Distributed Polynomial IO
ReadDPoly:
PUBLIC
PROC [in:
IO.
STREAM,
V:
VARSEQ.VariableSequence, coeffRing:
AC.Object, termCharProc: TermCharProc ← BasicPolyTerminators]
RETURNS [poly: DPolynomial, termChar:
CHAR ← 000C] = {
char: CHAR;
firstTerm: BOOL ← TRUE;
legalTermStartSeen: BOOL;
coeff: AC.Object;
sign: INTEGER;
exponent: CARDINAL;
degreeVec: DegreeVector;
variable: Object;
varIndexInt: Ints.Int;
varIndex: CARDINAL;
ReadDPFail: PUBLIC ERROR [subclass: ATOM ← $Unspecified] = CODE;
ok: BOOL;
zero: AC.Object ← AC.ApplyLkpNoRecastObject[$zero, coeffRing, LIST[coeffRing] ];
one: AC.Object ← AC.ApplyLkpNoRecastObject[$one, coeffRing, LIST[coeffRing] ];
legalFirstCharMethod: Method ← AC.LookupMethodInStructure[$legalFirstChar, coeffRing];
readMethod: Method ← AC.LookupMethodInStructure[$read, coeffRing];
equalMethod: Method ← AC.LookupMethodInStructure[$eqFormula, coeffRing];
negateMethod: Method ← AC.LookupMethodInStructure[$negation, coeffRing];
poly ← NIL;
[]← in.SkipWhitespace[];
Check for zero polynomial
IF in.PeekChar[] = '0
THEN {
[] ← in.GetChar[]; -- toss it (assumes that we can strip a leading zero)
[]← in.SkipWhitespace[];
IF in.EndOf[] THEN RETURN[ZeroDPoly];
char ← in.PeekChar[];
IF char = '$ THEN RETURN[ZeroDPoly, in.GetChar[] ];
IF termCharProc[char] THEN RETURN[ZeroDPoly, char];
};
Parse the terms of a nonzero polynomial
DO
Initialization
legalTermStartSeen ← FALSE;
sign ← 1;
coeff ← one; -- default term is +1
degreeVec ← NIL;
Look for (optional) sign preceding first term, or (mandatory) sign separating two terms
[]← in.SkipWhitespace[];
IF in.PeekChar[] = '-
THEN {
sign ← -1;
[] ← in.GetChar[]; -- toss it
[]← in.SkipWhitespace[];
}
ELSE
IF in.PeekChar[] = '+
THEN {
[] ← in.GetChar[]; -- toss it
[]← in.SkipWhitespace[];
}
ELSE IF NOT firstTerm THEN ERROR;
firstTerm ← FALSE;
Look for (optional) coefficient [Cannot be at EndOf[in] here]
IF
AC.ApplyLegalFirstCharMethod[legalFirstCharMethod, in.PeekChar[], coeffRing]
THEN {
legalTermStartSeen ← TRUE;
coeff ← AC.ApplyReadMethod[readMethod, in, coeffRing];
[]← in.SkipWhitespace[];
IF AC.ApplyPredNoLkpNoRecast[equalMethod, LIST[coeff, zero] ] THEN ERROR ReadDPFail[$ZeroCoefficient]; -- zero coeff not allowed
};
IF sign < 1 THEN coeff ← AC.ApplyNoLkpNoRecastObject[negateMethod, LIST[coeff] ]; -- if sign < 1, then negate either coeff read or default coeff of 1
Look for (optional) monomial [Can be at EndOf[in] here]
WHILE
NOT in.EndOf[]
AND (Ascii.Letter[in.PeekChar[]]
OR in.PeekChar[]='*)
DO
legalTermStartSeen ← TRUE;
exponent ← 1;
IF in.PeekChar[] = '*
THEN {
[] ← in.GetChar[]; -- toss * multiplication
[]← in.SkipWhitespace[];
};
variable ← VARS.FromRope[in.GetID[] ];
varIndexInt ← SEQ.Find[V, variable];
IF varIndexInt = NIL THEN ERROR ReadDPFail[$UnknownVariable];
varIndex ← Ints.ToINT[varIndexInt];
[]← in.SkipWhitespace[];
IF
NOT in.EndOf[]
THEN
IF in.PeekChar[] = '*
OR in.PeekChar[] = '^
THEN {
char ← in.GetChar[]; -- toss (could be either * multiplication, first char of ** exponentiation, or ^ exponentiation, here)
[]← in.SkipWhitespace[];
}
ELSE char ← 'X; -- anything
IF
NOT in.EndOf[]
THEN
IF (char = '*
AND in.PeekChar[] = '*)
OR char = '^
THEN {
-- allow ** or ^ exponentiation
IF in.PeekChar[] = '* THEN [] ← in.GetChar[]; -- toss
[]← in.SkipWhitespace[];
SELECT in.PeekChar[]
FROM
IN ['0..'9] => {
exponent ← in.GetCard;
[]← in.SkipWhitespace[];
IF exponent = 0 THEN ERROR ReadDPFail[$ZeroExponent];
};
ENDCASE=> ERROR ReadDPFail[$NonNumericExponent];
};
[ok, degreeVec] ← DVInsertVariablePower[varIndex, exponent, degreeVec];
IF NOT ok THEN ERROR ReadDPFail[$RepeatedVariable];
ENDLOOP;
Check that we saw some kind of legal term
IF legalTermStartSeen
THEN {
[ok, poly] ← DPInsertTerm[coeff, degreeVec, poly];
IF NOT ok THEN ERROR ReadDPFail[$RepeatedMonomial];
}
ELSE ERROR ReadDPFail[$UnexpectedCharacter];
IF in.EndOf[] THEN RETURN[poly];
char ← in.PeekChar[];
IF char = '$ THEN RETURN[poly, in.GetChar[] ];
IF termCharProc[char] THEN RETURN[poly, char ];
ENDLOOP;
};
DPolyFromRope:
PUBLIC
PROC [in: Rope.
ROPE,
V:
VARSEQ.VariableSequence, coeffRing:
AC.Object, termCharProc: TermCharProc ← BasicPolyTerminators]
RETURNS [out: DPolynomial] = {
stream: IO.STREAM ← IO.RIS[in];
termChar: CHAR;
[out, termChar ] ← ReadDPoly[stream, V, coeffRing, termCharProc];
};
DPolyToRope:
PUBLIC
PROC [in: DPolynomial,
V:
VARSEQ.VariableSequence, coeffRing:
AC.Object, termRope: Rope.
ROPE ←
NIL]
RETURNS [out: Rope.
ROPE]={
firstTerm: BOOL ← TRUE;
trivialMonomial: BOOL;
coeff, coeffAbs: AC.Object;
degreeVec: DegreeVector;
coeffSign: Basics.Comparison;
exponent, index: CARDINAL;
one: AC.Object ← AC.ApplyLkpNoRecastObject[$one, coeffRing, LIST[coeffRing] ];
equalMethod: Method ← AC.LookupMethodInStructure[$eqFormula, coeffRing];
toRopeMethod: Method ← AC.LookupMethodInStructure[$toRope, coeffRing];
isOrdered: BOOL ← AC.HasProperty[coeffRing, $ordered];
signMethod, absMethod: Method;
IF in = ZeroDPoly THEN RETURN[Rope.Concat["0", termRope]];
out ← "";
IF isOrdered
THEN {
signMethod ← AC.LookupMethodInStructure[$sign, coeffRing];
absMethod ← AC.LookupMethodInStructure[$abs, coeffRing];
};
WHILE in#
NIL
DO
[coeff, degreeVec] ← in.first; in ← in.rest;
IF isOrdered
THEN {
coeffSign ← AC.ApplyCompareToZeroMethod[signMethod, coeff];
coeffAbs ← AC.ApplyNoLkpNoRecastObject[absMethod, LIST[coeff] ]
}
ELSE {
-- for unordered coeffRing, act as though coeff is positive
coeffSign ← greater;
coeffAbs ← coeff;
};
IF coeffSign = less THEN out ← Rope.Concat[out,"- "] ELSE IF NOT firstTerm THEN out ← Rope.Concat[out,"+ "];
firstTerm ← FALSE;
IF
NOT AC.ApplyPredNoLkpNoRecast[equalMethod,
LIST[coeffAbs, one] ]
THEN
out ← Rope.Cat[out, NARROW[AC.ApplyNoLkpNoRecastRef[toRopeMethod, LIST[coeffAbs] ] ], " "];
trivialMonomial ← TRUE;
degreeVec ← DVReverse[degreeVec];
WHILE degreeVec#
NIL
DO
trivialMonomial ← FALSE;
exponent ← degreeVec.first; degreeVec ← degreeVec.rest;
index ← degreeVec.first; degreeVec ← degreeVec.rest;
out ← Rope.Concat[out, VARS.ToRope[SEQ.Select[V, Ints.FromINT[index] ] ] ];
IF exponent>1 THEN out ← Rope.Cat[out, "^", Convert.RopeFromCard[exponent]];
IF exponent>1 THEN out ← Rope.Cat[out, "**", Convert.RopeFromCard[exponent]]; -- temp change 5/21/87 for Bridging to SAC-2
out ← Rope.Concat[out," "];
ENDLOOP;
IF trivialMonomial
AND
AC.ApplyPredNoLkpNoRecast[equalMethod,
LIST[coeffAbs, one] ]
THEN
out ← Rope.Cat[out, NARROW[AC.ApplyNoLkpNoRecastRef[toRopeMethod, LIST[one] ] ], " "];
ENDLOOP;
out ← Rope.Concat[out, termRope];
};
WriteDPoly:
PUBLIC
PROC [in: DPolynomial,
V:
VARSEQ.VariableSequence, coeffRing:
AC.Object, out:
IO.
STREAM, termRope: Rope.
ROPE ←
NIL] = {
polyRope: Rope.ROPE ← DPolyToRope[in, V, coeffRing];
out.PutF["\n %g \n", IO.rope[polyRope] ];
};
DPInsertTerm:
PROC [coefficient:
AC.Object, degreeVec: DegreeVector, inPoly: DPolynomial]
RETURNS [ok:
BOOL, outPoly: DPolynomial] ~ {
The term (coefficient, degreeVec) is inserted in the distributed polynoimal inPoly. NOT ok if degreeVec already occurs (and inPoly unchanged). If degreeVec doesn't yet occur, then ok, and outPoly is inPoly with (coefficient, degreeVec) inserted.
DPInsertTerm is an insertion sort.
nextCoeff: AC.Object;
nextDegreeVec: DegreeVector;
poly: DPolynomial ← inPoly;
degreeVecComparison: [-1..1];
ok ← TRUE;
IF inPoly=
NIL
THEN {
outPoly←CONS[ [coefficient, degreeVec], NIL ];
RETURN
};
outPoly ← inPoly;
[nextCoeff, nextDegreeVec] ← poly.first; poly ← poly.rest;
degreeVecComparison ← DVCompare[degreeVec, nextDegreeVec];
SELECT degreeVecComparison
FROM
0 => { ok ← FALSE; RETURN };
1 => {
outPoly←CONS[ [coefficient, degreeVec], inPoly ];
RETURN
};
ENDCASE;
outPoly ← CONS[ [nextCoeff, nextDegreeVec], NIL];
WHILE poly#
NIL
DO
[nextCoeff, nextDegreeVec] ← poly.first; poly ← poly.rest;
degreeVecComparison ← DVCompare[degreeVec, nextDegreeVec];
SELECT degreeVecComparison
FROM
0 => { outPoly ← inPoly; ok ← FALSE; RETURN };
1 => {
outPoly ← CONS[ [nextCoeff, nextDegreeVec], CONS[ [coefficient, degreeVec], outPoly] ];
outPoly ← DPReverse[outPoly];
outPoly ← DPNconc[outPoly, poly];
RETURN
};
ENDCASE;
outPoly ← CONS[ [nextCoeff, nextDegreeVec], outPoly];
ENDLOOP;
outPoly ← CONS[ [coefficient, degreeVec], outPoly];
outPoly ← DPReverse[outPoly];
};
DPNconc:
PROC [l1, l2: DPolynomial]
RETURNS [DPolynomial] ~ {
z: DPolynomial ← l1;
IF z = NIL THEN RETURN[l2];
UNTIL z.rest =
NIL
DO
z ← z.rest;
ENDLOOP;
z.rest ← l2;
RETURN[l1];
};
DPReverse:
PUBLIC
PROC [list: DPolynomial]
RETURNS[val: DPolynomial] = {
val ← NIL;
UNTIL list =
NIL
DO
val ← CONS[list.first, val];
list ← list.rest;
ENDLOOP;
RETURN[val];
}; -- of Reverse
Degree Vectors
DVInsertVariablePower:
PUBLIC
PROC [varIndex, exponent:
CARDINAL, inDegreeVec: DegreeVector]
RETURNS [ok:
BOOL, outDegreeVec: DegreeVector] ~ {
Variable varIndex raised to the exponent power is recorded in inDegreeVec. NOT ok if the variable already occurs (and inDegreeVec unchanged). If the variable doesn't yet occur, then ok; if exponent = 0, inDegreeVec unchanged, otherwise outDegreeVec is inDegreeVec with (varIndex, exponent) inserted.
DVInsertVariablePower is an insertion sort.
nextIndex, nextExponent: CARDINAL;
degreeVec: DegreeVector ← inDegreeVec;
outDegreeVec ← inDegreeVec;
ok ← TRUE;
IF inDegreeVec=
NIL
THEN {
IF exponent=0
THEN
RETURN
ELSE {
outDegreeVec←CONS[varIndex, CONS[ exponent, NIL] ];
RETURN
}
};
nextIndex ← degreeVec.first; degreeVec ← degreeVec.rest;
nextExponent ← degreeVec.first; degreeVec ← degreeVec.rest;
SELECT varIndex
FROM
= nextIndex => { ok ← FALSE; RETURN };
> nextIndex =>
IF exponent=0
THEN
RETURN
ELSE {
outDegreeVec←CONS[varIndex, CONS[exponent, inDegreeVec] ];
RETURN
};
ENDCASE;
outDegreeVec ← CONS[nextExponent, CONS[nextIndex, NIL]];
WHILE degreeVec#
NIL
DO
nextIndex ← degreeVec.first; degreeVec ← degreeVec.rest;
nextExponent ← degreeVec.first; degreeVec ← degreeVec.rest;
SELECT varIndex
FROM
= nextIndex => { outDegreeVec ← inDegreeVec;ok ← FALSE; RETURN };
> nextIndex =>
IF exponent=0
THEN
{ outDegreeVec ← inDegreeVec; RETURN }
ELSE {
outDegreeVec𡤍VCons4[nextExponent, nextIndex, exponent, varIndex, outDegreeVec];
outDegreeVec ← DVReverse[outDegreeVec];
outDegreeVec ← DVNconc[outDegreeVec, degreeVec];
RETURN
};
ENDCASE;
outDegreeVec ← CONS[nextExponent, CONS[nextIndex, outDegreeVec]];
ENDLOOP;
outDegreeVec ← CONS[exponent, CONS[varIndex, outDegreeVec]];
outDegreeVec ← DVReverse[outDegreeVec];
};
DVCompare:
PUBLIC
PROC [dv1, dv2: DegreeVector]
RETURNS [ [-1..1] ] ~ {
index1, index2, exponent1, exponent2: CARDINAL;
WHILE dv1#
NIL
AND dv2#
NIL
DO
index1 ← dv1.first; dv1 ← dv1.rest;
exponent1 ← dv1.first; dv1 ← dv1.rest;
index2 ← dv2.first; dv2 ← dv2.rest;
exponent2 ← dv2.first; dv2 ← dv2.rest;
IF index1 > index2 THEN RETURN[1];
IF index1 < index2 THEN RETURN[-1];
IF exponent1 > exponent2 THEN RETURN[1];
IF exponent1 < exponent2 THEN RETURN[-1];
ENDLOOP;
IF dv1#NIL THEN RETURN[1];
IF dv2#NIL THEN RETURN[-1];
RETURN[0];
};
DVDegree:
PUBLIC
PROC [degreeVec: DegreeVector, numVars:
CARDINAL]
RETURNS [degree:
CARDINAL] ~ {
IF degreeVec = NIL THEN RETURN[0];
IF degreeVec.first = numVars THEN RETURN[degreeVec.rest.first] ELSE RETURN[0];
};
DVRemoveMainVariablePower:
PUBLIC
PROC [in: DegreeVector, numVars:
CARDINAL]
RETURNS [out: DegreeVector] ~ {
IF in = NIL THEN RETURN[NIL];
IF in.first = numVars THEN RETURN [in.rest.rest] ELSE RETURN[in];
};
DVAddMainVariablePower:
PUBLIC
PROC [in: DegreeVector, varIndex, exponent:
CARDINAL]
RETURNS [out: DegreeVector] ~ {
IF exponent>0 THEN RETURN[ CONS[varIndex, CONS[ exponent, in] ] ] ELSE RETURN[in];
};
DVCons4:
PUBLIC
PROC [x1, x2, x3, x4:
CARDINAL, degreeVec: DegreeVector]
RETURNS [DegreeVector] ~ {
RETURN[ CONS[x1, CONS[x2, CONS[x3, CONS[x4, degreeVec]]]] ];
};
DVNconc:
PUBLIC
PROC [l1, l2: DegreeVector]
RETURNS [DegreeVector] ~ {
z: DegreeVector ← l1;
IF z = NIL THEN RETURN[l2];
UNTIL z.rest =
NIL
DO
z ← z.rest;
ENDLOOP;
z.rest ← l2;
RETURN[l1];
};
DVReverse:
PUBLIC
PROC [list: DegreeVector]
RETURNS[val: DegreeVector] = {
val ← NIL;
UNTIL list =
NIL
DO
val ← CONS[list.first, val];
list ← list.rest;
ENDLOOP;
RETURN[val];
}; -- of Reverse