
Filed on: [Indigo]<Artwork>TiogaArtwork>3.2>TA.doc
Last edit: July 6, 1982 5:22 pm

Tioga Artwork

Richard J. Beach
July, 7, 1982

Introduction

A prototype for integrating text and figures within a Tioga document exists. Tioga Artwork represents a
successful experiment in graphical style. Artwork which can be integrated presently includes Griffin
pictures, AIS scanned images, and the results of executing JaMGraphics programs, along with text
captions.

The graphical style experiment attempted to provide a similar model of separating form from content as
exists in many text formatters. In our graphical style model, geometry represents the content and its
rendering represents the form. Graphical style is defined using the Tioga style mechanisms and can
describe colors, line weights, filled or outlined areas, pen styles, and shadow styles.

A Tioga document with both text and graphics can be typeset using a version of the Tioga Typesetter.
This version of the typesetter incorporates TiogaArtwork to render graphical nodes of a Tioga document.
In a symmetric fashion, TiogaArtwork uses the typesetter to compose the text within captions.

Incorporating AIS Images into Documents

As an introductory example of using TiogaArtwork, consider the following instructions for incorporating
a sampled image into a document. Note that if someone were to modify PressScreen to produce an AIS
file, then the resulting screen file could both be printed on a Press printer and be included in a Tioga
document.

Create a text node in the document where the image is to be placed. Use the Tioga Break command to
make this a separate node. Enter the local filename of the AIS image as the text of the node.. The node
will appear in the document window as normal text so it is necessary to make the node special for
TiogaArtwork. Use the EditTool to set the ArtworkImage property for this node: 1) enter ArtworkImage
in the Propertyname:field, 2) enter TRUE in the Propertyvalue:field, 3) select the node containing
the image filename, and 4) bug the Setbutton in the Propertysection of the EditTool.

Typeset the document using the TiogaArtwork version of the Tioga typesetter.

Incorporating Griffin Illustrations into Documents

To incorporate Griffin pictures in Tioga documents, the Griffin file first must be converted to
TiogaArtwork. Retrieve the Griffin file onto the local disk. Using the Tioga Artwork Viewer, enter the
filename in the box and bug Griffin -> TiogaArtwork! button.

Create a text node in the document where the Griffin picture is to be placed. Use the Tioga Break
command to make this a separate node. Enter the local filename of the converted Griffin picture, which
will be the Griffin picture name with the extension ".Artwork" as text within the node. To make this

1



node special for TiogaArtwork, use the EditTool to set the ArtworkFileName property for this node: 1)
enter ArtworkFileName in the Propertyname: field, 2) enter TRUE in the Propertyvalue:field, 3)
select the node containing the converted filename, and 4) bug the Setbutton in the Propertysection of
the EditTool.

Typeset the document using the TiogaArtwork version of the Tioga typesetter.

Software Configuration

At present, TiogaArtwork is bound up with the Tioga typesetter. The package name is TATS. When
this is run from the UserExec, two viewers are created: Typesetter and Tioga Artwork Viewer. The
Typesetter user interface is identical to the Tioga Typesetter.

The Tioga Artwork Viewer provides three buttons and a GetSelection menu button. When a button is
selected and Tioga Artwork is busy, the button will appear grey with black lettering. Messages describing
the current state of Tioga Artwork appear below the buttons at the bottom of the viewer. All buttons
are documented with explanations which appear when the button is bugged with the middle mouse
button.

Tioga Artwork Document Structure

The document structure expected by Tioga Artwork reflects both the Tioga document structuring
capabilities and graphical clustering of picture objects. A design criteria for this prototype was to use
only text nodes within Tioga documents, so as to avoid any modifications to the Tioga text editor.
Therefore all the geometry descriptions are represented either as text which are JaMGraphics commands
or filenames of artwork files. To distinguish text which represents graphical objects, properties are
assigned to such nodes.

Converted Griffin pictures will contain the necessary properties to be rendered successfully. Other nodes
created by hand which did not originate as converted files will have to have such properties added
manually. The Tioga EditTool provides this functionality.

The provision of graphical style utilizes the same style mechanisms as Tioga and its typesetter. Since
Tioga provides for extensible style parameters, most graphical style parameters are extensions of the Tioga
styles. Tioga Artwork renders the picture according to these graphical style parameters. Format names
applied to a node indicate the style parameters in force when the node is rendered.

A common expectation in working with illustrations for documents is the ability to group parts of a
picture and manipulate the group. Positioning and scaling are two common operations applied to
subpictures within an illustration. Positioning of textual captions is another operation. The tree structure
of Tioga documents provides a natural representation of such hierarchial structure within illustrations.
Therefore Griffin pictures which contain clusters of objects are represented as nested Tioga nodes. Each
Griffin object is made relative to an origin of (0,0) with its containing node supplying the appropriate
positioning commands. Clusters of objects supply further positioning commands for the group.
Furthermore, Tioga Artwork provides a nested display context for each level in the tree. Thus positioning
and scaling transformations apply only to the nodes contained within the Tioga subtree and no explicit
management of display contexts is needed.

Tioga Artwork Properties

Properties distinguish nodes which contain nontextual interpretation of their contents. Tioga Artwork
uses the following properties for graphical illustrations: Artwork, ArtworkImage, ArtworkFileName,
ArtworkPath, BoundingBox, and Origin. An artwork node must have at least one of the three properties:
Artwork, ArtworkImage or ArtworkFileName. Properties are generated automatically during the Griffin
to TiogaArtwork conversion, but must be manually applied for all other artwork nodes.

The property Artwork with the value TRUE, in the absence of either the ArtworkImage or
ArtworkFileName property, means that the node contains JaMGraphics commands. Normally the
positioning and scaling information nodes have this property.

2



The property ArtworkImage with the value TRUE means that the node contains the local filename of an
AIS image file. Tioga Artwork will interpret the text as a local filename and cause the image to be
drawn.

The property ArtworkFileName with the value TRUE means that the node contains the local filename
of an artwork file (hopefully different from any containing filename!). Tioga Artwork will interpret the
text as a local filename and render the artwork contained therein. This mechanism allows the inclusion
of converted Griffin illustrations with great ease.

The property ArtworkPath with the value TRUE means that the node contains solely geometry
information. The path definition relies on the three JaMGraphics commands: .moveto, .lineto, and
.curveto. The graphical style parameters determine how this path should be rendered. A Format name
is required to define which style rule is in force when the path is rendered.

The property BoundingBox with the value "xmin,ymin,xmax,ymax" defines the bounding box of the
graphical object. The Griffin to TiogaArtwork conversion automatically creates this property. However,
the information is not used by Tioga Artwork at present. It should be helpful in speeding up the layout
procedure required by the Typesetter.

The property Origin with the value "x,y" defines the centre of rotation for the graphical object. The
Griffin to TiogaArtwork conversion creates this property with the value 0,0. The intention is to define
a centre of rotation which might not be simply the lower left corner of the bounding box. For example,
a circular object should have its origin as the centre of the circle.

Graphical Style Parameters

The graphical style parameters provide extensions to those style parameters implemented by Griffin. The
definition of most graphical style parameters resides in the file BasicGraphics.Style.

Color Styles

Color style is defined in terms of Hue, Saturation and Brightness values. Note that CedarGraphics refers
to Brightness as Value; Tioga implements color styles with Brightness and must change before
TiogaArtwork can conform to this standard. Color values are in the range [0..1]. BasicGraphics.Style
provides named colors to simplify color specification. These names originate from the Griffin Color
Chart. Colors within style rules can be specified in three ways: 1) three real numbers for hue, saturation
and brightness, each in the range 0.0 to 1.0; 2) a named color from BasicGraphics.Style; 3) a computed
value such as "50 percent areaSaturation" to specify a lighter color. For each color style, mumble, there
are three separate style parameters which can be accessed: mumbleHue, mumbleSaturation, and
mumbleBrightness.

The style parameter textColor defines the color of text. At present, only the Tioga Typesetter interprets
this style parameter when creating a Press file. Viewers might display colored text on the color viewer
someday.

The two style parameters areaColor and outlineColor define the color of graphical objects. The pathType
style determines the choice between areaColor and outlineColor styles.

Path Styles

The pathType style has three possible states: filled, outlined, and filled+outlined. A filled path appears
as a colored area using the areaColor style parameter. An outlined path appears as an uncolored (the
background color will show through) area surrounded by a line colored with the outlineColor. A
filled+outlined path appears as a colored area surrounded by a line.

The lineWeight style defines the width of the outline measured in points (1/72 of an inch). Fractional
values are accepted. The default value is a single pixel line (essentially zero points).

Pen Styles

The penStyle parameter determines the shape of the pen which renders the outline. The default pen is
round, but other choices are square, rectangular, italic, and elliptical. An italic pen refers to the flat

3



nibbed pens used in calligraphy. Pens may be parameterized by lineWeight, penSlant, penWidth, and
penHeight described below.

The penSlant style parameter determines the angle of the pen measured in degrees from the horizontal
counter-clockwise. Obviously this does not apply to round pens. The default is no slant.

The penWidth and penHeight parameters together define the aspect ratio of the pen. Obviously these
parameters do not apply to round, square or italic pens. The ratio is applied to the lineWeight to
determine the actual pen width and height. The default values are both 1.

Shadow Styles

Once the style information is separated from the graphical information, derived styles become possible.
Shadows are created by applying special styles to the graphical object prior to rendering the actual object.
Two kinds of shadows are offered: drop shadows and offset shadows.

The shadowType style parameter defines the type of shadow desired: none, drop or offset. The default
is none. A drop shadow is drawn by following the path of the object with an italic brush. An offset
shadow is drawn by drawing the object offset by some distance.

The shadowDirection style parameter determines the general direction for the placement of the shadow.
Four directions are provided: upLeft, upRight, downLeft, and downRight. The default is downRight.

The shadowAngle style parameter provides fine tuning of the shadow direction. The default is 45 degrees.
The angle in degrees is measured from the horizontal counter-clockwise.

The shadowWeight style parameter defines the width of the shadow. For drop shadows this is the width
of the italic pen, and for offset shadows it is the width of the outline drawn around the shadow. The
width is measured in points (1/72 of an inch) and fractional values are accepted. The default value is 1
point.

The shadowOffsetAmount style parameter determines how far the offset shadow should be placed from
the original. The distance is measured in points (1/72 of an inch) and fractional values are accepted.
The offset shadow is placed shadowOffsetAmount points at shadowAngle degrees in the shadowDirection
direction. The default value is 12 points.

The shadowPathType style parameter applies to the offset shadow. The same choices as pathType apply
here: filled, outlined, and filled+outlined. The default is filled.

The shadowAreaColor style definition provides the shaded color for the shadow. This is either the drop
shadow color of the italic pen, or it is the filled color for offset shadows which have either a filled or
filled+outlined shadowPathType.

The shadowOutlineColor applies to the outline of the offset shadow when it has the outlined or
filled+outlined shadowPathType.

Expected Geometry Commands

Tioga Artwork expects the geometry definition to be in terms of JaMGraphics commands. Very distinct
sets of commands are generated during the conversion of Griffin pictures to Tioga Artwork. Layout
commands provide positioning and scaling: .translate, .scale, and .rotate. Path commands define the
geometric outline of the object: .moveto, .lineto, and .curveto. Commentary within the converted Griffin
pictures begins with a percent sign, %, which JaM accects as a comment delimiter.

The graphical style rendering assumes that nodes with the property ArtworkPath will contain path
definitions. This path may be executed several times to achieve the stylistic effects specified by pathType
and shadowType. Only the JaMGraphics commands .moveto, .lineto, and .curveto have been tested to
ensure that they generate the appropriate behaviour. Other drawing commands may be added to
TACallig.Mesa as the demand arises.

Any other node with the Artwork property but without the ArtworkPath property is simply passed to
JaMGraphics for interpretation. Commands which modify the display context will be in effect for all
nodes in the subtree spawned by that node in the Tioga document. That is, each subtree inherits the

4



display context of its parent as its own.

The typesetter requires Tioga Artwork to layout the size of each piece of artwork. At present, for a lack
of a more clever technique, the artwork is interpreted twice: once for layout sizing, and once to render
it. The layout pass relies on a passive bounding box device to gather bounding box information without
displaying anything. Thus a figure within Tioga Artwork must be capable of being rendered twice.

Captions within Artwork

Tioga Artwork relies on the typesetter to compose text captions. This provides both the high-quality text
formatting algorithms implemented in the typesetter and the identical style mechanism for defining
caption styles within the document. Captions within artwork must meet two criteria: 1) they must be
nodes within an artwork branch, and 2) they must not have any artwork property (any of Artwork,
ArtworkImage, ArtworkFileName).

The Format name of the node determines how the typesetter will render the caption. The type family,
face and size are determined by the format style rule. Horizontal justification is defined by the
lineFormatting style parameter within the margins established by the style rule. For most situations, a
zero leftIndent provides consistent placement. Until the lineLength style parameter is interpreted by the
Typesetter, you will have to compute your own rightIndent: 6.5 inches minus your intended line length
gives the value for rightIndent.

Tioga Artwork will place the caption at location (0,0) in the current display context. Thus it is expected
that a surrounding artwork node will do an appropriate .translate to establish the caption anchor position.
In the absence of any vertical justification style parameters (not yet defined by the typesetter or Tioga),
the caption is placed with the top of the caption at y=0. Hence the caption descends in the negative y
direction. The horizontal placement is determined by the lineFormatting style: flushLeft implies place
at (0,0) and draw to the right,
flushRight implies place the caption to the left of (0,0), and centred implies position the centre of the
caption width at (0,0).

Some Layout Tips

Background Boxes

Drawing a box (.moveto ... .lineto ... .lineto ... .lineto ... .lineto, not via .drawbox) with an appropriate
style (filled pathType and some areaColor) provides a background for the figure. Shading used in some
magazines and textbooks can be accomplished this way. For printing on white paper, choose a light
color; for preparing a 35mm slide or video tape frame, choose a dark color, traditionally a dark blue.
Position the box so the enclosed artwork is placed as you like it.

Scaling the Artwork to Fit

At present, the layout process is iterative and manual. However, the best technique is a combination of
experimenting with JaMGraphics and interating the typeset document. If you experiment with
JaMGraphics, then you can immortalize your scaling and positioning parameters in the root node of the
artwork branch. If necessary, create a new artwork node and use the Tioga Nest command to place the
artwork branch underneath. That new node is the place to insert the layout directives.

Including Output From JaM Programs

The complication here is the artwork dictionary used to redefine the graphics primitives: .moveto, .lineto,
and .callig. Also, you must preload the modules that register your JaMGraphics commands. Since the
artwork dictionary is in your way when you wish to execute your JaM program, use the following
technique to suspend the artwork dictionary and later resume it: ".end
what-ever-your-JaM-program-invocation-is artwork .begin".

Be prepared for the fact that Tioga Artwork executes the artwork twice: once for layout size determination
and a second time for rendering.

5



6


