-- file Pass4Ops.mesa
-- last written by Satterthwaite, May 31, 1982 11:34 am
DIRECTORY
Alloc: TYPE USING [Notifier],
Literals: TYPE USING [Base, LitDescriptor, ltType],
LiteralOps: TYPE USING [DescriptorValue, Find, FindDescriptor, Value],
Log: TYPE USING [ErrorTree, WarningTree],
P4: TYPE USING [
RelOp, Repr, none, unsigned, both, other,
CommonRep, TreeLiteral, StructuredLiteral],
Pass4: TYPE USING [tFALSE, tTRUE],
Real: FROM "IeeeFloat" USING [Abs, RealException, Negate, PairToReal],
Symbols: TYPE USING [CSEIndex],
Tree: TYPE USING [Base, Index, Link, Map, NodeName, Null, Scan, treeType],
TreeOps: TYPE USING [
FreeNode, GetNode, PopTree, PushLit, PushNode,
ScanList, SetInfo, UpdateList];
Pass4Ops: PROGRAM
IMPORTS LiteralOps, Log, P4, Real, TreeOps, passPtr: Pass4
EXPORTS P4 =
BEGIN
OPEN TreeOps;
RelOp: TYPE = P4.RelOp;
Repr: TYPE = P4.Repr;
tb: Tree.Base; -- tree base address (local copy)
ltb: Literals.Base; -- literal table base address (local copy)
OpsNotify: PUBLIC Alloc.Notifier = {
-- called by allocator whenever table area is repacked
tb ← base[Tree.treeType]; ltb ← base[Literals.ltType]};
-- literals
TreeLiteralValue: PUBLIC PROC [t: Tree.Link] RETURNS [WORD] = {
WHILE TRUE
DO
WITH e:t SELECT FROM
literal =>
WITH e.info SELECT FROM
word => RETURN [LiteralOps.Value[index]];
ENDCASE => EXIT;
subtree => {
node: Tree.Index = e.index;
SELECT tb[node].name FROM
cast => t ← tb[node].son[1];
ENDCASE => EXIT};
ENDCASE => EXIT
ENDLOOP;
ERROR};
MakeTreeLiteral: PUBLIC PROC [val: WORD] RETURNS [Tree.Link] = {
RETURN [[literal[info: [word[index: LiteralOps.Find[val]]]]]]};
TreeLiteralDesc: PUBLIC PROC [t: Tree.Link] RETURNS [Literals.LitDescriptor] = {
WITH t SELECT FROM
literal =>
WITH info SELECT FROM
word => RETURN [LiteralOps.DescriptorValue[index]];
ENDCASE;
subtree => {
node: Tree.Index = index;
SELECT tb[node].name FROM
mwconst, cast => RETURN [TreeLiteralDesc[tb[node].son[1]]];
ENDCASE};
ENDCASE;
ERROR};
LongLiteralValue: PROC [t: Tree.Link] RETURNS [LONG UNSPECIFIED] = {
w: ARRAY [0..1] OF WORD;
desc: Literals.LitDescriptor = TreeLiteralDesc[t];
IF desc.length # 2 THEN ERROR;
w[0] ← ltb[desc.offset][0]; w[1] ← ltb[desc.offset][1];
RETURN [LOOPHOLE[w]]};
MakeLongLiteral: PROC [val: LONG UNSPECIFIED, type: Symbols.CSEIndex]
RETURNS [Tree.Link] = {
w: ARRAY [0..1] OF WORD ← LOOPHOLE[val];
PushLit[LiteralOps.FindDescriptor[DESCRIPTOR[w]]];
PushNode[mwconst, 1]; SetInfo[type];
RETURN [PopTree[]]};
LiteralRep: PUBLIC PROC [t: Tree.Link, rep: Repr] RETURNS [Repr] = {
desc: Literals.LitDescriptor;
RETURN [SELECT TRUE FROM
rep = P4.other, rep = P4.none => rep,
P4.TreeLiteral[t] =>
IF TreeLiteralValue[t] > 77777b
THEN IF rep = P4.both THEN P4.unsigned ELSE rep
ELSE P4.both,
P4.StructuredLiteral[t] =>
IF (desc←TreeLiteralDesc[t]).length = 2
THEN
IF ltb[desc.offset][1] > 77777b
THEN IF rep = P4.both THEN P4.unsigned ELSE rep
ELSE P4.both
ELSE P4.other,
ENDCASE => rep]};
IntToReal: PUBLIC PROC [node: Tree.Index] RETURNS [val: Tree.Link] = {
v: LONG INTEGER = LongLiteralValue[tb[node].son[1]];
overflow: BOOLEAN ← FALSE;
r: REAL = Real.PairToReal[v, 0
! Real.RealException => {overflow ← TRUE; RESUME}];
IF overflow THEN {val ← [subtree[node]]; Log.ErrorTree[overflow, val]}
ELSE {val ← MakeLongLiteral[r, tb[node].info]; FreeNode[node]};
RETURN};
SignWord: WORD = LAST[CARDINAL];
ShortToLong: PUBLIC PROC [node: Tree.Index, rep: Repr] RETURNS [val: Tree.Link] = {
w: ARRAY [0..1] OF WORD;
w[0] ← TreeLiteralValue[tb[node].son[1]];
w[1] ← IF P4.CommonRep[rep, P4.unsigned] # P4.none OR w[0] <= MaxSS THEN 0 ELSE SignWord;
PushLit[LiteralOps.FindDescriptor[DESCRIPTOR[w]]];
PushNode[mwconst, 1]; SetInfo[tb[node].info]; FreeNode[node];
RETURN [PopTree[]]};
LongToShort: PUBLIC PROC [node: Tree.Index, rep: Repr] RETURNS [val: Tree.Link] = {
v, w: WORD;
desc: Literals.LitDescriptor = TreeLiteralDesc[tb[node].son[1]];
IF desc.length # 2 THEN ERROR;
v ← ltb[desc.offset][0]; w ← ltb[desc.offset][1];
IF P4.CommonRep[rep, P4.unsigned] # P4.none THEN {
IF w # 0 THEN GO TO Overflow}
ELSE
IF (v <= MaxSS AND w # 0)
OR (v > MaxSS AND w # SignWord) THEN GO TO Overflow;
val ← MakeTreeLiteral[v]; FreeNode[node];
EXITS
Overflow => {
val ← [subtree[node]]; Log.ErrorTree[boundsFault, tb[node].son[1]]}};
ZeroP: PUBLIC PROC [t: Tree.Link] RETURNS [zero: BOOLEAN] = {
IF ~P4.StructuredLiteral[t]
THEN zero ← FALSE
ELSE {
desc: Literals.LitDescriptor = TreeLiteralDesc[t];
zero ← TRUE;
FOR i: CARDINAL IN [0..desc.length) WHILE (zero←(ltb[desc.offset][i] = 0))
DO NULL ENDLOOP};
RETURN};
-- dispatch
Mode: TYPE = {ss, su, ls, lu, other};
ModeMap: ARRAY Repr OF Mode = [
ss, ss, su, ss, ls, ls, lu, ls,
other, ss, su, ss, other, ls, lu, ls];
InOp: TYPE = Tree.NodeName [in .. notin];
IntOp: TYPE = Tree.NodeName [intOO .. intCC];
Test: ARRAY Mode OF PROC [t1, t2: Tree.Link, op: RelOp] RETURNS [BOOLEAN] = [
TestSS, TestSU, TestLS, TestLU, TestOther];
UnaryOp: ARRAY Mode OF PROC [node: Tree.Index] RETURNS [Tree.Link] = [
UnarySS, UnarySU, UnaryLS, UnaryLU, UnaryOther];
BinaryOp: ARRAY Mode OF PROC [node: Tree.Index] RETURNS [Tree.Link] = [
BinarySS, BinarySU, BinaryLS, BinaryLU, OpError];
FoldExpr: PUBLIC PROC [node: Tree.Index, rep: Repr] RETURNS [val: Tree.Link] = {
SELECT tb[node].name FROM
plus, minus, times, div, mod => val ← BinaryOp[ModeMap[rep]][node];
abs, uminus => val ← UnaryOp[ModeMap[rep]][node];
relE, relN, relL, relGE, relG, relLE => {
val ← IF RelTest [
l: tb[node].son[1], r: tb[node].son[2],
op: tb[node].name,
rep: rep]
THEN passPtr.tTRUE
ELSE passPtr.tFALSE;
FreeNode[node]};
in, notin => {
val ← IF
IntervalTest [l: tb[node].son[1], r: tb[node].son[2], rep: rep]
=
(tb[node].name = in)
THEN passPtr.tTRUE
ELSE passPtr.tFALSE;
FreeNode[node]};
min, max => {
VoidItem: Tree.Map = {RETURN[IF t=val THEN Tree.Null ELSE t]};
val ← Choose[
list: tb[node].son[1],
test: IF tb[node].name = min THEN relL ELSE relG,
rep: rep];
tb[node].son[1] ← UpdateList[tb[node].son[1], VoidItem];
FreeNode[node]};
ENDCASE => ERROR};
RelTest: PUBLIC PROC [l, r: Tree.Link, op: RelOp, rep: Repr] RETURNS [BOOLEAN] = {
OpMap: ARRAY RelOp OF RECORD [map: RelOp, sense: BOOLEAN] = [
[relE, TRUE], [relE, FALSE], [relL, TRUE], [relL, FALSE],
[relG, TRUE], [relG, FALSE]];
RETURN [Test[ModeMap[rep]][l, r, OpMap[op].map] = OpMap[op].sense]};
IntervalTest: PUBLIC PROC [l, r: Tree.Link, rep: Repr] RETURNS [BOOLEAN] = {
InTest: ARRAY IntOp OF RECORD [lb, ub: RelOp] = [
[relG, relL], [relG, relLE], [relGE, relL], [relGE, relLE]];
subNode: Tree.Index = GetNode[r];
op: IntOp = tb[subNode].name;
RETURN [
RelTest[l, tb[subNode].son[1], InTest[op].lb, rep]
AND
RelTest[l, tb[subNode].son[2], InTest[op].ub, rep] ]};
Choose: PROC [list: Tree.Link, test: RelOp, rep: Repr] RETURNS [val: Tree.Link] = {
started: BOOLEAN ← FALSE;
Item: Tree.Scan = {
SELECT TRUE FROM
~started => {started ← TRUE; val ← t};
RelTest[t, val, test, rep] => val ← t;
ENDCASE};
ScanList[list, Item]; RETURN};
-- operations
MinSS: INTEGER = FIRST[INTEGER];
MaxSS: INTEGER = LAST[INTEGER];
TestSS: PROC [t1, t2: Tree.Link, op: RelOp] RETURNS [BOOLEAN] = {
v1: INTEGER = TreeLiteralValue[t1];
v2: INTEGER = TreeLiteralValue[t2];
RETURN [SELECT op FROM
relE => v1 = v2,
relL => v1 < v2,
relG => v1 > v2,
ENDCASE => ERROR]};
UnarySS: PROC [node: Tree.Index] RETURNS [t: Tree.Link] = {
v: INTEGER;
v1: INTEGER = TreeLiteralValue[tb[node].son[1]];
SELECT tb[node].name FROM
uminus => IF v1 # MinSS THEN v ← -v1 ELSE GO TO Overflow;
abs => IF v1 # MinSS THEN v ← IF v1 < 0 THEN -v1 ELSE v1 ELSE GO TO Overflow;
ENDCASE => ERROR;
t ← MakeTreeLiteral[v]; FreeNode[node];
EXITS
Overflow => {
tb[node].attr3 ← TRUE; t ← [subtree[node]]; Log.ErrorTree[overflow, t]}};
BinarySS: PROC [node: Tree.Index] RETURNS [t: Tree.Link] = {
v: INTEGER;
v1: INTEGER = TreeLiteralValue[tb[node].son[1]];
v2: INTEGER = TreeLiteralValue[tb[node].son[2]];
SELECT tb[node].name FROM
plus =>
IF (IF v1 >= 0 THEN v2 <= MaxSS-v1 ELSE v2 >= MinSS-v1)
THEN v ← v1 + v2
ELSE GO TO Overflow;
minus =>
IF (IF v1 >= 0 THEN v1-MaxSS <= v2 ELSE v1-MinSS >= v2)
THEN v ← v1 - v2
ELSE GO TO Overflow;
times =>
IF (SELECT TRUE FROM
(v1 > 0) AND (v2 > 0) => v2 <= MaxSS / v1,
(v1 > 0) AND (v2 < 0) => v2 >= MinSS / v1,
(v1 < 0) AND (v2 > 0) => v1 >= MinSS / v2,
(v1 < 0) AND (v2 < 0) =>
v1 # MinSS AND v2 # MinSS AND v2 >= MaxSS / v1,
ENDCASE => TRUE)
THEN v ← v1 * v2
ELSE GO TO Overflow;
div =>
IF v2 # 0 AND (v2 # -1 OR v1 # MinSS)
THEN v ← v1 / v2
ELSE GO TO Overflow;
mod => IF v2 # 0 THEN v ← v1 MOD v2 ELSE GO TO Overflow;
ENDCASE => ERROR;
t ← MakeTreeLiteral[v]; FreeNode[node];
EXITS
Overflow => {
tb[node].attr3 ← TRUE; t ← [subtree[node]]; Log.ErrorTree[overflow, t]}};
MaxSU: CARDINAL = LAST[CARDINAL];
TestSU: PROC [t1, t2: Tree.Link, op: RelOp] RETURNS [BOOLEAN] = {
v1: CARDINAL = TreeLiteralValue[t1];
v2: CARDINAL = TreeLiteralValue[t2];
RETURN [SELECT op FROM
relE => v1 = v2,
relL => v1 < v2,
relG => v1 > v2,
ENDCASE => ERROR]};
UnarySU: PROC [node: Tree.Index] RETURNS [t: Tree.Link] = {
v1: CARDINAL = TreeLiteralValue[tb[node].son[1]];
SELECT tb[node].name FROM
uminus => IF v1 # 0 THEN GO TO Overflow;
abs => NULL;
ENDCASE => ERROR;
t ← MakeTreeLiteral[v1]; FreeNode[node];
EXITS
Overflow => {
tb[node].attr3 ← FALSE; t ← [subtree[node]]; Log.ErrorTree[overflow, t]}};
BinarySU: PROC [node: Tree.Index] RETURNS [t: Tree.Link] = {
v: CARDINAL;
v1: CARDINAL = TreeLiteralValue[tb[node].son[1]];
v2: CARDINAL = TreeLiteralValue[tb[node].son[2]];
SELECT tb[node].name FROM
plus => IF v2 <= MaxSU-v1 THEN v ← v1 + v2 ELSE GO TO Overflow;
minus => IF v1 >= v2 THEN v ← v1 - v2 ELSE GO TO Overflow;
times => IF v1 = 0 OR v2 <= MaxSU/v1 THEN v ← v1 * v2 ELSE GO TO Overflow;
div => IF v2 # 0 THEN v ← v1 / v2 ELSE GO TO Overflow;
mod => IF v2 # 0 THEN v ← v1 MOD v2 ELSE GO TO Overflow;
ENDCASE => ERROR;
t ← MakeTreeLiteral[v]; FreeNode[node];
EXITS
Overflow => {
tb[node].attr3 ← FALSE; t ← [subtree[node]]; Log.ErrorTree[overflow, t]}};
MinLS: LONG INTEGER = FIRST[LONG INTEGER];
MaxLS: LONG INTEGER = LAST[LONG INTEGER];
TestLS: PROC [t1, t2: Tree.Link, op: RelOp] RETURNS [BOOLEAN] = {
v1: LONG INTEGER = LongLiteralValue[t1];
v2: LONG INTEGER = LongLiteralValue[t2];
RETURN [SELECT op FROM
relE => v1 = v2,
relL => v1 < v2,
relG => v1 > v2,
ENDCASE => ERROR]};
UnaryLS: PROC [node: Tree.Index] RETURNS [t: Tree.Link] = {
v: LONG INTEGER;
v1: LONG INTEGER = LongLiteralValue[tb[node].son[1]];
SELECT tb[node].name FROM
uminus => IF v1 # MinLS THEN v ← -v1 ELSE GO TO Overflow;
abs => IF v1 # MinLS THEN v ← IF v1 < 0 THEN -v1 ELSE v1 ELSE GO TO Overflow;
ENDCASE => ERROR;
t ← MakeLongLiteral[v, tb[node].info]; FreeNode[node];
EXITS
Overflow => {
tb[node].attr3 ← TRUE; t ← [subtree[node]]; Log.ErrorTree[overflow, t]}};
BinaryLS: PROC [node: Tree.Index] RETURNS [t: Tree.Link] = {
v: LONG INTEGER;
v1: LONG INTEGER = LongLiteralValue[tb[node].son[1]];
v2: LONG INTEGER = LongLiteralValue[tb[node].son[2]];
SELECT tb[node].name FROM
plus =>
IF (IF v1 >= 0 THEN v2 <= MaxLS-v1 ELSE v2 >= MinLS-v1)
THEN v ← v1 + v2
ELSE GO TO Overflow;
minus =>
IF (IF v1 >= 0 THEN v1-MaxLS <= v2 ELSE v1-MinLS >= v2)
THEN v ← v1 - v2
ELSE GO TO Overflow;
times =>
IF (SELECT TRUE FROM
(v1 > 0) AND (v2 > 0) => v2 <= MaxLS / v1,
(v1 > 0) AND (v2 < 0) => v2 >= MinLS / v1,
(v1 < 0) AND (v2 > 0) => v1 >= MinLS / v2,
(v1 < 0) AND (v2 < 0) =>
v1 # MinLS AND v2 # MinLS AND v2 >= MaxLS / v1,
ENDCASE => TRUE)
THEN v ← v1 * v2
ELSE GO TO Overflow;
div =>
IF v2 # 0 AND (v2 # -1 OR v1 # MinLS)
THEN v ← v1 / v2
ELSE GO TO Overflow;
mod => IF v2 # 0 THEN v ← v1 MOD v2 ELSE GO TO Overflow;
ENDCASE => ERROR;
t ← MakeLongLiteral[v, tb[node].info]; FreeNode[node];
EXITS
Overflow => {
tb[node].attr3 ← TRUE; t ← [subtree[node]]; Log.ErrorTree[overflow, t]}};
MaxLU: LONG CARDINAL = LAST[LONG CARDINAL];
TestLU: PROC [t1, t2: Tree.Link, op: RelOp] RETURNS [BOOLEAN] = {
v1: LONG CARDINAL = LongLiteralValue[t1];
v2: LONG CARDINAL = LongLiteralValue[t2];
RETURN [SELECT op FROM
relE => v1 = v2,
relL => v1 < v2,
relG => v1 > v2,
ENDCASE => ERROR]};
UnaryLU: PROC [node: Tree.Index] RETURNS [t: Tree.Link] = {
v1: LONG CARDINAL = LongLiteralValue[tb[node].son[1]];
SELECT tb[node].name FROM
uminus => IF v1 # 0 THEN GO TO Overflow;
abs => NULL;
ENDCASE => ERROR;
t ← MakeLongLiteral[v1, tb[node].info]; FreeNode[node];
EXITS
Overflow => {
tb[node].attr3 ← FALSE; t ← [subtree[node]]; Log.ErrorTree[overflow, t]}};
BinaryLU: PROC [node: Tree.Index] RETURNS [t: Tree.Link] = {
v: LONG CARDINAL;
v1: LONG CARDINAL = LongLiteralValue[tb[node].son[1]];
v2: LONG CARDINAL = LongLiteralValue[tb[node].son[2]];
SELECT tb[node].name FROM
plus => IF v2 <= MaxLU-v1 THEN v ← v1 + v2 ELSE GO TO Overflow;
minus => IF v1 >= v2 THEN v ← v1 - v2 ELSE GO TO Overflow;
times => IF v1 = 0 OR v2 <= MaxLU/v1 THEN v ← v1 * v2 ELSE GO TO Overflow;
div => IF v2 # 0 THEN v ← v1 / v2 ELSE GO TO Overflow;
mod => IF v2 # 0 THEN v ← v1 MOD v2 ELSE GO TO Overflow;
ENDCASE => ERROR;
t ← MakeLongLiteral[v, tb[node].info]; FreeNode[node];
EXITS
Overflow => {
tb[node].attr3 ← FALSE; t ← [subtree[node]]; Log.ErrorTree[overflow, t]}};
TestOther: PROC [t1, t2: Tree.Link, op: RelOp] RETURNS [BOOLEAN] = {
RETURN [SELECT op FROM
relE => TreeLiteralDesc[t1] = TreeLiteralDesc[t2],
ENDCASE => ERROR]};
UnaryOther: PROC [node: Tree.Index] RETURNS [t: Tree.Link] = {
fail: BOOLEAN ← FALSE;
IF tb[node].attr1 -- REAL
THEN {
ENABLE Real.RealException => {fail ← TRUE; RESUME};
v: REAL;
v1: REAL = LongLiteralValue[tb[node].son[1]];
SELECT tb[node].name FROM
uminus => v ← Real.Negate[v1];
abs => v ← Real.Abs[v1];
ENDCASE => ERROR;
IF fail THEN GO TO Overflow;
t ← MakeLongLiteral[v, tb[node].info]; FreeNode[node];
EXITS
Overflow => {
tb[node].attr3 ← TRUE; t ← [subtree[node]]; Log.WarningTree[overflow, t]}}
ELSE ERROR};
OpError: PROC [node: Tree.Index] RETURNS [t: Tree.Link] = {ERROR};
END.