-- PolygonPenImpl.mesa -- Michael Plass, 9-Nov-81 14:47:38 DIRECTORY Cubic USING [Bezier,Coeffs,BezierToCoeffs], Quadratic USING [RealRoots], RealFns USING [SqRt], Vector USING [Add,Mul,Sub,Vec], PolygonPen; -- This module provides for the conversion of pen-drawn spline curves to spline-bounded outlines. The simplest kind of pen handled here is the broad pen, which is just a line segment. Polygonal-pen strokes are built up by means of multiple broad-pen strokes. PolygonPenImpl: PROGRAM IMPORTS Cubic, Quadratic, RealFns, Vector EXPORTS PolygonPen = BEGIN Bezier: TYPE = PolygonPen.Bezier; Pen: TYPE = PolygonPen.Pen; Vec: TYPE = PolygonPen.Vec; -- a broad pen is represented as a vector, with the reference point at the origin. -- The results are sent by calling procedures of the following types: MoveToProc: TYPE = PolygonPen.MoveToProc; LineToProc: TYPE = PolygonPen.LineToProc; CurveToProc: TYPE = PolygonPen.CurveToProc; SimpleStroke: PUBLIC PROCEDURE [pen: Vec, curve: Bezier, moveTo: MoveToProc, lineTo:LineToProc, curveTo:CurveToProc] = BEGIN OPEN curve; moveTo[b0]; lineTo[Vector.Add[b0, pen]]; curveTo[Vector.Add[b1, pen],Vector.Add[b2, pen],Vector.Add[b3, pen]]; lineTo[b3]; curveTo[b2, b1, b0] END; BroadStroke: PUBLIC PROCEDURE [pen: Vec, curve: Bezier, moveTo: MoveToProc, lineTo:LineToProc, curveTo:CurveToProc] = BEGIN c: Cubic.Coeffs = Cubic.BezierToCoeffs[curve]; Stroke: PROC [t0,t1: REAL] = {SimpleStroke[pen,SubBezier[curve,t0,t1], moveTo, lineTo, curveTo]}; q2: REAL = 3*(pen.x*c.c3.y - pen.y*c.c3.x); q1: REAL = 2*(pen.x*c.c2.y - pen.y*c.c2.x); q0: REAL = pen.x*c.c1.y - pen.y*c.c1.x; dSqr: REAL = q1*q1 - 4*q0*q2; d: REAL = IF dSqr<=0 THEN 0 ELSE RealFns.SqRt[dSqr]; t0, t1: REAL; nRoots: [0..2]; [[nRoots,t0,t1]] ← Quadratic.RealRoots[q2, q1, q0]; IF nRoots>0 THEN {IF t0 < 0 THEN t0 ← 0; IF t0 > 1 THEN t0 ← 1} ELSE t0 ← 0; IF nRoots>1 THEN {IF t1 < 0 THEN t1 ← 0; IF t1 > 1 THEN t1 ← 1} ELSE t1 ← 1; IF 0 < t0 THEN Stroke[0.0,t0]; IF t0 < t1 THEN Stroke[t0,t1]; IF t1 < 1 THEN Stroke[t1,1.0] END; SubBezier: PROCEDURE [b:Cubic.Bezier, t0,t1:REAL] RETURNS [Bezier] = {RETURN [HighBezier[LowBezier[b,t1],t0*t1]]}; LowBezier: PROCEDURE [b:Cubic.Bezier, t:REAL] RETURNS [Bezier] = BEGIN OPEN b; q1,q2,q3,qp1,qp2,q: Vector.Vec; q1←Interpolate[t,b0,b1]; q2←Interpolate[t,b1,b2]; q3←Interpolate[t,b2,b3]; qp1←Interpolate[t,q1,q2]; qp2←Interpolate[t,q2,q3]; q←Interpolate[t,qp1,qp2]; RETURN[[b0:b0, b1:q1, b2:qp1, b3:q]]; END; HighBezier: PROCEDURE [b:Cubic.Bezier, t:REAL] RETURNS [Bezier] = BEGIN OPEN b; q1,q2,q3,qp1,qp2,q: Vector.Vec; q1←Interpolate[t,b0,b1]; q2←Interpolate[t,b1,b2]; q3←Interpolate[t,b2,b3]; qp1←Interpolate[t,q1,q2]; qp2←Interpolate[t,q2,q3]; q←Interpolate[t,qp1,qp2]; RETURN[[b0:q, b1:qp2, b2:q3, b3:b3]]; END; Interpolate: PROCEDURE [t: REAL, a,b: Vector.Vec] RETURNS [r:Vector.Vec] = BEGIN OPEN Vector; r ← Add[Mul[b,t],Mul[a,1-t]]; END; Dot: PUBLIC PROCEDURE [pen: Pen, point: Vector.Vec, moveTo: MoveToProc, lineTo:LineToProc, curveTo:CurveToProc] = BEGIN n: NAT = pen.n; IF n>0 THEN moveTo[Vector.Add[pen[0],point]]; FOR i:NAT IN (0..n) DO lineTo[Vector.Add[pen[i],point]] ENDLOOP; END; Line: PUBLIC PROCEDURE [pen: Pen, startPoint,endPoint: Vector.Vec, moveTo: MoveToProc, lineTo:LineToProc, curveTo:CurveToProc] = {Stroke[pen,[startPoint,Interpolate[0.1,startPoint,endPoint],Interpolate[0.1,startPoint,endPoint],endPoint],moveTo,lineTo,curveTo]}; Stroke: PUBLIC PROCEDURE [pen: Pen, curve: Bezier, moveTo: MoveToProc, lineTo:LineToProc, curveTo:CurveToProc] = BEGIN Shifted: PROC [v:Vec] RETURNS [Bezier] = BEGIN OPEN curve, Vector; RETURN[[Add[b0,v],Add[b1,v],Add[b2,v],Add[b3,v]]] END; n: NAT = pen.n; Dot[pen,curve.b0,moveTo,lineTo,curveTo]; FOR i:NAT IN [0..n) DO OPEN curve,Vector; BroadStroke [Vector.Sub[pen[(i+1) MOD n],pen[i]], Shifted[pen[i]], moveTo, lineTo, curveTo] ENDLOOP END; END.