vAR types are represented in this way. A variable u overle
variable v if assigning to u can change the value of v. The primtive ASSIGN procs have tt
t hat

if r and s are Rers, then r”™ overlaps s™ iff r=s.

For any variables u and v with the sanme vAR type, u overlaps v iff u=v, provided that no
program has gi ven overl appi ng bl ocks of storage to the two variables (if u and v have di
types, one night be contained in the other).

The rol e of variables in non-functional expressions is discussed in f2.3.1.

2.3.4 Goups

There is a basic nechanismfor nmaking a conposite value out of several sinpler ones. Suc
conposite value is called a group, and the sinpler values are its conponents or el enents
x+1, "Hello"] denotes a group, with conponents 3, the value of x+1, and "Hello". The mai
of explicit groups is for passing argunments to procs w thout nam ng them (these are some
call ed positional argunments). This is done by binding the group to the decl aration which
domain type of the proc; the result is a binding which is the argunent the proc expects.
P: [x: INT, y: REAL] [. . .], the application P[2, 3.14] is sugar for P[[x: INT, y: REAL]
which is equivalent to P [x~2, y~3.14].

A group has a type which is the cross type of its conponent types: if x has type T and y
then [x, y] has type TXU. Thus for syntactic types, De;, e, ...]=DeXDe, X ... The X typ

constructor is associative, and type inplication (§2.4.2) extends to cross types el enent
are types, there is a coercion called mcross from [T, T .] to T XT,X ...; because of
explicit cross type is usually not needed.

2!

Restriction: Current Cedar provides no way of making cross types except as donmamin and ra
of a proc type (or other transfer type); e.g., PROC [INT, REAL] [BOO,, ATOM. There are no p
t aki ng groups except the group-to-binding coercions. Hence the only thing to do with a g
pass it to one of the built-in coercion procs by witing it as a proc argunment, or to a

constructor as described in the next section. Current Cedar does not have X, but it does
MKCROSS t 0 cross type coercion described in the |ast paragraph and illustrated in the exar

2.3.5 Bindings

A binding is a group in which each el ement has a nane. Thus, it is an ordered set of [na
pairs. There are three main uses for a binding:

e As an argunment in an application. Thus, if Pis a proc with type PrOJi: INT, b: BCO
argunent nmust be a binding such as [i~3, b~TRUE]. The application then | ooks like t
P[i~3, b~TRUE]. A binding argunment is sonetimes called a keyword argunent list. See
next section for details.

e |In a LET expression, to give nanmes to values in the scope of the LET. Thus,

12.3 DO NG COVPUTATI ONS 19

LET i ~3, b~TRUE IN (IF b THEN i +5 ELSE 0)
has the value 8. Current Cedar doesn't have LET expressions, but a binding at the
of a block has the same effect. See 2.5.4 on scopes for details.

e« As a way of collecting and naming a set of related values. A value can be extracte
the set using dot notation. Thus if b is the binding [i~3, b~TRUE], the val ue of b.
current Cedar this only works for interfaces; see §3.3.4 and 14.14 for details

A binding is usually denoted by a constructor, which takes the form
[i~3, b~TRUE]
or redundantly (if there are no coercions)
[i: INT~3, b: BOOL~TRUE]
in which the types are specified explicitly (but you can'"t wite the second formas the
an application). See 12.5.5 on constructors for details.

2.3.6 Argunents

When a group or binding is bound to a declaration (d~v), there are various conversions c
coerci ons which may be applied to the values. This usually happens when the arguments of
application are bound to the parameter declaration

First, if vis a group rather than a binding, it is coerced to a binding by attaching th
to the elenents of v in order. Thus in

[a: INT, b: REAL]~[2, 3.14]
the group constructor is coerced to [a~2, b~3.14].

Next, if v is shorter than d, elenents of the formn~ovTTED are appended, where n is the
correspondi ng name fromthe declaration. Thus in

[a: INT, b: REAL] ~[2]
the group constructor is coerced to [a~2, b~0oMm TTED] .

Now the itens of the binding are matched by nane with the itens of the declaration. Ther
error unless the nanmes nmatch exactly. The remai ning coercions are done on individual ite
fromthe declaration and the corresponding n~v fromthe binding. If v has type t, all is
O herwise, if there is a sequence of coercions fromthe type of v to t, these are applie
such sequence exists, there is an error. In particular, there is a coercion from oM TTED t
value for t, if any. Thus in

[a: INT_O, b: ReaL_1.1]~[b~3.14]
the group constructor is coerced to [a~0, b~3.14], and in

[a: INT_O, b: REAL_1.1]~[]
it is coerced to [a~0, b~1.1]. Coercions are discussed in 12.6.1 and Y4.13, defaulting i

An inportant special case is constructors for record and array values. A record type has
construction proc; e.g.

R TYPE=RECORD[a: INT, b: REAL_O.]
has a proc R cons of type PRocfa: INT, b: REAL_O.]_[R]. Thus R CoNs[a~2, b~3.1416] constructs
record value. There is also a coercion fromBINDING to the particul ar binding type RB whic
dormai n type of R cons, so that

rl: R [a~2, b~3.1416]
is short for

ri: R R cons[a~2, b~3.1416].
Conposi ng the positional coercion fromcacrowp to RB with R cons makes

ri: R[2, 3.1416]
al so short for the previous line.

The sane schene works for arrays, but only an array indexed by an enuneration has a
correspondi ng bi ndi ng which can be witten; the elements of an array indexed by nunbers
have names which can be witten in a binding. However, the group constructor still works

20 THE KERNEL LANGUAGE 2.3

2.4 The type system

This section describes the way in which types can be used to nake assertions about the p
whi ch the conpiler can verify. It also discusses the role of types in organizing the nan
program

2.4.1 Types

Types serve two i ndependent but related functions in Cedar

e A type contains an assertion about sone property of a value, e.g., that it is a wh
between 0 and 10 represented in a single machine word. A val ue which has the prope
said to be of that type, or to have that type

The assertion part of a type is called its predicate. It is a function which accep
val ue (of any type) and returns TRUE i ff the value satisfies the assertion.

e« Atype contains a collection of naned procs (and perhaps other values) related in
useful way. Most often, the procs of type T take a value of type T as their first
For exanpl e, INT has pPLus, TIMES and MNuS procs (usually witten as infix or prefix
operators) which can be applied to INTs. The dot notation (see §2.4.4) nmakes it ea
refer to the procs in a type’'s collection.

The coll ection part of a type is called its cluster. It is sinmply a binding. No ru
enforced about what kind of values are in the binding. However, the idea is that t
is an interface for mani pul ating val ues of the type (perhaps the main or even only
interface). As with any interface, a tasteful choice of nanmes and values is inport

The predicate and the cluster serve rather different purposes:

The predicate provides the basis for type-checking (f2.4.2). The nost inportant ft
type-checking is to guarantee the integrity of abstract data types; this is done w
predi cates called marks (12.4.3).

The cluster provides the basis for convenient nanming of a large collection of proc
other values (12.4.4). dCusters are organized into a hierarchy of classes (12.4.!

Li ke everything else which can be naned, a type is a value. Hence there is nothing spec
binding a type value to a nane. If T is a type expression, the binding

U TYPE~T
binds T"s value to U. In the scope of U T and U are completely interchangeabl e (providec
rebound). Furthernore, with two exceptions, all type expressions are functional: identic
expressions in the same scope denote the sanme type val ue. The exceptions are the record
enuner ati on type constructors, which nake a distinct type each tinme they are used (by co
a new mark; see 12.4.3).

Caution: The AMIypes interface does distinguish between T and U as a conveni ence in debug
but it also provides a procedure GetCanonical Type for obtaining the type value in the sens
descri bed.

Restriction: Current Cedar has a nunber of restrictions on the use of TYPE val ues, given

2.4.2 Type predicates and type-checki ng

Type predicates provide a way of naking assertions in the program which can be checked
mechani cal | y. These assertions take the form of declarations for the formal paraneters o
general the checking nmust be done during execution. Thus, if the program says

a: ARRAY [0..10] oF INT_ALL[O];

i: INT_s. Readlnt;

s.PutF[al[i] 1;

12.4 THE TYPE SYSTEM 21

there nust be a check that i>0 and i<10 just before the expression a[i] is evaluated. Thi
a bounds check; if it fails there is an exception called Runtine.BoundsFault. Were did th
cone fron? Note that a[i] is short for Da.APPLY[a, i], and Da.APPLY i S SUBSCRI PT, the subscr
procedure for ARRAY [0..10] oF INT. The type of SUBSCRIPT i s PROC array: ARRAY [0..10] OF INT,
index: [0..10]]_[VvAR INT]. So when i is passed as the index argument, the declaration of sl
says it must have the type [0..10]. The predicate for this type is

I [x: ANY] IN HASMARK[X, INT] AND LET y: INT~x IN y>=0 AND y<=10.
Leaving the HasMARK term for |ater discussion, we see that the rest of the predicate is tl
t he bounds check.

The type systemis designed, however, so that nost assertions can be checked statically
by exami ning the text of the programw thout running it. Static checking has three obvio
advant ages:

It reports any errors after a single exam nation of the programm ng, |eaving none
kind) to be discovered later in Peoria.

It introduce no cost in tine or space for run-time checking.
The conpiler can take advantage of the assertions to generate better code.

O course, there is a correspondi ng drawback: the assertions nade by paraneter declarati
be sinple enough that the conpiler can reliably prove or disprove them

The proofs done for typechecki ng have exactly the sane form as program correctness proof
on preconditions and postconditions. Consider a proc whose value is the |-expression

I [x: T]=>[y: U INe.
The domain declaration [x: T] is a precondition for the body e. This neans that any appl
the proc nust satisfy this condition. As a consequence, the body e can be analysed on th
assunption that the precondition holds, i.e., that x has type T. Simlarly, the range de
is a postcondition for the body. This nmeans that given the precondition, any eval uation
produce a value y which has type U In summary, for the body we assune the precondition
nmust establish the postcondition

To make this hang together, each application nmust establish the precondition; this means
argunent nmust have the domain type. In return, the application can assunme the postcondit
means that the result of the application has the range type. Thus we have a |inkage:
ar gunent gdonmi ngr angegr esul t
The result in turn will be the argument of another application. In this way the proof is
| arger and | arger expressions, and finally to the whole program In sumary:
Application establish pre-condition: arguments have the donmain type;
rely on post-condition: results have the range type.
Body rely on pre-condition: parameters have the domain type;
establ i sh post-condition: returns have the range type.

These proofs require showi ng that an expression always has a particular type T. This is
observing that every expression has a unique syntactic type U, which is the type of ever
of that expression; e.g., an application always has the range type of its proc (see belo
detail ed discussion of syntactic type). If every value of type U has type T, we are done
useful ness of type inplication. One type inplies another, Tgu, iff (Ax) T[x]gUx]. If two
are equal, each inplies the other. However, there are many other useful cases of inplica
i nstance, VAR INT inplies READONLY INT. The type inplications in current Cedar are given in
14.12.

O course, not all argunents are applications. The kernel granmar gives the other possib
argunent expressions, and we enunerate the proof rules for each

Aliteral is like a zero-argunent proc: it has a known range (e.g., 3 has type INT,
type CHAR).

22 THE KERNEL LANGUAGE 2.3

A nane has the type specified in its declaration or binding.

If there is only a declaration n: T (e.g., x: INT), it rmust be the domain dec
of a | -expression, and we have already seen how to ensure that the n’s val ue
type T when the resulting proc is applied.

If there is a binding n. T~e for the name (e.g., x: INT~3), we nust check tha
type T.

A l-expression | [x: T]=>[y: U INe has the type [x: T] _[y: U. This works for the
di scussed in the next paragraph

A bi nding constructor [x~e, y~f] has the type of the correspondi ng declaration, [x:
Df].

There is one nore link in the chain. An application f[x] has an arbitrary expression fo
necessarily a | -expression. The requirement is that f must have a proc type, say DR D
domain type and R the range type. Since the type of | D=>R IN e is D R satisfying the
precondition D for the application is the sane as satisfying the precondition D for the
and simlarly in reverse for the postcondition. The value of f nay be a prinitive rather
closure obtained froma | -expression. In this case, the inplenentation of the primtive
depend on the precondition and nust still establish the postcondition, but since the inp
cannot be examined (wi thin the framework of Cedar) we can say nothing about howthis is
acconpl i shed. Exanple: INT.PLUS, which is inplenented by the machi nes 32-bit add instructi

In a proc type DR, D and R may be decl arati ons which provide nanes for the argunents anc
results. In general, the expression R may include nanmes declared in D. The range type of
application then depends on the argunment val ues.

Restriction: In current Cedar only nodul es have such types; the type returned by an inte
the interfaces exported by an inplenentation, may depend on the interface and inpl enenta
par anmet er s

As a by-product of the type-checking proof rules just given, a syntactic type is derived
expression e in the program It is denoted by De, and conputed as foll ows:

for a name, the declared type

for aliteral, its type;

for an application, the range type (which may depend on the argument);

for a | the obvious proc type;

for a binding constructor, the declaration obtained by pairing the nanes with the
types of the val ue expressions.

Typechecki ng ensures that whenever e is evaluated, the resulting value will have type De
may have other types as well, i.e., it may satisfy other predicates). The nmain use of sy
in connection with dot notation (see 12.4.4).

In order to carry out the proofs described above, the conpiler nust either conmpute the v
types, including those denoted by conpl ex expressions such as ARRAY [i..j] OF INT, or it m
able to prove the equality of unevaluated type expressions. For the nost part, current C
requires the forner approach; hence a type expression nust have val ue which the conpiler
conpute. Such a value is called static; the rules for static values are given in 13.9.1.

12.4 THE TYPE SYSTEM 23

2.4.3 Marks

By this point you may have thought of asking why the assertions provided by type predica
worth all this fuss. The reason is sinple: they are the basis for authenticating val ues
type, so the inplenmentation can be sure that it is working on properly forned val ues. Su
are the inplementer of an abstraction, e.g., Table. You provide operations to Lookup a ke
table, to Insert a [key, value] pair, and to Enunerate the itens in the table. A Table is
a REF to a record containing a sorted array a of itens and an INT n which gives the nunber
itenms. Lookup is inplenented by binary search. Al three operations are progranmred on the
assunption that elenments 0 through nl1 of a are sorted, and that n is snaller than the si
array. They will not work properly if these assunptions are not satisfied, and indeed th
to subscript the array with an out-of-bounds index or to violate other requirenments of t
abstractions they depend on.

Here is a |lower |evel, but perhaps nore dramatic exanple. The dereferenci ng operation *
REAL returns a VAR REAL, which can, for instance, be assigned to, as in the programfragmel
r: REF REAL_NEW REAL_1. 0] ;

(A 3.14159
A REF REAL i s represented by the address of a four-byte block of storage which holds a Rea
the assignnent to r”® stores the four bytes which represent 3.14159 into that block. If s

REF BooL finds its way into r, the assignnment will still store four bytes, since it doesn’
better. But the REF BOoOL points to a two-byte block; the other two bytes that will be nodi
bel ong to sonme unrel ated variable, which will be clobbered w thout warning.

The second exanple is scarier because the consequences of the bug seem nore unpredi ctabl
both cases, however, the fundanmental problemis the sane: even if the inplenentation is
the wong thing happens because it is given an inproper value to work on. O to make the
point in different words, the inplenmentation cannot be held responsible for bad results
its operations, if it has no control over the validity of the argunments it receives.

So that the inplenmentation of an abstraction can take responsibility for correct operati
nmust be a way to authenticate a value of the abstract type. In Cedar this is done by pla
on the value; think of it as a little flag stuck into the value. The mark uni quely ident
abstract type, and authority to affix it is under the control of the inplenentation. Ac
i mpl enentation will mark only val ues which have the properties needed for a representati
abstract value, and if no one else can affix the mark, the inplenentation can be sure th
value with the mark has the desired properties.

A mark can be thought of as an abbreviation for an assertion or type invariant which cha
proper abstract value, such as Table or REF REAL. Such an assertion can be quite conpl ex.

Table exanple, it would say that the representation is a record of the proper form that
the array size, and that the first n array elenents are sorted. In the REF REAL exanple, i
that the address points to a block of storage such that at |east the first four bytes do
ot her bl ocks. Such assertions are not easy to wite down fornally, and proving themis c
beyond the power of any existing program So the abbreviations are not a nere convenienc
necessity.

A new mark can be created on demand by the prinmtive

CREATEMARK: PROC[Rep: TYPE, tag: UNIQUEID] [m MARK, Affix: [Rep]_[TYPEFROWARK] n]]]
The primtive HASMARK tests a value for the presence of a mark, so HASMARK[x, n] tests x fol
presence of the mark m Affix adds the mark to a Rep val ue.

Restriction: MARK, UN QUEID, CREATEMARK, HASMARK and TYPEFROMMARK are not accessible in
current Cedar. Record and array type constructors provi de some access tO CREATEMARK, as
described bel ow. The IsTYPE primitive, also described below, is closely related to HASMARK.

24 THE KERNEL LANGUAGE 2.3

Wth these facilities, it is easy to create a new abstract type. Choose its representati
obtain a new mark m TYPEFROWARK[m] with an appropriate cluster added is the new abstract
The i npl enentation must use Affix to mark only val ues which satisfy the properties it der

The type returned by TYyPEFROWARK[n] has the predicate

I [x: ANY] =>[BOOL] IN HASMARK[x, nj
and an enpty cluster. Except for subranges and bound unions, all types in current Cedar
predicate of this form The built-in types (INT, BooL etc.) conme with such predicates, anc
in type constructor procs (ARRAY, RECORD etc.) obtain a mark from CREATEMARK. So that two
i nvocations of ArRrRAY [0..10] oF INT Will produce the sanme type, ARRAY and nost of the other
constructors use a canonical encoding of the constructor and its argunents for the UNIQUE
hence are functional. RECORD and ENUMERATION produce a different type each tinme they are
i nvoked, so they obtain fresh unique identifiers. Since the program cannot invoke CREATEM
directly, we need not explain how to prevent forgery of UNIQUEIDS. Future versions of Cedar will
this problem

In current Cedar you make a new abstract type by declaring in as an opaque type in an in
T: TYPE[ANY]
This generates a new mark, and declares T to be a type which has that mark. You get such
by explicitly painting sonme other type, normally in an inplenentation which exports T to
interface which declared it:
T: PUBLIC TYPE~Interface. T PAINTED RECORD [...].
See 714.3.4 for nore details.

The inpl enentation actually stores a mark with each variable allocated by New Such a var
be referenced by a ReF, and in particular by a REF ANy val ue. The type of a REF ANy val ue ¢
tested at runtinme using the prinitive

I STYPE: PROC[x: ANY, U TYPE| _[BOOL]
If De is REF ANy and RT=Rer T, then the value of IsTYPE[e, RT] is TRUE iff the predicate for
just tests for mark m and x* has the mark vAR m ISTYPE i s described in detail in 74.3.1
the wTH ... SELECT construct and the NaRROW primitive, which are nore powerful operations
up from I STYPE

For other values, there is no mark actually stored; instead, types nust be conputable st
using the nethods described in the Iast section. The AMIypes interface, however, gives a
refer to any value in a uniformway, and to test its type at runtine.

There is only roomfor one mark on a variable, and this nust encode all the marks that t
actually carries. W arrange for this by inposing a partial order on the marks, and requ
The set of marks on a val ue nmust have a naxi mal el enent.
Every mark snmaller than the maxi mal one nmust be on the val ue.
Wth these rules, a single mark stored on the value is enough to code all the others.

In current Cedar, a value actually has only one mark, since:

The only way to create a new mark is with the record or enuneration type construct
by decl ari ng an opaque type.

When you paint a type Twith the mark of an opaque type, T nust be a record or
enunerati on type, and the opaque type nmark replaces the mark it had before.

Note that vaR T, READONLY T and T are different types with different marks, although var
TQREADONLY T, and there is a coercion VALUEOF fromeither one to T

12.4 THE TYPE SYSTEM 25

2.4.4 Clusters and dot notation

It is convenient to associate with a type the procs supplied by its inplenentor for dea
val ues of the type. This is done by putting these procs into the type's cluster. The clu
bi nding which is part of the type value (the predicate is the other part). There are no
about what goes into the cluster. However, there is a special dot notation which makes
to populate T's cluster with procs which take a T as their first argunment. The usual eff
this: t.nis sugar for Di.n[t], and t.n[other args] is sugar for Dt.n[t, other args].

For exanple, if t has type T, and a proc [T, INT] _[Boo] is in T s cluster under the nane
the proc can be applied by an expression like t.P[3], which is sugar for Dt.P[t, 3]. Tt
| ooked up only in T's cluster, not in the current scope. If Q@ [T]_[INT] is also in the c
be applied with t.Q which is sugar for Dt.Q[t].

The general rule that makes this work is the following: t.n is sugar for rLooupc] D, $n][t
Looxkupc] Dx, $n] is just Dt.n, except that if Di.n is a proc that takes several argunents,
into a proc that takes the first argunent and returns a proc taking the renaining ones.
Loxupc[Dx, $n][t] will be a proc taking the renmining argunents, and t.n[other args]=LoxXU
$n][t][other args] will be the sane as Dt.n[t, other args].

Dot notation can also be used to obtain values froma binding or fromthe cluster of at
any application: T.P would be the proc naned P in the previous exanple. The possibl e cast
notation in current Cedar are described in detail in T4.14.

Restriction: There is currently no way to explicitly construct clusters. The built-in ty
constructors have clusters; they are described in detail in 4. In addition, there is a
provide a cluster for an opaque or record type in an interface: every proc nanme in the
put into the type's cluster. For a record, the procedures supplied by the record constru
in the cluster, and they win if there are nanme conflicts. There is one of these clusters
in each inported interface value; if a nodule inports nore than one value of the sane in
however, there are severe restrictions (see 13.3.3).

2.4.5 Decl arations

A declaration is the type of a binding. Thus, the binding [x~3, y~3.14] has the type of
INT, y: REAL]. All the rel ationships anpbng types, and between types and val ues, are carrie
el ementwi se to decls and bindings; the el enents are matched up by name rather than by po
A decl itself sinply has the type DECL.

A decl is made up of two parts: the nanes or pattern, and the types. The basic operation
maki ng decls, MWDECL, takes a pattern and a type. Thus MDECL[PATT[x, y], INTXREAL]=[x: INT,
REAL]. In general, a pattern is one of NL, a sinple nane, or a pair of patterns, just |il
expression. Simlarly, a type argunent to MKDECL i s one of NL, a type, or a cross type. T
nmust deconpose in a way which matches the pattern. Nornally, as in Lisp, we deal only in
patterns, where the first elenent of a pattern is always a nane. Such flat patterns are
denoted by constructors of the form|[x, y, ...]. The reason for defining things in terns
that it makes it nuch sinple to wite down precise rules for the semantics, using struct
i nduction on the val ues.

The main use of a decl is to type-check a binding. The basic binding constructor is MBIN
where d is a decl and e is matching group or binding. If e is a binding, then its struct
nmust match the structure and names of d, and each el enent of e nmust have the type denand
t he correspondi ng conponent of d, after a possible coercion. Thus MBINDD[[x: INT, y: REAL]
y~3.14] 15[x~3, y~3.14]. This may seem pointless, but it has two inportant uses:

Such a binding is used to bind the argunent of a proc to the domain declaration. E
t hough the resulting binding is the sane as the argunent, the type-checking is ess

26 THE KERNEL LANGUAGE 2.3

There may be coercions involved, so that the resulting binding is not the sanme. Co
on the conponent values are discussed in 2.6.1. There are al so coercions on the &
itself, which can default missing elenents; these are discussed in 2. 3.6.

If eis agroup, it is first coerced to a binding by attaching the nanes fromthe decl
12.3.6. Thus in wsBINDD[[x: INT, y: REAL], [3, 3.14]] the second argunment is coerced to [x
y~3.14], and things then proceed as before.

Bi ndi ngs may al so be used in LET expressions. Here the types are often redundant, and it
to use the BINDP primtive to bind the value directly to a pattern. The syntactic type ¢
is the decl whose type is the syntactic type of the value. Thus [x~3, y~3.14] is short fi
M<BI NDP[PATT[x, y], [3, 3.14]]; its syntactic type is MDECL[[X, y], D[3, 3.14]]=mpeCL[[X, VY.
INTXREAL] =[x: INT, y: REAL].

A decl Din a block is interpreted sonewhat differently. It becones the argunent of the
primtive, which turns the type of the decl D.T into the correspondi ng VAR type VT=D. T. MKV,
al l ocates a new value v of type VI, and nmakes the binding meINDP[D. P, v] over the scope o
bl ock. Thus

{x: INT; y: REAL; S}
becones

LET [x, y] ~[VAR INT, VAR REAL] . NEW IN S
Here D=[x: INT; y: REAL], VT=[VAR INT, VAR REAL], and v=[VAR INT, VAR REAL] . NEw Note t hat
the types might have defaults, which are used to initialize the values as part of the ne

Actually this is a bit oversinplified, since NewRAME has to separate the bindings in the
the decls, construct the variable binding just described fromthe decl, and then conbine
bi ndi ng fromthe bl ock. Thus

{x: INT; y: REAL; z~TRUE; S}
becones

LET [X, ¥y, z]~([VAR INT, VAR REAL].NEW PLUS [TRUE]) IN S
or nore readably

LET X~VAR INT, y~VAR REAL, z~TRUE IN S

Anomal y: In Cedar the nanes in a block are introduced recursively, so that the ds and b
to each other. It is possible for a binding or type to refer to a val ue which has not ye
initialized, with undefined results. See 13.4.1 for a further discussion of this point.

2.4.6 C asses

Anot her inportant use of a declaration is to characterize the cluster of a type. Since t
just a binding, it is characterized by its type, which is a decl. Wen used for this pur
called a class. See 4.1 for further discussion of classes, and an enuneration of the pr
of Cedar.

2.5 Prograns

This section describes how nmeaning is assigned to kernel prograns.

2.5.1 Structure of prograns

A kernel programis an expression, which is either atomc (a nane or literal), or is an
whi ch invol ves sub-expressions: the proc being applied, and the argunents. The concrete
treats certain kinds of expressions specially: nodules, blocks (which introduce new vari
return no value), and statenents (which return no value). Al desugar into sinple expres
however, and are treated identically in the kernel

12.5 PROGRANMS 27

2.5.2 Names

A nane is a part of a programwhich usually serves to denote a value. There are two cont
whi ch the occurrence of a name n denotes a val ue:

It may occur as an expression. Then n denotes the value bound to it in the scope
t he expression appears (see 12.5.4 for details).

It may occur after a dot, as in e.n. Then the expression e.n denotes the binding fc
supplied by e (see 12.4.4 and 4.14 for details):

the value bound to nine, if e is a binding;
t he value bound to nin the cluster of e, if e is a TYPE
roughly (De).n[e] otherw se.

There are also two defining contexts for a name n (see 12.5.5 for details):

It may occur before a ~ in a binding constructor, as in n~e. The value of e is the
bound to n in the binding denoted by the constructor (see §2.3.5 for details).

It nmay occur before a : in a declaration constructor, as in n: t. The value of t i:
n in the declaration denoted by the constructor (see 12.4.5 for details).

These constructors are usually recursive in Cedar; that is, the expression n el sewhere
constructor denotes the value bound to n in that constructor; see 12.5.6 for details. Ir
they are non-recursive unless preceded by ReC

A nane is not a value, but there are values of type ATom which are related to nanes. An a
a print nanme which is a rope (an inmnutabl e sequence of cHAaRs). A name following a $ is an
literal; $n denotes the atomw th print nane n. Other properties of atons are descri bed

Caution: Current Cedar has several conplications in its treatment of nanes:

«In an argBinding?, n: e may be witten instead of n~e. The syntactic context dist
this froma declaration, but this usage is not recomended.

An argBinding is not recursive: in {a~1l; f[a~3, b~a+l]} b is bound to 2, not to 4.

The declaration in an inport list is non-recursive: IMPORT Mis short for IMPORT M

and the second M denotes its binding in the currounding scope (i.e., the binding s
by the DIRECTORY). Inside the body of the nodule, of course, M denotes the inported

par anet er.

Names whi ch appear in an enumerationTC™ are treated specially; see 14.7.1.1 for d

2.5.4 Scope

A scope is a region of the programin which all nanes retain the sanme neanings (note tha
nanes denote variabl es, which can change their values in the sanme scope, but each nane c
to denote the sanme variable). In the kernel there are only three constructs which introd
scope, |, LET and ReC. In current Cedar, these are sugared in a variety of ways: nodul es,
lists, proc bindings, blocks, exit |abels, open, iterators, safeSelects and withSel ects.
strai ghtforward desugarings, however

2.5.5 Constructors
The kernel has constructors, denoted [...], to nake expressions which denote group, dec
bi ndi ng val ues nore readable. There is one flavor of constructor for each class:

A binding constructor is a list of binding elenents (b in the kernel syntax) of th
or d~e. The presence of the ~ distinguishes it fromthe others. Here d is a decl el

28 THE KERNEL LANGUAGE 2.3

(not a declaration), and p is a pattern, in which the nanes are being defined rath
eval uat ed.

A decl constructor is a list of decl elenents (d in the syntax) of the formp: t.
of the : without any ~ distinguishes it fromthe others. Again, pis a pattern

A group constructor is a list of expressions. Note that decl and binding el enments
expressions, although constructors are expressions.

Constructors are useful for making decls and bindi ngs where the nanes are literal. This

normal case, and in fact the only case in current Cedar. If you want to make them out of
decls, for instance to bind an expression to a decl which is tha value of a name dn, you
constructor; [dn~e] would bind the value of e to the name dn, not to the decl which is it
You have to wite the decl-constructing primtive directly: MWpeECL[d, €].

The only kinds of constructor you can wwite in current Cedar are:

Decl constructors for proc donmins and ranges, and for records and unions (fiel ds*
synt ax) .

Bi ndi ng constructors for argunents in an application, or as an expression alone if
or array value is needed (argBinding? in the syntax).

2.5.6 Recursion

In the kernel, you get recursive definition of nanes only if you wite REC (Oor the unsuge
FIX) explicitly. In Cedar, on the other hand, decls and bindings are nornally recursive,
ar gBi ndi ngs and inmport |ists.

The recursion is legal in a block or interface body (although anonmalies are possible in
when nanes are used before they are defined; see 13.4.1). In fields it is illegal

2.6 Conveni ences

2.6.1 Coercion

A coercion is a proc which is automatically applied under sone circunstances to nap a va
one type T (called the source) to a value of another type U (called the dest), e.g. from
Coercions are obtained fromthe clusters of the types involved. The coerci on nechani sm a
new functionality, since the progranmer could always wite the applications hinself, but
i mportant in concealing sone of the distinctions made by the type system when they are d
rat her than hel pful

There is exactly one (desugared) context in which a coercion is applied: when an express
syntactic type T appears as an argunent in an application which expects a value of type
nmeans that there is a binding n: U-e. Since nearly all Cedar constructs are desugared to
coercions are widely applicable. The only (desugared) context in which there is no coerc
the first operand of dot, since in that case the cluster of the operand is used to inter
which is the second operand. Thus in the expression e.n, it is always De, the syntactic t
is used to look up n, regardless of the fact that this expression nay appear as an argumn
paranmeter of type U If e is not a type or binding, however, then e.n desugars to P[e], v
P=LookupC] De. Cluster, $n],and in the application of P, e does appear as an argunent and car
coerced. Usually the cluster for Tis set up with procs which take an argunent of type T
dormain of P is De and no coercion happens. This isn’t always true, though; a subrange T «
inherits the arithnetic procs of INT, for exanple, and there is a coercion fromT to INT V
is applies.

12.6 CONVENI ENCES 29

If TgUu it is sonmetimes natural to think in terns of a coercion fromT to Uthat is inpler
the identity function. In fact, inplication is stronger than that, since it propagates t
type constructors, including PRoc, when coercion does not. Inplication is discussed in |-
14.12.

There is a rather general rule for finding coercions fromthe clusters of types, though
much practical inmportance in current Cedar, since there is no way for the user to define
The rule goes like this. Each cluster may have a Fromitemand a To item T.From should c
pairs with type [tag: ATOM proc: T_U, and T.To of pairs with type [tag: ATOM proc: U T].
the tags for the nonent. Consider the binding n: U-e, where De=T, and Tgu is false. For e
proc Pin T.Fromor UTo we try n: U-P[e].

If PP TVisin T.From it mps e to a value of type VvV, and we have to bind n: U-P[
vgu we are done; otherwi se we can recurse on this sub-problem

If P. VUis in UTo, we have to bind m v~e. If Tgv we are done; otherw se we can
recurse on this sub-problem

The whol e process fails if no path of coercion procs takes us fromT to U The search ca
when all paths have been explored, and a particular path can be abandoned when a type ap
on it for the second tine. Since the search is done statically (by the conmpiler), and si
of an attenpt to coerece T to U can be cached, the time required for the search is not a

There are two obvious difficulties with this schene. First, it may transform erroneous a
into | egal ones, but coercing an argunent is ways not intended by the programrer. Second
t han one path of coercion procs may exist, and different paths may give different result
second difficulty can be avoided, and the first nminimzed, if every coercion proc Pis c
it has a (partial) inverse, and P[P{x]=x for all x in P.powaN. This says that a coerci«
| ose information, and that different paths give the sane answer. Sonetinmes this is not f
for the narrowing coercion fromiINr to [0..5). The following rule gives the builder of cli
over proliferating coercions:

If two procs on a coercion path have non-nil tags, they nust have the sane tag.

In general, coercions that don't |lose information can have NL tags, and others shoul d he
t ags.

The coercions in current Cedar are described in 74.13. Al have NL tags, and none | oses
i nfornmati on except the subrange narrowi ng. Note that coercions extend conponentw se to g
and bi ndi ngs.

2.6.2 Exceptions

The basic i dea behind exceptions is to extend the val ue space, so that it includes not o
val ues, but also a set of exception values. An exception value has the special property

it appears in an application, it becones the value of the application, so that it propag
t hrough the control stack of the programuntil it finally abecones the value of the who

O course this isn't always what is wanted, so there is a special HDE construct which is
ordinary application, but takes its argument value, ordinary or exception, and bundles i
record which is a nornmal value. Then ordinary code can be used to test for the exception
appropriate action. This construct is sugared to give distinctive ways of catching an ex
kernel with Bur (12.2.4), and in Cedar with ENaBLE, EXITS and REPEAT (Y 3.4.2). Cedar has tv
ki nds of exception: coro | abel s and ERRORs, whi ch nmust be raised and caught separately, an
slightly different semantics.

The main point of this treatnent is that it does not require continuations or any other
expl anati on of how control is transferred to catch an exception. The view is that except
sinply a convenience feature; the sane job could be done by returning a slightly |arger
each proc, with an appropriate status code.

30 THE KERNEL LANGUAGE 2.3

An exception consists of a code and an optional argunent value. The type of the code is

where T is the type of the argunent which does with it. coro | abel s al ways have enpty arg
The argunment is a way of passing sone information along in addition to the identity of t
exception.

A proper treatnent of exceptions in the type systemwould require that each proc range
the exceptions that can emerge froman application of the proc. In fact, this is not req
possi ble in current Cedar

Cedar al so has signals, which historically were viewed as a kind of exception but now ha
different interpretation, as a way of obtaining dynam c rather than static scoping for n
are discussed in 713.4.3.1.

2.6.3 Finalization

This subject is discussed in 713.4.3.1.

2.6.5 Concurrency

This subject is discussed in 714.10, where the Cedar facilities for witing concurrent pr
given. Witing good concurrent prograns, or even correct ones, is another matter, which
the scope of this manual to nore than hint at. Unfortunately, an adequate reference is |

2.7 M scel | aneous

The different kinds of allocation are discussed in §4.5. Static values are defined in .

2.7.1 Pragnas

A pragna is a construct that does not change the neaning of the program except perhaps
sonething illegal which was |legal without the pragna. Its purpose is to affect the inple
generally by requesting optim zation to favor one criterion over others. The pragmas in
Cedar are:

INLINE, which causes a proc body to be expanded inline when it is applied. See 3.5
detail s.

PACKED, whi ch causes array conponents that fit in 8 or fewer bits to be packed, and
expense of nore expensive code to access them

CHECKED, Wwhi ch forbids application of unsafe procs in a block, and adds runtine chec
for sonme primtive procs which are otherwi se unsafe (in particular, narrowing to a
and assigning a proc).

PRI VATE, whi ch forbids access to itens in an interface or instance except to nodul e:
EXPORT (Or SHARE) it.

MACHI NE DEPENDENT, Wwhi ch all ows positions of record fields and representati on val ues -
enuneration el enents to be specified (strictly, it is the absence of MCH NE DEPENDEN
that is the pragm)

12.8 RELATI ONS AMONG GROUPS, TYPES, DECLARATI ONS AND Bl NDI NGS 31

2.8 Rel ations anong groups, types, declarations and bi ndings
Cedar has are four closely related basic ways of building product values fromsinple va
given precise meanings in 12.2.1 and 12.2.2):

a group is sinply an n-tuple of values (see 12.3.4);

a X-type is the type of a group (if x: T and y: Uthen [x, y]: TXU) (see 12.4.5);

a binding is an n-tuple of [nanme, value] pairs (see 12.3.5);

a declaration is the type of a binding, an n-tuple of [nanme, type] pairs (see 2./

Figure 21 illustrates the relations anong these kinds of objects. In current Cedar nobst
obj ects can be constructed and nmani pul ated only as interfaces and instances. In the kern
nodel ler, all of themare first-class citizens. The prinitives which go between themare
12.2.

[a: T,~e,, br T, ~e[[a: T, b T] [a: TYPE-T, b: TYPE~T,]
bi ndi NgXwei noo = eoorp - xdecl W ores ™ sroo —xbi ndi ng wi th nanes
N MKBI NDP MKDECL "V N MKBI NDP
| | ~ Dpoorp

| | [a b] pattern [
| | |
N

A BDOTV A DDOTT BDOTV
gr oup® X X-t Yy peW™wcross ™ cras "X gr oup wi t hout nanes
[e, eb] : T XT, [T, Tb]
val ues types types as val ues

Figure 21: Relations anpng groups, types, bindings and decls

2.9 Inconpatibilities with current Cedar

Most of the syntax is current Cedar is an extension (or sonmetimes a restriction) of kern
There are a few things that have different nmeanings in the kernel, however, and these ar
sources of confusion:

Type expressions in Cedar do not have the sane syntax as ordi nary expressions and
appear in the same contexts, for the follow ng reasons:

The use of adjectives for variants (red Node).

The use of _ for specifying a default value for a type vs its use for assign

The use of {} for enuneration types vs its use for a bl ock

In addition to witing n: t~e for a binding, you can also wite n: t=e (in a nodul e
or block) and n: e (in an argBinding). The nmpbst unfortunate consequence is that a
argBi nding can |l ook |ike a kernel decl constructor!

Target type overloading for enuneration identifiers (red instead of Color.red or $r
uni on constructors ([rator~$plus, rands~binary[...]]) is inconpatible with the kerne
rul es for the neani ng of nanes.

It is now possible to avoid all the conflicting constructs except the relatively harnles
defaults, {} for enuneration, and union constructors.

32 SYNTAX AND SEMANTI CS 13

Chapter 3. Syntax and semantics

This chapter gives the concrete syntax for the current Cedar |anguage, together with an

expl anati on of the neaning of each construct, and a precise desugaring of each construct
kernel |anguage defined in 2. The desugaring, together with the definitions of the kerr
primtives used in it, are the authority for the nmeaning; the informal explanation is ju
readi ng pl easure. However, paragraphs begi nning Anonmaly or REstriction docunment properti
Cedar not captured in the desugaring. The primtive procs and types of Cedar are specifi

In addition to the granmar rul es and desugaring, there are exanples for each construct.

intended to illustrate the constructs and do not form a neani ngful program The Cedar M
| onger exanpl es which do sonmething interesting, and also illustrate the use of the stand
packages.

There are several sunmaries which nay be useful as references:

A two-page summary of all the syntax, desugaring and exanples in this chapter
(CLRVMBUMM pr ess) .

A one-page sumary of the full syntax (CLRWVFull Gram press).

A shorter and less cluttered sunmary of the syntax for the safe | anguage; it also
nunber of constructs which are obsolete or intended only for efficiency hacking
(CLRVBaf eGram press) .

The chapter begins with a description of the notation (Y3.1) The next sections deal syst
with the rules of the grammar, explaining peculiarities of the syntax and giving the sen
913.2, rules 56-61: The lexical structure of prograns.
13.3, rules 1-5: Mdul es
13.4, rules 6-10: Blocks, OPEN, ENABLE, EXITS.
13.5
13.6, rules 14-18: Statenents.
13.7, rules 19-27: Expressions.
13.8, rules 28-35: Conditional constructs: |IF and SELECT.

, rules 11-13: Declarations and bi ndi ngs.

13.9 treats various mscellaneous topics. Y4 deals with the syntax and semantics of typ

The order of the granmar rules is:
nmodul e, bl ock, declaration, statenent,
expression, conditiona
type,
name, litera
and top-down within these.

13.1 NOTATI ON 33

3.1 Notation

This section describes the notation used in the grammar, the desugaring, and the comment
this chapter.

3.1.1 Notation for the granmar

The grammar is witten in a variant of BNF

Bol d parentheses are for grouping: (interface | inplenentation).

I[tem| item nmeans choose one.

?item neans zero or one occurrences of item

item ... neans zero or nore occurrences of itemseparated by ";". The separator nay al
ELSE, IN, or OR, or it may be absent. If the separator is ";", a trailing ";" is option
item !.. is just likeiteny ... but there is at |east one occurrence.

A terminal is a punctuation character other than bold_()?|, or anyachardctar underli net

SMALL CAPS. Note that [] and {} are terminals, and do not denote optional occurrence and repetition as the
ot her variants of BNF.

The rul es are nunbered sequentially.
Speci al synbols mark constructs with special properties:
, =unsaf e;
* =0bsol et e;
» =machi ne- dependent ;
=effici ency hack.

The grammar is witten so that a non-term nal never expands to the enpty string. \When an
of arule is optional, that is always indicated explicitly by "?" or "..." .

The following non-ternminals are so basic to the |anguage and so frequently used, that th
represented in the grammar by abbreviations:

b=bi ndi ng13

d=decl ar ati ont!

e=expressi onld

n=nane56 (identifier)

s=st at ement 14

t =type36
I’mafraid this means that you nust |earn the nmeaning of these six abbreviations in orde
t he grammar.

Wth the exception of these abbreviated non-term nals, each use of a non-termnal is cro
referenced with a small superscript nunber59, unless the non-terminal is defined in one c
fewrules. If a non-terminal (other than e, t or n) is used in nore than one rule, then
that use it are listed in a cooment after its definition

Except for the entries in Table 31, a terminal synbol appears in only one rule. These dt
do not lead to anmbiguity. In nost cases they are harm ess, since the synbol has essentia
meani ng in each case, and the rules are separate only for greater readability, to highl
use of a construct, or for historical reasons. In sone cases, however, the symbol has qu
neanings in different rules. These are marked on the left as foll ows

e The rules narked with are obsolete and shoul d be avoi ded.

6 In the rules marked with * the synbol has a different neaning than in the others,
confusion is quite possible. The programrer shoul d bear these cases in mnd

0 Inthe rules marked with * the synbol has a different neaning than in the others,
context is sufficiently clear that confusion is unlikely.

A superscriptxn indicates that the termnal is repeated n tines in that rule.

34 SYNTAX AND SEMANTI CS 13

Synbol s Rul es Expl anati on
o () 19, 25, *51.1, *5&pr, subrange, *position in record or enuneration
[] 19, 25, 37, 43, &dinstructor/built-in/funnyAppl, subrange,
application, e<typeNarme, fields, ndFields
o {1} 2, 6, 8, 13, *54 interface body, block, enable, machi ne code,

*enuner ati onTC
, 2,3, 6, 7, 9, 17se@Tote in §3.2.
29, 30, 32, 34, 35, 43,

51, 52
; 6, 8, 10, 17, 27ske 8Ote in 73.2.
33, 35
0 1, 2, 3, 5, «7, lintrd&duci ng nanes with types, except *51.1=position,
. 18, <27, 33, <34, Bdgpen, <27=argBi nding «34=withSel ect
*51.1, 53
. 19, 37 dot notation for e is repeated for types
0o .. 25x4 *51.1 subrange, *positionto
* 21, *53 infixQOp, *tag
+ 21, 58 i nfi xCp, exponent
20, 21, 58 prefixQp, infix0Op, exponent
e = «13, 22 *bi ndi ng, infixOp
=> 6, 9, 17, 31, 33,eX%,s52nable, repeat, select choicesx4, unionTC
6 14, 16, 18, 21, *$5 e STATE, iterator, e, *defaultTC
0o ~ 2, 3, 13, 20, *22,nt&7 ace, i npl enentati on, b, argBi ndi ng, *unaryQOp, *rel O
~~ 7, 34 open, w thSel ect
6 ANY *9, 40, 43 *enabl e, variabl eTC, fields
6 CODE *13, 23 *new exception, convert t to e
ENDCASE 31, 52 sel ect endChoi ce, unionTC
0 ERRCR *19, *24, 41.1 *expression, *funnyAppl, transferTC
| MPORTS 2, 3 i nterface and i npl enentation
IN 18, 22 iterator, rel Op
LONG 38x2, 45.1, 48 cardi nal /unspeci fi ed, pointer, descriptor
NOT 20, 22 prefixQp, rel Op
* NULL 14, <27, <52, <55tatenent, eargBinding, cunionTC, edefaultTC
PACKED 44, 45 array, sequence
SELECT FROM 29, 32, 34, 52 selectx3, unionTC
SHARES 2, 3 interface and inplementation
0 SIGNAL *24, 41.1 *funnyAppl, transferTC
TRASH 27x2, 5bx2 ar gBi ndi ng, defaultTC
TRUSTED 6, 13 bl ock and machi ne code
6 USING 1, *5 directory, *locks
0 WTH *32, 34 *saf eSel ect, w thSel ect

Table 31: Termi nal synbols appearing in nore than one rule

3.1.2 Notation for desugaring

The right-hand colum is desugaring into the Cedar kernel |anguage, or in a few cases in
coments describing the nmeaning in English. This is a purely textual transformation; i.e
on the text of the program not on the values. The rewiting is done one rule at a tine;
step of rewiting involves elenents fromexactly one rule. The desugaring is specified b
informal but straightforward rewiting rules, in which:

An occurrence of a non-terminal (witten in bold) denotes the text produced by tha
termnal in the gramar rule.

A| reflects a corresponding alternation in the grammar rule, ? reflects a corresp
optional itemin the grammar rule, and (bold parentheses) are for grouping as in a
rule. As in gramar rules, literal parentheses are underlined.

13.1 NOTATI ON 35

Everything else is taken literally.

An underlined non-ternimathe right colum neans that the desugaring specified for that n
term nal nust be done in order to obtain a legal program Oherw se the transformations
done in any order, yielding a |l egal program at each step

Every occurrence of e (expression) and t (type) in the desugaring is inplicitly parenthe
t he desugared program parses as the rewiting rule indicates. To reduce clutter, these p
are not witten in the desugaring rules.

For type options |ike PACkeED, the desugaring of the construct in which they appear is a ¢
built-in a type constructor which takes a correspondi ng Boo. argunent defaulting to FALSE
attribute is present, the argunent is supplied with the val ue TRUE

Exanpl es: the followi ng rule for subranges:

subrange ::= (typeNanme |) (
(le .- el LN, .. e) (typeName | INT).MsUBRANGE ([e,, (e, | €, PRED)])
(_(e, .. eyl |.(9,)) [e;.succ, (e, | e, PRED)

gener ates these desugari ngs

Index [10 .. 20] | ndex. MKSUBRANGE[10, 20]
Index [10 .. 20) | ndex. MKSUBRANGE[10, 20. PRED]
(1 .. 100) I NT. MKSUBRANGE[1. succ, 100. PRED]

Names introduced in the desugaring are witten with one or nore trailing prine ("(") cha
Such nanes cannot be witten in a Cedar program and hence they are safe from nane confl
The desugaring is constructed so that the ordinary scope rules prevent nultiple uses of
from bei ng confused

3.1.3 Notation for the comentary

Each section of the conmentary begins with grammar rul es, desugaring and exanples for pa
the I anguage. It continues with text which explains the nmeaning of the constructs. Gener
meaning is fairly clear fromthe desugaring, and this text is short. For blocks and espe
nodul es, however, there are many non-obvious inplications of the desugaring, and a nunbe
restrictions; these constructs have a | ot of explanatory text.

Sone kinds of information are put into specially nmarked paragraphs, which begin with one
following italicized words:

Anonmal y: the neaning of this Cedar construct is not explained by desugaring into t
kernel, but by the special rule given here.

Caution: here is an inplication of the definition which m ght surprise you
Performance: facts about the time or space required by sone construct.
Representation: the values of a data type are represented in terns of other types

Restriction: a construct is not fully general, and will cause a static error unles
additional conditions stated here are satisfied.

Styl e: advice about good Cedar style.
Synbols witten in SANS-SERIF SMALL CAPITALS are in the kernel but not in current Cedar. The

superscript notation used to cross-reference non-termnals in the granmar is al so used
exanpl es, usually to point to a rule whose exanple introduces a nane.

36 SYNTAX AND SEMANTI CS 13

3.2 The lexical structure of prograns

56 Name ::= letter (letter | digit)...-- But not one of the reserved words in Table 32.
s7literal ::= nuhd(|B)D?num) | -- INT literal, decinmal if radix onmtted or D, octal
digit (didiBdBER ... |H)H?num| -- INT literal in hex; must start with digit.
?num . num ?exponent | -- REAL as a scaled decimal fraction; note no trail
num exponent | -- Wth an exponent, the decinmal point may be omtt
" extendedChar | « digit !.. C -- cHAR literal; the C formspecifies the code in oc
" extendedChar ... |" ?-L [(" extendedChar), ...] -- Rope.ROPE, TEXT, Or STRI NG
$n -- AToM literal.
58 exponent ::f&(B(+ |) num -- Optionally signed deci mal exponent.
59 num::=digit !..
60 ext endedChar ::= space | \ extension | anyCharNot’"Or\
61 extension ::=digit, digit, digit, |-- The character with code digit, digit, digit, B. |
ZINLB L0t (n.B | -- CR, '\015 | T1AB, '\ 011 | BACKSPACE, '\010 |
B Loty o qft N -- FORWFEED, '\ 014 | vLINeFeep, '\012 | ' | " | \
Exanpl es
m x1, x59y, |ongNaneWthSeveral Wbrds: |INT;
n: INT~1+12D+2B3+2000B -- = 1+12+1024+1024
+1H+0FFH; -- +1+255
rl: ReAL~0.1+.1+1.0E1 -- = 0.1+40.1+0. 1
+1E1; -- +0.1
al: ARRAY [0..3] oF cHAR~['Xx, "\ N, "\', '\141];

r2: rRoPE~"Hell o.\N. ..\ NGoodhye\F";
a2: Atom-$Nanel nAnAt onli t er al

The main body of the grammar (rules 1-55) treats a programas a sequence of tokens. Rule
give the syntax of npst tokens. A token is:

e« Aliteral5’. Mre information about literals of type T can be found in 74, as part
treatment of type T.

e A nane5, not one of the reserved words in Table 32. Note that case is significant
nanes.

e Areserved word, which is a string of uppercase letters that appears in the list o
words in Table 32. A reserved word may not be used as a nane, except in an ATOM
literal.

e A punctuation synbol: any printing character not a letter or digit, and not part o
t he two-character sequences below. The |egal punctuation synbols in prograns are:

te#$~* +=1 () {yol -~y 0", . <>

The following Ascl characters are not |egal punctuation synmbols (and nmust no
appear in a program except in an extendedChar 60):

% &\ ?
Not e that Cedar uses a variant of asci which includes the characters _ (instead)o&ntdhe& under bar
(instead of the circunf).exNote al so that the character witten here is the asci mnus character, code

55B, and not any of the various dash or typographer’s mnus characters with other codes, which are not
standard asci set.

THE LEXI CAL STRUCTURE OF PROGRANMS 37

e One of the follow ng two-character synbols (used in the grammar rul es indicated):
~= not equal 22

<= | ess than or equal 22
=< not |ess than22

>= greater than or equal 22
~> not greater than22

=> choosess, 17, 30, 31, 33, 35, 52

- subrange construct or 25, 51.1
- bi nd by nanesé. 34

38 SYNTAX AND SEMANTI CS

13

ABS

ALL

AND

ANY
ARRAY
ATOM
BASE

BEG N
BOOL
BOOLEAN
BROADCAST
CARDI NAL
CEDAR
CHAR
CHARACTER
CHECKED
CODE
COVPUTED
CONS
CONTI NUE
DECREASI NG
DEFI NI TI ONS
DEPENDENT
DESCRI PTOR
DI RECTORY
DO

ELSE
ENABLE
END
ENDCASE
ENDLOOP
ENTRY
ERROR

EXIT
EXI TS
EXPORTS
FI NI SHED
FI RST
FOR
FORK
FRAME
FREE
FROM
GO
Goro

I F

I MPORTS
I'N

I NLI NE
I NT

I NTEGER
| NTERNAL
| STYPE
JAON
LAST
LENGTH
LI ST
LOCKS
LONG
LOOP
LOOPHOLE
MACHI NE
MAX

M N

MOD
MONI TOR

MONI TORED
NARROW
NEW

NI L

NOT

NOTI FY
NULL

OF

OPEN

OR
ORDERED
OVERLAI D
PACKED
PAI NTED
PO NTER
PORT
PRED

PRI VATE
PROC
PROCEDURE
PROCESS
PROGRAM
PUBLI C
READONLY
RECORD
REF
REJECT
RELATI VE
REPEAT
RESTART
RESUME
RETRY
RETURN

RETURNS
SAFE
SELECT
SEQUENCE
SHARES
SI GNAL
Sl ZE
START
STATE
STOP
STRI NG
succ
TEXT
THEN
THROUGH
TO
TRANSFER
TRASH
TRUSTED
TYPE
UNCHECKED
UNCOUNTED
UNTI L
USI NG
VAl T

VHI LE

W TH
ZONE

Table 32: Reserved words and predefined nanes

The programis parsed into tokens by starting at the begi nning and successively taking f
front the | ongest sequence of characters which forns a token according to the rul es abov

di scardi ng any numnber of
The whitespace characters are space,

initial

t ab,

al so treated as a whitespace character

A coment

A sequence of characters beginning with --,

is one of:

whi t espace characters or coments.

and carriage return.

and ending either with -- or with a carriage return
A Tioga node with the conment property.

Not e that whitespace and coments are not tokens,

are token delimters, and hence cannot appear in the niddle of a token

thus do not affect the neaning of the program except:

When they delimt a token.

Wthin a cHAR literal
"\ 040, and
am - - not - -

"
i s equal

a ROPE literal,

to "I\Nam --not--"

not containing --

A Ti oga node bounda

or a carriage

but may appear before or after any tok

Whi t espace and c

where they are taken literally. Thus i S

and different from"I\Nam".

13.2 THE LEXI CAL STRUCTURE OF PROGRANMS 39

Both reserved words (Table 32) and nost nanes with predefined nmeanings (Table 45) are m
up entirely of upper case letters. They should not be rebound by the program in sone bu
cases the conpiler forbids their rebinding. All are at |east three characters | ong excep

fol | owi ng:
DO G IF IN OF R TO

A note on lists of itens and their separators:

Sem -colons are used to separate declarations, bindings and statements in a bodyl0,
separate choices in a select statenent29 32 34 or in an exits6é. 17 or enables 27.1,

Commas are used to separate declarations in fields43 5. (i.e., in a proc domain or
recordTC or a unionTC), bindings in an application2?” or an open’, choices in a sele
expression?29, 32,34 or in a unionTC?2, expressions in a choice6. 9 17,30, 35 52 = jtens i

exports or shares lists2 3.

In general these sequences may be enpty, and an extra separator at the end is harm ess w
is sone kind of closing bracket, except when the sequence is bracketed with [].

The braces which delinmt a blocks, interface body2, choices in an enabl e8, or MCH NE CODE
may be replaced by BEGN and END reserved words. BEGN replaces "{" and END replaces "}". |1
one brace is replaced, its matching partner nmust al so be replaced. The braces delimting
enunfC#4 may not be replaced by BEGN and END.

3.3 Modul es
1 nodule ::= DIRECTORY (ng (@ TYPE (n [X [(ny, : ((TYPE N | TYPEN) | TYPEN), ...] IN
?(usinG LEN (ny~RESTRXT) NG, [$n; ... 1]),
(interface | inplEenemtetfiace)| inplenentation)
2interface ::=n_ !.. © 7?CEDAR DEFINTUENSI (~[n_: INTERFACETYPE[[n_, ...]]] IN (inports | |
?locks (imports |) ?+(SHARES n_, ...-)- SHARES al | ows access to PRI VATE hanes in n..
~ ?eaccess!2 { ?open’ (d | b); !.. }LET REC n_~open [?(l(~locks,) (d | b), ...] IN MW
sinplementation ::=n_: 7?CEDAR LET r(~REC [(n_ n) , ... , FRAME TYPE N,
N.; FRAVE, CONTROL! PROGRAM
?safety (PROGRAM ?dr Type42 | IN (imports | I=>r() IN
MONI TOR ?2dr Type42 (|| (aclks)odk: MONI TORLOCK IN LET_ Il (I LOCK) IN | 1))
(inmports |) LET b(~NEWPROG NSTANCE[bl ock . UNCONS IN
?(EXPORTS n,, ...) [(ng~BiNnDDFROM N, b(]), ... , FRAVE=NKI NTTYPE[bl «
?e(SHARES n_, ...) n~b(, contrRoL~b(.n] where the block body is
~ ?eaccess!2 bl ock . [C] (| I(~locks,)) (d | b), ... , n: PROGRAM
sgainmports ri=aworts ((n,, ¢ |) n,), [(neande, 3.]=>r(INLET (N, | N)~ N, PLUS N .
4 safety ::= SAFE | UNSAFE --In 3, 41.

5 locks ::= Loxs e ?(USING n; t) 2 [n, 2 t]) IN€

40 MODULES 13.3

Exanpl es
DI RECTORY -- For Bufferinpl bel ow.
Rope: TYPE USING [ROPE, Conpare], -- There shoul d al ways be a usinG cl ause

CIFS: TYPE USING [OpenFil e, Error, Opens; f eadlinl ess nost of the interface is used
IO TYPE | OStream

Buf fer: TYPE - - or it is exported.

Buffer: DEFINTIONS ~
Handl e: TYPE~REF Buffer Obj ect;
Buf f er Obj ect: TYPE=ROpe. ROPE
New. PROC RETURNS[h: Handl e] ;
Get: pProf h: Handl e] ReTURNS[Buf f er Qbj ect];
Put: pProC h: Handl e, o: Bufferoject];

Bufferlnmpl: MoNNTOR [f: CIFS. OpenFile] -- |Inplenentati ons can have argunents.
Locks Buf f er. Get Lock[h] ~ -- Locks only in MONTOR, to specify
USING h: Buffer. Handl e -- a non-standard | ock.
IMPORTS Files: CIFS, 10 Rope -- Note the absence of semicol ons.
EXPORTS Buf f er -- EXPORTS i N PROGRAM Of MONI TOR.
~{ -- nodule body -- } . -- Note the final dot.

Modul es serve a nunmber of functions (which m ght perhaps better be disentangled, but are
Afile of text (Bufferinpl.nmesa), or its translation into object code (Bufferlnpl.bcd

The unit handled by the editor, nanmed in DF files and nodels, and accepted by the
conpil er, the binder, and the | oader.

A set of related structures (types, procedures, variables) which are freely access
other, hiding secrets or irrelevant information from other nobdul es.

A procedure which can accept interface types and bindings as argunents, and return
i nterface values as results.

The first two uses are not relevant to the | anguage definition, and are not discussed fu
The others are the subject of this section.

There are two kinds of nodules: interface nodules (witten with DEFINTIONS) and i npl enent
nodul es (witten with PROGRAM or MONITOR). They have the same header (except that interface
have no exporTs list); it defines the paraneters and results of the nodule viewed as a pr«
and specifies the name n_of the nodule. The bodies (following the ~) are different. Tabl

sunmari zes the structure of nodules and their types; it omts a nunber of details which
inrules 1-3 and explained in the text.

Exanpl e Modul e Modul e type Result Result type
DI RECTORY Rope, 1G Interface [Rope: TYPE Rope, 1Q TYPE | OhterfacegyPE Match
Mat ch: DEFINITIONS~{. . .fodul e _[TYPE Mat ch]
D RECTORY Match, Rope, 1 npl enmentatiof Match: TYPE Match, Export edmat ch
Mat chl npl ;' PROGRAM nodul e IO TYPE 1O, Rope: TYPE Ropastance
IMPORTS R Rope, I: 10 R Rope, I: 10 _[Match]

EXPORTS Match~{. ..}

Table 33: Interface and inpl enentati on nodul es

13.3 MODULES 41

The ensuing sub-sections deal in turn wth:

13.3.1: Mdules as procedures, and the interface or instance val ues obtai ned by ar
t hem

13.3.2: How nodul es are appli ed.

13.3.3: Module paraneters: the DRECTORY and IMPORTS |ists; USING cl auses.
13.3.4: Interface nodul e bodi es and interfaces.

13.3.5: Inplenentation nodul e bodi es; the EXPORTS |ist.

13.3.6: SHARES and access!2

The neani ngs of the other parts of a nodul e header are discussed el sewhere:
CEDAR in 13.4.4.

MONI TOR and Locks in § 4. 10.

3.3.1 Mbdul es and i nstances

A modul e is a proc which takes two kinds of argunents:

Interfaces, declared in the DRECTORY |ist. These argunents are supplied by the node
on the conpiler’s conmand |ine),

I nstances of interfaces, declared in the IMorTS |ist. These argunents are al so supj
the nodel (or in a config file passed to the binder, or inplicitly by the |oader).

13.3.3 discusses the types of these argunents and how they are declared. In addition, ar
i npl enentati on may take PRoGRAM arguments declared in the dr Type foll owi ng PROGRAM or
MONI TOR. These are ordinary val ues; they are discussed in 3.3.2. 1.

When a nodule is applied to its argunents, the resulting value is
For an interface nodule, an interface.

For an inplenmentation nodule, a binding whose val ues are instances:
one interface instance for each interface it exports;
one for the programinstance, also called a global frane;

one for the program proc derived fromthe nodule body (13.3.2.1), called
CONTROL.

This application cannot be witten in the program only in the nodel; it is described in

An interface (sonmetines called an interface type) is a type, as the |atter nane suggests
decl aration (obtained fromthe declarations which constitute the nodul e body), with an e
cluster that includes all the bindings in the nodul e body that don’t use decl ared nanes

the exanple, the Buffer interface (obtained by applying the Buffer nodule to the argunent
in its DRECTORY) has declarations for New, Get, and Put, and its cluster includes values f
and Bufferj ect.

An interface instance is a value whose type is an interface; such values are the results
instantiating inplenentati on nodules. In the exanple, Bufferlnpl returns (exports) an ins
Buf f er.

A programinstance or a global frame is a frame, as the latter nanme suggests, i.e., a bi
fromthe bindings and declarations of an inplenentati on (PROGRAM or MONITOR) nodul e body,
just like any proc frame (3.3.5). Nornally code outside the nodul e does not deal with t
directly, but only with the exported interface instances. In the exanple, Bufferlnpl expo
program i nstance for the nodul e and a CONTROL proc.

42 MODULES 13.3

In nost cases, there is:
Exactly one application of each nodul e, and hence exactly one interface or one ins
Only one nodul e which exports an interface.
Only one interface exported by a nodul e.

Only one argunent of the proper type for each nodul e paranmeter (13.3.3); hence it
redundant to wite the argunments explicitly.

When these conditions hold, there is a close correspondence anmong the follow ng four obj
an interface nodul g;
the interface it returns (since its argunents need not be witten explicitly);
the inpl ementation nodul e which exports the interface;
its instance (again, since its argunments need not be witten explicitly).
The distinctions nade earlier in this section then seemneedless; it is sufficient to s
the interface and i nplenmentation nodules, and identify themwith the files which hold th
nore conplicated situations, however, it is necessary to know what is really going on

In the exanple at the start of this section, Bufferinpl is an inplenmentation nodule with
par aneters

Four interface paraneters, declared in the D RECTORY: Rope, CIFS, 10 and Buffer.

Three instance paranmeters, declared in the IMPORTS: Files (of type CIFS), 10 (of type
and Rope (of type Rope). Since the instance paraneters are declared in an inner sco
i nstance Rope is the one visible in the nodul e body; the interface Rope is visible
header. The same is true for 10, but both the interface CFS and the instance Files
visible in the body.

When Bufferinpl is conpiled, the four interface paraneters nust be supplied, in the form
(compil ed) interface nodul es named Rope, CIFS, 10 and Buffer. When Bufferlnpl is instantiat
(normally by loading it), the three instance paraneters nmust be supplied, i.e. there nus
instantiated inpl enentation nodul es which export the Rope, CIFS, and 10 interfaces. Norna
there will be one of each, and the entire programw ||l consist of eight nodul es:

the interface nodul es Rope, CFS, 10 and Buffer;

i mpl enent ati on nodul es normal |y named Ropelnpl, CIFSInpl, 1O npl and Bufferlnpl, each
exporting an instance of the corresponding interface

The instantiated Bufferlinpl exports an instance of Buffer, which can then be used as a par
sone ot her nodul e.

3.3.2 Applying nodul es

A nodule is not applied to all its argunents at once. |Instead, the argunents are supplie
st ages:

A module is applied to its interface (D RECTORY) argunents by conpiling it; the resu
BCD (represented by a .bcd file). The bed is still a proc, with instance paraneters.
proc, a nodule can be applied to different argunents (i.e., different interfaces)
di fferent BCDS.

A BCD is applied to its instance (IMPORT) arguments by loading (or binding) it; the
a programinstance, together with any interface instances exported by the nodul e.
the BcD can be applied to different argunments (i.e., different interface instances)
di fferent instances. Indeed, because an instance may include variables, even two a
to the sane argunments will yield different instances.

These two stages are separated for several reasons:

13.3.2 APPLY!I NG MODULES 43

Al'l the type-checking of a nodule can be (and is) done in the first stage, by the
The only type error possible in the second stage is supplying an unsuitable argune

Conpiling is much slower than | oading, and a nodul e needs to be reconpiled only wh
its interface argunents change, not when the interface values change. The latter a
in the inplenmentations of the interfaces, and are much nore conmon.

When there are nmultiple instances of the same nodule with the same interface paranm
they automatically get the sanme code.

W' ve al ways done it that way.

3.3.2.1 Initializing a programinstance

The statements in the body of an inplenmentation nodule formthe body of a proc called th
program procedure. The function of this proc is to initialize an instance of the nodule.
instance PI may be uninitialized, because no code in the nodule is executed when the ins
made. It is the job of the programproc PP(to initialize PI, perhaps using the PROGRAM ar
if there are any. Until PP(has been called, Pl is not in a good state. It would be bette
t he PRoGRAM argunments along with the inported instances, and call PP(as part of naking P
that Pl is never accessible inits uninitialized state. But it isn’t done that way; henc
programrer must ensure that PP(is called before any use is nade of PI. To confuse things
not an ordinary procedure but a PrRoGRAM, and it nust be called using the START construct (¢
4.4.1). Note that in addition to the statenents of the nodul e body, PP(also contains |
specific initialization code for any variables or non-static values in the instance; e.g
value of x will not be 3 until after PP(has been call ed.

There is some error detection associated with this kludge. If a proc in the instance is
the instance has been initialized by start, a start trap occurs. At this point, if PP(ta
argunments it is called automatically, and the original call then proceeds normally; if P
argunents, there is a Runtime.StartFault ERROR.

Caution: If the nobdule is a nonitor, PP(runs wi thout the nonitor |ock; if another proce
the nodule while PP(is running, it will not wait, but will run concurrently with PP(. TI
unlikely to be right. It is unwise to rely on a start trap to initialize a nonitor nodu
explicitly with START.

Caution: If a variable in the instance is referenced before the instance has been initia
is detected, and the uninitialized value will be obtained. PP(can still be called to ini
instance, and may still be called automatically by a start trap

The program proc is bound to the name contROL in the result of an inplenentation nodule if
type is PROGRAM] RETURNS[] (ot herw se the proc Runtine.ReportStartFault is bound to CONTRQL).
This allows the nodeller (and binder) to get access to PP so as to control the order in:
nodul es are started.

3.3.3 Paraneters to nodul es: DI RECTORY and | MPORTS

The interface paranmeters of a nodule are declared in the DRECTORY. An interface |I has typ
n, where n is any one of the names given before DEFINNTIONS in the header of the interface
that produced I. The INTERFACETYPE primitive in the desugaring takes a list of names and re
type which inplies TyPE n for each n in the list. The reason for allow ng several nanes i
conversion of an interface fromone nanme to another; both names can continue in use for
The use of these nanes provides a clunsy check that the proper interface is supplied as
argument. DIRECTORY n: TYPE and DI RECTORY n are both short for D RECTORY n: TYPE n.

An interface is a type which can only be used:

44 MODULES 13.3

Before a dot (Y4.14), to obtain a value fromits cluster, which sinply consists of
bindings in the interface nodul e body (13.3.4).

In an IMORTS |ist as the type of an instance paraneter to a nodul e.

The usING clause in the DRECTORY, if present, restricts the cluster of the interface to co
items with the names n, ... Thus in the exanple, only RoPE and Conpare are in the cluster

in the Bufferinpl nodule. This means that Rope. ROPE and Rope. Conpare are |egal, but Rope.n f
other n will be an error. Note that usiNG affects only the cluster of the paraneter; it d
the clusters of any types or the bodies of any INLINE procs obtained fromthe interface.
Rope, Conpare mi ght be bound by

Conpare: PROC[rl, r2: ROPE] RETURNS [BOOL] ~I NLINE {

IF Length[r1] ~=Length[r2] THEN ... }

A call of Rope.Conpare in Bufferinpl is perfectly all right, even though Rope.Length in Buff
woul d be an error.

In the exanple, CFS, 10, and Rope are interfaces. They are the types of three | MPORTS par:
naned Files, 10, and Rope (if the IMPORTS cl ause gives no nane for the paraneter, the nane
interface is recycled). An actual argunment for an IMPORT paraneter nust be an interface i

i.e., a value whose type is an interface type. Such a value is obtained fromone or nore
whi ch export the interface (13.3.5). An instance is a binding; in this binding the val ue
declared in the interface is provided by the exporter; the value of a nane bound in the

(e.g., x~3) is just the value that the interface binds to the nane (in this case, the va
has two effects:

The client can ignore the distinction between nanmes bound and declared in the inte
since both appear in the instance binding and are referenced uniformy with dot no
This nmeans that the client is not affected, for exanple, when a proc is noved fron
INLINE in the interface to an ordinary definition in an inplenentation

The client can often ignore the distinction between the interface and the instance
the values in the interface are also in the instance, with the same nanes. This is
nmotivation for the shorthand which allows the nanme of an IMPORT paraneter to defaul
the nane of the interface; the interface is no | onger accessible, but 1.x has the !
neani ng (nanmely 3) whether | is the interface or the instance.

Anomal y: Nmaes bound to inline procs in an interface do not appear in the interface bind
only in an instance. This sonewhat duboius rule ensures that clients won't have to add
inmports lists if a proc stops being an inline.

Restriction: An interface nodule nay not inport nore than one instance of a given interface I. If an inplenent
modul e P inports nore than one instance of I, the principal instance of | is the one with no name in the 1MWoRTS
(which is therefore named | by default). If P inports only one instance of type I, then that instance is the pl
i nstance.

Restriction: Often an interface nodul e has no IworTs, because it only needs access to the static values (types
constants) bound in its interface paraneters, and does not need val ues for any nanmes declared there (procs and
variables). If an interface nodul e does have Iworrs, however, and there is nore than one instance of any inport
interface around, then there is a restriction on the argunent val ues. Suppose that Intl inports Int2, and that
module P inports Intl. Then Intl may only inport one instance of Int2, and if P also inports Int2, the principal
of Int2 in P nust be the sane as the value of Int2 inported by the Intl inported by P. For exanple, with
DIRECTORY Int2; Intl: DEFINITIONS IMPORTS Int2V: Int2 ...
DIRECTCRY Intl, Int2; P: PROGRAM IMPORTS Int1V: Intl, Int2V: Int2 ...
we nmust have in P that IntlV.Int2v=Int2V.

3.3.4 Interface nodul e bodies

The body of an interface nodule | is a collection of bindings (e.g., x: INT~3) and decl ar
y: VAR INT or P: PROC[a: INT] RETURNS [REAL]).

Restriction: Only certain things may follow the ~ in one of the bindingsis:

13.3.4 | NTERFACE MODULE BODI ES 45

If it is an expression, it nust be static (§3.9.1).

If it is a block (providing the body of a proc), it nust be INLINE (because there i:
place to put the conpil ed code).

It nmay not be CooE

The result of applying an interface nodule is an interface (13.3.2), which is a type 1
applying the primtive MmuNITYPE to the d's and b’s of the body. This type is sinmply the d
obtai ned by collecting the declarations in the body, with a cluster which is extended to
t he bindings of the body. However, MWINTTYPE onmits any inline proc bindings fromthe type’
cluster, instead |leaving the proc declarations in I. It puts an extra itemBINDNGinNn |I's
the inline procs in it. Wen an instance Inst of | is inported, the binding actually inpc
PLUS |.BINDING. This slightly dubious arrangenment ensures that clients don't have to changs
lists if a proc stops being inline. This policy is not extended to other itenms, however,
they m ght change from being bound in the interface to being interface vari abl es.

The interface returned by
Red, Blue, Green: DEFINTIONS~. ..
has the types TYPE Red, TYPE Blue, and TYPE G een.

The types and expressions in declarations and bindings may refer to other names in the b
usual, but they may not refer to nanes introduced in the declaration, except that:

Any decl ared nanme nmay be used
in the body of an INLINE, or

after a " " in a defaultTC5 in the fields43 of a transferTC* which is the ty
decl in the interface' s body.

A decl ared (opaque) type nay be used anywhere.
For exanple, if an interface contains

| © DEFI NI TI ONS~
X: INT~3;
y: VAR I NT;

T: TYPE[ANY]
then the following may al so appear in the interface:
XX: | NT~x+1;
P: PROC RETURNS[I NT] ~I NLI NE { RETURN] x+y] };
Q PROC [INT_y];
V: TYPE~RECORD[f: REF T, g:. U]
but the following are illegal:
Xy: |INT~y+1;
U TYPE~INT_y;
W TYPE~ARRAY [O0..y] OF INT;

The val ues of the bindings can be accessed directly by dot notation in any scope in whic
interface value is accessible. Thus if the value of the previous interface nodule is bou
because J: TYPE | appeared in the DRECTRY, then J.x is equal to 3. The decl arations canno
accessed directly (J.y is an error).

The declarations in an interface nodule are not quite like ordinary declarations. They a
ki nds, dependi ng on whether the type of a declaration is:

A transfer type; this is just like a declaration of a transfer paraneter to an ord
except that it is readonly.

TYPE[ANY] or TYPE[e]; the type being declared is an opaque type or exported type, di:
in 14.3.4. The expression e must be static. TYPE[ANY] or TyPE[e] is not allowed in :
ordi nary decl aration; except in an interface, a type nane nust be bound to a type
when it is introduced.

46 MODULES 13.3

VAR T, Oor READONLY T for any type T except TYpE; this is an interface variable; discu
in 13.3.4.1 below. «In an ordinary declaration in a block you can't wite VAR T, &
wite sinply T, you can also wite sinply T here, but this is not reconmended

An interface instance Il has the interface type | if for each itemn: T in the interface,
itemn~v in the instance, and v has type T. This is the sane rul e which deternines that ¢
has the type of a declaration; e.g., that a proc argunent has the domain type. In thisr
not hi ng speci al about an interface.

Note that a nane can be declared PRIVATE in an interface, even though it nust be decl ared
in the exporter (13.3.6). This can be useful if the nanme is used in a type constructor c
in the interface, but its value should not be accessible to the client.

3.3.4.1 Interface vari abl es

An interface variable v gives clients of an interface direct access to a variable in a p
nanely the variable which is exported to v. This is the only kind of variable paraneter
Cedar.

I f you use the obsolete shorthand of T for vaR T in an interface variable declaration, vy
declare a transfer type variable as an interface variable, since that already neans pass
val ue.

Caution: the variable which is exported to provide the value for an interface variable i
initialized until its nmodule is initialized (§3.3.2.1). However, there is nothing to stc
accessed sooner.

Performance: An interface variable can be read and (if not ReaDONLY) set directly, which

significantly faster than Get and Set procs. O course, the inplenmentor gives up some cor
not quite as fast as access to an ordinary variable, since there is an extra level of in
costs one or two extra instructions each tinme. There is also one pointer per interface v
nmodul e which refers to it. If you use a private interface variable and inline Get and Set
pay nothing in performance, but retain the option of changing the proc definitions |ater

*You can get direct access to all the variables of a nobdule by using a PONTER TO FRAME typ
(14.5.3).

3.3.5 Inplenentation nodul e bodi es

The body of an inplenentation nodule Inmp is sinply a block. This block plays two roles.
one hand, it is an ordinary block, the body of an alnmost ordinary proc PP(called the PR
proc, which has paraneters and results like any other. PP(is special in one way: it has
type rather than a pProCc type. When PP(is applied (using the special construct START; see
its declarations and bindings are evaluated, its statenents are executed, and its result
as with any proc. The only difference is that the val ues bound to the nanes introduced
(i.e., the frame of PP() are retained after the proc returns; in fact, forever (unless R
used to free the frame). Procs local to the block can access these values in the usual w
of exported nanmes can al so be accessed through interfaces, as expl ai ned bel ow, see 3. 3.

As with any proc (§3.5.1), the frame of PP(includes the paraneters and results fromIm

as well as the nanmes introduced in the block’s d’s and b’s. It also includes an addition
| np: PROGRAM T~PP(

where Imp is the nane of the nmodule and T is its drType.

The body of Imp has a second role: to supply values for the nanmes declared in the interf:
exported by Inp. For each interface Ex which Inp exports, an interface value ExI of type
constructed. Each nane n in ExI acquires a value as foll ows:

13.3.5 | MPLEMENTATI ON MODULE BODI ES 47

If ni Tisin Ex and n: PUBLIC T~x is in the body of Inp, then n~x is in Exl. This is
slightly peculiar kind of binding; as in an ordinary binding, x nust be coerceabl e
(714.13). Note that n nust have pPuBLIC access (13.3.6) in the body.

If nis declared in Ex and not bound in the body of Inp, then n~UNBOUND i S in Exl.
UNBOUND i s a special value with the follow ng properties:

For a proc P, it causes a Runtine.UnboundProcedure signal on any application of
For a variable v, it causes a Runtime.PointerFault error on any reference to v
For a type T, it causes no problem

If n~x in Ex, then n~x in ExI. Thus any names bound in the interface are bound the
way in any interface val ue.

Caution: A name can be exported to several interfaces w thout any warning, if it has a s
This is unlikely to be what is wanted.

The result of instantiating Inmp is a binding with;

One itemfor each exported interface Ex, nanely Ex: Ex~Exl, where Exl is the interf.
val ue constructed above. Here Ex is the name n, given to the interface in the DI RECT

One item CONTROL: PROGRAM] RETURNS [], whose value is the programproc PP(if that
has no arguments, and ot herw se Runtine. ReportStartFault.

*One itemfor the type of the nodul e’ s gl obal franme, nanely FRAME~TYPE | np.

eOne itemfor Inp itself, nanely Inp: FRaME. The value of this itemis the program
instance, i.e., the franme of the nodul e’ s body.

This binding is accessible in a nodel, where it can be used to get access to the interfa
t he program proc, the global franme type, and the program i nstance.

*You can passS FRAME as an argument to a DI RECTORY parameter |: TYPE Inp; like an interface;

provi des access to constants bound in the nodule, and allows you to declare an |IMPORTS par
whose argunent will be a programinstance of the nodule. From 1 you can also obtain a fi
Cedar type PONTER TO FRAME[I]; see T14.3.5. 1's cluster includes a coercion from!| to PONT
FRAVE[1], and the proc copyimPLINST (applied by the funnyAppl New, which is the sane as the
proc of the sanme name in cluster of PONTER TO FRAME[I].

*You can inport Inmp into another nmodule (by witing DRECTORY Inp ... IMPORTS Inplnst: Inp ..
and obtain access to all the variables and procs of the programinstance.

3.3.6 PUBLIC, PRIVATE and SHARES

Cedar has a rather conplicated nechanismfor controlling access to nanes. Mst uses of i
consi dered to be obsolete, with the follow ng exceptions:

Narmes to be exported must be decl ared PuBLIC.

Names included in an interface for use in inline procs etc., but not intended for
clients, should be decl ared PRI VATE.

Access to a nane is declared by witing PuBLIC or PRIVATE right after the colon in a declar
a hame:
X: PUBLICT

In the Cedar syntax these colons occur in the declarations!t and bi ndi ngsi3 i n bodi es10, f
and interface nodul es2, and in the tags of a unionTC. You can set a default access for a
nanes in a nodul e2. 3 or records by witing PuBLIC or PRIVATE just before the { or RECORD; tF
overridden by an explicit PuBLIC or PRIVATE i nside. By default, an interface is PuBLIC and a
i mpl enentation i s PRI VATE

48 MODULES 13.3

A PRIVATE nane defined in nodule M can only be referenced:
fromwithin M
froma nmodul e whi ch EXPORTS M
froma nmodul e which sHaReES M avoid this feature.

This does not nean that the nane is invisible, but rather that it is an error to use it
oPeENed. Thus in

x: INT; {oPEN M f [x]}
if x is bound in M (and not hidden by a using clause), the call of f is equivalent to f[1
regardl ess of whether x is PuBLIC or PRIVATE. It is illegal if x is PRVATE, but it never ref
x declared by the x: INT.

Furthernmore, if a record has any PR VATE conponents, a constructor or extractor for the re
legal only in a nodule where use of the PRIVATE nanes is legal (even if the private conpor
not mentioned and have defaults).

3.4 Bl ockBEN and ENABLE

6 bl ock ::= ?(CHECKED | UNCHECKED | TRUSTED)
{ ?open ?enabl e ?body openLET n((, ... : EXCEPTION-NEWABEL[] |, .
?2(exTs (n, !'..=>s); ...) } IN (bodyenabl gsur { (n((, ... =>s); ... })
--In 3, 13, 15. -- But n¢ is not visible ins.
zopen ::=OPEN(n ~~e | e), !'.. ; (LET n~|openINe.DEREF| --The IN before !.. is a separat
In 2, 5 17. +The ~~ may be witten as :. LET BI NDP[_B{ DEREF) P,
OPENPROCS[{ €. DEREF))P, | IN e.DEREF]]) IN!.. IN
8 enabl e: : =eNaBLE (enChoi ce | Butr ({ _enChoilcq
{enChoice;_...J)enChoite)
In 5, 17.
9 enChoice ::=(e, !'.. | anvy) =>s (e| Awv), ... =>{ s; REIECT;, EXITS
In 7, 27.1. Ret ry(=>coto Ret ry((14; Cont (=>coro Cont ((14 }
10body ::=(d] b); '.. ; s; ... | seT!NewrrRAVE[REC [(d | b), ...]].uncoNs IN{ s; ...}
In 5, 17.
Exanpl es
CHECKED { -- Unnaned oPEN OK for exported
OPEN Buffer, Rope; -- interface or one with a usING cl ause.

ENABLE Buf fer. Over fl ow=>coro Handl eOvfl A si ngl e choice needn’'t be in {}.
stream 1O Stream-1 O CreateFil eStreanf UXé] a binding if a nane’s value is fixed.

X: INT_7; -- Better to initialize declared nanes.
{oPEN b~~buffer; -- A statenent nmay be a nested bl ock.
ENABLE { -- Multiple enabl e choices nust be in {}.
Files.Error--[error, file]--=>{ -- ERRORS can have paraneters.
stream Put[1O rope[error]];
ERROR Buffer.Error["Hel p"] }; -- Choices are separated by senicol ons.
ANy=>{ x_12; coro AfterQuit } }; -- ANy nust be |last. ENABLE ends with ;.
y: INT_9; ... }; -- Qther bindings, decls and statenents.
X_stream Getlnt; ... -- Oher statenents in the outer bl ock.
EXI TS -- Miultiple extT choices are not in {}.
AfterQit=>{...}; -- AfterQit, Handl eOvfl declared here,
Handl eOvfl =>{...} }; -- legal only in a coroin the bl ock.

The main function of a block is to establish a new scope (12.3.4) and to allow for the &
vari abl es declared in the block, as in Algol or Pascal. A Cedar block has four other fea

13.4 BLOCKS, OPEN AND ENABLE 49

attributes: CHECKED, UNCHECKED and TRUSTED are treated in Y3.4.4 on safety.
open’: a conbi nation of sugar for LET and call by nane; see 3.4.2.
enabl e8: catches signal and error exceptions in the body; see 13.4.3.1.
EXITS: catches Goro exceptions in the body or enable; see 13.4.3.2

Note that the braces around a bl ock may be replaced by BEGN and END (3. 2).

The statenents in a block are evaluated in the order they are witten. The initializatio
inthe ds and b’s are also evaluated in the order they are witten; this may be inporta
have side effects, although that shoul d be avoi ded.

3.4.1 Scope of nanes and initialization

The nanes introduced in the block body’s d's and b’s (i.e., appearing before a : or ~) a
the body with the values supplied by the d's and b’s, except in inner scopes where they
rei ntroduced; they are not known el sewhere in the block. The frame of the block is a bin
a value for each such nane.

Actually, the frame is a value of an opaque type which has a coercion (called uvcons) to this binding. As the de
for body indicates, the frame is constructed (by newrave), and then a Ler makes the names in the binding known i
the statenents of the body.

Anonmal y: A nane introduced by a binding, n: T~e, has the value of e throughout the body i
static. If e is not static, it is evaluated after all preceding d’s and b’s, but before
This means that n.vALUECF is trash in all the d’s and b’s before its binding. Symretri cal
refers to a nane introduced in a follow ng decl or non-static binding, it will get a tra
Conpiling with the "u" switch will yield a warning in this case. Note that only attenpts
the value of n get trash; n may appear anywhere in a |-expression, and all will be well
the | -expression is not applied before n’s binding is eval uat ed.

A nane introduced by a declaration, n: T, is bound to a new vaR T. The variable bound to
all ocated, and its before anything in the block is executed (this is done by the NEWwRAM
t he desugaring).

Anomal y: However, the INT proc is executed (to set a ReF or transfer value to NL), and a
initialization specified by a defaultTC® in T is done at the sane tine that a non-static
woul d be evaluated. As with a binding, n.vALUECF is trash before this tine. Furthernore,
(unwi se) assignnent to n before this time will be overridden by the default TC

Caution: The failure to initialize RC variables is a safety |oophole, since the trash ca
and used as an address.

Style: The expression in a binding or default TC should be functional, or at least it sho
beni gn side-effects. There is no enforcenent of this recommendation, unfortunately. In c
Cedar such an expression is evaluated exactly once, at the time described above. This na
in the future, however.

The vari abl es created by a declaration are deal | ocated when execution of the block is co
unl ess the block’s frame is retained. Currently only an inplenentation’s block3 has its f
retai ned. There are two ways to hang on to a variable v after execution of the block is

htain a pointer to v with @ this pointer value can survive the bl ock

Cbtain a proc value for a local procedure which refers to v; this proc value can s
bl ock.

50 BLOCKS, OPEN AND ENABLE 13.4

In the checked | anguage both these dangling references are inpossible: the @operator, b
unsafe, is forbidden, and AssiaN for proc val ues gives an error unless the proc is |ocal f
i nstance (which has a retained frane).

Caution: An unchecked program can get into trouble with dangling references to franes, h

Per f ormance: There is no overhead associated with block entry or exit, even if the block
open, enable or exiTs. The only cost is for initializing the variables bound to its nanes
style to use blocks freely to limt the scope of nanes.

3.4.2 OPEN

There are two forms of open. The first, n~~e, binds the name n to Iopen IN e. DEREF. This is
| IN e.DEREF, except that there is a coercion fromn to n[]. In other words, every time n
val ue is obtained by evaluating e.DbErRer. The effect is exactly like call by name in Al gol

to remind you that this is not ordinary value binding. The value of e.DEREF is
e if the cluster of De does not include DEREFERENCE Or UNWRAP;
eM.DEREF i f it includes DEREFERENCE;

e. UWMRAP. DEREF i f it includes UNWRAP.

In other words, a reference value is dereferenced and a singl e-conponent record or bindi
repl aced by the conponent, repeatedly if necessary, to obtain a non-reference value. In
e. DEREF nust be a record, interface or instance.

The second, nanel ess, form of open gives an expression without binding it to a name: { o
.}:; e.DEREF nmust evaluate to a binding b:

A record val ue has a corresponding binding (returned by UNCONS i n the desugaring) w
has the nanes of the record fields bound to the field values (or variables, for a

An application returns a binding, though the call-by-nane feature nakes it unw se
an application in an open.

An interface or instance value is a binding (13.4.2).

The nanel ess open converts b into another binding bp in which each value is a IOpen proc (

above), and introduces bp’'s nanes in the block with a LET. Thus in the program

R TYPE~RECORD [a: INT_3, b: REAL_3.4]; r: R

{ oPENT; ...}
the nanes a and b are known in the body of the block, and have exactly the same neaning
and r.b.

Style: Nanel ess open should be used with discretion, with the smallest practicable scope
if the value being opened is very fanmiliar, or heavily used, or both. Nanel ess open can
confusion, since it is not obvious fromthe text of the programwhere to find the bindin
nanes it makes known. It should never be used when eval uation of e has a side-effect.

The scope of an open is all the rest of the bl ock, including any enable and any exits. A
open may have several bindings or expressions. These are applied sequentially, so that t
bound by earlier ones are known to the later ones as well as to the rest of the bl ock.

13.4.3 ENABLE AND EXI TS 51

3.4.3 ENABLE and EXITS

The ENaBLE and EXITS constructs are two fornms of sugar for exception handling (12.2.4). &
catches signals and errors raised in the body (but not the open, enable, or exits). EXTS
coros in the body or enable (but not the open or exits). Both are in the scope of the ope
Neither is in the scope of any nanmes introduced in the body.

3.4.3.1 ENABLE

An enabl e has a chance to catch any signal or error raised in the block (and not caught
level). A nearly identical construct can appear in an application26; the follow ng explar
bot h cases.

Each enabl e choi ce (enChoice®) has a list of expressions with exception values, sor ANy,

=> |f ANy appears, it nust be the last enChoice. If the exception is equal to one of the
or if ANy appears, the statenent after the => is executed. Control |eaves this statenent

the foll owi ng ways:

A REJECT statenment causes the exception to be the value of the block; it will then |
propagated within the enclosing block, or if the block is a proc body it will be p
to the application.

A coro statement sends control to the matching choice in the exi1s. There are three
speci al cases1s;

A RETURN i s not allowed in an enChoi ce.

A CONTINUE st atenent ends execution of the current statenment (in this case the
bl ock); execution continues with the next statenent following. If the bl ock
body, the effect is the sane as RETURN. You cannot wite CONTINUE in a body’s
ds or b's.

A RETRY statenment begins execution of the current statenent (in this case th
bl ock) over again at the beginning. You cannot wite RETRY in a body’'s d' s or

The semantics of covrinue and RrReTRy foll ow fromthe desugaring of statenent14,
A RESUME statement (signals only) is discussed bel ow
I f the statenment finishes nornmally, a REJECT statenent is then executed.

If a single expression e appears before the =>, then within the enChoice statement the n
De. DovAIN are declared and initialized to the argunents of the exception. Wth multiple
expressions, or ANy, the arguments are inaccessible. «The use of ANy is not recomended.

Note that an error is caught by an enChoice with a matchi ng exception value, not by one
mat ching name. Nornmally an error E will be declared in sone interface, its value will be
by a binding of the formE PuBLIC ERROR ... ~ CobE, and both the signaller and the enChoic
refer to this value by the nane E. In this case, it is natural to think of the binding a
nane. However, it is possible to have a different name for this exception value, e.g. by
ERROR ... ~ E. It is also possible to bind sone other exception value to E in a scope whi ¢
sone enChoi ce exam ned when the signal is raised. Thus in the silly program
E: ERROR~CODE;

F: ERROR-E;

{ENABLE E=>{--Handler 1--...};
E: ERROR~CODE;
{ENABLE E=>{--Handler 2--...};

IF switch THEN ERROR F ELSE ERROR E;
if switch is true handler 1 will be used, and if it is false handler 2 will be used.

52 BLOCKS, OPEN AND ENABLE 13.4

Fi nalization

You are supposed to think of an ERROR as an unusual val ue ev which can be returned froma
application; this value i mediately stops the evaluation of the containing application
likewise returns ev as its value. This propagation is stopped only by an enabl e choice w
the ERROR. As each application is stopped, it is finalized. Aside frominvisible housekee
finalization confusingly consists of executing an enChoi ce which catches the ERROR UNW ND.
progranmer can wite any cleanup actions he likes in this statenent.

Caution: If the finalization raises another ERROR Which it does not catch, it will itself
with very confusing consequences. It isn't very useful to know exactly what happens then
this situation.

Anomaly: In fact, things are a bit nore conplicated. Wien a signal or error is propagate
enChoi ce statenent is called as a proc fromthe siGNAL or ERROR whi ch raises the exception
control |eaves the statenment by a coro (including EXIT, CONTINUE, RETRY Oor LOOP, but not
RETURN, which is forbidden in an enChoice), the finalization is done. This nmeans that the
statement is executed before any finalization. This is useful for signals, which oftenr
cases, however, notably if finalization would release nonitor |ocks, this can cause trou
probl em by exiting fromthe enChoice i Mmediately with a coro

Caution: An enChoice can raise a second exception ex2 and fail to catch it. This will pri
in confusion, and should be avoided. If it happens, ex2 is propagated just like the firs
exl; all the enChoices which saw exl will see ex2. This is because the enChoi ce statenent
was called as a proc. Unless ex2 is a signal which is resuned, the enChoi ce which caught
be finalized and abandoned.

Caution: ANy unfortunately catches unwnD, and hence its statenent will be taken as the
finalization. It is better not to use ANy. Also, it is possible to raise UNwND explicitly

Si gnal s

Conceptually, a signal is quite different froman error; in fact, it is very nuch like a
call. The only differences are:

The proc to be called is an enChoice which is found exactly as though the signal w
error. The effect of this is that siaNnaL P[args] binds the proc nane P to the proc b
dynam cal ly, by searching up the call stack for a binding of P. This is just the w
bi nds free vari abl es, except that a binding for P can only be found in an enChoice
the frame of a proc.

Actually this is not quite right. Like an error handler, the signal proc is not found by natchi ng nane:
mat chi ng exception values. This point is discussed in detail above.

The enChoice can be term nated by a coro out of its body, unlike an ordinary proc.
GOTO exception is treated exactly |like a coro out of an enChoice for an error; it ce
the intervening frames to be finalized

The i npl enent ati on, however, treats errors and signals in a very sinmlar way; the only d
that you cannot resume an error (return fromthe enChoice). In fact, you can invoke a si
ERROR, Which prevents it from being resuned; avoid this feature. In the future, however,

di stinction between signals and errors will be reflected nore clearly in the inplenmentat

Anomal y: The desugaring gives no explanation of how RESUME works, since it does not turn
enChoice for a signal into a proc at all. This is a defect.

13.4.3 ENABLE AND EXI TS 53

3.4.3.2 EXITS

An ExiTs construct (confusingly called REPEAT in a | oop) declares one or nore exceptions W
local to its block, and al so catches them The syntax is just |like an enable. However, n
| abel s appear before the => rather than expressions, and the ExiTs i ntroduces these nanes
scope whi ch includes the block body and any enabl e, but not an open and not the statenen
ExTs itself. A label may only be used in a coro statenent.

Anomal y: Actually | abels have their own nane space, disjoint fromthe other nanmes known
bl ock. Hence it is possible to declare a Iabel n and still to refer to another n in the |
feature.

Li ke the raising of any exception, a Goto n stops execution of the current statenment. The
associated with n is executed. If it finishes normally, execution continues after the bl
was declared. If it raises an exception, that exception becones the value of the bl ock.

Anomal y: A coro ski ps any uwyND enChoi ces that intervene between the coro and its matchi ng
EXITS. This is the only way to escape froma bl ock wi thout executing the unwwND. You can a
this anomaly by not nesting uwyND enChoi ces within bl ocks that have ExTs.

3.4.4 Safety

A SAFE proc has the property that if the safety invariants hold before it is called, they
afterwards. Roughly, these invariants ensure that the value of every expression has the
of the expression, and that addresses refer only to storage of the proper type (714.5.1).
proc may lack this property. Hence a safe proc type inplies the correspondi ng unsafe one
W want to have confidence that the safety invariants hold. To this end, we want to have
as few unsafe procs as possible;
a mechani cal guarantee that a proc is safe, if possible.

Clearly, a proc whose body calls only safe procs will be safe.

Applying this observation, Cedar provides three attributes which can be applied to a blo

CHECKED: the conpiler allows only safe procs to be applied; hence the block is
automatically safe, and any proc with the block as its body is safe.

UNCHECKED: there are no restrictions on the block, and it is unsafe.

TRUSTED. there are no restrictions on the block, but the programrer guarantees that
preserves the safety invariants; the conpiler assunes that the block is safe. This
restricted form of LOOPHOLE.

These attributes are defaulted as foll ows.
A block is checked if its enclosing block is checked; otherwise it is unchecked.

I f ceEDAR appears in the nodul e header, the outermpst block is checked, and a transf
constructor anywhere in the nodul e defaults the saFe option to TRUE. Hence the resul
type will be safe, and its initialization nust be safe or there is a type error.

O herwi se, the outernopst block is unchecked, and a transfer type constructor anywh
the nodul e defaults the saFe option to FALSE. Hence the resulting type will be unsaf
there is no safety restriction on its initialization.

O course you can override these defaults by writing CHECKED, UNCHECKED Or TRUSTED on any
bl ock, and saFE or UNSAFE on any transferTC (except ERROR, which is automatically safe). Th
defaults are provided to make it conveni ent to:

54 BLOCKS, OPEN AND ENABLE 13.4

write new prograns in the safe | anguage;
continue to use old, unsafe prograns w thout nassive editing.
An unsafe proc val ue never has a safe type, and hence cannot be bound to a name decl ared
safe type. This applies to enable choices for signals as well as to procs. In both cases
be checked or trusted if the type is safe. ERRORS are treated differently, however, becau
view that an ERROR is a value returned froman application, unlike a signal which calls t
enChoi ce expression. Hence the enChoice for an ERRR is treated just |ike any statenent i
encl osing bl ock, and is not considered to be bound to a proc when the ERROR i s rai sed.
The following primitive procs are unsafe:
@ DESCRI PTOR and BASE.
N or FReE applied to a pointer, and all pointer arithmetic.
ApPpLY oOf
a descriptor (because it involves dereferencing a pointer);
a conput ed sequence;
a record containing a conmputed sequence;
a base pointer.
APPLY for process and port types (JOoN and port calls).
wi t hSel ect 34,
The fields of an OvERLAID uni on.
ASSI GN of :
An unspecified type to anything other than the sane unspecified type (714.9).
A union or variant record.

LOOPHOLE whi ch produces a RC value (14.5.1).

3.5 Decl aration and bi ndi ng

11 declaration ::=n, !.. : ?access!? val(T@&©o varTC),
In 2, 10, 43. var, ReaDoNLY only for interface var.
12 access ::= PUBLIC | PRI VATE
In 2, 3, 11, 13, 50, 51, 53.
13 binding ::=n, !.. : ?access2t ~ (n, ... ~LET X(: t ~ (
e | e |
t2 - if t=Twe | _21‘ -- Sanme as e except for conflicting syntax. |
CODE | NEVEXCEPTI ONCODE[| - -tQSI GNAL or ERRCR |
?INLINE ?(ENTRY | [INTERNAL) bl ock6é | | [d(: t.DowaIN] IN LET r(~NEWFRAVE[t . RANGE] . UNCONS

INET(r(IN {t.DovalN~d(; bl ock; RETURN}
BUT {Return(((=>r(})
», PTRUSTED MACHINE CODE {(€, ...); ...} MACH NECODE[(BYTESTONSTRUCTION[€, ...]), ...]

) IN X(-- eis evaluated only once.
In 2, 10. «The ~ may be witten as =.

Bl ock or macHinNe cooe only for proc types.
* ENTRY and INTERNAL can al so be before t.

13.5 DECLARATI ON AND BI NDI NG 55

Exanpl es

Hi st Val ue: TYPE[ANY] ; -- Interface: An exported type.

Hi st ogram TYPE~REF Hi st Val ue; -- A type binding.

baseH st: READONLY Hi st ogram -- An exported variabl e

AddHi sts: PrOC[X, y: Histogram -- An exported proc.
RETURNS [Hi st ograni;

Label Val ue: PRI VATE TYPE~RECORD[-- PRI VATE only for secret

first,last:INT,s:ROPE X: REAL, f, g: I NT,-r-: REF ANY] ; stuff in an interface.

Label : TYPE~REF Label Val ue;

Next: PrRoC[|: Label] RETURNS[Label]l~ -- An inline proc binding.
INLINE { RETURN [NaRROW I . r]] };

H. TyPe~Hi st ograni!; Size: INT~10; -- I npl enment at Bomds a TyPpE and INT.

Hi st Val ue: PUBLIC TYPE~HV40.1; -- puBLI C for exports.

baseHi st: pPuBLic H NeW Hi st Val ue_ALL[17}}; An exported variable

X, y: Hstvalue [20, 18, 16, 14, 12,-40, 8, 6, 4, 2,wdih initialization

Fatal Error: ERROR[reason: ROPE] ~CODE; - - Bi nds an error.

Setup: Proc [h: Handl e3, a: INT] ~ENTRY {-- .}; Bi nds an entry proc.

i,j,ki INT_O; p,qg: Boa; |b: Label; main: Handl e;

Decl arations are explained in §2.2.1F and Y2.4.5. Their peculiarities in the different

t hey can appear are expl ai ned el sewhere:
interfaces in 13.3.4,;
bl ocks in §3.4.1;
fields in:

domai ns and ranges in 4.4
records and unions in Y4.6;

Access is explained in 73.3.6.

Bi ndi ngs are explained in 12.3.5. There are several special forns of binding given in rt

however, which are defined here. See also 3.7 on argunent bindings. Note that the e in

is evaluated just once, even if several nanmes are bound.

A TYPE binding is the only way in which a type value can be bound to a nane,

cannot be passed as parameters. Unlike other bindings, this one expects a type36 re

an expressioni?® after the ~.

A nanme with a signal or error type can be bound to coog; this use of cooeE is not al

anywhere else. See 714.4.1 for details on the nmeaning of this.

, »A MACHINE CODE construct can be bound to a name with a proc type. This construct
al l ows nachine instructions to be assenbled into a proc value. The instructions ar
separated by semicolons. Each instruction is assenbled froma |ist of expressions
by commas. An expression in the list is evaluated to yield a [0..256) static val ue
forns one byte of the instruction; successive expressions form successive bytes.

A | -expression derived froma block can be bound to a nane with a proc type.

conplicated semantics of this construction are explained in the followi ng subsecti

3.5.1 pProC bi ndi ngs

A binding of the formn: T~{...} is the only way to construct a proc value and bind it t

since you cannot wite a |-expression in current Cedar

There are other ways to construct proc val ues:

56 BLOCKS, OPEN AND ENABLE 13.4

The expression in a defaul t TCS is turned into a paraneterless proc which is bound to Default in the tyf
cluster (714.11).

The expression following ~~ in an open or wTH ... SELECT is turned into a paraneterless proc with a
deproceduring coercion (13.4.2).

The statement in an enable choice for an exception is turned into a proc with donmain and range given b
exception type (13.4.3.1).

The expression following Laxs in a mbdul e heading is turned into a proc according to a peculiar rule (f

The | -expression is constructed fromthe block in the following way. Its domain and rang
domai n and range of the proc type T. Its body inplicitly declares a variable for each it
domai n and range; these variables have the nanes of the domain and range itenms, and the

is the entire block, not just the block body. The domain variables are initialized to th
and the range variables in the usual way according to their types. Then the block, wth

tacked on the end, is evaluated. A RETURN exception in the block is caught, and the curre
of the range variables are the result of the |-expression. The only other way out of the
rai se an ERROR.

A RETURN in the block is sugar for coro Return(, which is caught as described. RETURN e ass
to the range variabl es and then does a coro Return(.

Anomaly: It is an error to introduce the sanme nane twice in the domain, range or bl ock

Performance: A proc call and return is about 30%faster if the proc is local, i.e., deno
whi ch was bound to a proc body in the same nodule as the call. A proc which is local to

proc, rather than bound in the body of an inplenentation, is about 20% slower to call. |
i ntroduces sone overhead when its parent proc is called, and its access to non-static na
introduced in its parent proc is slower than access to other nanes. A call and return fo
ordi nary, non-local proc takes about 10 tines as long as the statenent x_y+z.

The attributes ENTRY and INTERNAL can be used only in a MNITOR they are discussed in 74.1(

The attribute ININE has no effect on the meaning of the program but it causes the proc
be expanded inline whenever it is applied. This saves the cost of a proc call and return
sonetimes the cost of argunent passing, and it may allow constant argunents to participa
eval uation within the proc.
Restrictions: An INLINE proc nay not be:

Recur si ve

Export ed.

Used as a proc val ue except in an application. Thus you cannot, for exanple, assig
proc vari abl e.

The argunment of FORK.
Accessed fromthe cluster of a PONTER TO FRAME type.

Anormaly: An inline proc binding in an interface is not accessible froma D RECTORY ar gumen
must inmport the interface.

Per f ormance: Excessive application of inline procs will result in nmuch |arger conpiled c
Excessive definition of inline procs will result in nmuch larger data structures in the c
hence in larger synbol table files, and a greater chance of overflowi ng the conpiler’'s c
following cases are efficient:

An inline proc in an inplenentation which is called zero or one tines.

An inline proc which has a sinple body, no locals, no nanmed results, and no access
formal s after potential side effects.

13.6 STATEMENTS 57

3.6 Statements

14 Statenment ::= SS { simpLELOOP {sS; coro Cont ((; EXITS Retry((=>NuLL};
In 6, 10, 17, 19. EXITS Cont ((=>NuLL }
15sS ::=e, e, | e | blocké | escape | [lmoe,] . ™vOD | e --nust yield VOD-- | --all four yield V
16 €scape ::= Gron | G TO N | HEX[exception[code~ n((, args~NL]] |
EXIT | CONTINUE | *LOOP | RETRY | coro (Exit(i7 | Cont(? | Loop(l7’] Retry(9) |
(RETURN | RESUME) 7?e | { ?(r(%3_e;) coro (Return(13 | Resume(13) } |
*REJECT | ,,€ _ STATE THI SEXCEPTION[] | DUMPSTATE] €]
17loop ::= (iterator |) { (Literatdr done(~FALSE; Next(: ProC~{};)
(WHLE e | UTIL e |) { Test(~l IN(NOT € | e | FALSE);
DO ?eopen? ?eenabl e8 ?body10 _{ opemLELOOP {

IF Test([] orR done(THEN GOTO FI NI SHED;
{ enabl e body ExiTS Loop(=>NuLL }; Next

?(REPEAT (n, !..=>s8); ...) ENDLOOP EXITS Exit(gNuL; (n, !'..gs); ...; FINSHEDgNULL}}}
18iterator ::= THROUGH e | FR X(: e IN e
FOR(n: t | n (n t; |)

(| DHEcRRasige] ;I NYeEte; done(: BoOL_Range(. | SEMPTY;
Next (: Proc~{ IF n (>Range(.LAST | <Range(.FIRST)
THEN done(_TRUE ELSE n_n. (SucC | PRED) };
n_Range(. (FIRST | LAST); |
_ €e,done(): BOOL~FALSE; Next(: Proc-{n_e,}; n_e,) ;

e is a subrange. In FrRN: t ... , nis readonly except for the assignment in the iterator’s desugaring.
Exanpl es
X_AddHi st s[baseHi st, baseH st]”*; -- A statenment can be an assignnent,
Set up[bh~mai n, a-~3]; -- or an application w thout results,
{ENaBLE Fatal Error=>rReTurN[O]; []_f[3];--.o0r}a block,

IF i >3 THEN RETURN] 25] ELSE coro Not Present;or an IF or an escape statenent,

FOR t:INT DECREASING IN [0..5) untiL f[t]>3 mr a loop. Try to declaret in the FOR
u: INT_O; ... ; u_t+4; ... - - as shown. Avoi d OPEN or ENABLE
REPEAT Qut=>{...}; FINNSHED=>{...} ENDLCOP; after DO (use a block). FINSHED
-- must be | ast.

THROUGH [1..5) DO i _i*i ENDLOCP; -- Raises i to the 16th power.
FOR i: INT_1, i+2 WHILE i<8 DOj _j+i ...5- Accunulates odd nunbers in [1..8).
FOR | : Label I'b, |I.Next wiLE | #NIL DO --.;Sequences through a list of Labels.

Cedar makes a distinction between expressions and statenents. This distinction is nost e
defined in terms of a special type called vaob, which is equivalent to the enpty decl arat
is the range type of a pPrRoC [...]_[], and it is also the result type of a block, control,
statenment. An expression whose value is a vabD can be used as a statenent, and cannot be
an ordinary value in a binding (since it wouldn't have the right type). If you want to ¢
whi ch returns values as a statenent, you nust assign the results to an enpty group:

[1_f[...]

Assignnent is a special case; an assignnent can be used as a statenment even though its v
val ue of the right operand. This is explained in the desugaring!5 using a special proc TC
cluster of every assignable type; it takes a value of the type and returns a vobD. Note t
grammar is anbi guous here, since there are two parsings of e ,_e, as a statement; the one

the rule for statenent is preferred.

58 BLOCKS, OPEN AND ENABLE 13.4

Anomaly: In a select?2® which is a statenment (i.e., returns vaD), the choices are separat:¢
sem colons; in an ordinary select expression they are separated by connas.

Anomal y: «If you wite an expressi on whose value is a proc taking no argunents as a stat
proc gets applied. Thus

P;
is the sane as

PL];
This is the only situation in which an ordinary proc gets applied by coercion (but see {
open procs).

A statenent!4 is actually a rather conplicated construct, as the desugaring shows. This i
t he coNTINUE and RETRY statenents, which respectively term nate and repeat the statenent
containing the enable® in which they appear. The desugaring shows exactly what this nean:
vari ous obscure cases. CONTINUE and RETRY are legal only in an enable choice (13.4.2), and
may not appear in a declaration at all. <ReTRY should be avoi ded everywhere, since it int
loop into the programin a distinctly non-obvi ous way.

Escapel6 consists mainly of the various flavors of coro (including EXIT, CONTINUE, LOOP, RETR
RETURN and RESUME) which raise a |ocal exception bound in an exiTs; this is explained in
13.4.3.2. REJECT is explained in 713.4.3.1.

Anomal y: You cannot use a Goto to escape froma proc body, even though the body is w thin
scope of the label. Only nornmal conpletion, or a RETURN or ERROR exception (or a SIGNAL Whi (
is not resuned) can termnate the execution of a proc body.

A loopl” is repeated indefinitely until stopped by an exception, or by the iterator8 or
UNTIL test. It has a body, bracketted by po and enoLoor, which is alnost |ike a block, but
sonme confusing differences:

You catch Goro exceptions with RePeaT, which is exactly like exTs in a block inmredi a
around the | oop, except for the different deliniting reserved word. Note that the
the | abel s does not include the iterator or the test, even though these are eval ua
repeatedly during execution of the l[oop. This feature is best avoided, but unfortu
necessary if you want to catch the FINSHED excepti on expl ai ned bel ow.

eYou can wite an open or enable. This is also best avoi ded, since the scope is co
is better to wite a block explicitly inside the poif you need these facilities.
There are three special exceptions associated with | oops:

EXIT is equivalent to coto Exit(, where Exit(is a |label automatically declared in tl
of every loop. Its enable choice does nothing. Thus ExiT sinply ternminates the snal
that encloses it.

FINNSHED i s rai sed when the iterator or the WHLE/UNTIL test ternminates the loop. It
declared in the RePEAT |i ke any label, but it nust cone last. If it is not declared
enabl e choice is supplied for it.

*LOOP causes the next repetition of the loop to start inmediately.
Anomal y: You cannot write GOTO FI NIl SHED.

An iterator18 declares a control variable v which is initialized by the iterator and upds
execution of the loop; the scope of vis the entire loop, and it is read-only in the oo

loop is termnated by the iterator (i.e., in the FINNSHED cl ause), the value of v is undef
onmit the declaration and sinply name an already declared variable, it will be used as th
variable, and will not be read-only; it will still be undefined after the loop is ternin

iterator. Avoid this feature.

13.6 STATEMENTS 59

There are three flavors of iterator:

THROUGH, whi ch has no explicit control variable; THRoucH [0..k) is convenient when yo
just want to loop k tines.

FOR v: T IN[first, last] ...; vis initialized to first, and set to succv] after eac
iterator finishes the |oop after a repetition which |eaves v>last. The > case can ¢
FOR vV IN ..., when an out-of-range value is assigned to v in the | oop body. DECREASI N

reverses the order in which the elenents of the subrange are used. The subrange ne
be static. Note that the subrange is evaluated only once, before execution of the
begi ns.

FOR v: T_first, next ...; vis initialized to first, and set to next after each repet
iterator never finishes the |loop. Note that the expression next is reeval uated eacl
around the | oop. The usual application is sonething |ike

FOR v: List_header, v.next UNTIL V=NL.

Note that the WHILE or UNTIL test is nade with v equal to its value during the next repeti
that both tests are made before the first repetition, so that zero repetitions are possi

3.7 Expressions

19 expression @ := n | |iehdrappl j cation26 |
(e | typeNane3”) . (9) n |
prefixCp e | e, infixCp e, | e . prefijOe, . irfe}Op
e, rel® (4 e, | (1 [x(: Dey, y(:Dej])erelegp |
e, AND(2) e, | e OR(1) e, | IF e, THEN e, ELSE FALSE | IF €, THEN TRUE ELSE e, |
e N (9) | *STOP | ERRR | € . DEREFERENCE | STOP[] | ERROR NAMELESSERRCR |
builtin[e ?(, e, !..) ?applEn27e,|. builtin ?([e, ... ?applEn]) |
funnyAppl e ?([?argBi ndi ng2? ?appl E27] funnyAppl ?([argBinding]) |
[argBinding27] | --Binding nust coerce to a record, array, or <l ocal
s | subrange2s | if28 | select2? | safeSelect32 | ewithSel ect34
Precedence is in bold in rules 19-21. Al operators associate to the left except _, which associates

to the right. Application has highest precedence. Subrange only after IN or THROUGH. s only in if 28 and sel

20 prefixCp ::= @(8) | (7) | (~ | NOWAR{GPO NTER | UM NUS | NOT
21infix0Op ::=* | / | mD(6) | + | TeVES | DG DE | REM | PLUS | MNUS | ASSIGN
2relQp ;=280 (2~ (=] <] >) | #Nor (?nor x(. (EQUAL | LESS | GREATER)[y(] | x(~=y(|
X(69€ Ior>x) (<IN >) y(| x(>=y(xkiwsy (AnasT
--In 19, 30. _) Bur {Bound
23 builtln ::= -- These are enunerated in Table 45.
24 funnyAppl ::= FORK | JON | WAIT | NOTIFY | BROADCAST |
SIGNAL | ERROR | RETURN W TH ERRCR |
*NEW | ¢ START | ¢RESTART |,,TRANSFER WTH | ,, RETURN W TH
25 subrange ::= (typeName37 |) LET t(~(typeNanme | INT) , first(~(e, | e,.succ) IN
_) e e XCIT IO t (. msuBrRANGE[first(, (e, | e, PRED)] BUT
--1n 19, 39, 48. { BoundsFaul t =>t (. MKEMPTYSUBRANGE[€,] }
26 application ::= e [?argBi ndi ng ?appleEni(~e, a(~[argBi hdim@(. ApPLY Za(?3ppl En
27argBinding ::=(n ~ (e | | TRASH))(n!~.(¢ | OMTTED | TRASH)), !.. |
(e] | TRASE), OM.TTED | TRASH),

In 19, 26. *TRASH may be witten as NULL, ~ as :.
27.1appl En :: =1 enChoice?, ...-- In 19 B26 {_enChoice.. }

60 BLOCKS, OPEN AND ENABLE 13.4

Exanpl es
Iv: LabelValuel3 [i, 3, "Hello", 31.4EX cansi),uctor with sone sanple
g[x]+l b.f+j.PRED, NIL]; -- expr essi ons.
pl: PROCESS RETURNS [INT] _FORK f[i, j]; -- FunnyAppls take one unbracketted
ERROR NoSpace; waiT bufferFill ed; -- arg; many return no result, so
RT: RTBasi c. Type_coog[Label Val uet3]; -- must be statenents.
h[3, Nor(i>j), i*j, i_3, i NOT >, p ©rR din lappiticati on with sanpl e expressions.
[vie [first~0,last~5,x~3.2,9~2,f~5,r~Nn+, Skbdt]for |v_Label Valuel3[...].
[first~i, last~j]_Ivis; -- Assignment to var bi ndi ng

-- (extractor).

b: BooL_i IN[1..10]; FOR x: INT IN (O..-}1)Swr ange only in types or with IN
b (¢ INColor5(red..green] orR X IN INMFOTh&0) N} ;i s redundant.

fh_Files.Open[nanme~l b.s, node~Fil es. readkeywords are best for nultiple args.
I AccessDeni ed=>{...}; Fatal Error=>f:. Sghj col ons separate choi ces.

(GetProcs[j].ReadProc)[Kk]; -- The proc can be conput ed.

file.Read[buffer~b, count~k]; -- Wrile.Read[file, b, k] (object notation).
fl[i~3, j~, k~TrRasH]; f[i~3, k~TRAsH]; -- j and k may be trash (see defaul t TCS).
f[3, , TRASH; -- Likewise, if i, j, and k are in that order.

Most of the forms of expression are straightforward sugar for application: prefix, infix
operators, explicit application of a primtive proc23, or the funnyAppl24 in which the fil
follows the proc nane without any brackets. Al of these constructs desugar into dot not
(712.4.4, 14.14); this means that the procs cone fromthe cluster of the first argunent.
exceptions to this rule are AL, cons for variant records and lists, LIST, and the single-:
fornms of LoopHOLE and NARRON and VAL; all of these get the proc fromthe target type of the
expression (14.2.3). Al the primtive procs are described in 4.

Note that anp and orR are not sinply sugar for application. Rather, they are sugar for an
expression, since the second operand is evaluated only if the first one is TRUE or FALSE r

The order of evaluation for argunents of an application, and therefore for operands in a
expression is not defined (unless the operator is AND or OR). However, the argunents are
one at a tine, and all argunents are evaluated before the proc is applied. In particular
assi gnment whi ch executes conpl etely behaves as though both left and right operands are
conpl etely eval uated before any assignments are done, even if the left side is a binding
[a~x, b~y.f].

Rul es 19-21 give the precedence for operators: » and . are highest (bind nost tightly) a
lowest. All are left-associative except _, which is right-associative. Application has s
precedence.

Style: The precedence rules are sufficiently conplex that it is wise to parenthesize exp
depend on subtle differences in precedence.

The first operand of assign can be an argBi ndi ng27 whose value is a variable group or bir
one whose elenents are variables; this is sonetinmes called an extractor. The second argu
typecheck if it is a group or binding with correspondi ng el enments which can be assigned
vari ables. Usually the second argument is either an application which returns nore than
or a record-valued expression. You can onit elenments of the left argBinding to discard t
correspondi ng val ues; however, you can't wite TRasH in the left operand. Note that the r
operand is fully evaluated before any vari abl es are changed by the assi gnnment.

The expresssion ERROR i s short for raising a nanel ess ERROR exception. You shoul d think of
call to the debugger, appropriate for a state which "can't occur".

13.7 EXPRESSI ONS 61

A funnyAppl which takes nore than one argunent has the extra argunents witten inside br
in the usual way; e.g., START P[3, "Help"]. RETURN WTH ERROR i s explained in T4.10.

Anomal y: The funnyAppl Newe actually stands for e.coPYIMPLINST. See 14.4.1 and 714.5. 3.

Anoral y: Enabl e choices are legal only for the follow ng funnyAppl s: FORK JO N RESTART START
SToP waIT. You can wite enpty brackets if necessary to get a place for the enChoices.

A subrange25 denotes a subrange type; see 14.7.3. Standard mathenatical notation for ope
closed intervals is used to indicate whether the endpoints are included in the subrange.
can al so be used after INin an expression or iterator; in these contexts it need not be

You can wite enable choices® after a ! inside the brackets of an application2s built-in
funnyAppl 24. See 13.3.2 for the semantics of this. Note that only an exception returned |
application is caught by these choices, not one resulting fromevaluating the proc or ar

An ar gBi ndi ng27 denotes a binding for the argunents of an application. You can onmt a

[name, value] pair n~e in the binding if the corresponding type has a default, or you cal
nane w thout the value expression (e.g., n~) with the same neaning. You can also wite
(eor NuL) for the value; this supplies a trash value for the argunent (14.11).

3.8 IF and SELECT

28if (1= 1Fe THEN e, (ELSE e, |) IF e, THEN e, ELSE (e, | NuLL)
29 sel ect ::= SELECT e FROM LET sel ector(~e IN
choice; ... endChoice cheige ... endChoice
The ";" is "," in an expression; also in 32-andLSE.is a separator for repetitions of the choice.
30 choice ::=((| relO22) e), !..#¢,(selector((=] relOp) e) R ...) THEN e,
31 endChoice ::= ENDCASE (| => e,) ELSE (NULL | e,)
In 29, 32, 34,
32 safeSel ect ::= WTH e SELECT FROM LET v(~e IN
saf eChoi ce; ... endChoice3l saf eChmisge.. . endChoi ce
3 safeChoice ::=n: t =>e¢, IF ISTYPE[V(, t] THEN LET n @ t_NARROWV(, t] IN e,
34 *withSelect ::= WTH (n, ~~ e, | * epPEN v(~~e INLET n(~($n, | NL), type(~Dv(,
SELECT (| ,e,,) FR™ sel ector(~(e,. TAG | _e,,) 1IN misEhChoi eedChoi ce
wi t hChoice; ... endChoice3! -- e, must be defaul ted except for a COMPUTED variant.
*The ~~ may be witten as :.
35 *W thChoice ::=n, => e, | IF sel ector(=$n, THEN OPEN

n, n, !.. =>e, (BINDP[N(, LooPHOLE[V(,type(.n,]] | BinoP[Nn(, v(])

62 BLOCKS, OPEN AND ENABLE 13.4

Exanpl es

i (IF j<3 THEN 6 ELSE 8); -- An IF with results nust have an ELSE.

IF k NOT IN Range THEN RETURN] 7] ;

SELECT f[j] FROM -- SELECT expressions are al so possible.
<7=>{...}; -- W:INT~f [j]; IFt<7 THEN {...} ELSE ...
IN[7..8]=>{...}; -- 7, 8=>or =7, =8=>{...} is the sane.
NOT <=8=>{...}; -- ENDCASE=>{...} is the sanme here.
ENDCASE=>ERRCR,; -- Redundant: choices are exhaustive.

WTH r SELECT FROM -- Assune r: REF ANY in this exanple.
rint: REF INT=>RETURN[Gcd[riInt”, 17]];-- rint is declared in this choice only.

rReal : REF REAL=>RETURN] Fl oor[Si n[r Real *]]];
ENDCASE=>RETURN[IF r=NIL THEN O ELSE 1] -- Only the ReEF ANY r i s known here.

nr: REF Node52~...; WTH dn~~nr SELECT FRoM See rule 52 for the variant record Node.
bi nary=>{nr_dn. b}; -- dn is a Node.binary in this choice only.
unary=>{nr_dn. a}; -- dn is a Node.unary in this choice only.
ENDCASE=>{ nr _NI L} ; -- dn is just a Node here.

The kernel construct if28 evaluates the expression e
test=TRUE, or e, if test=FALSE. In the expression
IF test, THEN IF test, THEN ifTrue, ELSE ifFal se,

the grammar is anbi guous about which IF the ELSE belongs to. It belongs to the second one

, to a B val ue test, and then eval u

A select29 is a sugared formof if which is conveni ent when one of several cases is chose
a single value. The selector expression e is evaluated once to yield a value selector(, a
the choices is tested in turn. Wthin each choice, each expression e, preceding the => i:

inturn with selector(; the conparison is selector(relop e if e is preceded by a relop;
selector(=e,. If any conparison succeeds, the expression e, following the => is eval uated

val ue of the select. If no conparison succeeds, the next choice is tried. If no choice s
expression e, follow ng the ENDCASE i s evaluated to yield the value of the select; e, defa

NULL, and hence nust be present when the select is not a statenent to prevent a type erro

Style: It is good practice to arrange the tests so that they are disjoint and exhaust th
val ues of the selector. ENDcASE should be used to nmean "in all other cases"; often the apj

e, raises an error. Don't use ENDCASE to nean another specific selector value which you do

bother to nention. Another acceptable formis SELECT TRUE FROM ..., which selects the first
that succeeds, and is sonetines easier to read than a | ong sequence of ELSE IF s.

Performance: If the e, are static and sel ect subsets of the selector values, the average

subsets is not too large, and the density of unsel ected values is not too high, a select
an i ndexed junp, which executes in a tine independent of the nunmber of choices.

A safeSelect32 is a special formfor discrimnating cases of unions or ANy. The sel ector |
val ue for which 1sTyPE can be evaluated dynanmically (14.3.1): REF ANY, PROC ANY_T, PRCC
T_ANY, V, REF V, or (LONG PONTER TO V, where V is a variant record. Each choice specifies
possi bl e type that the selector nmight have, and declares a nanme which is initialized to
value if it has that type. Thus, the exanple tests for r having the types REF INT and REF
has Rer INT, the first choice’s e is evaluated; within e, rint is a variable initialized t
and has type ReEF INT. Likew se for REF REAL and the second choice. As with an ordinary sele
ENDCASE expression is evaluated (with no new names known) if none of the other choices suc
Not e that safeSel ect does ordi nary bindi ng by value, not the binding by nanme done in ope
wi t hSel ect .

13.8

| F AND SELECT 63

«,AwithSelect34 is an unsafe and rather tricky construction for discrimnating cases of
use shoul d be avoi ded unless a safeSelect can’t do the job; this is the case for a cowur
if the call by nane feature of w thSelect is required.

I't incorporates an open (13.4.2) of the e, being discrinminated. This neans that e,

dereferenced to yield a variant record value. It also neans that this value is not
hence it can change its type during execution of a choice, either by assignnent to
variant part of a variant record (itself an unsafe operation), or by a change int
el.
If the union has a cowureD tag, the selector value to be used for the discrimninatic
be given as e, in the withSelect. It is entirely up to the programer to supply a

value. If the tag is not CowuTED, e, must be omitted and the selector value is e,.T

The n, preceding =>in a choice are literals of the (enunerated) type (714.7.1.1) w

the tag type of the union (14.6.3). They are conpared with the selector, and if or
the e, following => is evaluated as with an ordinary select. If exactly one is give

e, following =>is in the scope of

OPEN nl~~LoopHo_E[e,. DEREF, V. n2] ;

or sinmply
OPEN LOOPHOLE[e,. DEREF, V. n,]

if non~~followed the wTH. |f several n, are given, then there is no discrimnati
the e, following => is in the scope of
OPEN n, ~~e,. DEREF or OPEN e, . DEREF

3.9 M scel | aneous

This section deals with various topics that are not naturally associated with particul ar
grammar rul es.

3.9.1 Static val ues

An expression has a static value if the conpiler can conpute the value. In Cedar, an exp
a static value (is static for short) if it is:

aliteral;
a name bound to a static val ue;
an application to static argunments of

a proc declared INLINE With a static body, or

a primtive which is not a loop, a REAL primtive (except unary m nus, ABS or
INTTOREAL), ASSIGN, @or New Note that IF and SELECT are eval uated.

Performance: The conpiler evaluates all static expressions, not just type expressions. T
i mportant for efficiency.

3.9.2 Size restrictions

Current Cedar has the following restrictions on the sizes of val ues:

A record type T nust have T.slze<2'®,
A row type T nust have T.slze<2?® and T. RANGE. Sl zE<216,

64 BLOCKS, OPEN AND ENABLE

13.4

L]

A type T with T.s1ze>2'® | acks the fol |l owing procs:
ALL

ASSI GN
CONS
DESCRI PTOR
INIT

NEW

A subrange type T nust have
O<T. LAST T. FIRsT<21®

2 15<T. FIrsT<2?®
T.LAST<(IF T.FIRST THEN 2%+T. FIRrsT ELSE 219)

2.9.3 Checking

Possible errors arising fromcertain primtive operations are checked, and cause ERROR eX
they occur, in a cHECkeD bl ock, or if the conpiler’s "u" switch is on:
Der ef erencing NL.

Narrowi ng an out-of-range value to a subrange type.

Assigning a local proc to a proc variable (in cHeckeD bl ocks only).

