// B-Tree Maintenance Routines // Copyright Xerox Corporation 1979, 1981 // BTreeWrtMS2.bcpl -- Routines for writing in B-Trees // Uses pagination strategy MS to minimize the sum of lengths // of records posted to the father page. // last edited November 26, 1981 12:43 PM by Taft get "btree.decl" external [ Allocate // Defined by OS Free MoveBlock ReadBTreePage // defined by OpenBTree WriteBTreePage LockBTreePtr UnlockBTreePtr AllocateBTreePage BTreeBug PathRecLE // Defined in BTreeRead.bcpl ReadPageAndLockBTreePtr BackUpOneRecord RepairOffsets ] external [ UpdateRecord // Defined in BTreeWrtMS.bcpl InsertRecords ComplexInsertRecords HairyInsertRecords MakeNewRoot PageLength EntryLength FillLeftPage FillRightPage AppendEntSeqEnt PushEntSeqEnt MakeEntSeqEnt ComputeEntLens PushEntSeqEntLens AppendEntSeqEntLens DepositESL FindRightBrother FindLeftBrother RemoveEntry BasicRemoveEntry WriteRightBrother WritePage AddToHeap TrickleDown RemoveFromHeap SiftUp ] let HairyInsertRecords(Tree, PathStk, IS, RtBroPg1) be [ // From this point on, we know that at least the current page // and two right brother pages are involved. First we // calculate the minimum space required in the second right // brother in order that he can handle our overflow. Then // we see if our second brother exists and has that // much space. let SP = lv PathStk>>PS.PSE↑(PathStk>>PS.PathStkTop) let SFP = SP - size PSE/16 let MaxFreeWords = IS>>IS.MaxFreeWords if IS>>IS.ELLLen ls 5 then BTreeBug(Tree, ecEntryListTooShort) // See how much space our second brother page would have to // contain in order to handle the overflow. This is done // by pretending to fill up this page and the first right brother // page and seeing what is left over. let FatherEnt = FillLeftPage(IS, 0) let FatherEnt2 = FillLeftPage(IS, FatherEnt) // CurPage can't be the root, because // one brother would surely have been enough in that // case, so we don't have to pussyfoot when calling // FindRightBrother. let RtBroPg2 = FindRightBrother(IS, SFP, PageLength(IS, FatherEnt2)+ 2*(IS>>IS.BreathingSpace), SP) if RtBroPg2 eq Empty then // No luck. Try the left brother. [ let FE2 = FillRightPage(IS, 0) let FE = FillRightPage(IS, 0, FE2) RtBroPg2 = FindLeftBrother(IS, SFP, PageLength(IS, 0, FE)+ 2*(IS>>IS.BreathingSpace), SP) test RtBroPg2 eq Empty ifso // Still no luck, get empty page RtBroPg2 = AllocateBTreePage(Tree) ifnot // Left brother had space, but // FatherEnt's are now invalid [ FatherEnt = FillLeftPage(IS, 0) FatherEnt2 = FillLeftPage(IS, FatherEnt) ] ] let MaxFeasEnt = FatherEnt2 while PageLength(IS, MaxFeasEnt) le IS>>IS.FairlyFull do MaxFeasEnt = MaxFeasEnt-1 let MinFeasEnt = MaxFeasEnt+1 let TwoBrothersEnough = false let BestFatherEnt = nil let BestFatherEnt2 = nil let BestFatherLenSum = MaxFreeWords+1 IS>>IS.HeapSize = 0 while (PageLength(IS, 0, FatherEnt) ge IS>>IS.PrettyFull) % (not TwoBrothersEnough & (PageLength(IS, 0, FatherEnt) gr 0)) do [ while (PageLength(IS, FatherEnt, MinFeasEnt-1) gr 0) & (PageLength(IS, MinFeasEnt-1) le MaxFreeWords) do [ MinFeasEnt = MinFeasEnt-1 if MinFeasEnt le MaxFeasEnt then AddToHeap(IS, MinFeasEnt) ] while PageLength(IS, FatherEnt, MaxFeasEnt) gr MaxFreeWords do [ if MaxFeasEnt ge MinFeasEnt then RemoveFromHeap(IS, MaxFeasEnt) MaxFeasEnt = MaxFeasEnt-1 ] if IS>>IS.HeapSize gr 0 then [ FatherEnt2 = (IS>>IS.HeapPtr)>>HP.HeapEnt↑1 let SL = EntryLength(IS, FatherEnt)+ EntryLength(IS, FatherEnt2) if SL ls BestFatherLenSum then [ TwoBrothersEnough = true BestFatherLenSum = SL BestFatherEnt = FatherEnt BestFatherEnt2 = FatherEnt2 ] ] FatherEnt = FatherEnt-1 ] unless TwoBrothersEnough do BTreeBug(Tree, ecTwoBrothersNotEnough) let BreakLen1 = PageLength(IS, 0, BestFatherEnt) let BreakLen2 = PageLength(IS, 0, BestFatherEnt2) let TotLen = PageLength(IS, 0) WritePage(IS, SP, SP>>PSE.PageNo, BreakLen1) let t = WriteRightBrother(IS, SP, SFP, RtBroPg1, BreakLen2-BreakLen1) PushEntSeqEnt(SFP, WriteRightBrother(IS, SP, SFP, RtBroPg2, TotLen-BreakLen2)) PushEntSeqEnt(SFP, t) ] and MakeNewRoot(IS, SP, Tree) be [ let NewWords = PageLength(IS, 0) if NewWords gr IS>>IS.MaxFreeWords then BTreeBug(Tree, ecNewRootOverflow) let NewRootPage = AllocateBTreePage(Tree) WriteBTreePage(Tree, NewRootPage)>>BTP.MinPtr = SP>>PSE.LeastSon unless WritePage(IS, SP, NewRootPage, NewWords) eq NewWords do BTreeBug(Tree, ecWritePageWrong) Tree>>TREE.RootPage = NewRootPage Tree>>TREE.StateDirty = true ] and FindLeftBrother(IS, StkFatherPtr, SpaceNeeded, PathStkEntry) = valof [ let Tree = IS>>IS.Tree let FatherPg = StkFatherPtr>>PSE.PageNo let FatherPtr = nil ReadPageAndLockBTreePtr(Tree, FatherPg, lv FatherPtr) let FatherFreeWords = FatherPtr>>BTP.FreeWords let FatherOffset = StkFatherPtr>>PSE.Offset let FatherLOffset = StkFatherPtr>>PSE.LastOffset let FatherNTLOffset = StkFatherPtr>>PSE.NextToLastOffset if (FatherOffset le Rec1Offset) then [ UnlockBTreePtr(Tree, lv FatherPtr) resultis Empty ] let FatherEnt = FatherPtr+FatherLOffset let FatherEntLen = (Tree>>TREE.LengthRtn)(lv FatherEnt>>BTE.Record)+ offset BTE.Record/16 let LFatherEnt = FatherPtr+FatherNTLOffset let LeftBroPg = LFatherEnt>>BTE.GrPtr let LeftBroPtr = ReadBTreePage(Tree, LeftBroPg) unless LeftBroPtr>>BTP.FreeWords-FatherEntLen ge SpaceNeeded do [ UnlockBTreePtr(Tree, lv FatherPtr) resultis Empty ] LockBTreePtr(Tree, lv LeftBroPtr) WriteBTreePage(Tree, FatherPg) WriteBTreePage(Tree, LeftBroPg) let LeftBroLen = IS>>IS.MaxFreeWords-(LeftBroPtr>>BTP. FreeWords) let NewESE = MakeEntSeqEnt(Tree>>TREE.Zone, lv (LeftBroPtr>>BTP.BTEBlock), LeftBroLen) let RightBroPg = FatherEnt>>BTE.GrPtr LFatherEnt>>BTE.GrPtr = RightBroPg BackUpOneRecord(Tree, StkFatherPtr) let ESE = BasicRemoveEntry(Tree, StkFatherPtr) let RightBroPtr = WriteBTreePage(Tree, RightBroPg) (ESE>>ESLE.EntSeqP)>>BTE.GrPtr = RightBroPtr>>BTP.MinPtr RightBroPtr>>BTP.MinPtr = LeftBroPtr>>BTP.MinPtr PushEntSeqEntLens(IS, ESE) PushEntSeqEnt(PathStkEntry, ESE) PushEntSeqEntLens(IS, NewESE) PushEntSeqEnt(PathStkEntry, NewESE) UnlockBTreePtr(Tree, lv LeftBroPtr) UnlockBTreePtr(Tree, lv FatherPtr) resultis LeftBroPg ] and AddToHeap(IS, Entry) be [ IS>>IS.HeapSize = IS>>IS.HeapSize+1 TrickleDown(IS, IS>>IS.HeapSize, Entry) ] and TrickleDown(IS, EmptyLoc, Entry) be [ let Heap = IS>>IS.HeapPtr let EntLens = IS>>IS.ELLPtr let SonLen = EntryLength(IS, Entry) let Son = EmptyLoc let Father = nil let FE = nil while valof [ Father = Son rshift 1 // Son/2 if Father le 0 then resultis false FE = Heap>>HP.HeapEnt↑Father resultis (EntryLength(IS, FE) gr SonLen) ] do [ Heap>>HP.HeapEnt↑Son = FE EntLens>>ELL.HeapPos↑FE = Son Son = Father ] Heap>>HP.HeapEnt↑Son = Entry EntLens>>ELL.HeapPos↑Entry = Son ] and RemoveFromHeap(IS, Entry) be [ let Heap = IS>>IS.HeapPtr let EntLens = IS>>IS.ELLPtr let HeapPos = EntLens>>ELL.HeapPos↑Entry IS>>IS.HeapSize = IS>>IS.HeapSize-1 if HeapPos gr IS>>IS.HeapSize then return // Our guy was last let ReplacementEntry = Heap>>HP.HeapEnt↑(IS>>IS.HeapSize+1) test EntryLength(IS, ReplacementEntry) le EntryLength(IS, Entry) ifso TrickleDown(IS, HeapPos, ReplacementEntry) ifnot SiftUp(IS, HeapPos, ReplacementEntry) ] and SiftUp(IS, EmptyLoc, Entry) be [ let Heap = IS>>IS.HeapPtr let HeapSize = IS>>IS.HeapSize let EntLens = IS>>IS.ELLPtr let EELen = EntryLength(IS, Entry) while true do [ let Son = EmptyLoc+EmptyLoc let ERSon = nil if Son gr HeapSize then break let ESon = Heap>>HP.HeapEnt↑Son if Son ls HeapSize then [ let ERSon = Heap>>HP.HeapEnt↑(Son+1) if EntryLength(IS, ERSon) ls EntryLength(IS, ESon) do [ Son = Son+1 ESon = ERSon ] ] if EntryLength(IS, Heap>>HP.HeapEnt↑Son) ge EELen then break Heap>>HP.HeapEnt↑EmptyLoc = ESon EntLens>>ELL.HeapPos↑ESon = EmptyLoc EmptyLoc = Son ] Heap>>HP.HeapEnt↑EmptyLoc = Entry EntLens>>ELL.HeapPos↑Entry = EmptyLoc ]