MathExprClassesVector.mesa
Carl Waldspurger, August 30, 1986 7:12:37 pm PDT
Bier, November 20, 1986 2:02:38 pm PST
Arnon, March 24, 1987 4:15:37 pm PST
DIRECTORY
MathExpr,
MathRules,
MathDB,
MathTypes,
MathBox,
Imager,
Rope,
Vector,
MathConstructors;
MathExprClassesVector: CEDAR PROGRAM
IMPORTS MathBox, MathRules, MathExpr,
MathDB, MathConstructors
~
BEGIN
Type Abbreviations from Imported Interfaces
EXPR: TYPE ~ MathExpr.EXPR;
BOX: TYPE ~ MathBox.BOX;
ROPE: TYPE ~ Rope.ROPE;
VEC: TYPE ~ Vector.VEC;
CompoundBoxProc: TYPE ~ MathRules.CompoundBoxProc;
CompositionProc: TYPE ~ MathRules.CompositionProc;
Alignment2D: TYPE ~ MathRules.Alignment2D;
Offset: TYPE ~ MathRules.Offset;
Size: TYPE ~ MathRules.Size;
Argument: TYPE ~ MathExpr.Argument;
Symbol: TYPE ~ MathExpr.Symbol;
CompoundClass: TYPE ~ MathExpr.CompoundClass;
FormatClass: TYPE ~ MathTypes.FormatClass;
Style: TYPE ~ MathTypes.Style;
Procedure Abbreviations from Imported Interfaces
MakeArgument: PROC[name: ATOM, aliases: LIST OF ATOM, size: Size] RETURNS[Argument] ~ MathExpr.MakeArgument;
MakeSymbol: PROC[name: ATOM, aliases: LIST OF ATOM, size: Size, value: EXPR] RETURNS[Symbol] ~ MathExpr.MakeSymbol;
MakeCompoundClass: PROC[name: ATOM, formatClass: FormatClass, description: ROPE, args: LIST OF Argument, syms: LIST OF Symbol, boxRule: CompoundBoxProc, compBox: CompositionProc, cvtAS, cvtReduce, cvtSMP, cvtOther: ROPENIL] RETURNS[CompoundClass] ~ MathExpr.MakeCompoundClass;
Constants
smallGap: REAL = 0.05;
medGap: REAL = 0.10;
bigGap: REAL = 0.25;
Box Procs for Compound Expr Classes
FixedSizeBoxRule: CompoundBoxProc ~ {
effects: Returns unaltered boxes (i.e. no resizing takes place)
RETURN[boxes];
};
Class CompRules
UnaryOpCompRule: CompositionProc ~ {
effects: Composes layout for expr of form ($aliasUnaryOp $aliasA).
tempBox: BOX;
tempBoxes: LIST OF BOX;
alignments: LIST OF Alignment2D ← LIST[
[$aliasSpace,
[$aliasUnaryOp, [left], [right]],
[$aliasUnaryOp, [origin], [origin]]],
[$aliasA,
[$aliasSpace, [left], [right]],
[$aliasSpace, [origin], [origin]]]];
[tempBox, tempBoxes] ←
MathRules.Compose[boxes, alignments, [$aliasUnaryOp, [origin]],
[$aliasUnaryOp, [origin]]];
RETURN[tempBox, tempBoxes];
};
BinaryOpCompRule: CompositionProc ~ {
effects: Composes layout for expr of form ($aliasBinOp $aliasA $aliasB) with
symbols $aliasLeftSpace & $aliasRightSpace.
tempBox: BOX;
tempBoxes: LIST OF BOX;
leftVertOffsetA, leftVertOffsetOp, rightVertOffsetB, rightVertOffsetOp: Offset;
alignments: LIST OF Alignment2D;
set vertical offset depending on format classes of A & B arguments
SELECT MathBox.GetBox[$aliasA, boxes].FormatClass[] FROM
over => {
leftVertOffsetA ← [origin];
leftVertOffsetOp ← [center];
};
matrix => {
leftVertOffsetA ← [center];
leftVertOffsetOp ← [center];
};
ENDCASE => {
leftVertOffsetA ← [origin];
leftVertOffsetOp ← [origin];
};
SELECT MathBox.GetBox[$aliasB, boxes].FormatClass[] FROM
over => {
rightVertOffsetB ← [origin];
rightVertOffsetOp ← [center];
};
matrix => {
rightVertOffsetB ← [center];
rightVertOffsetOp ← [center];
};
ENDCASE => {
rightVertOffsetB ← [origin];
rightVertOffsetOp ← [origin];
};
alignments ← LIST[
[$aliasLeftSpace,
[$aliasBinOp, [right], [left]],
[$aliasBinOp, [origin], [origin]]],
[$aliasA,
[$aliasLeftSpace, [right], [left]],
[$aliasBinOp, leftVertOffsetA, leftVertOffsetOp]],
[$aliasRightSpace,
[$aliasBinOp, [left], [right]],
[$aliasBinOp, [origin], [origin]]],
[$aliasB,
[$aliasRightSpace, [left], [right]],
[$aliasBinOp, rightVertOffsetB, rightVertOffsetOp]]];
[tempBox, tempBoxes] ←
MathRules.Compose[boxes, alignments, [$aliasA, [origin]], [$aliasBinOp, [origin]]];
RETURN[tempBox, tempBoxes];
};
Class Constructors
MakeUnaryOpClass: PUBLIC PROC[class, op, arg: ATOM, operation: EXPR, description: ROPE, cvtAS: ROPE] RETURNS[CompoundClass] ~ {
effects: Creates and returns standard unary operation compound class named "class".
The alignment is "operation arg"; alignment is thru baselines.
Both op, arg are of fixed size "normal".
argArg: Argument ← MakeArgument[arg, LIST[$aliasA, $aliasHot], normal];
spaceSym: Symbol ← MakeSymbol[$Space, LIST[$aliasSpace], normal, MathConstructors.MakeSpace[$medium]];
unaryOpSym: Symbol ← MakeSymbol[op, LIST[$aliasUnaryOp], normal, operation];
RETURN[MakeCompoundClass[class, unaryOp, description, LIST[argArg], LIST[unaryOpSym, spaceSym], FixedSizeBoxRule, UnaryOpCompRule, cvtAS]];
};
MakeBinOpClass: PUBLIC PROC[class, op, a, b: ATOM, operation: EXPR,
description: ROPE, cvtAS: ROPE] RETURNS[CompoundClass] ~ {
effects: Creates and returns standard binary operation compound class named "class".
The alignment is "a operation b"; alignment is thru baselines.
All of a, b, op are of fixed size "normal".
aArg: Argument ← MakeArgument[a, LIST[$aliasA, $aliasHot], normal];
bArg: Argument ← MakeArgument[b, LIST[$aliasB], normal];
opSym: Symbol ← MakeSymbol[op, LIST[$aliasBinOp], normal, operation];
leftSpace: Symbol ← MakeSymbol[$leftThinSpace, LIST[$aliasLeftSpace], normal, MathConstructors.MakeSpace[$thin]];
rightSpace: Symbol ← MakeSymbol[$rightThinSpace, LIST[$aliasRightSpace], normal, MathConstructors.MakeSpace[$thin]];
RETURN[MakeCompoundClass[class, binaryOp, description, LIST[aArg, bArg], LIST[opSym, leftSpace, rightSpace], FixedSizeBoxRule, BinaryOpCompRule, cvtAS]];
};
Signals & Errors
wrongBoxType: PUBLIC ERROR = CODE;
Define & Install Expression Classes
InstallVectorClassesAA: PROC [] ~ {
local declarations
cDotClass, crossProdClass, transposeClass, determinantClass: CompoundClass;
binary operations
cDotClass ← MakeBinOpClass[$cDot, $times, $multiplier, $multiplicand, MathConstructors.MakePlainSym['\267], "a . b", "$multiplier * $multiplicand"];
crossProdClass ← MakeBinOpClass[$crossProd, $times, $multiplier, $multiplicand, MathConstructors.MakePlainSym['\264], "a x b", "$multiplier * $multiplicand"];
unary operations
determinantClass ← MakeUnaryOpClass[$det, $det, $a, MathConstructors.MakePlainRope["det"], "det a", "det $a"];
transposeClass ← MakeUnaryOpClass[$transp, $tr, $a, MathConstructors.MakePlainRope["transp"], "transp a", "transp $a"];
MathDB.InstallCompoundClass[determinantClass];
MathDB.AddOperator[determinantClass, $Vector];
MathDB.InstallCompoundClass[transposeClass];
MathDB.AddOperator[transposeClass, $Vector];
MathDB.InstallCompoundClass[cDotClass];
MathDB.AddOperator[cDotClass, $Vector];
MathDB.InstallCompoundClass[crossProdClass];
MathDB.AddOperator[crossProdClass, $Vector];
};
Install Classes Defined in this Module
InstallVectorClassesAA[];
END.