-- PolygonPenImpl.mesa
-- Michael Plass, 9-Nov-81 14:47:38
DIRECTORY
Cubic USING [Bezier,Coeffs,BezierToCoeffs],
Quadratic USING [RealRoots],
RealFns USING [SqRt],
Vector USING [Add,Mul,Sub,Vec],
PolygonPen;
-- This module provides for the conversion of pen-drawn spline curves to spline-bounded outlines. The simplest kind of pen handled here is the broad pen, which is just a line segment. Polygonal-pen strokes are built up by means of multiple broad-pen strokes.
PolygonPenImpl: PROGRAM IMPORTS Cubic, Quadratic, RealFns, Vector EXPORTS PolygonPen =
BEGIN
Bezier: TYPE = PolygonPen.Bezier;
Pen: TYPE = PolygonPen.Pen;
Vec: TYPE = PolygonPen.Vec; -- a broad pen is represented as a vector, with the reference point at the origin.
-- The results are sent by calling procedures of the following types:
MoveToProc: TYPE = PolygonPen.MoveToProc;
LineToProc: TYPE = PolygonPen.LineToProc;
CurveToProc: TYPE = PolygonPen.CurveToProc;
SimpleStroke: PUBLIC PROCEDURE [pen: Vec, curve: Bezier, moveTo: MoveToProc, lineTo:LineToProc, curveTo:CurveToProc] =
BEGIN OPEN curve;
moveTo[b0];
lineTo[Vector.Add[b0, pen]];
curveTo[Vector.Add[b1, pen],Vector.Add[b2, pen],Vector.Add[b3, pen]];
lineTo[b3];
curveTo[b2, b1, b0]
END;
BroadStroke: PUBLIC PROCEDURE [pen: Vec, curve: Bezier, moveTo: MoveToProc, lineTo:LineToProc, curveTo:CurveToProc] =
BEGIN
c: Cubic.Coeffs = Cubic.BezierToCoeffs[curve];
Stroke: PROC [t0,t1: REAL] =
{SimpleStroke[pen,SubBezier[curve,t0,t1],
moveTo, lineTo, curveTo]};
q2: REAL = 3*(pen.x*c.c3.y - pen.y*c.c3.x);
q1: REAL = 2*(pen.x*c.c2.y - pen.y*c.c2.x);
q0: REAL = pen.x*c.c1.y - pen.y*c.c1.x;
dSqr: REAL = q1*q1 - 4*q0*q2;
d: REAL = IF dSqr<=0 THEN 0 ELSE RealFns.SqRt[dSqr];
t0, t1: REAL;
nRoots: [0..2];
[[nRoots,t0,t1]] ← Quadratic.RealRoots[q2, q1, q0];
IF nRoots>0 THEN {IF t0 < 0 THEN t0 ← 0;
IF t0 > 1 THEN t0 ← 1}
ELSE t0 ← 0;
IF nRoots>1 THEN {IF t1 < 0 THEN t1 ← 0;
IF t1 > 1 THEN t1 ← 1}
ELSE t1 ← 1;
IF 0 < t0 THEN Stroke[0.0,t0];
IF t0 < t1 THEN Stroke[t0,t1];
IF t1 < 1 THEN Stroke[t1,1.0]
END;
SubBezier: PROCEDURE [b:Cubic.Bezier, t0,t1:REAL] RETURNS [Bezier] =
{RETURN [HighBezier[LowBezier[b,t1],t0*t1]]};
LowBezier: PROCEDURE [b:Cubic.Bezier, t:REAL] RETURNS [Bezier] =
BEGIN OPEN b;
q1,q2,q3,qp1,qp2,q: Vector.Vec;
q1←Interpolate[t,b0,b1];
q2←Interpolate[t,b1,b2];
q3←Interpolate[t,b2,b3];
qp1←Interpolate[t,q1,q2];
qp2←Interpolate[t,q2,q3];
q←Interpolate[t,qp1,qp2];
RETURN[[b0:b0, b1:q1, b2:qp1, b3:q]];
END;
HighBezier: PROCEDURE [b:Cubic.Bezier, t:REAL] RETURNS [Bezier] =
BEGIN OPEN b;
q1,q2,q3,qp1,qp2,q: Vector.Vec;
q1←Interpolate[t,b0,b1];
q2←Interpolate[t,b1,b2];
q3←Interpolate[t,b2,b3];
qp1←Interpolate[t,q1,q2];
qp2←Interpolate[t,q2,q3];
q←Interpolate[t,qp1,qp2];
RETURN[[b0:q, b1:qp2, b2:q3, b3:b3]];
END;
Interpolate: PROCEDURE [t: REAL, a,b: Vector.Vec] RETURNS [r:Vector.Vec] =
BEGIN OPEN Vector;
r ← Add[Mul[b,t],Mul[a,1-t]];
END;
Dot: PUBLIC PROCEDURE [pen: Pen, point: Vector.Vec, moveTo: MoveToProc, lineTo:LineToProc, curveTo:CurveToProc] =
BEGIN
n: NAT = pen.n;
IF n>0 THEN moveTo[Vector.Add[pen[0],point]];
FOR i:NAT IN (0..n) DO lineTo[Vector.Add[pen[i],point]] ENDLOOP;
END;
Line: PUBLIC PROCEDURE [pen: Pen, startPoint,endPoint: Vector.Vec, moveTo: MoveToProc, lineTo:LineToProc, curveTo:CurveToProc] =
{Stroke[pen,[startPoint,Interpolate[0.1,startPoint,endPoint],Interpolate[0.1,startPoint,endPoint],endPoint],moveTo,lineTo,curveTo]};
Stroke: PUBLIC PROCEDURE [pen: Pen, curve: Bezier, moveTo: MoveToProc, lineTo:LineToProc, curveTo:CurveToProc] =
BEGIN
Shifted: PROC [v:Vec] RETURNS [Bezier] =
BEGIN OPEN curve, Vector;
RETURN[[Add[b0,v],Add[b1,v],Add[b2,v],Add[b3,v]]]
END;
n: NAT = pen.n;
Dot[pen,curve.b0,moveTo,lineTo,curveTo];
FOR i:NAT IN [0..n) DO OPEN curve,Vector;
BroadStroke
[Vector.Sub[pen[(i+1) MOD n],pen[i]],
Shifted[pen[i]],
moveTo, lineTo, curveTo]
ENDLOOP
END;
END.