Matrices.mesa
Last Edited by: Arnon, March 5, 1986 10:49:31 am PST
DIRECTORY
AlgebraClasses;
Rectangular Matrices over a Group. Square matrices over a ring (yielding a ring) or a field (yielding an algebra) are subclasses.
Matrices:
CEDAR DEFINITIONS
~ BEGIN OPEN AC: AlgebraClasses;
Matrix Representation
Matrix: TYPE = AC.Object;
MatrixData: TYPE = RowSeq;
RowSeq: TYPE = REF RowSeqRec;
RowSeqRec: TYPE = RECORD[SEQUENCE rowsPlusOne: [1..1000] OF Row];
Row: TYPE = REF RowRec;
RowRec: TYPE = RECORD[SEQUENCE columnsPlusOne: [1..1000] OF AC.Object];
Instance Data for Matrix Rings and Matrix Algebras
MatrixStructureData: TYPE = REF MatrixStructureDataRec;
MatrixStructureDataRec:
TYPE =
RECORD [
elementStructure: AC.Object,
nRows, nCols: NAT
];
Matrix Structure Ops
MakeMatrixStructure:
AC.MatrixStructureConstructor;
A particular matrix structure is defined by its elementStructure and its nRows, nCols. elementStructure can be a ring, field, algebra, or divisionAlgebra.
PrintName:
AC.PrintNameProc;
ShortPrintName:
AC.PrintNameProc;
ElementStructure:
AC.UnaryOp;
NumRows:
AC.StructureRankOp;
NumCols:
AC.StructureRankOp;
Dimension:
AC.StructureRankOp;
For square matrices only
IsMatrixStructure:
AC.UnaryPredicate;
Characteristic:
AC.StructureRankOp;
Characteristic of elementStructure
Conversion and IO
CanRecast:
AC.BinaryPredicate;
LegalFirstChar:
AC.LegalFirstCharOp;
Write: AC.WriteOp;
Constructors
DiagonalMatrix:
AC.UnaryImbedOp;
MatrixFromRowTemplate:
AC.BinaryOp;
firstArg is a Vector, a row template of size n; secondArg is an Int.Int = m specifying how many of those rows we want. Thus result is an m x n matrix.
MakeMatrix: AC.MatrixImbedOp;
Selection
Element:
AC.TernaryOp;
firstArg is a Matrix, secondArg and thirdArg are Ints.Int's specifying (resp.) row and column to select. Returns NIL if can't do.
Arithmetic
ScalarMultiply:
AC.BinaryOp;
firstArg is scalar, secondArg is matrix
Determinant: AC.StructuredToGroundOp;
Comparison
Equal:
AC.BinaryPredicate;
END.